code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ : Any ={ 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Tuple =[ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCAmelCase__ : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
101
class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ): a__ : str = name a__ : Optional[int] = value a__ : Dict = weight def __repr__( self : Union[str, Any] ): return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _UpperCamelCase( self : Dict ): return self.value def _UpperCamelCase( self : Optional[Any] ): return self.name def _UpperCamelCase( self : Optional[Any] ): return self.weight def _UpperCamelCase( self : Optional[int] ): return self.value / self.weight def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Optional[Any] = [] for i in range(len(__a ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCamelCase_ ( __a , __a , __a ) -> Union[str, Any]: a__ : List[str] = sorted(__a , key=__a , reverse=__a ) a__ : List[Any] = [] a__, a__ : Union[str, Any] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCamelCase_ ( ) -> Union[str, Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
37
0
"""simple docstring""" def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if n == 0: return 0 UpperCamelCase : List[str] = float("""-inf""" ) for i in range(1 , n + 1 ): UpperCamelCase : str = max( SCREAMING_SNAKE_CASE , prices[i - 1] + naive_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE ) ) return max_revue def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = [float("""-inf""" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: UpperCamelCase : Any = float("""-inf""" ) for i in range(1 , n + 1 ): UpperCamelCase : str = max( SCREAMING_SNAKE_CASE , prices[i - 1] + _top_down_cut_rod_recursive(n - i , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) UpperCamelCase : Any = max_revenue return max_rev[n] def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): _enforce_args(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. UpperCamelCase : str = [float("""-inf""" ) for _ in range(n + 1 )] UpperCamelCase : List[Any] = 0 for i in range(1 , n + 1 ): UpperCamelCase : str = max_rev[i] for j in range(1 , i + 1 ): UpperCamelCase : Union[str, Any] = max(SCREAMING_SNAKE_CASE , prices[j - 1] + max_rev[i - j] ) UpperCamelCase : Any = max_revenue_i return max_rev[n] def UpperCamelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if n < 0: UpperCamelCase : List[Any] = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(SCREAMING_SNAKE_CASE ) if n > len(SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = ( """Each integral piece of rod must have a corresponding price. """ f"""Got n = {n} but length of prices = {len(SCREAMING_SNAKE_CASE )}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) def UpperCamelCase (): UpperCamelCase : Tuple = [6, 10, 12, 15, 20, 23] UpperCamelCase : Optional[Any] = len(SCREAMING_SNAKE_CASE ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. UpperCamelCase : Optional[int] = 36 UpperCamelCase : Optional[int] = top_down_cut_rod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase : str = bottom_up_cut_rod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase : int = naive_cut_rod_recursive(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
102
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A__ ( A__ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase__ : Union[str, "sqlalchemy.sql.Selectable"] , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , **lowerCamelCase__ : Optional[int] , ): super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ ) a__ : str = Sql( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , ) def _UpperCamelCase( self : Tuple ): a__ : Optional[Any] = None a__ : Dict = None a__ : Union[str, Any] = None a__ : Union[str, Any] = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , ) # Build dataset for splits a__ : List[str] = self.builder.as_dataset( split="train" , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : Dataset , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Optional[Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) a__ : Any = dataset a__ : str = name a__ : Tuple = con a__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a__ : Any = num_proc a__ : Tuple = to_sql_kwargs def _UpperCamelCase( self : List[Any] ): a__ : Any = self.to_sql_kwargs.pop("sql" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("con" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("index" , lowerCamelCase__ ) a__ : int = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs ) return written def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] ): a__, a__, a__ : Union[str, Any] = args a__ : Any = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs a__ : Tuple = query_table( table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) a__ : str = batch.to_pandas() a__ : List[Any] = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ ) return num_rows or len(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : str = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: a__, a__ : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
37
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Optional[int] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Dict=0 ): """simple docstring""" _snake_case = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__lowerCamelCase ) ) _snake_case = np.random.RandomState(__lowerCamelCase ) _snake_case = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) # warmup pass to apply optimizations _snake_case = pipe(**self.get_dummy_inputs() ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _snake_case = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = self.get_dummy_inputs() _snake_case = pipe(**__lowerCamelCase ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) _snake_case = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): @property def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = ort.SessionOptions() _snake_case = False return options def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _snake_case = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''A fantasy landscape, trending on artstation''' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__lowerCamelCase , output_type='''np''' , ) _snake_case = output.images _snake_case = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _snake_case = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _snake_case = init_image.resize((7_6_8, 5_1_2) ) _snake_case = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) _snake_case = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _snake_case = '''A fantasy landscape, trending on artstation''' _snake_case = np.random.RandomState(0 ) _snake_case = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__lowerCamelCase , output_type='''np''' , ) _snake_case = output.images _snake_case = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) _snake_case = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
103
import math from datetime import datetime, timedelta def UpperCamelCase_ ( __a ) -> datetime: a__ : Union[str, Any] = year % 19 a__ : List[str] = year % 4 a__ : str = year % 7 a__ : Any = math.floor(year / 100 ) a__ : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) a__ : Optional[int] = leap_day_inhibits / 4 a__ : Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 a__ : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 a__ : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon a__ : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 18 ) else: return datetime(__a , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCamelCase : Tuple = """will be""" if year > datetime.now().year else """was""" print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
37
0
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ) -> Union[str, Any]: super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE__ , text_encoder=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , safety_checker=SCREAMING_SNAKE_CASE__ , feature_extractor=SCREAMING_SNAKE_CASE__ , ) def snake_case__ ( self , SCREAMING_SNAKE_CASE__ = "auto" ) -> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory A__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE__ ) def snake_case__ ( self ) -> Union[str, Any]: self.enable_attention_slicing(SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 512 , SCREAMING_SNAKE_CASE__ = 512 , SCREAMING_SNAKE_CASE__ = 50 , SCREAMING_SNAKE_CASE__ = 7.5 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = 0.0 , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = "pil" , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = None , SCREAMING_SNAKE_CASE__ = 1 , SCREAMING_SNAKE_CASE__ = None , **SCREAMING_SNAKE_CASE__ , ) -> Dict: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = 1 elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = len(SCREAMING_SNAKE_CASE__ ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(SCREAMING_SNAKE_CASE__ )}.""" ) # get prompt text embeddings A__ = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) A__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: A__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) A__ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: A__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method A__ , A__ , A__ = text_embeddings.shape A__ = text_embeddings.repeat(1 , SCREAMING_SNAKE_CASE__ , 1 ) A__ = text_embeddings.view(bs_embed * num_images_per_prompt , SCREAMING_SNAKE_CASE__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. A__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: A__ = 42 if negative_prompt is None: A__ = [""] elif type(SCREAMING_SNAKE_CASE__ ) is not type(SCREAMING_SNAKE_CASE__ ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE__ )} !=""" f""" {type(SCREAMING_SNAKE_CASE__ )}.""" ) elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): A__ = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE__ )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: A__ = negative_prompt A__ = text_input_ids.shape[-1] A__ = self.tokenizer( SCREAMING_SNAKE_CASE__ , padding="max_length" , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , return_tensors="pt" , ) A__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method A__ = uncond_embeddings.shape[1] A__ = uncond_embeddings.repeat(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) A__ = uncond_embeddings.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) A__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) A__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps A__ = torch.randn( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device="cpu" , dtype=SCREAMING_SNAKE_CASE__ ).to(self.device ) A__ = torch.randn(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device="cpu" , dtype=SCREAMING_SNAKE_CASE__ ).to( self.device ) else: A__ = torch.randn( SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=SCREAMING_SNAKE_CASE__ ) A__ = torch.randn(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=self.device , dtype=SCREAMING_SNAKE_CASE__ ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) A__ = latents_reference.to(self.device ) A__ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images A__ = (latents_shape[3] - latents_shape_reference[3]) // 2 A__ = (latents_shape[2] - latents_shape_reference[2]) // 2 A__ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx A__ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy A__ = 0 if dx < 0 else dx A__ = 0 if dy < 0 else dy A__ = max(-dx , 0 ) A__ = max(-dy , 0 ) # import pdb # pdb.set_trace() A__ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand A__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] A__ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ = {} if accepts_eta: A__ = eta for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the latents if we are doing classifier free guidance A__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # predict the noise residual A__ = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ ).sample # perform guidance if do_classifier_free_guidance: A__ , A__ = noise_pred.chunk(2 ) A__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) A__ = 1 / 0.1_8_2_1_5 * latents A__ = self.vae.decode(SCREAMING_SNAKE_CASE__ ).sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 A__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: A__ = self.feature_extractor(self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) , return_tensors="pt" ).to( self.device ) A__ , A__ = self.safety_checker( images=SCREAMING_SNAKE_CASE__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: A__ = None if output_type == "pil": A__ = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE__ , nsfw_content_detected=SCREAMING_SNAKE_CASE__ )
104
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCamelCase_ ( __a ) -> Union[str, Any]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase__ : nn.Module , lowerCamelCase__ : int ): super().__init__() a__ : int = module a__ : Any = nn.Sequential( nn.Linear(module.in_features , lowerCamelCase__ , bias=lowerCamelCase__ ) , nn.Linear(lowerCamelCase__ , module.out_features , bias=lowerCamelCase__ ) , ) a__ : Tuple = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCamelCase__ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ): return self.module(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) + self.adapter(lowerCamelCase__ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" _lowercase = 'bigscience/bloom-1b7' # Constant values _lowercase = 2.1_09_65_95_52_69_25_74 _lowercase = 'Hello my name is' _lowercase = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) _lowercase = 1_0 def _UpperCamelCase( self : Dict ): # Models and tokenizer a__ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Union[str, Any] ): super().setUp() # Models and tokenizer a__ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) a__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : List[Any] ): a__ : str = self.model_abit.config self.assertTrue(hasattr(lowerCamelCase__ , "quantization_config" ) ) a__ : Optional[Any] = config.to_dict() a__ : int = config.to_diff_dict() a__ : List[str] = config.to_json_string() def _UpperCamelCase( self : int ): from bitsandbytes.nn import Paramsabit a__ : List[Any] = self.model_fpaa.get_memory_footprint() a__ : str = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a__ : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _UpperCamelCase( self : Tuple ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCamelCase__ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _UpperCamelCase( self : str ): a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Tuple = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[Any] = BitsAndBytesConfig() a__ : Optional[int] = True a__ : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , device_map="auto" ) a__ : str = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : int = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : Dict ): with self.assertRaises(lowerCamelCase__ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): a__ : int = BitsAndBytesConfig() with self.assertRaises(lowerCamelCase__ ): a__ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , load_in_abit=lowerCamelCase__ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def _UpperCamelCase( self : int ): with self.assertRaises(lowerCamelCase__ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a__ : int = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Any = self.model_fpaa.to(torch.floataa ) a__ : List[Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.to("cpu" ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.half() # Check this does not throw an error a__ : Dict = self.model_fpaa.float() def _UpperCamelCase( self : Dict ): a__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCamelCase__ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCamelCase( cls : str ): a__ : Dict = "t5-small" a__ : List[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense a__ : int = AutoTokenizer.from_pretrained(cls.model_name ) a__ : str = "Translate in German: Hello, my dog is cute" def _UpperCamelCase( self : Optional[int] ): gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Optional[int] ): from transformers import TaForConditionalGeneration a__ : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules a__ : Optional[Any] = None # test with `t5-small` a__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Any = model.generate(**lowerCamelCase__ ) a__ : Union[str, Any] = modules def _UpperCamelCase( self : List[Any] ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a__ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a__ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Optional[int] = model.generate(**lowerCamelCase__ ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : List[str] ): super().setUp() # model_name a__ : Union[str, Any] = "bigscience/bloom-560m" a__ : Union[str, Any] = "t5-small" # Different types of model a__ : int = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Sequence classification model a__ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # CausalLM model a__ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Seq2seq model a__ : Dict = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Union[str, Any] ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): super().setUp() def _UpperCamelCase( self : int ): del self.pipe gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Tuple ): a__ : int = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a__ : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Tuple ): super().setUp() def _UpperCamelCase( self : List[Any] ): a__ : str = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a__ : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch a__ : List[Any] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): a__ : Any = "facebook/opt-350m" super().setUp() def _UpperCamelCase( self : int ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters a__ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a__ : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a__ : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCamelCase__ ) ): a__ : Dict = LoRALayer(module.q_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.k_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a__ : Dict = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a__ : Optional[Any] = model.forward(**lowerCamelCase__ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCamelCase__ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( A__ ): """simple docstring""" _lowercase = 'gpt2-xl' _lowercase = 3.31_91_85_48_54_15_21_87
37
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset UpperCamelCase__ : str = random.Random() def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : str=1.0 , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=None ) -> Dict: """simple docstring""" if rng is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = global_rng SCREAMING_SNAKE_CASE_ : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self ,snake_case__ ,snake_case__=7 ,snake_case__=400 ,snake_case__=2000 ,snake_case__=2048 ,snake_case__=128 ,snake_case__=1 ,snake_case__=512 ,snake_case__=30 ,snake_case__=44100 ,): SCREAMING_SNAKE_CASE_ : Union[str, Any] = parent SCREAMING_SNAKE_CASE_ : Optional[Any] = batch_size SCREAMING_SNAKE_CASE_ : Dict = min_seq_length SCREAMING_SNAKE_CASE_ : Any = max_seq_length SCREAMING_SNAKE_CASE_ : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE_ : Tuple = spectrogram_length SCREAMING_SNAKE_CASE_ : Tuple = feature_size SCREAMING_SNAKE_CASE_ : Optional[Any] = num_audio_channels SCREAMING_SNAKE_CASE_ : int = hop_length SCREAMING_SNAKE_CASE_ : str = chunk_length SCREAMING_SNAKE_CASE_ : Optional[Any] = sampling_rate def snake_case ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def snake_case ( self ,snake_case__=False ,snake_case__=False ): def _flatten(snake_case__ ): return list(itertools.chain(*snake_case__ ) ) if equal_length: SCREAMING_SNAKE_CASE_ : Any = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE_ : List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE_ : Optional[int] = [np.asarray(snake_case__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCAmelCase_ ( lowerCamelCase_ , unittest.TestCase ): __a : int = TvltFeatureExtractor def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = TvltFeatureExtractionTester(self ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case__ ,'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case__ ,'feature_size' ) ) self.assertTrue(hasattr(snake_case__ ,'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case__ ,'hop_length' ) ) self.assertTrue(hasattr(snake_case__ ,'chunk_length' ) ) self.assertTrue(hasattr(snake_case__ ,'sampling_rate' ) ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : Union[str, Any] = feat_extract_first.save_pretrained(snake_case__ )[0] check_json_file_has_correct_format(snake_case__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.feature_extraction_class.from_pretrained(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE_ : List[str] = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE_ : int = dict_first.pop('mel_filters' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case__ ,snake_case__ ) ) self.assertEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(snake_case__ ,'feat_extract.json' ) feat_extract_first.to_json_file(snake_case__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.feature_extraction_class.from_json_file(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE_ : Union[str, Any] = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE_ : List[str] = dict_first.pop('mel_filters' ) SCREAMING_SNAKE_CASE_ : Optional[int] = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case__ ,snake_case__ ) ) self.assertEqual(snake_case__ ,snake_case__ ) def snake_case ( self ): # Initialize feature_extractor SCREAMING_SNAKE_CASE_ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE_ : int = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [np.asarray(snake_case__ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE_ : Dict = feature_extractor(np_speech_inputs[0] ,return_tensors='np' ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched SCREAMING_SNAKE_CASE_ : Union[str, Any] = feature_extractor(snake_case__ ,return_tensors='np' ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking SCREAMING_SNAKE_CASE_ : Optional[int] = feature_extractor( snake_case__ ,return_tensors='np' ,sampling_rate=44100 ,mask_audio=snake_case__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE_ : int = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE_ : Any = np.asarray(snake_case__ ) SCREAMING_SNAKE_CASE_ : List[str] = feature_extractor(snake_case__ ,return_tensors='np' ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def snake_case ( self ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' ,'clean' ,split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE_ : Dict = ds.sort('id' ).select(range(snake_case__ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def snake_case ( self ): SCREAMING_SNAKE_CASE_ : List[str] = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE_ : Tuple = TvltFeatureExtractor() SCREAMING_SNAKE_CASE_ : List[str] = feature_extractor(snake_case__ ,return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape ,(1, 1, 192, 128) ) SCREAMING_SNAKE_CASE_ : int = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] ,snake_case__ ,atol=1E-4 ) )
105
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int]=100 , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[int]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : int=32 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Union[str, Any]=37 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Union[str, Any]=10 , lowerCamelCase__ : str=0.02 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=[0, 1, 2, 3] , ): a__ : Dict = parent a__ : Dict = 100 a__ : Optional[int] = batch_size a__ : Union[str, Any] = image_size a__ : Any = patch_size a__ : Optional[Any] = num_channels a__ : int = is_training a__ : List[str] = use_labels a__ : Optional[Any] = hidden_size a__ : List[Any] = num_hidden_layers a__ : str = num_attention_heads a__ : str = intermediate_size a__ : int = hidden_act a__ : List[Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = type_sequence_label_size a__ : Optional[Any] = initializer_range a__ : List[str] = scope a__ : int = out_indices a__ : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[int] = (image_size // patch_size) ** 2 a__ : Union[str, Any] = num_patches + 1 def _UpperCamelCase( self : int ): a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Optional[Any] = None a__ : Tuple = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCamelCase( self : Tuple ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any ): a__ : str = BeitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ): a__ : int = BeitForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _UpperCamelCase( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ): a__ : List[str] = self.type_sequence_label_size a__ : Optional[Any] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ : Optional[Any] = 1 a__ : List[str] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ : Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): a__ : int = self.num_labels a__ : List[str] = BeitForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Tuple = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _UpperCamelCase( self : Optional[int] ): a__ : Any = self.prepare_config_and_inputs() a__, a__, a__, a__ : Union[str, Any] = config_and_inputs a__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _lowercase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Any ): a__ : int = BeitModelTester(self ) a__ : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _UpperCamelCase( self : str ): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _UpperCamelCase( self : Dict ): pass def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : str ): a__, a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = model_class(lowerCamelCase__ ) a__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): if not self.model_tester.is_training: return a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling]: continue a__ : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() a__ : Any = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : Tuple = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : Tuple ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a__ : List[Any] = False a__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue a__ : Optional[Any] = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() a__ : Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : int = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : List[str] ): a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Dict = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: a__ : str = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _UpperCamelCase( self : Optional[int] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Tuple = BeitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _UpperCamelCase( self : str ): a__ : int = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(lowerCamelCase__ ) a__ : Optional[Any] = self.default_image_processor a__ : Dict = prepare_img() a__ : Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).pixel_values.to(lowerCamelCase__ ) # prepare bool_masked_pos a__ : Optional[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(pixel_values=lowerCamelCase__ , bool_masked_pos=lowerCamelCase__ ) a__ : Tuple = outputs.logits # verify the logits a__ : List[str] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[int] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCamelCase__ , atol=1E-2 ) ) @slow def _UpperCamelCase( self : Dict ): a__ : str = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(lowerCamelCase__ ) a__ : int = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Union[str, Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : Any ): a__ : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( lowerCamelCase__ ) a__ : str = self.default_image_processor a__ : List[str] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Dict = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Optional[int] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Optional[Any] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): a__ : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : Tuple = model.to(lowerCamelCase__ ) a__ : List[Any] = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : Union[str, Any] = Image.open(ds[0]["file"] ) a__ : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Tuple = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: a__ : Dict = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=lowerCamelCase__ , ) else: a__ : Dict = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _UpperCamelCase( self : Tuple ): a__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : List[Any] = model.to(lowerCamelCase__ ) a__ : int = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Optional[int] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : str = Image.open(ds[0]["file"] ) a__ : str = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : List[Any] = model(**lowerCamelCase__ ) a__ : Any = outputs.logits.detach().cpu() a__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(500, 300)] ) a__ : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) a__ : Any = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
37
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __snake_case :List[str] ={ 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :str =['MobileViTFeatureExtractor'] __snake_case :List[Any] =['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[Any] =[ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case :Optional[int] =[ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __snake_case :List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
106
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Union[str, Any]: a__ : Tuple = R"\w+[.]\d+" a__ : List[Any] = re.findall(__a , __a ) for pat in pats: a__ : Union[str, Any] = key.replace(__a , "_".join(pat.split("." ) ) ) return key def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): a__ : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: a__ : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: a__ : Union[str, Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer a__ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: a__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": a__ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( __a , __a , __a=42 ) -> str: # Step 1: Convert pytorch tensor to numpy a__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params a__ : Tuple = flax_model.init_weights(PRNGKey(__a ) ) a__ : Optional[Any] = flatten_dict(__a ) a__ : Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : Optional[int] = rename_key(__a ) a__ : Optional[int] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters a__, a__ : Union[str, Any] = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown a__ : str = jnp.asarray(__a ) return unflatten_dict(__a )
37
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : Union[str, Any] = logging.get_logger() @dataclass class lowercase_ : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = field(default_factory=_UpperCamelCase ) __lowerCAmelCase = field(default_factory=_UpperCamelCase ) def __UpperCAmelCase ( self : Any, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Tensor, UpperCamelCase__ : Tensor ) -> Any: _A = len(list(m.modules() ) ) == 1 or isinstance(UpperCamelCase__, nn.Convad ) or isinstance(UpperCamelCase__, nn.BatchNormad ) if has_not_submodules: self.traced.append(UpperCamelCase__ ) def __call__( self : List[str], UpperCamelCase__ : Tensor ) -> Union[str, Any]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(UpperCamelCase__ ) [x.remove() for x in self.handles] return self @property def __UpperCAmelCase ( self : List[str] ) -> List[Any]: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCamelCase__ : len(list(x.state_dict().keys() ) ) > 0, self.traced ) ) @dataclass class lowercase_ : """simple docstring""" __lowerCAmelCase = 42 __lowerCAmelCase = 42 __lowerCAmelCase = 1 __lowerCAmelCase = field(default_factory=_UpperCamelCase ) __lowerCAmelCase = field(default_factory=_UpperCamelCase ) __lowerCAmelCase = True def __call__( self : List[Any], UpperCamelCase__ : Tensor ) -> int: _A = Tracker(self.dest )(UpperCamelCase__ ).parametrized _A = Tracker(self.src )(UpperCamelCase__ ).parametrized _A = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.src_skip, UpperCamelCase__ ) ) _A = list(filter(lambda UpperCamelCase__ : type(UpperCamelCase__ ) not in self.dest_skip, UpperCamelCase__ ) ) if len(UpperCamelCase__ ) != len(UpperCamelCase__ ) and self.raise_if_mismatch: raise Exception( f'Numbers of operations are different. Source module has {len(UpperCamelCase__ )} operations while' f' destination module has {len(UpperCamelCase__ )}.' ) for dest_m, src_m in zip(UpperCamelCase__, UpperCamelCase__ ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'Transfered from={src_m} to={dest_m}' ) class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : Any, UpperCamelCase__ : nn.Module ) -> Dict: super().__init__() _A = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), f'Unexpected layer name {k}' _A = len(UpperCamelCase__ ) + 1 feature_blocks.append((f'res{block_index}', v) ) _A = nn.ModuleDict(UpperCamelCase__ ) def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : Tensor ) -> Tuple: return get_trunk_forward_outputs( UpperCamelCase__, out_feat_keys=UpperCamelCase__, feature_blocks=self._feature_blocks, ) class lowercase_ ( _UpperCamelCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : str ) -> str: _A = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : List[str], UpperCamelCase__ : str ) -> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: _A = self.convert_name_to_timm(UpperCamelCase__ ) _A = partial(lambda: (timm.create_model(UpperCamelCase__, pretrained=UpperCamelCase__ ).eval(), None) ) else: _A = super().__getitem__(UpperCamelCase__ ) return val class lowercase_ ( _UpperCamelCase ): """simple docstring""" def __getitem__( self : Optional[int], UpperCamelCase__ : str ) -> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: _A = RegNetModel else: _A = RegNetForImageClassification return val def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : List[Tuple[str, str]] ): for from_key, to_key in keys: _A = from_state_dict[from_key].clone() print(F'Copied key={from_key} to={to_key}' ) return to_state_dict def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : Callable[[], nn.Module] , __snake_case : Callable[[], nn.Module] , __snake_case : RegNetConfig , __snake_case : Path , __snake_case : bool = True , ): print(F'Converting {name}...' ) with torch.no_grad(): _A , _A = from_model_func() _A = our_model_func(__snake_case ).eval() _A = ModuleTransfer(src=__snake_case , dest=__snake_case , raise_if_mismatch=__snake_case ) _A = torch.randn((1, 3, 2_2_4, 2_2_4) ) module_transfer(__snake_case ) if from_state_dict is not None: _A = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: _A = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] _A = manually_copy_vissl_head(__snake_case , our_model.state_dict() , __snake_case ) our_model.load_state_dict(__snake_case ) _A = our_model(__snake_case , output_hidden_states=__snake_case ) _A = ( our_outputs.logits if isinstance(__snake_case , __snake_case ) else our_outputs.last_hidden_state ) _A = from_model(__snake_case ) _A = from_output[-1] if type(__snake_case ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: _A = our_outputs.hidden_states[-1] assert torch.allclose(__snake_case , __snake_case ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=__snake_case , ) _A = 2_2_4 if 'seer' not in name else 3_8_4 # we can use the convnext one _A = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=__snake_case ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=__snake_case , ) print(F'Pushed {name}' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Path , __snake_case : str = None , __snake_case : bool = True ): _A = 'imagenet-1k-id2label.json' _A = 1_0_0_0 _A = (1, num_labels) _A = 'huggingface/label-files' _A = num_labels _A = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type='dataset' ) ) , 'r' ) ) _A = {int(__snake_case ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} _A = partial(__snake_case , num_labels=__snake_case , idalabel=__snake_case , labelaid=__snake_case ) _A = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ), } _A = NameToOurModelFuncMap() _A = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__snake_case : str , __snake_case : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: _A = torch.hub.load_state_dict_from_url(__snake_case , model_dir=str(__snake_case ) , map_location='cpu' ) _A = model_func() # check if we have a head, if yes add it _A = files['classy_state_dict']['base_model']['model'] _A = model_state_dict['trunk'] model.load_state_dict(__snake_case ) return model.eval(), model_state_dict["heads"] # pretrained _A = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _A = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _A = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _A = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned _A = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _A = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) _A = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) _A = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __snake_case , __snake_case , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __snake_case , __snake_case , __snake_case , ) return config, expected_shape if __name__ == "__main__": _UpperCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() _UpperCAmelCase : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
107
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase_ ( ) -> int: a__ : Any = HfArgumentParser(__a ) a__ : Any = parser.parse_args_into_dataclasses()[0] a__ : Optional[int] = TensorFlowBenchmark(args=__a ) try: a__ : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: a__ : Tuple = "Arg --no_{0} is no longer used, please use --no-{0} instead." a__ : List[Any] = " ".join(str(__a ).split(" " )[:-1] ) a__ : str = "" a__ : List[Any] = eval(str(__a ).split(" " )[-1] ) a__ : List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__a ) if len(__a ) > 0: a__ : Tuple = full_error_msg + begin_error_msg + str(__a ) raise ValueError(__a ) benchmark.run() if __name__ == "__main__": main()
37
0
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets __a: Optional[Any] = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' __a: List[Any] = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' __a: Any = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Optional[Any]: return float((preds == labels).mean() ) def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Optional[int]: _UpperCAmelCase = simple_accuracy(__snake_case , __snake_case ) _UpperCAmelCase = float(fa_score(y_true=__snake_case , y_pred=__snake_case ) ) return { "accuracy": acc, "f1": fa, } def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> Any: _UpperCAmelCase = np.array(__snake_case ) _UpperCAmelCase = np.array(__snake_case ) _UpperCAmelCase = en_sentvecs.shape[0] # mean centering _UpperCAmelCase = en_sentvecs - np.mean(__snake_case , axis=0 ) _UpperCAmelCase = in_sentvecs - np.mean(__snake_case , axis=0 ) _UpperCAmelCase = cdist(__snake_case , __snake_case , """cosine""" ) _UpperCAmelCase = np.array(range(__snake_case ) ) _UpperCAmelCase = sim.argsort(axis=1 )[:, :1_0] _UpperCAmelCase = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): '''simple docstring''' def lowerCamelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), """references""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if self.config_name != """cvit-mkb-clsr""" else None , ) def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : int , lowerCamelCase : Optional[int] ) -> List[Any]: """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(lowerCamelCase , lowerCamelCase )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(lowerCamelCase , lowerCamelCase ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(lowerCamelCase , lowerCamelCase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" )
108
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCamelCase : Optional[int] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCamelCase_ ( __a ) -> Any: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCamelCase_ ( __a , __a , __a ) -> Any: return max(metric_fn(__a , __a ) for gt in ground_truths ) def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = [] if args.gold_data_mode == "qa": a__ : Any = pd.read_csv(__a , sep="\t" , header=__a ) for answer_list in data[1]: a__ : Union[str, Any] = ast.literal_eval(__a ) answers.append(__a ) else: a__ : List[str] = [line.strip() for line in open(__a , "r" ).readlines()] a__ : List[str] = [[reference] for reference in references] a__ : List[str] = 0 for prediction, ground_truths in zip(__a , __a ): total += 1 em += metric_max_over_ground_truths(__a , __a , __a ) fa += metric_max_over_ground_truths(__a , __a , __a ) a__ : Dict = 100.0 * em / total a__ : Optional[Any] = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Optional[Any] = args.k a__ : str = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = 0 for hypo, reference in zip(__a , __a ): a__ : Any = set(hypo.split("\t" )[:k] ) a__ : Union[str, Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a__ : Union[str, Any] = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: def strip_title(__a ): if title.startswith("\"" ): a__ : Optional[Any] = title[1:] if title.endswith("\"" ): a__ : Union[str, Any] = title[:-1] return title a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="pt" , padding=__a , truncation=__a , )["input_ids"].to(args.device ) a__ : Optional[int] = rag_model.rag.question_encoder(__a ) a__ : Union[str, Any] = question_enc_outputs[0] a__ : Optional[int] = rag_model.retriever( __a , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) a__ : List[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a__ : int = [] for docs in all_docs: a__ : Optional[int] = [strip_title(__a ) for title in docs["title"]] provenance_strings.append("\t".join(__a ) ) return provenance_strings def UpperCamelCase_ ( __a , __a , __a ) -> Dict: with torch.no_grad(): a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="pt" , padding=__a , truncation=__a ) a__ : Any = inputs_dict.input_ids.to(args.device ) a__ : Dict = inputs_dict.attention_mask.to(args.device ) a__ : Optional[int] = rag_model.generate( # rag_model overwrites generate __a , attention_mask=__a , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__a , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a__ : int = rag_model.retriever.generator_tokenizer.batch_decode(__a , skip_special_tokens=__a ) if args.print_predictions: for q, a in zip(__a , __a ): logger.info("Q: {} - A: {}".format(__a , __a ) ) return answers def UpperCamelCase_ ( ) -> List[str]: a__ : int = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=__a , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=__a , choices=["exact", "compressed", "legacy"] , type=__a , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=__a , type=__a , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=__a , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=__a , type=__a , required=__a , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=__a , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=__a , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=__a , type=__a , required=__a , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=__a , type=__a , required=__a , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=__a , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=__a , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=__a , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=__a , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=__a , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=__a , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) a__ : int = parser.parse_args() a__ : Dict = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def UpperCamelCase_ ( __a ) -> Optional[int]: a__ : Tuple = {} if args.model_type is None: a__ : List[str] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): a__ : int = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration a__ : Tuple = args.n_docs if args.index_name is not None: a__ : Any = args.index_name if args.index_path is not None: a__ : int = args.index_path else: a__ : Optional[Any] = BartForConditionalGeneration a__ : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , __a ) a__ : Any = get_scores if args.eval_mode == "e2e" else get_precision_at_k a__ : Union[str, Any] = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__a , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__a ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): a__ : str = RagRetriever.from_pretrained(__a , **__a ) a__ : Optional[int] = model_class.from_pretrained(__a , retriever=__a , **__a ) model.retriever.init_retrieval() else: a__ : Dict = model_class.from_pretrained(__a , **__a ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: a__ : List[Any] = [] for line in tqdm(__a ): questions.append(line.strip() ) if len(__a ) == args.eval_batch_size: a__ : Union[str, Any] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("\n".join(__a ) + "\n" ) preds_file.flush() a__ : Any = [] if len(__a ) > 0: a__ : List[str] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("\n".join(__a ) ) preds_file.flush() score_fn(__a , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCamelCase : List[Any] = get_args() main(args)
37
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a = None , ) -> str: a__ : int = {} if train_file is not None: a__ : int = [train_file] if eval_file is not None: a__ : Union[str, Any] = [eval_file] if test_file is not None: a__ : str = [test_file] a__ : Optional[Any] = datasets.load_dataset("csv" , data_files=__a ) a__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) a__ : str = features_name.pop(__a ) a__ : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) a__ : str = {label: i for i, label in enumerate(__a )} a__ : Tuple = tokenizer.model_input_names a__ : List[str] = {} if len(__a ) == 1: for k in files.keys(): a__ : Optional[Any] = ds[k].map( lambda __a : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__a , max_length=__a , padding="max_length" ) , batched=__a , ) elif len(__a ) == 2: for k in files.keys(): a__ : Dict = ds[k].map( lambda __a : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__a , max_length=__a , padding="max_length" , ) , batched=__a , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: a__ : str = {k: v for k, v in ex.items() if k in input_names} a__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: a__ : Tuple = {k: v for k, v in ex.items() if k in input_names} a__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: a__ : List[Any] = {k: v for k, v in ex.items() if k in input_names} a__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) a__ : Optional[Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: a__ : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: a__ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: a__ : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" _lowercase = field(metadata={'help': 'Which column contains the label'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the training file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the development file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the test file'} ) _lowercase = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _lowercase = field( default=A__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class A__ : """simple docstring""" _lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowercase = field(default=A__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCamelCase_ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) a__, a__, a__ : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a__, a__, a__, a__ : Optional[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) a__ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__a ) , labelaid=__a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): a__ : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , ) def compute_metrics(__a ) -> Dict: a__ : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer a__ : Dict = TFTrainer( model=__a , args=__a , train_dataset=__a , eval_dataset=__a , compute_metrics=__a , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a__ : Dict = trainer.evaluate() a__ : int = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(__a , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__a ) return results if __name__ == "__main__": main()
37
0
"""simple docstring""" def lowerCamelCase ( _snake_case ): if len(_snake_case ) < 2: return collection def circle_sort_util(_snake_case ,_snake_case ,_snake_case ) -> bool: UpperCAmelCase__ : Optional[Any] = False if low == high: return swapped UpperCAmelCase__ : List[Any] = low UpperCAmelCase__ : int = high while left < right: if collection[left] > collection[right]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = ( collection[right], collection[left], ) UpperCAmelCase__ : Union[str, Any] = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = ( collection[right + 1], collection[left], ) UpperCAmelCase__ : Optional[Any] = True UpperCAmelCase__ : Any = low + int((high - low) / 2 ) UpperCAmelCase__ : int = circle_sort_util(_snake_case ,_snake_case ,_snake_case ) UpperCAmelCase__ : Tuple = circle_sort_util(_snake_case ,mid + 1 ,_snake_case ) return swapped or left_swap or right_swap UpperCAmelCase__ : str = True while is_not_sorted is True: UpperCAmelCase__ : Union[str, Any] = circle_sort_util(_snake_case ,0 ,len(_snake_case ) - 1 ) return collection if __name__ == "__main__": UpperCamelCase__ = input('Enter numbers separated by a comma:\n').strip() UpperCamelCase__ = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
110
import argparse import collections import json import os import re import string import sys import numpy as np UpperCamelCase : List[str] = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) UpperCamelCase : Union[str, Any] = None def UpperCamelCase_ ( ) -> List[str]: a__ : List[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=__a , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=__a , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def UpperCamelCase_ ( __a ) -> str: a__ : Optional[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : Dict = bool(qa["answers"]["text"] ) return qid_to_has_ans def UpperCamelCase_ ( __a ) -> List[Any]: def remove_articles(__a ): return ARTICLES_REGEX.sub(" " , __a ) def white_space_fix(__a ): return " ".join(text.split() ) def remove_punc(__a ): a__ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__a ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__a ) ) ) ) def UpperCamelCase_ ( __a ) -> Dict: if not s: return [] return normalize_answer(__a ).split() def UpperCamelCase_ ( __a , __a ) -> str: return int(normalize_answer(__a ) == normalize_answer(__a ) ) def UpperCamelCase_ ( __a , __a ) -> Dict: a__ : int = get_tokens(__a ) a__ : Optional[Any] = get_tokens(__a ) a__ : Any = collections.Counter(__a ) & collections.Counter(__a ) a__ : Dict = sum(common.values() ) if len(__a ) == 0 or len(__a ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a__ : Tuple = 1.0 * num_same / len(__a ) a__ : str = 1.0 * num_same / len(__a ) a__ : str = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase_ ( __a , __a ) -> int: a__ : List[str] = {} a__ : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : List[Any] = qa["id"] a__ : Dict = [t for t in qa["answers"]["text"] if normalize_answer(__a )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a__ : Tuple = [""] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue a__ : Tuple = preds[qid] # Take max over all gold answers a__ : Optional[int] = max(compute_exact(__a , __a ) for a in gold_answers ) a__ : str = max(compute_fa(__a , __a ) for a in gold_answers ) return exact_scores, fa_scores def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]: a__ : Optional[Any] = {} for qid, s in scores.items(): a__ : Dict = na_probs[qid] > na_prob_thresh if pred_na: a__ : Dict = float(not qid_to_has_ans[qid] ) else: a__ : Optional[Any] = s return new_scores def UpperCamelCase_ ( __a , __a , __a=None ) -> Tuple: if not qid_list: a__ : Union[str, Any] = len(__a ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: a__ : int = len(__a ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: for k in new_eval: a__ : Optional[Any] = new_eval[k] def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]: plt.step(__a , __a , color="b" , alpha=0.2 , where="post" ) plt.fill_between(__a , __a , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__a ) plt.savefig(__a ) plt.clf() def UpperCamelCase_ ( __a , __a , __a , __a , __a=None , __a=None ) -> Dict: a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] ) a__ : Any = 0.0 a__ : Optional[int] = 1.0 a__ : Optional[int] = 0.0 a__ : Any = [1.0] a__ : Tuple = [0.0] a__ : List[str] = 0.0 for i, qid in enumerate(__a ): if qid_to_has_ans[qid]: true_pos += scores[qid] a__ : Any = true_pos / float(i + 1 ) a__ : int = true_pos / float(__a ) if i == len(__a ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__a ) recalls.append(__a ) if out_image: plot_pr_curve(__a , __a , __a , __a ) return {"ap": 100.0 * avg_prec} def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> str: if out_image_dir and not os.path.exists(__a ): os.makedirs(__a ) a__ : Optional[int] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a__ : Optional[int] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) a__ : Optional[Any] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) a__ : str = {k: float(__a ) for k, v in qid_to_has_ans.items()} a__ : Optional[Any] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(__a , __a , "pr_exact" ) merge_eval(__a , __a , "pr_f1" ) merge_eval(__a , __a , "pr_oracle" ) def UpperCamelCase_ ( __a , __a , __a , __a ) -> str: if not qid_list: return a__ : Optional[Any] = [na_probs[k] for k in qid_list] a__ : str = np.ones_like(__a ) / float(len(__a ) ) plt.hist(__a , weights=__a , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__a , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[Any]: a__ : str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a__ : Optional[Any] = num_no_ans a__ : Dict = cur_score a__ : Any = 0.0 a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] ) for i, qid in enumerate(__a ): if qid not in scores: continue if qid_to_has_ans[qid]: a__ : Optional[int] = scores[qid] else: if preds[qid]: a__ : str = -1 else: a__ : Union[str, Any] = 0 cur_score += diff if cur_score > best_score: a__ : Any = cur_score a__ : Dict = na_probs[qid] return 100.0 * best_score / len(__a ), best_thresh def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> Any: a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a ) a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a ) a__ : Any = best_exact a__ : Any = exact_thresh a__ : List[Any] = best_fa a__ : Optional[int] = fa_thresh def UpperCamelCase_ ( ) -> Tuple: with open(OPTS.data_file ) as f: a__ : List[Any] = json.load(__a ) a__ : Any = dataset_json["data"] with open(OPTS.pred_file ) as f: a__ : int = json.load(__a ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a__ : List[str] = json.load(__a ) else: a__ : Optional[int] = {k: 0.0 for k in preds} a__ : Optional[Any] = make_qid_to_has_ans(__a ) # maps qid to True/False a__ : List[Any] = [k for k, v in qid_to_has_ans.items() if v] a__ : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v] a__, a__ : str = get_raw_scores(__a , __a ) a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh ) a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh ) a__ : Tuple = make_eval_dict(__a , __a ) if has_ans_qids: a__ : str = make_eval_dict(__a , __a , qid_list=__a ) merge_eval(__a , __a , "HasAns" ) if no_ans_qids: a__ : List[Any] = make_eval_dict(__a , __a , qid_list=__a ) merge_eval(__a , __a , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(__a , __a , __a , __a , __a , __a ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__a , __a , __a , __a , __a , OPTS.out_image_dir ) histogram_na_prob(__a , __a , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(__a , __a , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(__a , __a ) else: print(json.dumps(__a , indent=2 ) ) if __name__ == "__main__": UpperCamelCase : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
37
0
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Optional[int] ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights __lowerCAmelCase = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowerCamelCase__ , cache_dir=lowerCamelCase__ ) __lowerCAmelCase = [t[-1] for t in os.walk(os.path.join(lowerCamelCase__ , os.listdir(lowerCamelCase__ )[0] , 'snapshots' ) )] __lowerCAmelCase = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : str ) -> Any: __lowerCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=lowerCamelCase__ ) __lowerCAmelCase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowerCAmelCase = jax.random.PRNGKey(0 ) __lowerCAmelCase = 4 __lowerCAmelCase = jax.device_count() __lowerCAmelCase = num_samples * [prompt] __lowerCAmelCase = pipeline.prepare_inputs(lowerCamelCase__ ) # shard inputs and rng __lowerCAmelCase = replicate(lowerCamelCase__ ) __lowerCAmelCase = jax.random.split(lowerCamelCase__ , lowerCamelCase__ ) __lowerCAmelCase = shard(lowerCamelCase__ ) __lowerCAmelCase = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_51_47_45 ) < 1e-3 assert np.abs(np.abs(lowerCamelCase__ , dtype=np.floataa ).sum() - 4_9_9_4_7.8_7_5 ) < 5e-1 __lowerCAmelCase = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(lowerCamelCase__ ) == num_samples def lowercase ( self : int ) -> Tuple: __lowerCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=lowerCamelCase__ ) __lowerCAmelCase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowerCAmelCase = jax.random.PRNGKey(0 ) __lowerCAmelCase = 5_0 __lowerCAmelCase = jax.device_count() __lowerCAmelCase = num_samples * [prompt] __lowerCAmelCase = pipeline.prepare_inputs(lowerCamelCase__ ) # shard inputs and rng __lowerCAmelCase = replicate(lowerCamelCase__ ) __lowerCAmelCase = jax.random.split(lowerCamelCase__ , lowerCamelCase__ ) __lowerCAmelCase = shard(lowerCamelCase__ ) __lowerCAmelCase = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_65_24_01) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase__ , dtype=np.floataa ).sum() - 2_3_8_3_8_0_8.2) ) < 5e-1 def lowercase ( self : Optional[Any] ) -> Tuple: __lowerCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase__ ) __lowerCAmelCase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowerCAmelCase = jax.random.PRNGKey(0 ) __lowerCAmelCase = 5_0 __lowerCAmelCase = jax.device_count() __lowerCAmelCase = num_samples * [prompt] __lowerCAmelCase = pipeline.prepare_inputs(lowerCamelCase__ ) # shard inputs and rng __lowerCAmelCase = replicate(lowerCamelCase__ ) __lowerCAmelCase = jax.random.split(lowerCamelCase__ , lowerCamelCase__ ) __lowerCAmelCase = shard(lowerCamelCase__ ) __lowerCAmelCase = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase__ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def lowercase ( self : Optional[int] ) -> List[Any]: __lowerCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) __lowerCAmelCase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowerCAmelCase = jax.random.PRNGKey(0 ) __lowerCAmelCase = 5_0 __lowerCAmelCase = jax.device_count() __lowerCAmelCase = num_samples * [prompt] __lowerCAmelCase = pipeline.prepare_inputs(lowerCamelCase__ ) # shard inputs and rng __lowerCAmelCase = replicate(lowerCamelCase__ ) __lowerCAmelCase = jax.random.split(lowerCamelCase__ , lowerCamelCase__ ) __lowerCAmelCase = shard(lowerCamelCase__ ) __lowerCAmelCase = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_00_39_06) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase__ , dtype=np.floataa ).sum() - 2_3_7_3_5_1_6.7_5) ) < 5e-1 def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , ) __lowerCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=lowerCamelCase__ , safety_checker=lowerCamelCase__ , ) __lowerCAmelCase = scheduler.create_state() __lowerCAmelCase = scheduler_state __lowerCAmelCase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowerCAmelCase = jax.random.PRNGKey(0 ) __lowerCAmelCase = 5_0 __lowerCAmelCase = jax.device_count() __lowerCAmelCase = num_samples * [prompt] __lowerCAmelCase = pipeline.prepare_inputs(lowerCamelCase__ ) # shard inputs and rng __lowerCAmelCase = replicate(lowerCamelCase__ ) __lowerCAmelCase = jax.random.split(lowerCamelCase__ , lowerCamelCase__ ) __lowerCAmelCase = shard(lowerCamelCase__ ) __lowerCAmelCase = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.0_45_04_39_45) ) < 1e-3 assert np.abs((np.abs(lowerCamelCase__ , dtype=np.floataa ).sum() - 2_3_4_7_6_9_3.5) ) < 5e-1 def lowercase ( self : int ) -> List[str]: __lowerCAmelCase = ( "A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of" " field, close up, split lighting, cinematic" ) __lowerCAmelCase = jax.device_count() __lowerCAmelCase = num_samples * [prompt] __lowerCAmelCase = jax.random.split(jax.random.PRNGKey(0 ) , lowerCamelCase__ ) __lowerCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase__ , ) __lowerCAmelCase = replicate(lowerCamelCase__ ) __lowerCAmelCase = pipeline.prepare_inputs(lowerCamelCase__ ) __lowerCAmelCase = shard(lowerCamelCase__ ) __lowerCAmelCase = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention __lowerCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=lowerCamelCase__ , use_memory_efficient_attention=lowerCamelCase__ , ) __lowerCAmelCase = replicate(lowerCamelCase__ ) __lowerCAmelCase = pipeline.prepare_inputs(lowerCamelCase__ ) __lowerCAmelCase = shard(lowerCamelCase__ ) __lowerCAmelCase = pipeline(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , jit=lowerCamelCase__ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1e-2
53
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = CLIPTokenizer _lowercase = CLIPTokenizerFast _lowercase = True _lowercase = {} _lowercase = False def _UpperCamelCase( self : List[Any] ): super().setUp() # fmt: off a__ : Any = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) a__ : Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] a__ : Optional[Any] = {"unk_token": "<unk>"} a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) def _UpperCamelCase( self : Dict , **lowerCamelCase__ : int ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , **lowerCamelCase__ : Optional[int] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[Any] ): a__ : int = "lower newer" a__ : Optional[int] = "lower newer" return input_text, output_text def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a__ : int = "lower newer" a__ : List[str] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] a__ : Union[str, Any] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : int = tokens + [tokenizer.unk_token] a__ : Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @require_ftfy def _UpperCamelCase( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : List[str] = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : int = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." a__ : Optional[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : Dict = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a__ : Optional[Any] = "xa\u0303y" + " " + "x\xe3y" a__ : Optional[int] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of space type a__ : str = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a__ : Any = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of line break type a__ : Union[str, Any] = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a__ : List[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a__ : Tuple = f'''{text_of_1_token} {text_of_1_token}''' a__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Union[str, Any] = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) a__ : Optional[Any] = f''' {text}''' a__ : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Dict = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) def _UpperCamelCase( self : int ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCamelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def _UpperCamelCase( self : int ): super().test_tokenization_python_rust_equals() def _UpperCamelCase( self : str ): # CLIP always lower cases letters pass
37
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __SCREAMING_SNAKE_CASE ( UpperCamelCase__="" ) -> str: '''simple docstring''' UpperCAmelCase = tempfile.mkdtemp() return os.path.join(__a , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 UpperCAmelCase = AgentAudio(lowerCamelCase__ ) UpperCAmelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase__ ) ) # Ensure that the file contains the same value as the original tensor UpperCAmelCase = sf.read(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , torch.tensor(lowerCamelCase__ ) , atol=1E-4 ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 UpperCAmelCase = get_new_path(suffix='''.wav''' ) sf.write(lowerCamelCase__ , lowerCamelCase__ , 1_6_0_0_0 ) UpperCAmelCase = AgentAudio(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowerCamelCase__ ) @require_vision @require_torch class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) UpperCAmelCase = AgentImage(lowerCamelCase__ ) UpperCAmelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / "000000039769.png" UpperCAmelCase = Image.open(lowerCamelCase__ ) UpperCAmelCase = AgentImage(lowerCamelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / "000000039769.png" UpperCAmelCase = Image.open(lowerCamelCase__ ) UpperCAmelCase = AgentImage(lowerCamelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) class A_ (unittest.TestCase ): def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = "Hey!" UpperCAmelCase = AgentText(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , agent_type.to_string() ) self.assertEqual(lowerCamelCase__ , agent_type.to_raw() ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ )
130
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCamelCase : Dict = """<<<<<<< This should probably be modified because it mentions: """ UpperCamelCase : List[Any] = """======= >>>>>>> """ UpperCamelCase : Optional[Any] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] UpperCamelCase : Any = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def UpperCamelCase_ ( __a ) -> Optional[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class A__ ( A__ ): """simple docstring""" @staticmethod def _UpperCamelCase( lowerCamelCase__ : ArgumentParser ): a__ : List[str] = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , *lowerCamelCase__ : Tuple ): a__ : str = get_logger("datasets-cli/converting" ) a__ : Optional[Any] = tfds_path a__ : Optional[int] = datasets_directory def _UpperCamelCase( self : int ): if os.path.isdir(self._tfds_path ): a__ : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): a__ : Any = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) a__ : Dict = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) a__ : Tuple = [] a__ : str = [] a__ : List[Any] = {} if os.path.isdir(self._tfds_path ): a__ : List[str] = os.listdir(lowerCamelCase__ ) else: a__ : Union[str, Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) a__ : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) a__ : Dict = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) if not os.path.isfile(lowerCamelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(lowerCamelCase__ , encoding="utf-8" ) as f: a__ : List[Any] = f.readlines() a__ : Union[str, Any] = [] a__ : Union[str, Any] = False a__ : Union[str, Any] = False a__ : Dict = [] for line in lines: a__ : Optional[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: a__ : List[Any] = "import datasets\n" elif "import tensorflow" in out_line: # order is important here a__ : List[str] = "" continue elif "from absl import logging" in out_line: a__ : Dict = "from datasets import logging\n" elif "getLogger" in out_line: a__ : List[Any] = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): a__ : List[str] = True a__ : Dict = list(filter(lambda lowerCamelCase__ : e in out_line , lowerCamelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCamelCase__ ) + "\n" ) out_lines.append(lowerCamelCase__ ) out_lines.append(lowerCamelCase__ ) continue else: for pattern, replacement in TO_CONVERT: a__ : Tuple = re.sub(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: a__ : Optional[int] = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , lowerCamelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) a__ : Optional[Any] = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: a__ : Optional[int] = True out_lines.append(lowerCamelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset a__ : Dict = f_name.replace(".py" , "" ) a__ : Optional[int] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) a__ : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCamelCase__ ) if needs_manual_update: with_manual_update.append(lowerCamelCase__ ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.writelines(lowerCamelCase__ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: a__ : Any = os.path.basename(lowerCamelCase__ ) a__ : Optional[int] = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowerCamelCase__ , lowerCamelCase__ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
37
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowerCAmelCase : int = logging.get_logger(__name__) class a_ ( A__ ): UpperCamelCase_ : int = ["pixel_values"] def __init__( self : int , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : int = 0.9 , snake_case__ : PILImageResampling = PILImageResampling.BICUBIC , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : Union[int, float] = 1 / 255 , snake_case__ : bool = True , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , **snake_case__ : Any , ): super().__init__(**lowerCamelCase__ ) lowerCAmelCase__ = size if size is not None else {"shortest_edge": 224} lowerCAmelCase__ = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) lowerCAmelCase__ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase__ = get_size_dict(lowerCamelCase__ , param_name="""crop_size""" ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = crop_pct lowerCAmelCase__ = resample lowerCAmelCase__ = do_center_crop lowerCAmelCase__ = crop_size lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN lowerCAmelCase__ = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : Optional[float] = None , snake_case__ : PILImageResampling = PILImageResampling.BICUBIC , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : str , ): lowerCAmelCase__ = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(F"""size must contain \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: lowerCAmelCase__ = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: lowerCAmelCase__ = int(size["""height"""] / crop_pct ) else: lowerCAmelCase__ = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(lowerCamelCase__ ) ) lowerCAmelCase__ = get_resize_output_image_size(lowerCamelCase__ , size=lowerCamelCase__ , default_to_square=lowerCamelCase__ ) else: if "shortest_edge" in size: lowerCAmelCase__ = get_resize_output_image_size(lowerCamelCase__ , size=size["""shortest_edge"""] , default_to_square=lowerCamelCase__ ) elif "height" in size and "width" in size: lowerCAmelCase__ = (size["height"], size["width"]) else: raise ValueError("""Invalid size for resize: {}""".format(lowerCamelCase__ ) ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Any , ): lowerCAmelCase__ = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""size must contain \'height\' and \'width\' as keys. Got {size.keys()}""" ) return center_crop(lowerCamelCase__ , size=(size["""height"""], size["""width"""]) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : np.ndarray , snake_case__ : Union[int, float] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Tuple , ): return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , snake_case__ : np.ndarray , snake_case__ : Union[float, List[float]] , snake_case__ : Union[float, List[float]] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Any , ): return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : ImageInput , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : int = None , snake_case__ : PILImageResampling = None , snake_case__ : bool = None , snake_case__ : Dict[str, int] = None , snake_case__ : bool = None , snake_case__ : float = None , snake_case__ : bool = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : str , ): lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = crop_pct if crop_pct is not None else self.crop_pct lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) lowerCAmelCase__ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase__ = get_size_dict(lowerCamelCase__ , param_name="""crop_size""" ) lowerCAmelCase__ = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowerCamelCase__ ) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , crop_pct=lowerCamelCase__ , resample=lowerCamelCase__ ) for image in images] if do_center_crop: lowerCAmelCase__ = [self.center_crop(image=lowerCamelCase__ , size=lowerCamelCase__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ ) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) for image in images] lowerCAmelCase__ = {"pixel_values": images} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
644
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class A__ ( A__ ): """simple docstring""" _lowercase = '' _lowercase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowercase = None # compression type in fsspec. ex: "gzip" _lowercase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[str] , lowerCamelCase__ : str = "" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[dict] = None , **lowerCamelCase__ : List[str] ): super().__init__(self , **lowerCamelCase__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode a__ : str = fsspec.open( lowerCamelCase__ , mode="rb" , protocol=lowerCamelCase__ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) a__ : Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) a__ : int = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) a__ : List[Any] = None @classmethod def _UpperCamelCase( cls : int , lowerCamelCase__ : int ): # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCamelCase__ ).lstrip("/" ) def _UpperCamelCase( self : Dict ): if self.dir_cache is None: a__ : Dict = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} a__ : int = {f["name"]: f} def _UpperCamelCase( self : Tuple , lowerCamelCase__ : str ): return self.file.open().read() def _UpperCamelCase( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str = "rb" , lowerCamelCase__ : int=None , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Optional[Any] , ): a__ : Optional[int] = self._strip_protocol(lowerCamelCase__ ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class A__ ( A__ ): """simple docstring""" _lowercase = 'bz2' _lowercase = 'bz2' _lowercase = '.bz2' class A__ ( A__ ): """simple docstring""" _lowercase = 'gzip' _lowercase = 'gzip' _lowercase = '.gz' class A__ ( A__ ): """simple docstring""" _lowercase = 'lz4' _lowercase = 'lz4' _lowercase = '.lz4' class A__ ( A__ ): """simple docstring""" _lowercase = 'xz' _lowercase = 'xz' _lowercase = '.xz' class A__ ( A__ ): """simple docstring""" _lowercase = 'zstd' _lowercase = 'zstd' _lowercase = '.zst' def __init__( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : str = "rb" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[dict] = None , lowerCamelCase__ : int = DEFAULT_BLOCK_SIZE , **lowerCamelCase__ : Tuple , ): super().__init__( fo=lowerCamelCase__ , mode=lowerCamelCase__ , target_protocol=lowerCamelCase__ , target_options=lowerCamelCase__ , block_size=lowerCamelCase__ , **lowerCamelCase__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 a__ : Any = self.file.__enter__ class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : str ): a__ : List[Any] = file_ def __enter__( self : str ): self._file.__enter__() return self def __exit__( self : int , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : int ): self._file.__exit__(*lowerCamelCase__ , **lowerCamelCase__ ) def __iter__( self : List[str] ): return iter(self._file ) def _UpperCamelCase( self : Any ): return next(self._file ) def __getattr__( self : Optional[Any] , lowerCamelCase__ : Tuple ): return getattr(self._file , lowerCamelCase__ ) def fixed_enter(*lowerCamelCase__ : List[str] , **lowerCamelCase__ : str ): return WrappedFile(_enter(*lowerCamelCase__ , **lowerCamelCase__ ) ) a__ : Any = fixed_enter
37
0
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin _lowerCAmelCase :int = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class _UpperCAmelCase : '''simple docstring''' def __init__( self , A , A=1_6 , A=1_3 , A=7 , A=1_4 , A=1_0 , A=1_9 , A=5 , A=4 , A=True , A=1_6 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=2_5 , A=5 , ) -> Any: _UpperCAmelCase : Optional[Any] = d_model _UpperCAmelCase : List[str] = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : List[Any] = prediction_length _UpperCAmelCase : List[Any] = context_length _UpperCAmelCase : str = cardinality _UpperCAmelCase : List[Any] = num_time_features _UpperCAmelCase : Dict = lags_sequence _UpperCAmelCase : int = embedding_dimension _UpperCAmelCase : Dict = is_training _UpperCAmelCase : Dict = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : Dict = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = context_length _UpperCAmelCase : Any = prediction_length + label_length _UpperCAmelCase : List[Any] = label_length _UpperCAmelCase : int = moving_average _UpperCAmelCase : Any = autocorrelation_factor def __lowerCAmelCase ( self ) -> Any: return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def __lowerCAmelCase ( self , A ) -> List[Any]: _UpperCAmelCase : str = config.context_length + max(config.lags_sequence ) _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, _past_length] ) _UpperCAmelCase : Any = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _UpperCAmelCase : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, config.prediction_length] ) _UpperCAmelCase : str = { "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Dict = self.get_config() _UpperCAmelCase : Any = self.prepare_autoformer_inputs_dict(lowerCamelCase__ ) return config, inputs_dict def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Tuple = self.prepare_config_and_inputs() return config, inputs_dict def __lowerCAmelCase ( self , A , A ) -> int: _UpperCAmelCase : Union[str, Any] = AutoformerModel(config=lowerCamelCase__ ).to(lowerCamelCase__ ).eval() _UpperCAmelCase : List[Any] = model(**lowerCamelCase__ ) _UpperCAmelCase : int = outputs.encoder_last_hidden_state _UpperCAmelCase : Optional[Any] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : str = model.get_encoder() encoder.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : List[str] = AutoformerEncoder.from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) _UpperCAmelCase : List[str] = model.create_network_inputs(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _UpperCAmelCase : str = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _UpperCAmelCase : Optional[int] = encoder(inputs_embeds=lowerCamelCase__ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _UpperCAmelCase : Tuple = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _UpperCAmelCase : Tuple = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _UpperCAmelCase : Dict = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _UpperCAmelCase : Union[str, Any] = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Any = model.get_decoder() decoder.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : Dict = AutoformerDecoder.from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = decoder( trend=lowerCamelCase__ , inputs_embeds=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ): '''simple docstring''' a__ =(AutoformerModel, AutoformerForPrediction) if is_torch_available() else () a__ =(AutoformerForPrediction,) if is_torch_available() else () a__ ={'''feature-extraction''': AutoformerModel} if is_torch_available() else {} a__ =False a__ =False a__ =False a__ =False a__ =False a__ =False def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : List[Any] = AutoformerModelTester(self ) _UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def __lowerCAmelCase ( self ) -> Optional[int]: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _UpperCAmelCase : Any = model_class(lowerCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) _UpperCAmelCase : List[str] = model_class.from_pretrained(lowerCamelCase__ , output_loading_info=lowerCamelCase__ ) self.assertEqual(info['''missing_keys'''] , [] ) def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*lowerCamelCase__ ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def __lowerCAmelCase ( self ) -> Optional[int]: pass def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : str = inspect.signature(getattr(lowerCamelCase__ , '''forward''' ) ) # The main input is the name of the argument after `self` _UpperCAmelCase : int = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , lowerCamelCase__ ) def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class(lowerCamelCase__ ) _UpperCAmelCase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Tuple = [*signature.parameters.keys()] _UpperCAmelCase : Any = [ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(lowerCamelCase__ )] , lowerCamelCase__ ) def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : Any = True _UpperCAmelCase : int = getattr(self.model_tester , '''seq_length''' , lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = getattr(self.model_tester , '''decoder_seq_length''' , lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = getattr(self.model_tester , '''encoder_seq_length''' , lowerCamelCase__ ) _UpperCAmelCase : Optional[int] = getattr(self.model_tester , '''d_model''' , lowerCamelCase__ ) _UpperCAmelCase : Tuple = getattr(self.model_tester , '''num_attention_heads''' , lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = d_model // num_attention_heads for model_class in self.all_model_classes: _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = True _UpperCAmelCase : Optional[Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : str = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : Union[str, Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase : List[str] = True _UpperCAmelCase : Any = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : str = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) _UpperCAmelCase : str = outputs.encoder_attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _UpperCAmelCase : int = len(lowerCamelCase__ ) _UpperCAmelCase : Tuple = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) # decoder attentions _UpperCAmelCase : List[Any] = outputs.decoder_attentions self.assertIsInstance(lowerCamelCase__ , (list, tuple) ) self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _UpperCAmelCase : Optional[int] = outputs.cross_attentions self.assertIsInstance(lowerCamelCase__ , (list, tuple) ) self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _UpperCAmelCase : int = True _UpperCAmelCase : List[str] = True _UpperCAmelCase : Union[str, Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): _UpperCAmelCase : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertEqual(out_len + 2 , len(lowerCamelCase__ ) ) _UpperCAmelCase : str = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(lowerCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def __lowerCAmelCase ( self ) -> List[Any]: super().test_retain_grad_hidden_states_attentions() def lowerCamelCase_ (UpperCamelCase__ : Any="train-batch.pt" ): _UpperCAmelCase : Union[str, Any] = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__a , repo_type='''dataset''' ) _UpperCAmelCase : Tuple = torch.load(__a , map_location=__a ) return batch @require_torch @slow class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self ) -> Dict: _UpperCAmelCase : Optional[Any] = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCamelCase__ ) _UpperCAmelCase : Optional[Any] = prepare_batch() with torch.no_grad(): _UpperCAmelCase : int = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _UpperCAmelCase : Union[str, Any] = torch.Size( (6_4, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : List[str] = torch.tensor( [[0.3_593, -1.3_398, 0.6_330], [0.2_279, 1.5_396, -0.1_792], [0.0_450, 1.3_225, -0.2_335]] , device=lowerCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[Any] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCamelCase__ ) _UpperCAmelCase : int = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _UpperCAmelCase : Any = torch.Size((6_4, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , lowerCamelCase__ ) _UpperCAmelCase : Tuple = torch.tensor( [[-0.0_734, -0.9_036, 0.8_358], [4.7_186, 2.4_113, 1.9_581], [1.7_953, 2.3_558, 1.2_970]] , device=lowerCamelCase__ ) self.assertTrue(torch.allclose(output[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Optional[Any] = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(lowerCamelCase__ ) _UpperCAmelCase : int = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _UpperCAmelCase : List[str] = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _UpperCAmelCase : List[str] = torch.Size((6_4, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , lowerCamelCase__ ) _UpperCAmelCase : Tuple = torch.tensor([3_130.6_763, 4_056.5_293, 7_053.0_786] , device=lowerCamelCase__ ) _UpperCAmelCase : Tuple = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , lowerCamelCase__ , rtol=1E-1 ) )
506
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Union[str, Any] = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") a__ : Union[str, Any] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__a ): os.makedirs(__a ) a__ : Any = model.state_dict() def to_tf_var_name(__a ): for patt, repl in iter(__a ): a__ : Tuple = name.replace(__a , __a ) return f'''bert/{name}''' def create_tf_var(__a , __a , __a ): a__ : Tuple = tf.dtypes.as_dtype(tensor.dtype ) a__ : Dict = tf.get_variable(dtype=__a , shape=tensor.shape , name=__a , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__a ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: a__ : int = to_tf_var_name(__a ) a__ : Union[str, Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): a__ : int = torch_tensor.T a__ : Optional[Any] = create_tf_var(tensor=__a , name=__a , session=__a ) tf.keras.backend.set_value(__a , __a ) a__ : int = session.run(__a ) print(f'''Successfully created {tf_name}: {np.allclose(__a , __a )}''' ) a__ : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(__a , os.path.join(__a , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCamelCase_ ( __a=None ) -> int: a__ : Dict = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__a , required=__a , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=__a , default=__a , required=__a , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=__a , required=__a , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=__a , required=__a , help="Directory in which to save tensorflow model" ) a__ : Optional[Any] = parser.parse_args(__a ) a__ : Tuple = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__a , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
37
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : str ): _a = [0] * len(__a ) for i in range(1, len(__a ) ): # use last results for better performance - dynamic programming _a = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _a = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _a = j return prefix_result def _lowercase ( lowerCamelCase__ : List[str] ): return max(prefix_function(__a ) ) if __name__ == "__main__": import doctest doctest.testmod()
131
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Any=24 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : int=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Optional[Any]=37 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : str=10 , lowerCamelCase__ : Optional[Any]=0.02 , lowerCamelCase__ : str=None , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Optional[Any]=2 , ): a__ : str = parent a__ : Any = batch_size a__ : Dict = patch_size a__ : List[Any] = max_length a__ : str = num_mel_bins a__ : Optional[Any] = is_training a__ : Optional[int] = use_labels a__ : List[Any] = hidden_size a__ : str = num_hidden_layers a__ : Any = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : List[str] = hidden_act a__ : str = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : List[Any] = type_sequence_label_size a__ : Any = initializer_range a__ : str = scope a__ : List[str] = frequency_stride a__ : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) a__ : List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 a__ : List[str] = (self.max_length - self.patch_size) // self.time_stride + 1 a__ : Tuple = frequency_out_dimension * time_out_dimension a__ : List[str] = num_patches + 2 def _UpperCamelCase( self : List[str] ): a__ : Any = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) a__ : List[Any] = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : List[str] = self.get_config() return config, input_values, labels def _UpperCamelCase( self : Optional[int] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] ): a__ : List[Any] = ASTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : str ): a__ : Dict = self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ) : Optional[int] = config_and_inputs a__ : List[Any] = {"input_values": input_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _lowercase = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _UpperCamelCase( self : str ): a__ : str = ASTModelTester(self ) a__ : Any = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _UpperCamelCase( self : List[str] ): pass def _UpperCamelCase( self : Optional[int] ): a__, a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Any = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : Tuple ): a__, a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowerCamelCase__ ) a__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Optional[Any] = ["input_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Union[str, Any] = ASTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : Optional[int] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) a__, a__ : List[str] = torchaudio.load(__a ) return audio, sampling_rate @require_torch @require_torchaudio class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : List[str] ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _UpperCamelCase( self : Optional[int] ): a__ : int = self.default_feature_extractor a__ : Optional[Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(lowerCamelCase__ ) a__ : Any = self.default_feature_extractor a__, a__ : Dict = prepare_audio() a__ : str = audio.squeeze().numpy() a__ : Any = feature_extractor(lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(**lowerCamelCase__ ) # verify the logits a__ : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) a__ : List[str] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
37
0
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
77
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = XGLMTokenizer _lowercase = XGLMTokenizerFast _lowercase = True _lowercase = True def _UpperCamelCase( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase( self : List[Any] ): a__ : int = "<pad>" a__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCamelCase__ ) , 1_008 ) def _UpperCamelCase( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def _UpperCamelCase( self : Optional[int] ): a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) a__ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a__ : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a__ : List[str] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) a__ : Dict = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _UpperCamelCase( self : Dict ): return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _UpperCamelCase( self : Union[str, Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__ , f.name ) a__ : Any = XGLMTokenizer(f.name , keep_accents=lowerCamelCase__ ) a__ : List[str] = pickle.dumps(lowerCamelCase__ ) pickle.loads(lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): if not self.test_rust_tokenizer: return a__ : Any = self.get_tokenizer() a__ : Optional[Any] = self.get_rust_tokenizer() a__ : Tuple = "I was born in 92000, and this is falsé." a__ : List[str] = tokenizer.tokenize(lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Optional[int] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : Tuple = tokenizer.encode(lowerCamelCase__ ) a__ : Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = "Hello World!" a__ : List[str] = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : Union[str, Any] ): a__ : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off a__ : Union[str, Any] = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : List[Any] ): # fmt: off a__ : Optional[int] = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="facebook/xglm-564M" , padding=lowerCamelCase__ , )
37
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """google/mobilenet_v1_1.0_224""": """https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json""", """google/mobilenet_v1_0.75_192""": """https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class _SCREAMING_SNAKE_CASE( A__ ): SCREAMING_SNAKE_CASE_ : Dict = '''mobilenet_v1''' def __init__( self ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=2_24 ,SCREAMING_SNAKE_CASE__=1.0 ,SCREAMING_SNAKE_CASE__=8 ,SCREAMING_SNAKE_CASE__="relu6" ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=0.9_9_9 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=0.0_0_1 ,**SCREAMING_SNAKE_CASE__ ,) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCamelCase__ ) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''' ) __SCREAMING_SNAKE_CASE :Tuple = num_channels __SCREAMING_SNAKE_CASE :Union[str, Any] = image_size __SCREAMING_SNAKE_CASE :str = depth_multiplier __SCREAMING_SNAKE_CASE :int = min_depth __SCREAMING_SNAKE_CASE :Optional[Any] = hidden_act __SCREAMING_SNAKE_CASE :List[str] = tf_padding __SCREAMING_SNAKE_CASE :Any = classifier_dropout_prob __SCREAMING_SNAKE_CASE :List[Any] = initializer_range __SCREAMING_SNAKE_CASE :List[str] = layer_norm_eps class _SCREAMING_SNAKE_CASE( A__ ): SCREAMING_SNAKE_CASE_ : int = version.parse('''1.11''' ) @property def _UpperCamelCase ( self ) -> str: """simple docstring""" return OrderedDict([('''pixel_values''', {0: '''batch'''})] ) @property def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})] ) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})] ) @property def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return 1E-4
498
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase_ ( ) -> int: a__ : int = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" a__ : Optional[Any] = Image.open(requests.get(__a , stream=__a ).raw ).convert("RGB" ) return image def UpperCamelCase_ ( __a ) -> Optional[Any]: a__ : Any = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : Union[str, Any] = dct.pop(__a ) a__ : List[str] = val def UpperCamelCase_ ( __a , __a ) -> Optional[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a__ : Any = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) a__ : Tuple = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict a__ : str = torch.cat((q_bias, torch.zeros_like(__a , requires_grad=__a ), v_bias) ) a__ : int = qkv_bias def UpperCamelCase_ ( __a ) -> Dict: a__ : Tuple = 364 if "coco" in model_name else 224 a__ : int = InstructBlipVisionConfig(image_size=__a ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: a__ : Tuple = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a__ : Dict = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: a__ : List[Any] = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32_001 ).to_dict() elif "vicuna-13b" in model_name: a__ : Optional[int] = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32_001 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 a__ : Optional[Any] = InstructBlipQFormerConfig(vocab_size=30_523 ).to_dict() a__ : Any = InstructBlipConfig(vision_config=__a , text_config=__a , qformer_config=__a ) return config, image_size @torch.no_grad() def UpperCamelCase_ ( __a , __a=None , __a=False ) -> int: a__ : Tuple = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: a__ : List[Any] = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) a__ : Union[str, Any] = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) a__, a__ : List[str] = get_blipa_config(__a ) a__ : Any = InstructBlipForConditionalGeneration(__a ).eval() a__ : Dict = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } a__, a__ : Dict = model_name_to_original[model_name] # load original model print("Loading original model..." ) a__ : Optional[Any] = "cuda:1" if torch.cuda.is_available() else "cpu" a__ : List[Any] = "cuda:2" if torch.cuda.is_available() else "cpu" a__, a__, a__ : Tuple = load_model_and_preprocess( name=__a , model_type=__a , is_eval=__a , device=__a ) original_model.eval() print("Done!" ) # update state dict keys a__ : Dict = original_model.state_dict() a__ : Optional[int] = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a__ : Optional[int] = state_dict.pop(__a ) if key.startswith("Qformer.bert" ): a__ : List[Any] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: a__ : Any = key.replace("self" , "attention" ) if "llm_proj" in key: a__ : Dict = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: a__ : int = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): a__ : List[str] = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): a__ : str = key.replace("t5" , "language" ) a__ : Dict = val # read in qv biases read_in_q_v_bias(__a , __a ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__a , strict=__a ) a__ : Union[str, Any] = load_demo_image() a__ : int = "What is unusual about this image?" # create processor a__ : Any = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=__a , image_std=__a ) a__ : Tuple = InstructBlipProcessor( image_processor=__a , tokenizer=__a , qformer_tokenizer=__a , ) a__ : Tuple = processor(images=__a , text=__a , return_tensors="pt" ).to(__a ) # make sure processor creates exact same pixel values a__ : Optional[int] = vis_processors["eval"](__a ).unsqueeze(0 ).to(__a ) a__ : Optional[Any] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __a ) original_model.to(__a ) hf_model.to(__a ) with torch.no_grad(): if "vicuna" in model_name: a__ : str = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits a__ : List[str] = hf_model(**__a ).logits else: a__ : List[Any] = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits a__ : str = tokenizer("\n" , return_tensors="pt" ).input_ids.to(__a ) a__ : Dict = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) a__ : Any = hf_model(**__a , labels=__a ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape a__ : Tuple = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , __a , atol=__a ) print("Looks ok!" ) print("Generating with original model..." ) a__ : Tuple = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) a__ : int = hf_model.generate( **__a , do_sample=__a , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? a__ : int = 2 print("Original generation:" , __a ) a__ : str = processor.batch_decode(__a , skip_special_tokens=__a ) a__ : str = [text.strip() for text in output_text] print("HF generation:" , __a ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__a ) hf_model.save_pretrained(__a ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() UpperCamelCase : Optional[int] = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
37
0
'''simple docstring''' import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class a ( A__ ): """simple docstring""" def __init__( self , snake_case_=0.0_1 , snake_case_=1000 ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = p_stop __UpperCAmelCase: List[str] = max_length def __iter__( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = 0 __UpperCAmelCase: Any = False while not stop and count < self.max_length: yield count count += 1 __UpperCAmelCase: List[str] = random.random() < self.p_stop class a ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_=False , snake_case_=True ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = [ BatchSamplerShard(lowerCamelCase__ , 2 , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) for i in range(2 ) ] __UpperCAmelCase: Optional[int] = [list(lowerCamelCase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowerCamelCase__ ) for shard in batch_sampler_shards] , [len(lowerCamelCase__ ) for e in expected] ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase: Tuple = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCAmelCase: int = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase: int = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCAmelCase: Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase: Union[str, Any] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCAmelCase: List[str] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase: List[Any] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) # Check the shards when the dataset is very small. __UpperCAmelCase: str = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: List[Any] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase: List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: int = [[], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: int = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: str = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) __UpperCAmelCase: str = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCAmelCase: Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Any = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) __UpperCAmelCase: Any = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCAmelCase: List[Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: int = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) __UpperCAmelCase: List[str] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) # Check the shards when the dataset is very small. __UpperCAmelCase: Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: str = [[], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) __UpperCAmelCase: str = BatchSampler(range(24 ) , batch_size=3 , drop_last=lowerCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. __UpperCAmelCase: int = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) __UpperCAmelCase: Any = BatchSampler(range(21 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: str = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. __UpperCAmelCase: Optional[int] = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Any = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) __UpperCAmelCase: int = BatchSampler(range(22 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. __UpperCAmelCase: int = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = BatchSampler(range(20 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is very small. __UpperCAmelCase: int = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: List[str] = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) __UpperCAmelCase: List[str] = BatchSampler(range(2 ) , batch_size=3 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Tuple = [[], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , even_batches=lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: int = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) __UpperCAmelCase: str = BatchSampler(range(24 ) , batch_size=4 , drop_last=lowerCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. __UpperCAmelCase: Tuple = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) __UpperCAmelCase: List[Any] = BatchSampler(range(22 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. __UpperCAmelCase: Tuple = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) __UpperCAmelCase: Union[str, Any] = BatchSampler(range(21 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) # Check the shards when the dataset is very small. __UpperCAmelCase: Tuple = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: Union[str, Any] = [[[0, 1]], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) __UpperCAmelCase: Union[str, Any] = BatchSampler(range(2 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: List[str] = [[], []] self.check_batch_sampler_shards(lowerCamelCase__ , lowerCamelCase__ , split_batches=lowerCamelCase__ , even_batches=lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] __UpperCAmelCase: Optional[Any] = [BatchSamplerShard(lowerCamelCase__ , 2 , lowerCamelCase__ , even_batches=lowerCamelCase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=False , snake_case_=2 , snake_case_=False ): '''simple docstring''' random.seed(lowerCamelCase__ ) __UpperCAmelCase: int = list(lowerCamelCase__ ) __UpperCAmelCase: Dict = [ IterableDatasetShard( lowerCamelCase__ , batch_size=lowerCamelCase__ , drop_last=lowerCamelCase__ , num_processes=lowerCamelCase__ , process_index=lowerCamelCase__ , split_batches=lowerCamelCase__ , ) for i in range(lowerCamelCase__ ) ] __UpperCAmelCase: Union[str, Any] = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowerCamelCase__ ) iterable_dataset_lists.append(list(lowerCamelCase__ ) ) __UpperCAmelCase: Dict = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size __UpperCAmelCase: Dict = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) self.assertTrue(len(lowerCamelCase__ ) % shard_batch_size == 0 ) __UpperCAmelCase: List[Any] = [] for idx in range(0 , len(lowerCamelCase__ ) , lowerCamelCase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowerCamelCase__ ) < len(lowerCamelCase__ ): reference += reference self.assertListEqual(lowerCamelCase__ , reference[: len(lowerCamelCase__ )] ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = 42 __UpperCAmelCase: str = RandomIterableDataset() self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) # Edge case with a very small dataset __UpperCAmelCase: Union[str, Any] = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) self.check_iterable_dataset_shards(lowerCamelCase__ , lowerCamelCase__ , batch_size=4 , drop_last=lowerCamelCase__ , split_batches=lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: int = BatchSampler(range(16 ) , batch_size=4 , drop_last=lowerCamelCase__ ) __UpperCAmelCase: str = SkipBatchSampler(lowerCamelCase__ , 2 ) self.assertListEqual(list(lowerCamelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = DataLoader(list(range(16 ) ) , batch_size=4 ) __UpperCAmelCase: Optional[int] = skip_first_batches(lowerCamelCase__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(lowerCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowercase_ ( self ): '''simple docstring''' Accelerator() __UpperCAmelCase: List[Any] = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(lowerCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(lowerCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
523
def UpperCamelCase_ ( __a , __a ) -> Tuple: a__ : Optional[int] = [0 for i in range(r + 1 )] # nc0 = 1 a__ : Union[str, Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. a__ : Any = min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
37
0
'''simple docstring''' from math import ceil def lowerCAmelCase ( UpperCamelCase__ : int = 1_0_0_1 ): """simple docstring""" __UpperCAmelCase = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): __UpperCAmelCase = 2 * i + 1 __UpperCAmelCase = 2 * i __UpperCAmelCase = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __lowerCAmelCase : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number")
262
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = LEDTokenizer _lowercase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : int="replace" , lowerCamelCase__ : Union[str, Any]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : str="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Any="<mask>" , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : int=True , **lowerCamelCase__ : Union[str, Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : List[str] = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : Optional[Any] = add_prefix_space a__ : List[str] = pre_tok_class(**lowerCamelCase__ ) a__ : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : Any = "post_processor" a__ : str = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Optional[Any] = tuple(state["sep"] ) if "cls" in state: a__ : Optional[Any] = tuple(state["cls"] ) a__ : Optional[int] = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Dict = add_prefix_space a__ : int = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : List[Any] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : int = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : int = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ): a__ : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : Union[str, Any] = value def _UpperCamelCase( self : Any , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : List[str] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Any , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Optional[Any] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]=None ): a__ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : List[str] = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase( self : Dict , lowerCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): a__ : str = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: a__ : Optional[int] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ : Dict = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase__ ) if needs_to_be_padded: a__ : Union[str, Any] = len(lowerCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ : List[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": a__ : Any = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
37
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCamelCase =logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def snake_case ( a_ : List[Any] ) -> Any: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def snake_case ( a_ : int , a_ : Optional[Any] , a_ : Optional[int] ) -> Any: """simple docstring""" return max(metric_fn(__a , __a ) for gt in ground_truths ) def snake_case ( a_ : int , a_ : List[str] , a_ : Any ) -> List[str]: """simple docstring""" UpperCamelCase_ : Tuple = [line.strip() for line in open(__a , """r""" ).readlines()] UpperCamelCase_ : Tuple = [] if args.gold_data_mode == "qa": UpperCamelCase_ : Any = pd.read_csv(__a , sep="""\t""" , header=__a ) for answer_list in data[1]: UpperCamelCase_ : Union[str, Any] = ast.literal_eval(__a ) answers.append(__a ) else: UpperCamelCase_ : List[str] = [line.strip() for line in open(__a , """r""" ).readlines()] UpperCamelCase_ : List[str] = [[reference] for reference in references] UpperCamelCase_ : List[str] = 0 for prediction, ground_truths in zip(__a , __a ): total += 1 em += metric_max_over_ground_truths(__a , __a , __a ) fa += metric_max_over_ground_truths(__a , __a , __a ) UpperCamelCase_ : Dict = 100.0 * em / total UpperCamelCase_ : Optional[Any] = 100.0 * fa / total logger.info(f"F1: {fa:.2f}" ) logger.info(f"EM: {em:.2f}" ) def snake_case ( a_ : Dict , a_ : Dict , a_ : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = args.k UpperCamelCase_ : str = [line.strip() for line in open(__a , """r""" ).readlines()] UpperCamelCase_ : Tuple = [line.strip() for line in open(__a , """r""" ).readlines()] UpperCamelCase_ : Tuple = 0 for hypo, reference in zip(__a , __a ): UpperCamelCase_ : Any = set(hypo.split("""\t""" )[:k] ) UpperCamelCase_ : Union[str, Any] = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCamelCase_ : Union[str, Any] = 100.0 * em / total logger.info(f"Precision@{k}: {em: .2f}" ) def snake_case ( a_ : Union[str, Any] , a_ : Tuple , a_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" def strip_title(a_ : List[str] ): if title.startswith("""\"""" ): UpperCamelCase_ : Optional[Any] = title[1:] if title.endswith("""\"""" ): UpperCamelCase_ : Union[str, Any] = title[:-1] return title UpperCamelCase_ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="""pt""" , padding=__a , truncation=__a , )["input_ids"].to(args.device ) UpperCamelCase_ : Optional[int] = rag_model.rag.question_encoder(__a ) UpperCamelCase_ : Union[str, Any] = question_enc_outputs[0] UpperCamelCase_ : Optional[int] = rag_model.retriever( __a , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) UpperCamelCase_ : List[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCamelCase_ : int = [] for docs in all_docs: UpperCamelCase_ : Optional[int] = [strip_title(__a ) for title in docs["title"]] provenance_strings.append("""\t""".join(__a ) ) return provenance_strings def snake_case ( a_ : int , a_ : List[Any] , a_ : Any ) -> Dict: """simple docstring""" with torch.no_grad(): UpperCamelCase_ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="""pt""" , padding=__a , truncation=__a ) UpperCamelCase_ : Any = inputs_dict.input_ids.to(args.device ) UpperCamelCase_ : Dict = inputs_dict.attention_mask.to(args.device ) UpperCamelCase_ : Optional[int] = rag_model.generate( # rag_model overwrites generate __a , attention_mask=__a , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__a , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCamelCase_ : int = rag_model.retriever.generator_tokenizer.batch_decode(__a , skip_special_tokens=__a ) if args.print_predictions: for q, a in zip(__a , __a ): logger.info("""Q: {} - A: {}""".format(__a , __a ) ) return answers def snake_case ( ) -> List[str]: """simple docstring""" UpperCamelCase_ : int = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=__a , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=__a , choices=["""exact""", """compressed""", """legacy"""] , type=__a , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=__a , type=__a , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=__a , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=__a , type=__a , required=__a , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=__a , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=__a , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=__a , type=__a , required=__a , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=__a , type=__a , required=__a , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=__a , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=__a , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=__a , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=__a , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=__a , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=__a , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) UpperCamelCase_ : int = parser.parse_args() UpperCamelCase_ : Dict = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def snake_case ( a_ : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = {} if args.model_type is None: UpperCamelCase_ : List[str] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): UpperCamelCase_ : int = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration UpperCamelCase_ : Tuple = args.n_docs if args.index_name is not None: UpperCamelCase_ : Any = args.index_name if args.index_path is not None: UpperCamelCase_ : int = args.index_path else: UpperCamelCase_ : Optional[Any] = BartForConditionalGeneration UpperCamelCase_ : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , __a ) UpperCamelCase_ : Any = get_scores if args.eval_mode == "e2e" else get_precision_at_k UpperCamelCase_ : Union[str, Any] = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(__a , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(__a ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): UpperCamelCase_ : str = RagRetriever.from_pretrained(__a , **__a ) UpperCamelCase_ : Optional[int] = model_class.from_pretrained(__a , retriever=__a , **__a ) model.retriever.init_retrieval() else: UpperCamelCase_ : Dict = model_class.from_pretrained(__a , **__a ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: UpperCamelCase_ : List[Any] = [] for line in tqdm(__a ): questions.append(line.strip() ) if len(__a ) == args.eval_batch_size: UpperCamelCase_ : Union[str, Any] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("""\n""".join(__a ) + """\n""" ) preds_file.flush() UpperCamelCase_ : Any = [] if len(__a ) > 0: UpperCamelCase_ : List[str] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("""\n""".join(__a ) ) preds_file.flush() score_fn(__a , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCamelCase =get_args() main(args)
208
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Union[str, Any] = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } UpperCamelCase : List[str] = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] _lowercase = RobertaTokenizer def __init__( self : List[str] , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]="replace" , lowerCamelCase__ : List[str]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Any="</s>" , lowerCamelCase__ : Any="<s>" , lowerCamelCase__ : int="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : Any=False , lowerCamelCase__ : Dict=True , **lowerCamelCase__ : Optional[Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Any = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : int = add_prefix_space a__ : Tuple = pre_tok_class(**lowerCamelCase__ ) a__ : str = add_prefix_space a__ : Tuple = "post_processor" a__ : Dict = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Tuple = tuple(state["sep"] ) if "cls" in state: a__ : str = tuple(state["cls"] ) a__ : str = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : str = add_prefix_space a__ : Any = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : int = trim_offsets a__ : Dict = True if changes_to_apply: a__ : Union[str, Any] = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : str = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Tuple ): a__ : List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : List[str] = value def _UpperCamelCase( self : Union[str, Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : int ): a__ : Optional[int] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Tuple , *lowerCamelCase__ : Dict , **lowerCamelCase__ : List[str] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : int = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=None ): a__ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : Tuple = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
37
0
from __future__ import annotations class a__ : def __init__( self : int , A_ : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_: List[str] = order # a_{0} ... a_{k} lowerCamelCase_: Optional[int] = [1.0] + [0.0] * order # b_{0} ... b_{k} lowerCamelCase_: Dict = [1.0] + [0.0] * order # x[n-1] ... x[n-k] lowerCamelCase_: Union[str, Any] = [0.0] * self.order # y[n-1] ... y[n-k] lowerCamelCase_: Optional[Any] = [0.0] * self.order def lowerCAmelCase ( self : List[str] , A_ : list[float] , A_ : list[float] ) -> Optional[Any]: """simple docstring""" if len(lowerCamelCase__ ) < self.order: lowerCamelCase_: Any = [1.0, *a_coeffs] if len(lowerCamelCase__ ) != self.order + 1: lowerCamelCase_: str = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(lowerCamelCase__ )}""" ) raise ValueError(lowerCamelCase__ ) if len(lowerCamelCase__ ) != self.order + 1: lowerCamelCase_: Union[str, Any] = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(lowerCamelCase__ )}""" ) raise ValueError(lowerCamelCase__ ) lowerCamelCase_: Union[str, Any] = a_coeffs lowerCamelCase_: Union[str, Any] = b_coeffs def lowerCAmelCase ( self : Tuple , A_ : float ) -> Optional[int]: """simple docstring""" lowerCamelCase_: List[Any] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) lowerCamelCase_: List[str] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] lowerCamelCase_: str = self.input_history[:-1] lowerCamelCase_: Any = self.output_history[:-1] lowerCamelCase_: List[Any] = sample lowerCamelCase_: Tuple = result return result
423
from statistics import mean, stdev def UpperCamelCase_ ( __a , __a = 3 ) -> list: a__ : List[str] = min(__a ) a__ : str = max(__a ) # normalize data return [round((x - x_min) / (x_max - x_min) , __a ) for x in data] def UpperCamelCase_ ( __a , __a = 3 ) -> list: a__ : str = mean(__a ) a__ : List[str] = stdev(__a ) # standardize data return [round((x - mu) / (sigma) , __a ) for x in data]
37
0
from __future__ import annotations def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Any = None, lowerCAmelCase_ : Optional[Any] = None ): if start is None: __lowerCAmelCase = 0 if end is None: __lowerCAmelCase = len(__a ) - 1 if start >= end: return __lowerCAmelCase = (start + end) // 2 slowsort(__a, __a, __a ) slowsort(__a, mid + 1, __a ) if sequence[end] < sequence[mid]: __lowerCAmelCase = sequence[mid], sequence[end] slowsort(__a, __a, end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
53
def UpperCamelCase_ ( __a = 50 ) -> int: a__ : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
37
0
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A : Optional[Any] = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class A_ (A__ , unittest.TestCase ): UpperCAmelCase__ = DebertaVaTokenizer UpperCAmelCase__ = DebertaVaTokenizerFast UpperCAmelCase__ = True UpperCAmelCase__ = True def _lowercase ( self ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = DebertaVaTokenizer(lowerCamelCase__ , unk_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase ( self , _A ): '''simple docstring''' UpperCAmelCase = "this is a test" UpperCAmelCase = "this is a test" return input_text, output_text def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = "<pad>" UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''[PAD]''' ) self.assertEqual(len(lowerCamelCase__ ) , 3_0_0_0_1 ) def _lowercase ( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = " \tHeLLo!how \n Are yoU? " UpperCAmelCase = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on UpperCAmelCase = DebertaVaTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(lowerCamelCase__ , do_lower_case=lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _lowercase ( self ): '''simple docstring''' pass @unittest.skip('''There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.''' ) def _lowercase ( self ): '''simple docstring''' pass def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on UpperCAmelCase = DebertaVaTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = " \tHeLLo!how \n Are yoU? " UpperCAmelCase = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on UpperCAmelCase = DebertaVaTokenizer(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(lowerCamelCase__ , do_lower_case=lowerCamelCase__ , split_by_punct=lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = "This is a test" UpperCAmelCase = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] UpperCAmelCase = ["▁", "T", "his", "▁is", "▁a", "▁test"] UpperCAmelCase = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] UpperCAmelCase = DebertaVaTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) UpperCAmelCase = DebertaVaTokenizerFast(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) UpperCAmelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # fmt: off UpperCAmelCase = "I was born in 92000, and this is falsé." UpperCAmelCase = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] UpperCAmelCase = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] UpperCAmelCase = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on UpperCAmelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase = rust_tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = DebertaVaTokenizer(lowerCamelCase__ ) UpperCAmelCase = tokenizer.encode('''sequence builders''' ) UpperCAmelCase = tokenizer.encode('''multi-sequence build''' ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCamelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCamelCase__ , ) @slow def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = {"input_ids": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='''microsoft/deberta-v2-xlarge''' , revision='''ad6e42c1532ddf3a15c39246b63f5559d558b670''' , )
130
class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ): a__ : str = name a__ : Optional[int] = value a__ : Dict = weight def __repr__( self : Union[str, Any] ): return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _UpperCamelCase( self : Dict ): return self.value def _UpperCamelCase( self : Optional[Any] ): return self.name def _UpperCamelCase( self : Optional[Any] ): return self.weight def _UpperCamelCase( self : Optional[int] ): return self.value / self.weight def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Optional[Any] = [] for i in range(len(__a ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCamelCase_ ( __a , __a , __a ) -> Union[str, Any]: a__ : List[str] = sorted(__a , key=__a , reverse=__a ) a__ : List[Any] = [] a__, a__ : Union[str, Any] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCamelCase_ ( ) -> Union[str, Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
37
0
"""simple docstring""" from sklearn.metrics import mean_squared_error import datasets __lowerCAmelCase : Any = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ __lowerCAmelCase : Optional[Any] = """\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. """ __lowerCAmelCase : Optional[Any] = """ Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. \"raw_values\" : Returns a full set of errors in case of multioutput input. \"uniform_average\" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric(\"mse\") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {'mse': 0.6123724356957945} If you're using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {'mse': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {'mse': array([0.41666667, 1. ])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def _SCREAMING_SNAKE_CASE ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Optional[Any]=None , snake_case__ : Dict="uniform_average" , snake_case__ : Tuple=True ): lowerCAmelCase__ = mean_squared_error( lowerCamelCase__ , lowerCamelCase__ , sample_weight=lowerCamelCase__ , multioutput=lowerCamelCase__ , squared=lowerCamelCase__ ) return {"mse": mse}
644
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A__ ( A__ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase__ : Union[str, "sqlalchemy.sql.Selectable"] , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , **lowerCamelCase__ : Optional[int] , ): super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ ) a__ : str = Sql( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , ) def _UpperCamelCase( self : Tuple ): a__ : Optional[Any] = None a__ : Dict = None a__ : Union[str, Any] = None a__ : Union[str, Any] = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , ) # Build dataset for splits a__ : List[str] = self.builder.as_dataset( split="train" , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : Dataset , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Optional[Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) a__ : Any = dataset a__ : str = name a__ : Tuple = con a__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a__ : Any = num_proc a__ : Tuple = to_sql_kwargs def _UpperCamelCase( self : List[Any] ): a__ : Any = self.to_sql_kwargs.pop("sql" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("con" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("index" , lowerCamelCase__ ) a__ : int = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs ) return written def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] ): a__, a__, a__ : Union[str, Any] = args a__ : Any = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs a__ : Tuple = query_table( table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) a__ : str = batch.to_pandas() a__ : List[Any] = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ ) return num_rows or len(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : str = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: a__, a__ : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
37
0
"""simple docstring""" from typing import Any class _UpperCAmelCase : '''simple docstring''' def __init__( self , A ) -> Union[str, Any]: _UpperCAmelCase : List[str] = data _UpperCAmelCase : List[Any] = None def __repr__( self ) -> str: return f'Node({self.data})' class _UpperCAmelCase : '''simple docstring''' def __init__( self ) -> Union[str, Any]: _UpperCAmelCase : Union[str, Any] = None def __iter__( self ) -> Optional[Any]: _UpperCAmelCase : List[str] = self.head while node: yield node.data _UpperCAmelCase : List[Any] = node.next def __len__( self ) -> Dict: return sum(1 for _ in self ) def __repr__( self ) -> str: return "->".join([str(lowerCamelCase__ ) for item in self] ) def __getitem__( self , A ) -> int: if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , A , A ) -> Optional[int]: if not 0 <= index < len(self ): raise ValueError('''list index out of range.''' ) _UpperCAmelCase : int = self.head for _ in range(lowerCamelCase__ ): _UpperCAmelCase : Union[str, Any] = current.next _UpperCAmelCase : Optional[int] = data def __lowerCAmelCase ( self , A ) -> Dict: self.insert_nth(len(self ) , lowerCamelCase__ ) def __lowerCAmelCase ( self , A ) -> List[Any]: self.insert_nth(0 , lowerCamelCase__ ) def __lowerCAmelCase ( self , A , A ) -> List[str]: if not 0 <= index <= len(self ): raise IndexError('''list index out of range''' ) _UpperCAmelCase : Union[str, Any] = Node(lowerCamelCase__ ) if self.head is None: _UpperCAmelCase : List[Any] = new_node elif index == 0: _UpperCAmelCase : str = self.head # link new_node to head _UpperCAmelCase : int = new_node else: _UpperCAmelCase : List[Any] = self.head for _ in range(index - 1 ): _UpperCAmelCase : Optional[int] = temp.next _UpperCAmelCase : Optional[int] = temp.next _UpperCAmelCase : Dict = new_node def __lowerCAmelCase ( self ) -> Any: # print every node data print(self ) def __lowerCAmelCase ( self ) -> Any: return self.delete_nth(0 ) def __lowerCAmelCase ( self ) -> str: # delete from tail return self.delete_nth(len(self ) - 1 ) def __lowerCAmelCase ( self , A = 0 ) -> Optional[int]: if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('''List index out of range.''' ) _UpperCAmelCase : Optional[int] = self.head # default first node if index == 0: _UpperCAmelCase : Tuple = self.head.next else: _UpperCAmelCase : List[Any] = self.head for _ in range(index - 1 ): _UpperCAmelCase : int = temp.next _UpperCAmelCase : Tuple = temp.next _UpperCAmelCase : int = temp.next.next return delete_node.data def __lowerCAmelCase ( self ) -> Optional[int]: return self.head is None def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase : Any = None _UpperCAmelCase : List[Any] = self.head while current: # Store the current node's next node. _UpperCAmelCase : Tuple = current.next # Make the current node's next point backwards _UpperCAmelCase : int = prev # Make the previous node be the current node _UpperCAmelCase : Optional[Any] = current # Make the current node the next node (to progress iteration) _UpperCAmelCase : Tuple = next_node # Return prev in order to put the head at the end _UpperCAmelCase : Optional[Any] = prev def lowerCamelCase_ (): _UpperCAmelCase : Tuple = LinkedList() assert linked_list.is_empty() is True assert str(__a ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__a ) == i linked_list.insert_nth(__a , i + 1 ) assert str(__a ) == "->".join(str(__a ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__a ) == "->".join(str(__a ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__a ) == 9 assert str(__a ) == "->".join(str(__a ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _UpperCAmelCase : int = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__a ) == "->".join(str(__a ) for i in range(-8 , 1 ) ) def lowerCamelCase_ (): _UpperCAmelCase : Union[str, Any] = [ -9, 100, Node(7734_5112 ), "dlrow olleH", 7, 5555, 0, -192.5_5555, "Hello, world!", 77.9, Node(10 ), None, None, 12.20, ] _UpperCAmelCase : Any = LinkedList() for i in test_input: linked_list.insert_tail(__a ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__a ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _UpperCAmelCase : int = linked_list.delete_head() assert result == -9 assert ( str(__a ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _UpperCAmelCase : List[Any] = linked_list.delete_tail() assert result == 12.2 assert ( str(__a ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _UpperCAmelCase : List[str] = linked_list.delete_nth(10 ) assert result is None assert ( str(__a ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('''Hello again, world!''' ) ) assert ( str(__a ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__a ) assert ( str(__a ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__a ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCamelCase_ (): from doctest import testmod testmod() _UpperCAmelCase : Any = LinkedList() linked_list.insert_head(input('''Inserting 1st at head ''' ).strip() ) linked_list.insert_head(input('''Inserting 2nd at head ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() linked_list.insert_tail(input('''\nInserting 1st at tail ''' ).strip() ) linked_list.insert_tail(input('''Inserting 2nd at tail ''' ).strip() ) print('''\nPrint list:''' ) linked_list.print_list() print('''\nDelete head''' ) linked_list.delete_head() print('''Delete tail''' ) linked_list.delete_tail() print('''\nPrint list:''' ) linked_list.print_list() print('''\nReverse linked list''' ) linked_list.reverse() print('''\nPrint list:''' ) linked_list.print_list() print('''\nString representation of linked list:''' ) print(__a ) print('''\nReading/changing Node data using indexing:''' ) print(F'Element at Position 1: {linked_list[1]}' ) _UpperCAmelCase : Optional[int] = input('''Enter New Value: ''' ).strip() print('''New list:''' ) print(__a ) print(F'length of linked_list is : {len(__a )}' ) if __name__ == "__main__": main()
506
import math from datetime import datetime, timedelta def UpperCamelCase_ ( __a ) -> datetime: a__ : Union[str, Any] = year % 19 a__ : List[str] = year % 4 a__ : str = year % 7 a__ : Any = math.floor(year / 100 ) a__ : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) a__ : Optional[int] = leap_day_inhibits / 4 a__ : Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 a__ : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 a__ : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon a__ : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 18 ) else: return datetime(__a , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCamelCase : Tuple = """will be""" if year > datetime.now().year else """was""" print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
37
0
'''simple docstring''' class A : def __init__( self ) -> str: _a = "" _a = "" _a = [] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> str: if m == -1: return n + 1 elif n == -1: return m + 1 elif self.dp[m][n] > -1: return self.dp[m][n] else: if self.worda[m] == self.worda[n]: _a = self.__min_dist_top_down_dp(m - 1 , n - 1 ) else: _a = self.__min_dist_top_down_dp(lowerCamelCase__ , n - 1 ) _a = self.__min_dist_top_down_dp(m - 1 , lowerCamelCase__ ) _a = self.__min_dist_top_down_dp(m - 1 , n - 1 ) _a = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return self.dp[m][n] def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> Any: _a = worda _a = worda _a = [[-1 for _ in range(len(lowerCamelCase__ ) )] for _ in range(len(lowerCamelCase__ ) )] return self.__min_dist_top_down_dp(len(lowerCamelCase__ ) - 1 , len(lowerCamelCase__ ) - 1 ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> List[Any]: _a = worda _a = worda _a = len(lowerCamelCase__ ) _a = len(lowerCamelCase__ ) _a = [[0 for _ in range(n + 1 )] for _ in range(m + 1 )] for i in range(m + 1 ): for j in range(n + 1 ): if i == 0: # first string is empty _a = j elif j == 0: # second string is empty _a = i elif worda[i - 1] == worda[j - 1]: # last characters are equal _a = self.dp[i - 1][j - 1] else: _a = self.dp[i][j - 1] _a = self.dp[i - 1][j] _a = self.dp[i - 1][j - 1] _a = 1 + min(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return self.dp[m][n] if __name__ == "__main__": __snake_case : Optional[Any] = EditDistance() print("****************** Testing Edit Distance DP Algorithm ******************") print() __snake_case : int = input("Enter the first string: ").strip() __snake_case : Dict = input("Enter the second string: ").strip() print() print(f'''The minimum edit distance is: {solver.min_dist_top_down(Sa, Sa)}''') print(f'''The minimum edit distance is: {solver.min_dist_bottom_up(Sa, Sa)}''') print() print("*************** End of Testing Edit Distance DP Algorithm ***************")
131
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCamelCase_ ( __a ) -> Union[str, Any]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase__ : nn.Module , lowerCamelCase__ : int ): super().__init__() a__ : int = module a__ : Any = nn.Sequential( nn.Linear(module.in_features , lowerCamelCase__ , bias=lowerCamelCase__ ) , nn.Linear(lowerCamelCase__ , module.out_features , bias=lowerCamelCase__ ) , ) a__ : Tuple = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCamelCase__ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ): return self.module(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) + self.adapter(lowerCamelCase__ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" _lowercase = 'bigscience/bloom-1b7' # Constant values _lowercase = 2.1_09_65_95_52_69_25_74 _lowercase = 'Hello my name is' _lowercase = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) _lowercase = 1_0 def _UpperCamelCase( self : Dict ): # Models and tokenizer a__ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Union[str, Any] ): super().setUp() # Models and tokenizer a__ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) a__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : List[Any] ): a__ : str = self.model_abit.config self.assertTrue(hasattr(lowerCamelCase__ , "quantization_config" ) ) a__ : Optional[Any] = config.to_dict() a__ : int = config.to_diff_dict() a__ : List[str] = config.to_json_string() def _UpperCamelCase( self : int ): from bitsandbytes.nn import Paramsabit a__ : List[Any] = self.model_fpaa.get_memory_footprint() a__ : str = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a__ : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _UpperCamelCase( self : Tuple ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCamelCase__ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _UpperCamelCase( self : str ): a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Tuple = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[Any] = BitsAndBytesConfig() a__ : Optional[int] = True a__ : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , device_map="auto" ) a__ : str = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : int = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : Dict ): with self.assertRaises(lowerCamelCase__ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): a__ : int = BitsAndBytesConfig() with self.assertRaises(lowerCamelCase__ ): a__ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , load_in_abit=lowerCamelCase__ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def _UpperCamelCase( self : int ): with self.assertRaises(lowerCamelCase__ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a__ : int = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Any = self.model_fpaa.to(torch.floataa ) a__ : List[Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.to("cpu" ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.half() # Check this does not throw an error a__ : Dict = self.model_fpaa.float() def _UpperCamelCase( self : Dict ): a__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCamelCase__ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCamelCase( cls : str ): a__ : Dict = "t5-small" a__ : List[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense a__ : int = AutoTokenizer.from_pretrained(cls.model_name ) a__ : str = "Translate in German: Hello, my dog is cute" def _UpperCamelCase( self : Optional[int] ): gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Optional[int] ): from transformers import TaForConditionalGeneration a__ : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules a__ : Optional[Any] = None # test with `t5-small` a__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Any = model.generate(**lowerCamelCase__ ) a__ : Union[str, Any] = modules def _UpperCamelCase( self : List[Any] ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a__ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a__ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Optional[int] = model.generate(**lowerCamelCase__ ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : List[str] ): super().setUp() # model_name a__ : Union[str, Any] = "bigscience/bloom-560m" a__ : Union[str, Any] = "t5-small" # Different types of model a__ : int = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Sequence classification model a__ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # CausalLM model a__ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Seq2seq model a__ : Dict = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Union[str, Any] ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): super().setUp() def _UpperCamelCase( self : int ): del self.pipe gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Tuple ): a__ : int = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a__ : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Tuple ): super().setUp() def _UpperCamelCase( self : List[Any] ): a__ : str = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a__ : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch a__ : List[Any] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): a__ : Any = "facebook/opt-350m" super().setUp() def _UpperCamelCase( self : int ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters a__ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a__ : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a__ : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCamelCase__ ) ): a__ : Dict = LoRALayer(module.q_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.k_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a__ : Dict = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a__ : Optional[Any] = model.forward(**lowerCamelCase__ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCamelCase__ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( A__ ): """simple docstring""" _lowercase = 'gpt2-xl' _lowercase = 3.31_91_85_48_54_15_21_87
37
0
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset A = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class a__ ( nn.Module ): def __init__( self : List[str] , UpperCamelCase_ : Optional[int]): """simple docstring""" super().__init__() __UpperCAmelCase : Union[str, Any] = torchvision.models.resnetaaa(pretrained=lowerCamelCase__) __UpperCAmelCase : Optional[Any] = list(model.children())[:-2] __UpperCAmelCase : List[str] = nn.Sequential(*lowerCamelCase__) __UpperCAmelCase : List[str] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def a_ ( self : Union[str, Any] , UpperCamelCase_ : List[Any]): """simple docstring""" __UpperCAmelCase : Dict = self.pool(self.model(lowerCamelCase__)) __UpperCAmelCase : Tuple = torch.flatten(lowerCamelCase__ , start_dim=2) __UpperCAmelCase : Any = out.transpose(1 , 2).contiguous() return out # BxNx2048 class a__ ( A__ ): def __init__( self : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : List[Any] = [json.loads(lowerCamelCase__) for l in open(lowerCamelCase__)] __UpperCAmelCase : int = os.path.dirname(lowerCamelCase__) __UpperCAmelCase : Dict = tokenizer __UpperCAmelCase : int = labels __UpperCAmelCase : Optional[int] = len(lowerCamelCase__) __UpperCAmelCase : int = max_seq_length __UpperCAmelCase : Optional[Any] = transforms def __len__( self : List[Any]): """simple docstring""" return len(self.data) def __getitem__( self : Optional[int] , UpperCamelCase_ : Any): """simple docstring""" __UpperCAmelCase : Any = torch.LongTensor(self.tokenizer.encode(self.data[index]["text"] , add_special_tokens=lowerCamelCase__)) __UpperCAmelCase : str = sentence[0], sentence[1:-1], sentence[-1] __UpperCAmelCase : Any = sentence[: self.max_seq_length] __UpperCAmelCase : int = torch.zeros(self.n_classes) __UpperCAmelCase : int = 1 __UpperCAmelCase : Optional[Any] = Image.open(os.path.join(self.data_dir , self.data[index]["img"])).convert("RGB") __UpperCAmelCase : int = self.transforms(lowerCamelCase__) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : Dict = Counter() for row in self.data: label_freqs.update(row["label"]) return label_freqs def _UpperCamelCase ( UpperCamelCase ) -> Any: """simple docstring""" __UpperCAmelCase : Optional[Any] = [len(row["sentence"] ) for row in batch] __UpperCAmelCase : Optional[Any] = len(__a ), max(__a ) __UpperCAmelCase : Optional[Any] = torch.zeros(__a , __a , dtype=torch.long ) __UpperCAmelCase : str = torch.zeros(__a , __a , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__a , __a ) ): __UpperCAmelCase : str = input_row["sentence"] __UpperCAmelCase : Tuple = 1 __UpperCAmelCase : Optional[Any] = torch.stack([row["image"] for row in batch] ) __UpperCAmelCase : Any = torch.stack([row["label"] for row in batch] ) __UpperCAmelCase : Dict = torch.stack([row["image_start_token"] for row in batch] ) __UpperCAmelCase : Optional[Any] = torch.stack([row["image_end_token"] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _UpperCamelCase ( ) -> Tuple: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _UpperCamelCase ( ) -> Any: """simple docstring""" return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46777044, 0.44531429, 0.40661017] , std=[0.12221994, 0.12145835, 0.14380469] , ), ] )
77
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int]=100 , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[int]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : int=32 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Union[str, Any]=37 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Union[str, Any]=10 , lowerCamelCase__ : str=0.02 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=[0, 1, 2, 3] , ): a__ : Dict = parent a__ : Dict = 100 a__ : Optional[int] = batch_size a__ : Union[str, Any] = image_size a__ : Any = patch_size a__ : Optional[Any] = num_channels a__ : int = is_training a__ : List[str] = use_labels a__ : Optional[Any] = hidden_size a__ : List[Any] = num_hidden_layers a__ : str = num_attention_heads a__ : str = intermediate_size a__ : int = hidden_act a__ : List[Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = type_sequence_label_size a__ : Optional[Any] = initializer_range a__ : List[str] = scope a__ : int = out_indices a__ : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[int] = (image_size // patch_size) ** 2 a__ : Union[str, Any] = num_patches + 1 def _UpperCamelCase( self : int ): a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Optional[Any] = None a__ : Tuple = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCamelCase( self : Tuple ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any ): a__ : str = BeitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ): a__ : int = BeitForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _UpperCamelCase( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ): a__ : List[str] = self.type_sequence_label_size a__ : Optional[Any] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ : Optional[Any] = 1 a__ : List[str] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ : Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): a__ : int = self.num_labels a__ : List[str] = BeitForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Tuple = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _UpperCamelCase( self : Optional[int] ): a__ : Any = self.prepare_config_and_inputs() a__, a__, a__, a__ : Union[str, Any] = config_and_inputs a__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _lowercase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Any ): a__ : int = BeitModelTester(self ) a__ : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _UpperCamelCase( self : str ): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _UpperCamelCase( self : Dict ): pass def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : str ): a__, a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = model_class(lowerCamelCase__ ) a__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): if not self.model_tester.is_training: return a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling]: continue a__ : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() a__ : Any = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : Tuple = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : Tuple ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a__ : List[Any] = False a__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue a__ : Optional[Any] = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() a__ : Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : int = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : List[str] ): a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Dict = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: a__ : str = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _UpperCamelCase( self : Optional[int] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Tuple = BeitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _UpperCamelCase( self : str ): a__ : int = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(lowerCamelCase__ ) a__ : Optional[Any] = self.default_image_processor a__ : Dict = prepare_img() a__ : Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).pixel_values.to(lowerCamelCase__ ) # prepare bool_masked_pos a__ : Optional[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(pixel_values=lowerCamelCase__ , bool_masked_pos=lowerCamelCase__ ) a__ : Tuple = outputs.logits # verify the logits a__ : List[str] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[int] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCamelCase__ , atol=1E-2 ) ) @slow def _UpperCamelCase( self : Dict ): a__ : str = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(lowerCamelCase__ ) a__ : int = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Union[str, Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : Any ): a__ : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( lowerCamelCase__ ) a__ : str = self.default_image_processor a__ : List[str] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Dict = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Optional[int] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Optional[Any] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): a__ : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : Tuple = model.to(lowerCamelCase__ ) a__ : List[Any] = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : Union[str, Any] = Image.open(ds[0]["file"] ) a__ : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Tuple = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: a__ : Dict = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=lowerCamelCase__ , ) else: a__ : Dict = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _UpperCamelCase( self : Tuple ): a__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : List[Any] = model.to(lowerCamelCase__ ) a__ : int = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Optional[int] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : str = Image.open(ds[0]["file"] ) a__ : str = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : List[Any] = model(**lowerCamelCase__ ) a__ : Any = outputs.logits.detach().cpu() a__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(500, 300)] ) a__ : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) a__ : Any = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
37
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=24 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=5 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=10 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=2 ,) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = parent __SCREAMING_SNAKE_CASE :Any = batch_size __SCREAMING_SNAKE_CASE :Dict = patch_size __SCREAMING_SNAKE_CASE :List[Any] = max_length __SCREAMING_SNAKE_CASE :str = num_mel_bins __SCREAMING_SNAKE_CASE :Optional[Any] = is_training __SCREAMING_SNAKE_CASE :Optional[int] = use_labels __SCREAMING_SNAKE_CASE :List[Any] = hidden_size __SCREAMING_SNAKE_CASE :str = num_hidden_layers __SCREAMING_SNAKE_CASE :Any = num_attention_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE :List[str] = hidden_act __SCREAMING_SNAKE_CASE :str = hidden_dropout_prob __SCREAMING_SNAKE_CASE :Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :List[Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE :Any = initializer_range __SCREAMING_SNAKE_CASE :str = scope __SCREAMING_SNAKE_CASE :List[str] = frequency_stride __SCREAMING_SNAKE_CASE :Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __SCREAMING_SNAKE_CASE :List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __SCREAMING_SNAKE_CASE :List[str] = (self.max_length - self.patch_size) // self.time_stride + 1 __SCREAMING_SNAKE_CASE :Tuple = frequency_out_dimension * time_out_dimension __SCREAMING_SNAKE_CASE :List[str] = num_patches + 2 def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __SCREAMING_SNAKE_CASE :List[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE :str = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :List[str] = self.get_config() return config, input_values, labels def _UpperCamelCase ( self ) -> str: """simple docstring""" return ASTConfig( patch_size=self.patch_size ,max_length=self.max_length ,num_mel_bins=self.num_mel_bins ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=lowerCamelCase__ ,initializer_range=self.initializer_range ,frequency_stride=self.frequency_stride ,time_stride=self.time_stride ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = ASTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __SCREAMING_SNAKE_CASE :Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.prepare_config_and_inputs() ( __SCREAMING_SNAKE_CASE ) :Optional[int] = config_and_inputs __SCREAMING_SNAKE_CASE :List[Any] = {"input_values": input_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : List[Any] = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Tuple = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Optional[int] = False def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :str = ASTModelTester(self ) __SCREAMING_SNAKE_CASE :Any = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ,hidden_size=37 ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def _UpperCamelCase ( self ) -> str: """simple docstring""" pass def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Any = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() ,(nn.Module) ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ ,nn.Linear ) ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Dict = model_class(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE :Optional[int] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE :Optional[Any] = ["input_values"] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def _UpperCamelCase ( self ) -> int: """simple docstring""" for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE :Union[str, Any] = ASTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def __lowerCamelCase ( ) -> Any: __SCREAMING_SNAKE_CASE :Optional[int] = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) __SCREAMING_SNAKE_CASE :List[str] = torchaudio.load(__a ) return audio, sampling_rate @require_torch @require_torchaudio class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @cached_property def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.default_feature_extractor __SCREAMING_SNAKE_CASE :Optional[Any] = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Any = self.default_feature_extractor __SCREAMING_SNAKE_CASE :Dict = prepare_audio() __SCREAMING_SNAKE_CASE :str = audio.squeeze().numpy() __SCREAMING_SNAKE_CASE :Any = feature_extractor(lowerCamelCase__ ,sampling_rate=lowerCamelCase__ ,return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE :Any = model(**lowerCamelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE :Union[str, Any] = torch.Size((1, 5_27) ) self.assertEqual(outputs.logits.shape ,lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :List[str] = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,lowerCamelCase__ ,atol=1E-4 ) )
498
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Union[str, Any]: a__ : Tuple = R"\w+[.]\d+" a__ : List[Any] = re.findall(__a , __a ) for pat in pats: a__ : Union[str, Any] = key.replace(__a , "_".join(pat.split("." ) ) ) return key def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): a__ : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: a__ : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: a__ : Union[str, Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer a__ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: a__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": a__ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( __a , __a , __a=42 ) -> str: # Step 1: Convert pytorch tensor to numpy a__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params a__ : Tuple = flax_model.init_weights(PRNGKey(__a ) ) a__ : Optional[Any] = flatten_dict(__a ) a__ : Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : Optional[int] = rename_key(__a ) a__ : Optional[int] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters a__, a__ : Union[str, Any] = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown a__ : str = jnp.asarray(__a ) return unflatten_dict(__a )
37
0
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_=13 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=99 , snake_case_=24 , snake_case_=2 , snake_case_=6 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=16 , snake_case_=2 , snake_case_=0.0_2 , snake_case_=3 , snake_case_=None , snake_case_=1000 , ): '''simple docstring''' __UpperCAmelCase: int = parent __UpperCAmelCase: Optional[int] = batch_size __UpperCAmelCase: Optional[Any] = seq_length __UpperCAmelCase: Tuple = is_training __UpperCAmelCase: Union[str, Any] = use_input_mask __UpperCAmelCase: str = use_token_type_ids __UpperCAmelCase: Union[str, Any] = use_labels __UpperCAmelCase: Tuple = vocab_size __UpperCAmelCase: Any = hidden_size __UpperCAmelCase: Tuple = num_hidden_layers __UpperCAmelCase: Union[str, Any] = num_attention_heads __UpperCAmelCase: Union[str, Any] = intermediate_size __UpperCAmelCase: Any = hidden_act __UpperCAmelCase: Dict = hidden_dropout_prob __UpperCAmelCase: Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase: Optional[int] = max_position_embeddings __UpperCAmelCase: Any = type_vocab_size __UpperCAmelCase: str = type_sequence_label_size __UpperCAmelCase: Union[str, Any] = initializer_range __UpperCAmelCase: Optional[Any] = num_labels __UpperCAmelCase: List[Any] = scope __UpperCAmelCase: List[Any] = range_bbox def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase: str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __UpperCAmelCase: List[Any] = bbox[i, j, 3] __UpperCAmelCase: int = bbox[i, j, 1] __UpperCAmelCase: int = t if bbox[i, j, 2] < bbox[i, j, 0]: __UpperCAmelCase: str = bbox[i, j, 2] __UpperCAmelCase: str = bbox[i, j, 0] __UpperCAmelCase: Dict = t __UpperCAmelCase: List[Any] = None if self.use_input_mask: __UpperCAmelCase: Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __UpperCAmelCase: List[str] = None if self.use_token_type_ids: __UpperCAmelCase: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase: int = None __UpperCAmelCase: Union[str, Any] = None if self.use_labels: __UpperCAmelCase: List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase: List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase: List[Any] = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def lowercase_ ( self ): '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = LiltModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase: Any = model(lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __UpperCAmelCase: Union[str, Any] = model(lowerCamelCase__ , bbox=lowerCamelCase__ , token_type_ids=lowerCamelCase__ ) __UpperCAmelCase: Any = model(lowerCamelCase__ , bbox=lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' __UpperCAmelCase: Any = self.num_labels __UpperCAmelCase: Dict = LiltForTokenClassification(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase: Any = model( lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = LiltForQuestionAnswering(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __UpperCAmelCase: str = model( lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self.prepare_config_and_inputs() ( __UpperCAmelCase ): List[str] = config_and_inputs __UpperCAmelCase: Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class a ( A__ , A__ , A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' return True def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = LiltModelTester(self ) __UpperCAmelCase: Tuple = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase: Union[str, Any] = type self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase: Optional[Any] = LiltModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_torch @slow class a ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: int = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCamelCase__ ) __UpperCAmelCase: Union[str, Any] = torch.tensor([[1, 2]] , device=lowerCamelCase__ ) __UpperCAmelCase: Optional[Any] = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCamelCase__ ) # forward pass with torch.no_grad(): __UpperCAmelCase: Dict = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ ) __UpperCAmelCase: Any = torch.Size([1, 2, 768] ) __UpperCAmelCase: Any = torch.tensor( [[-0.0_6_5_3, 0.0_9_5_0, -0.0_0_6_1], [-0.0_5_4_5, 0.0_9_2_6, -0.0_3_2_4]] , device=lowerCamelCase__ , ) self.assertTrue(outputs.last_hidden_state.shape , lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCamelCase__ , atol=1e-3 ) )
523
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase_ ( ) -> int: a__ : Any = HfArgumentParser(__a ) a__ : Any = parser.parse_args_into_dataclasses()[0] a__ : Optional[int] = TensorFlowBenchmark(args=__a ) try: a__ : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: a__ : Tuple = "Arg --no_{0} is no longer used, please use --no-{0} instead." a__ : List[Any] = " ".join(str(__a ).split(" " )[:-1] ) a__ : str = "" a__ : List[Any] = eval(str(__a ).split(" " )[-1] ) a__ : List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__a ) if len(__a ) > 0: a__ : Tuple = full_error_msg + begin_error_msg + str(__a ) raise ValueError(__a ) benchmark.run() if __name__ == "__main__": main()
37
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase : List[str] = logging.get_logger(__name__) __lowerCAmelCase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __lowerCAmelCase : str = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } __lowerCAmelCase : Optional[int] = { """gpt2""": 1_024, """gpt2-medium""": 1_024, """gpt2-large""": 1_024, """gpt2-xl""": 1_024, """distilgpt2""": 1_024, } class A ( A__ ): a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = ['''input_ids''', '''attention_mask'''] a_ = GPTaTokenizer def __init__( self : Optional[Any] , __a : List[str]=None , __a : Union[str, Any]=None , __a : Optional[int]=None , __a : Any="<|endoftext|>" , __a : Dict="<|endoftext|>" , __a : Tuple="<|endoftext|>" , __a : str=False , **__a : Any , ) -> Optional[int]: super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) __UpperCAmelCase = kwargs.pop('''add_bos_token''' , lowerCamelCase__ ) __UpperCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowerCamelCase__ ) != add_prefix_space: __UpperCAmelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('''type''' ) ) __UpperCAmelCase = add_prefix_space __UpperCAmelCase = pre_tok_class(**lowerCamelCase__ ) __UpperCAmelCase = add_prefix_space def snake_case__ ( self : Union[str, Any] , *__a : Union[str, Any] , **__a : Optional[int] ) -> Optional[Any]: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self : Optional[Any] , *__a : int , **__a : Optional[Any] ) -> Any: __UpperCAmelCase = kwargs.get('''is_split_into_words''' , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def snake_case__ ( self : Optional[Any] , __a : str , __a : Optional[str] = None ) -> Any: __UpperCAmelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def snake_case__ ( self : Any , __a : "Conversation" ) -> int: __UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) + [self.eos_token_id] ) if len(lowerCamelCase__ ) > self.model_max_length: __UpperCAmelCase = input_ids[-self.model_max_length :] return input_ids
262
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCamelCase : Optional[int] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCamelCase_ ( __a ) -> Any: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCamelCase_ ( __a , __a , __a ) -> Any: return max(metric_fn(__a , __a ) for gt in ground_truths ) def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = [] if args.gold_data_mode == "qa": a__ : Any = pd.read_csv(__a , sep="\t" , header=__a ) for answer_list in data[1]: a__ : Union[str, Any] = ast.literal_eval(__a ) answers.append(__a ) else: a__ : List[str] = [line.strip() for line in open(__a , "r" ).readlines()] a__ : List[str] = [[reference] for reference in references] a__ : List[str] = 0 for prediction, ground_truths in zip(__a , __a ): total += 1 em += metric_max_over_ground_truths(__a , __a , __a ) fa += metric_max_over_ground_truths(__a , __a , __a ) a__ : Dict = 100.0 * em / total a__ : Optional[Any] = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Optional[Any] = args.k a__ : str = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = 0 for hypo, reference in zip(__a , __a ): a__ : Any = set(hypo.split("\t" )[:k] ) a__ : Union[str, Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a__ : Union[str, Any] = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: def strip_title(__a ): if title.startswith("\"" ): a__ : Optional[Any] = title[1:] if title.endswith("\"" ): a__ : Union[str, Any] = title[:-1] return title a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="pt" , padding=__a , truncation=__a , )["input_ids"].to(args.device ) a__ : Optional[int] = rag_model.rag.question_encoder(__a ) a__ : Union[str, Any] = question_enc_outputs[0] a__ : Optional[int] = rag_model.retriever( __a , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) a__ : List[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a__ : int = [] for docs in all_docs: a__ : Optional[int] = [strip_title(__a ) for title in docs["title"]] provenance_strings.append("\t".join(__a ) ) return provenance_strings def UpperCamelCase_ ( __a , __a , __a ) -> Dict: with torch.no_grad(): a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="pt" , padding=__a , truncation=__a ) a__ : Any = inputs_dict.input_ids.to(args.device ) a__ : Dict = inputs_dict.attention_mask.to(args.device ) a__ : Optional[int] = rag_model.generate( # rag_model overwrites generate __a , attention_mask=__a , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__a , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a__ : int = rag_model.retriever.generator_tokenizer.batch_decode(__a , skip_special_tokens=__a ) if args.print_predictions: for q, a in zip(__a , __a ): logger.info("Q: {} - A: {}".format(__a , __a ) ) return answers def UpperCamelCase_ ( ) -> List[str]: a__ : int = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=__a , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=__a , choices=["exact", "compressed", "legacy"] , type=__a , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=__a , type=__a , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=__a , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=__a , type=__a , required=__a , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=__a , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=__a , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=__a , type=__a , required=__a , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=__a , type=__a , required=__a , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=__a , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=__a , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=__a , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=__a , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=__a , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=__a , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) a__ : int = parser.parse_args() a__ : Dict = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def UpperCamelCase_ ( __a ) -> Optional[int]: a__ : Tuple = {} if args.model_type is None: a__ : List[str] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): a__ : int = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration a__ : Tuple = args.n_docs if args.index_name is not None: a__ : Any = args.index_name if args.index_path is not None: a__ : int = args.index_path else: a__ : Optional[Any] = BartForConditionalGeneration a__ : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , __a ) a__ : Any = get_scores if args.eval_mode == "e2e" else get_precision_at_k a__ : Union[str, Any] = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__a , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__a ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): a__ : str = RagRetriever.from_pretrained(__a , **__a ) a__ : Optional[int] = model_class.from_pretrained(__a , retriever=__a , **__a ) model.retriever.init_retrieval() else: a__ : Dict = model_class.from_pretrained(__a , **__a ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: a__ : List[Any] = [] for line in tqdm(__a ): questions.append(line.strip() ) if len(__a ) == args.eval_batch_size: a__ : Union[str, Any] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("\n".join(__a ) + "\n" ) preds_file.flush() a__ : Any = [] if len(__a ) > 0: a__ : List[str] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("\n".join(__a ) ) preds_file.flush() score_fn(__a , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCamelCase : List[Any] = get_args() main(args)
37
0
'''simple docstring''' import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def snake_case ( a_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A ( nn.Module ): """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): super().__init__() UpperCamelCase_ : int = module UpperCamelCase_ : Any = nn.Sequential( nn.Linear(module.in_features , lowerCamelCase__ , bias=lowerCamelCase__ ) , nn.Linear(lowerCamelCase__ , module.out_features , bias=lowerCamelCase__ ) , ) UpperCamelCase_ : Tuple = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCamelCase__ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _UpperCAmelCase ( self , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): return self.module(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) + self.adapter(lowerCamelCase__ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A ( unittest.TestCase ): """simple docstring""" __a : Union[str, Any] = '''bigscience/bloom-1b7''' # Constant values __a : Tuple = 2.109_659_552_692_574 __a : Optional[Any] = '''Hello my name is''' __a : int = set() EXPECTED_OUTPUTS.add('''Hello my name is John and I am a professional photographer. I''' ) EXPECTED_OUTPUTS.add('''Hello my name is John.\nI am a friend of your father.\n''' ) EXPECTED_OUTPUTS.add('''Hello my name is John Doe, I am a student at the University''' ) __a : Optional[int] = 10 def _UpperCAmelCase ( self ): # Models and tokenizer UpperCamelCase_ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class A ( A__ ): """simple docstring""" def _UpperCAmelCase ( self ): super().setUp() # Models and tokenizer UpperCamelCase_ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="""auto""" ) UpperCamelCase_ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="""auto""" ) def _UpperCAmelCase ( self ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): UpperCamelCase_ : str = self.model_abit.config self.assertTrue(hasattr(lowerCamelCase__ , """quantization_config""" ) ) UpperCamelCase_ : Optional[Any] = config.to_dict() UpperCamelCase_ : int = config.to_diff_dict() UpperCamelCase_ : List[str] = config.to_json_string() def _UpperCAmelCase ( self ): from bitsandbytes.nn import Paramsabit UpperCamelCase_ : List[Any] = self.model_fpaa.get_memory_footprint() UpperCamelCase_ : str = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) UpperCamelCase_ : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _UpperCAmelCase ( self ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCamelCase__ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors="""pt""" ) UpperCamelCase_ : Tuple = self.model_abit.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCAmelCase ( self ): UpperCamelCase_ : Optional[Any] = BitsAndBytesConfig() UpperCamelCase_ : Optional[int] = True UpperCamelCase_ : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , device_map="""auto""" ) UpperCamelCase_ : str = self.tokenizer(self.input_text , return_tensors="""pt""" ) UpperCamelCase_ : int = model_abit_from_config.generate( input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCAmelCase ( self ): with self.assertRaises(lowerCamelCase__ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCamelCase__ ) def _UpperCAmelCase ( self ): UpperCamelCase_ : int = BitsAndBytesConfig() with self.assertRaises(lowerCamelCase__ ): UpperCamelCase_ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , load_in_abit=lowerCamelCase__ , device_map="""auto""" , bnb_abit_quant_type="""nf4""" , ) def _UpperCAmelCase ( self ): with self.assertRaises(lowerCamelCase__ ): # Tries with `str` self.model_abit.to("""cpu""" ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.to(torch.device("""cuda:0""" ) ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything UpperCamelCase_ : int = self.tokenizer(self.input_text , return_tensors="""pt""" ) UpperCamelCase_ : Any = self.model_fpaa.to(torch.floataa ) UpperCamelCase_ : List[Any] = self.model_fpaa.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error UpperCamelCase_ : Tuple = self.model_fpaa.to("""cpu""" ) # Check this does not throw an error UpperCamelCase_ : Tuple = self.model_fpaa.half() # Check this does not throw an error UpperCamelCase_ : Dict = self.model_fpaa.float() def _UpperCAmelCase ( self ): UpperCamelCase_ : List[str] = AutoModelForSeqaSeqLM.from_pretrained("""t5-small""" , load_in_abit=lowerCamelCase__ , device_map="""auto""" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCAmelCase ( cls ): UpperCamelCase_ : Dict = "t5-small" UpperCamelCase_ : List[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense UpperCamelCase_ : int = AutoTokenizer.from_pretrained(cls.model_name ) UpperCamelCase_ : str = "Translate in German: Hello, my dog is cute" def _UpperCAmelCase ( self ): gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): from transformers import TaForConditionalGeneration UpperCamelCase_ : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules UpperCamelCase_ : Optional[Any] = None # test with `t5-small` UpperCamelCase_ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="""auto""" ) UpperCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCamelCase_ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` UpperCamelCase_ : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="""auto""" ) UpperCamelCase_ : Dict = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCamelCase_ : Any = model.generate(**lowerCamelCase__ ) UpperCamelCase_ : Union[str, Any] = modules def _UpperCAmelCase ( self ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` UpperCamelCase_ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="""auto""" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) UpperCamelCase_ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCamelCase_ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` UpperCamelCase_ : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="""auto""" ) UpperCamelCase_ : Any = self.tokenizer(self.input_text , return_tensors="""pt""" ).to(0 ) UpperCamelCase_ : Optional[int] = model.generate(**lowerCamelCase__ ) class A ( A__ ): """simple docstring""" def _UpperCAmelCase ( self ): super().setUp() # model_name UpperCamelCase_ : Union[str, Any] = "bigscience/bloom-560m" UpperCamelCase_ : Union[str, Any] = "t5-small" # Different types of model UpperCamelCase_ : int = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="""auto""" ) # Sequence classification model UpperCamelCase_ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="""auto""" ) # CausalLM model UpperCamelCase_ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="""auto""" ) # Seq2seq model UpperCamelCase_ : Dict = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCamelCase__ , device_map="""auto""" ) def _UpperCAmelCase ( self ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A ( A__ ): """simple docstring""" def _UpperCAmelCase ( self ): super().setUp() def _UpperCAmelCase ( self ): del self.pipe gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ): UpperCamelCase_ : int = pipeline( """text-generation""" , model=self.model_name , model_kwargs={"""device_map""": """auto""", """load_in_4bit""": True, """torch_dtype""": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass UpperCamelCase_ : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["""generated_text"""] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A ( A__ ): """simple docstring""" def _UpperCAmelCase ( self ): super().setUp() def _UpperCAmelCase ( self ): UpperCamelCase_ : str = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="""balanced""" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model UpperCamelCase_ : List[Any] = self.tokenizer(self.input_text , return_tensors="""pt""" ) # Second real batch UpperCamelCase_ : List[Any] = model_parallel.generate(input_ids=encoded_input["""input_ids"""].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) class A ( A__ ): """simple docstring""" def _UpperCAmelCase ( self ): UpperCamelCase_ : Any = "facebook/opt-350m" super().setUp() def _UpperCAmelCase ( self ): if version.parse(importlib.metadata.version("""bitsandbytes""" ) ) < version.parse("""0.37.0""" ): return # Step 1: freeze all parameters UpperCamelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): UpperCamelCase_ : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability UpperCamelCase_ : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCamelCase__ ) ): UpperCamelCase_ : Dict = LoRALayer(module.q_proj , rank=16 ) UpperCamelCase_ : List[Any] = LoRALayer(module.k_proj , rank=16 ) UpperCamelCase_ : List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch UpperCamelCase_ : Dict = self.tokenizer("""Test batch """ , return_tensors="""pt""" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): UpperCamelCase_ : Optional[Any] = model.forward(**lowerCamelCase__ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCamelCase__ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A ( A__ ): """simple docstring""" __a : List[str] = '''gpt2-xl''' __a : Union[str, Any] = 3.3_191_854_854_152_187
208
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a = None , ) -> str: a__ : int = {} if train_file is not None: a__ : int = [train_file] if eval_file is not None: a__ : Union[str, Any] = [eval_file] if test_file is not None: a__ : str = [test_file] a__ : Optional[Any] = datasets.load_dataset("csv" , data_files=__a ) a__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) a__ : str = features_name.pop(__a ) a__ : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) a__ : str = {label: i for i, label in enumerate(__a )} a__ : Tuple = tokenizer.model_input_names a__ : List[str] = {} if len(__a ) == 1: for k in files.keys(): a__ : Optional[Any] = ds[k].map( lambda __a : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__a , max_length=__a , padding="max_length" ) , batched=__a , ) elif len(__a ) == 2: for k in files.keys(): a__ : Dict = ds[k].map( lambda __a : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__a , max_length=__a , padding="max_length" , ) , batched=__a , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: a__ : str = {k: v for k, v in ex.items() if k in input_names} a__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: a__ : Tuple = {k: v for k, v in ex.items() if k in input_names} a__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: a__ : List[Any] = {k: v for k, v in ex.items() if k in input_names} a__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) a__ : Optional[Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: a__ : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: a__ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: a__ : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" _lowercase = field(metadata={'help': 'Which column contains the label'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the training file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the development file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the test file'} ) _lowercase = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _lowercase = field( default=A__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class A__ : """simple docstring""" _lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowercase = field(default=A__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCamelCase_ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) a__, a__, a__ : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a__, a__, a__, a__ : Optional[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) a__ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__a ) , labelaid=__a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): a__ : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , ) def compute_metrics(__a ) -> Dict: a__ : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer a__ : Dict = TFTrainer( model=__a , args=__a , train_dataset=__a , eval_dataset=__a , compute_metrics=__a , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a__ : Dict = trainer.evaluate() a__ : int = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(__a , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__a ) return results if __name__ == "__main__": main()
37
0
import re from filelock import FileLock try: import nltk lowercase : Union[str, Any] = True except (ImportError, ModuleNotFoundError): lowercase : Optional[int] = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def UpperCAmelCase_ ( _UpperCAmelCase ): re.sub("""<n>""" , """""" , __a ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__a ) )
423
import argparse import collections import json import os import re import string import sys import numpy as np UpperCamelCase : List[str] = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) UpperCamelCase : Union[str, Any] = None def UpperCamelCase_ ( ) -> List[str]: a__ : List[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=__a , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=__a , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def UpperCamelCase_ ( __a ) -> str: a__ : Optional[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : Dict = bool(qa["answers"]["text"] ) return qid_to_has_ans def UpperCamelCase_ ( __a ) -> List[Any]: def remove_articles(__a ): return ARTICLES_REGEX.sub(" " , __a ) def white_space_fix(__a ): return " ".join(text.split() ) def remove_punc(__a ): a__ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__a ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__a ) ) ) ) def UpperCamelCase_ ( __a ) -> Dict: if not s: return [] return normalize_answer(__a ).split() def UpperCamelCase_ ( __a , __a ) -> str: return int(normalize_answer(__a ) == normalize_answer(__a ) ) def UpperCamelCase_ ( __a , __a ) -> Dict: a__ : int = get_tokens(__a ) a__ : Optional[Any] = get_tokens(__a ) a__ : Any = collections.Counter(__a ) & collections.Counter(__a ) a__ : Dict = sum(common.values() ) if len(__a ) == 0 or len(__a ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a__ : Tuple = 1.0 * num_same / len(__a ) a__ : str = 1.0 * num_same / len(__a ) a__ : str = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase_ ( __a , __a ) -> int: a__ : List[str] = {} a__ : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : List[Any] = qa["id"] a__ : Dict = [t for t in qa["answers"]["text"] if normalize_answer(__a )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a__ : Tuple = [""] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue a__ : Tuple = preds[qid] # Take max over all gold answers a__ : Optional[int] = max(compute_exact(__a , __a ) for a in gold_answers ) a__ : str = max(compute_fa(__a , __a ) for a in gold_answers ) return exact_scores, fa_scores def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]: a__ : Optional[Any] = {} for qid, s in scores.items(): a__ : Dict = na_probs[qid] > na_prob_thresh if pred_na: a__ : Dict = float(not qid_to_has_ans[qid] ) else: a__ : Optional[Any] = s return new_scores def UpperCamelCase_ ( __a , __a , __a=None ) -> Tuple: if not qid_list: a__ : Union[str, Any] = len(__a ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: a__ : int = len(__a ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: for k in new_eval: a__ : Optional[Any] = new_eval[k] def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]: plt.step(__a , __a , color="b" , alpha=0.2 , where="post" ) plt.fill_between(__a , __a , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__a ) plt.savefig(__a ) plt.clf() def UpperCamelCase_ ( __a , __a , __a , __a , __a=None , __a=None ) -> Dict: a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] ) a__ : Any = 0.0 a__ : Optional[int] = 1.0 a__ : Optional[int] = 0.0 a__ : Any = [1.0] a__ : Tuple = [0.0] a__ : List[str] = 0.0 for i, qid in enumerate(__a ): if qid_to_has_ans[qid]: true_pos += scores[qid] a__ : Any = true_pos / float(i + 1 ) a__ : int = true_pos / float(__a ) if i == len(__a ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__a ) recalls.append(__a ) if out_image: plot_pr_curve(__a , __a , __a , __a ) return {"ap": 100.0 * avg_prec} def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> str: if out_image_dir and not os.path.exists(__a ): os.makedirs(__a ) a__ : Optional[int] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a__ : Optional[int] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) a__ : Optional[Any] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) a__ : str = {k: float(__a ) for k, v in qid_to_has_ans.items()} a__ : Optional[Any] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(__a , __a , "pr_exact" ) merge_eval(__a , __a , "pr_f1" ) merge_eval(__a , __a , "pr_oracle" ) def UpperCamelCase_ ( __a , __a , __a , __a ) -> str: if not qid_list: return a__ : Optional[Any] = [na_probs[k] for k in qid_list] a__ : str = np.ones_like(__a ) / float(len(__a ) ) plt.hist(__a , weights=__a , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__a , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[Any]: a__ : str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a__ : Optional[Any] = num_no_ans a__ : Dict = cur_score a__ : Any = 0.0 a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] ) for i, qid in enumerate(__a ): if qid not in scores: continue if qid_to_has_ans[qid]: a__ : Optional[int] = scores[qid] else: if preds[qid]: a__ : str = -1 else: a__ : Union[str, Any] = 0 cur_score += diff if cur_score > best_score: a__ : Any = cur_score a__ : Dict = na_probs[qid] return 100.0 * best_score / len(__a ), best_thresh def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> Any: a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a ) a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a ) a__ : Any = best_exact a__ : Any = exact_thresh a__ : List[Any] = best_fa a__ : Optional[int] = fa_thresh def UpperCamelCase_ ( ) -> Tuple: with open(OPTS.data_file ) as f: a__ : List[Any] = json.load(__a ) a__ : Any = dataset_json["data"] with open(OPTS.pred_file ) as f: a__ : int = json.load(__a ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a__ : List[str] = json.load(__a ) else: a__ : Optional[int] = {k: 0.0 for k in preds} a__ : Optional[Any] = make_qid_to_has_ans(__a ) # maps qid to True/False a__ : List[Any] = [k for k, v in qid_to_has_ans.items() if v] a__ : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v] a__, a__ : str = get_raw_scores(__a , __a ) a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh ) a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh ) a__ : Tuple = make_eval_dict(__a , __a ) if has_ans_qids: a__ : str = make_eval_dict(__a , __a , qid_list=__a ) merge_eval(__a , __a , "HasAns" ) if no_ans_qids: a__ : List[Any] = make_eval_dict(__a , __a , qid_list=__a ) merge_eval(__a , __a , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(__a , __a , __a , __a , __a , __a ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__a , __a , __a , __a , __a , OPTS.out_image_dir ) histogram_na_prob(__a , __a , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(__a , __a , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(__a , __a ) else: print(json.dumps(__a , indent=2 ) ) if __name__ == "__main__": UpperCamelCase : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
37
0
from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def a_ ( ): __lowerCAmelCase = 9, 14 # noqa: F841 __lowerCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] __lowerCAmelCase = defaultdict(__a ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __lowerCAmelCase = mst(__a ) __lowerCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __lowerCAmelCase = tuple(answer[:2] ) __lowerCAmelCase = tuple(edge[::-1] ) assert edge in result or reverse in result
53
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = CLIPTokenizer _lowercase = CLIPTokenizerFast _lowercase = True _lowercase = {} _lowercase = False def _UpperCamelCase( self : List[Any] ): super().setUp() # fmt: off a__ : Any = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) a__ : Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] a__ : Optional[Any] = {"unk_token": "<unk>"} a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) def _UpperCamelCase( self : Dict , **lowerCamelCase__ : int ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , **lowerCamelCase__ : Optional[int] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[Any] ): a__ : int = "lower newer" a__ : Optional[int] = "lower newer" return input_text, output_text def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a__ : int = "lower newer" a__ : List[str] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] a__ : Union[str, Any] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : int = tokens + [tokenizer.unk_token] a__ : Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @require_ftfy def _UpperCamelCase( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : List[str] = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : int = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." a__ : Optional[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : Dict = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a__ : Optional[Any] = "xa\u0303y" + " " + "x\xe3y" a__ : Optional[int] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of space type a__ : str = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a__ : Any = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of line break type a__ : Union[str, Any] = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a__ : List[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a__ : Tuple = f'''{text_of_1_token} {text_of_1_token}''' a__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Union[str, Any] = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) a__ : Optional[Any] = f''' {text}''' a__ : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Dict = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) def _UpperCamelCase( self : int ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCamelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def _UpperCamelCase( self : int ): super().test_tokenization_python_rust_equals() def _UpperCamelCase( self : str ): # CLIP always lower cases letters pass
37
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
130
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCamelCase : Dict = """<<<<<<< This should probably be modified because it mentions: """ UpperCamelCase : List[Any] = """======= >>>>>>> """ UpperCamelCase : Optional[Any] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] UpperCamelCase : Any = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def UpperCamelCase_ ( __a ) -> Optional[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class A__ ( A__ ): """simple docstring""" @staticmethod def _UpperCamelCase( lowerCamelCase__ : ArgumentParser ): a__ : List[str] = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , *lowerCamelCase__ : Tuple ): a__ : str = get_logger("datasets-cli/converting" ) a__ : Optional[Any] = tfds_path a__ : Optional[int] = datasets_directory def _UpperCamelCase( self : int ): if os.path.isdir(self._tfds_path ): a__ : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): a__ : Any = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) a__ : Dict = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) a__ : Tuple = [] a__ : str = [] a__ : List[Any] = {} if os.path.isdir(self._tfds_path ): a__ : List[str] = os.listdir(lowerCamelCase__ ) else: a__ : Union[str, Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) a__ : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) a__ : Dict = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) if not os.path.isfile(lowerCamelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(lowerCamelCase__ , encoding="utf-8" ) as f: a__ : List[Any] = f.readlines() a__ : Union[str, Any] = [] a__ : Union[str, Any] = False a__ : Union[str, Any] = False a__ : Dict = [] for line in lines: a__ : Optional[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: a__ : List[Any] = "import datasets\n" elif "import tensorflow" in out_line: # order is important here a__ : List[str] = "" continue elif "from absl import logging" in out_line: a__ : Dict = "from datasets import logging\n" elif "getLogger" in out_line: a__ : List[Any] = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): a__ : List[str] = True a__ : Dict = list(filter(lambda lowerCamelCase__ : e in out_line , lowerCamelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCamelCase__ ) + "\n" ) out_lines.append(lowerCamelCase__ ) out_lines.append(lowerCamelCase__ ) continue else: for pattern, replacement in TO_CONVERT: a__ : Tuple = re.sub(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: a__ : Optional[int] = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , lowerCamelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) a__ : Optional[Any] = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: a__ : Optional[int] = True out_lines.append(lowerCamelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset a__ : Dict = f_name.replace(".py" , "" ) a__ : Optional[int] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) a__ : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCamelCase__ ) if needs_manual_update: with_manual_update.append(lowerCamelCase__ ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.writelines(lowerCamelCase__ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: a__ : Any = os.path.basename(lowerCamelCase__ ) a__ : Optional[int] = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowerCamelCase__ , lowerCamelCase__ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
37
0
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : def __init__( self : Optional[Any] , snake_case__ : Dict , snake_case__ : str=3 , snake_case__ : Dict=32 , snake_case__ : Dict=3 , snake_case__ : str=10 , snake_case__ : Tuple=[10, 20, 30, 40] , snake_case__ : Tuple=[1, 1, 2, 1] , snake_case__ : str=True , snake_case__ : List[str]=True , snake_case__ : Tuple="relu" , snake_case__ : List[str]=3 , snake_case__ : int=None , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = embeddings_size lowerCAmelCase__ = hidden_sizes lowerCAmelCase__ = depths lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_act lowerCAmelCase__ = num_labels lowerCAmelCase__ = scope lowerCAmelCase__ = len(lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : Any ): lowerCAmelCase__ = TFResNetModel(config=lowerCamelCase__ ) lowerCAmelCase__ = model(lowerCamelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): lowerCAmelCase__ = self.num_labels lowerCAmelCase__ = TFResNetForImageClassification(lowerCamelCase__ ) lowerCAmelCase__ = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ = config_and_inputs lowerCAmelCase__ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a_ ( A__ , A__ , unittest.TestCase ): UpperCamelCase_ : Optional[int] = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () UpperCamelCase_ : Any = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Dict = False def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = TFResNetModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : int ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : Any ): return @unittest.skip(reason="""ResNet does not use inputs_embeds""" ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): pass @unittest.skip(reason="""ResNet does not support input and output embeddings""" ) def _SCREAMING_SNAKE_CASE ( self : Any ): pass def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowerCamelCase__ ) lowerCAmelCase__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : int ): def check_hidden_states_output(snake_case__ : Any , snake_case__ : Any , snake_case__ : str ): lowerCAmelCase__ = model_class(lowerCamelCase__ ) lowerCAmelCase__ = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) lowerCAmelCase__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase__ = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase__ = layer_type lowerCAmelCase__ = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFResNetModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : int ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ) # forward pass lowerCAmelCase__ = model(**lowerCamelCase__ ) # verify the logits lowerCAmelCase__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) lowerCAmelCase__ = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase__ , atol=1E-4 ) )
644
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class A__ ( A__ ): """simple docstring""" _lowercase = '' _lowercase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowercase = None # compression type in fsspec. ex: "gzip" _lowercase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[str] , lowerCamelCase__ : str = "" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[dict] = None , **lowerCamelCase__ : List[str] ): super().__init__(self , **lowerCamelCase__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode a__ : str = fsspec.open( lowerCamelCase__ , mode="rb" , protocol=lowerCamelCase__ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) a__ : Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) a__ : int = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) a__ : List[Any] = None @classmethod def _UpperCamelCase( cls : int , lowerCamelCase__ : int ): # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCamelCase__ ).lstrip("/" ) def _UpperCamelCase( self : Dict ): if self.dir_cache is None: a__ : Dict = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} a__ : int = {f["name"]: f} def _UpperCamelCase( self : Tuple , lowerCamelCase__ : str ): return self.file.open().read() def _UpperCamelCase( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str = "rb" , lowerCamelCase__ : int=None , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Optional[Any] , ): a__ : Optional[int] = self._strip_protocol(lowerCamelCase__ ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class A__ ( A__ ): """simple docstring""" _lowercase = 'bz2' _lowercase = 'bz2' _lowercase = '.bz2' class A__ ( A__ ): """simple docstring""" _lowercase = 'gzip' _lowercase = 'gzip' _lowercase = '.gz' class A__ ( A__ ): """simple docstring""" _lowercase = 'lz4' _lowercase = 'lz4' _lowercase = '.lz4' class A__ ( A__ ): """simple docstring""" _lowercase = 'xz' _lowercase = 'xz' _lowercase = '.xz' class A__ ( A__ ): """simple docstring""" _lowercase = 'zstd' _lowercase = 'zstd' _lowercase = '.zst' def __init__( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : str = "rb" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[dict] = None , lowerCamelCase__ : int = DEFAULT_BLOCK_SIZE , **lowerCamelCase__ : Tuple , ): super().__init__( fo=lowerCamelCase__ , mode=lowerCamelCase__ , target_protocol=lowerCamelCase__ , target_options=lowerCamelCase__ , block_size=lowerCamelCase__ , **lowerCamelCase__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 a__ : Any = self.file.__enter__ class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : str ): a__ : List[Any] = file_ def __enter__( self : str ): self._file.__enter__() return self def __exit__( self : int , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : int ): self._file.__exit__(*lowerCamelCase__ , **lowerCamelCase__ ) def __iter__( self : List[str] ): return iter(self._file ) def _UpperCamelCase( self : Any ): return next(self._file ) def __getattr__( self : Optional[Any] , lowerCamelCase__ : Tuple ): return getattr(self._file , lowerCamelCase__ ) def fixed_enter(*lowerCamelCase__ : List[str] , **lowerCamelCase__ : str ): return WrappedFile(_enter(*lowerCamelCase__ , **lowerCamelCase__ ) ) a__ : Any = fixed_enter
37
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class _UpperCAmelCase ( metaclass=A__ ): '''simple docstring''' a__ =['''note_seq'''] def __init__( self , *A , **A ) -> List[Any]: requires_backends(self , ['''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Union[str, Any]: requires_backends(cls , ['''note_seq'''] ) @classmethod def __lowerCAmelCase ( cls , *A , **A ) -> Optional[Any]: requires_backends(cls , ['''note_seq'''] )
506
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Union[str, Any] = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") a__ : Union[str, Any] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__a ): os.makedirs(__a ) a__ : Any = model.state_dict() def to_tf_var_name(__a ): for patt, repl in iter(__a ): a__ : Tuple = name.replace(__a , __a ) return f'''bert/{name}''' def create_tf_var(__a , __a , __a ): a__ : Tuple = tf.dtypes.as_dtype(tensor.dtype ) a__ : Dict = tf.get_variable(dtype=__a , shape=tensor.shape , name=__a , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__a ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: a__ : int = to_tf_var_name(__a ) a__ : Union[str, Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): a__ : int = torch_tensor.T a__ : Optional[Any] = create_tf_var(tensor=__a , name=__a , session=__a ) tf.keras.backend.set_value(__a , __a ) a__ : int = session.run(__a ) print(f'''Successfully created {tf_name}: {np.allclose(__a , __a )}''' ) a__ : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(__a , os.path.join(__a , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCamelCase_ ( __a=None ) -> int: a__ : Dict = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__a , required=__a , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=__a , default=__a , required=__a , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=__a , required=__a , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=__a , required=__a , help="Directory in which to save tensorflow model" ) a__ : Optional[Any] = parser.parse_args(__a ) a__ : Tuple = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__a , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
37
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class A ( A__ ): def __init__( self ) -> Any: _a = [] def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[Any]: self.events.append("on_init_end" ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Dict: self.events.append("on_train_begin" ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> str: self.events.append("on_train_end" ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Any: self.events.append("on_epoch_begin" ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> str: self.events.append("on_epoch_end" ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> List[str]: self.events.append("on_step_begin" ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[Any]: self.events.append("on_step_end" ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> List[str]: self.events.append("on_evaluate" ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: self.events.append("on_predict" ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Any: self.events.append("on_save" ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Dict: self.events.append("on_log" ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , **snake_case_ ) -> Optional[int]: self.events.append("on_prediction_step" ) @require_torch class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Tuple: _a = tempfile.mkdtemp() def __lowerCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def __lowerCAmelCase ( self , snake_case_=0 , snake_case_=0 , snake_case_=6_4 , snake_case_=6_4 , snake_case_=None , snake_case_=False , **snake_case_ ) -> Dict: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. _a = RegressionDataset(length=lowerCamelCase__ ) _a = RegressionDataset(length=lowerCamelCase__ ) _a = RegressionModelConfig(a=lowerCamelCase__ , b=lowerCamelCase__ ) _a = RegressionPreTrainedModel(lowerCamelCase__ ) _a = TrainingArguments(self.output_dir , disable_tqdm=lowerCamelCase__ , report_to=[] , **lowerCamelCase__ ) return Trainer( lowerCamelCase__ , lowerCamelCase__ , train_dataset=lowerCamelCase__ , eval_dataset=lowerCamelCase__ , callbacks=lowerCamelCase__ , ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ ) -> List[str]: self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) # Order doesn't matter _a = sorted(lowerCamelCase__ , key=lambda snake_case_ : cb.__name__ if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cb.__class__.__name__ ) _a = sorted(lowerCamelCase__ , key=lambda snake_case_ : cb.__name__ if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cb.__class__.__name__ ) for cba, cba in zip(lowerCamelCase__ , lowerCamelCase__ ): if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(lowerCamelCase__ , cba.__class__ ) elif not isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(cba.__class__ , lowerCamelCase__ ) else: self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCAmelCase ( self , snake_case_ ) -> Dict: _a = ["on_init_end", "on_train_begin"] _a = 0 _a = len(trainer.get_eval_dataloader() ) _a = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(lowerCamelCase__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def __lowerCAmelCase ( self ) -> Any: _a = self.get_trainer() _a = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) # Callbacks passed at init are added to the default callbacks _a = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback _a = self.get_trainer(disable_tqdm=lowerCamelCase__ ) _a = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) def __lowerCAmelCase ( self ) -> str: _a = DEFAULT_CALLBACKS.copy() + [ProgressCallback] _a = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(lowerCamelCase__ ) expected_callbacks.remove(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) _a = self.get_trainer() _a = trainer.pop_callback(lowerCamelCase__ ) self.assertEqual(cb.__class__ , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) trainer.add_callback(lowerCamelCase__ ) expected_callbacks.insert(0 , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) # We can also add, pop, or remove by instance _a = self.get_trainer() _a = trainer.callback_handler.callbacks[0] trainer.remove_callback(lowerCamelCase__ ) expected_callbacks.remove(lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) _a = self.get_trainer() _a = trainer.callback_handler.callbacks[0] _a = trainer.pop_callback(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) trainer.add_callback(lowerCamelCase__ ) expected_callbacks.insert(0 , lowerCamelCase__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , lowerCamelCase__ ) def __lowerCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=lowerCamelCase__ ) _a = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) # Independent log/save/eval _a = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) _a = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) _a = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) _a = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) # A bit of everything _a = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() _a = trainer.callback_handler.callbacks[-2].events self.assertEqual(lowerCamelCase__ , self.get_expected_events(lowerCamelCase__ ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: _a = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(lowerCamelCase__ ) in warn_mock.call_args[0][0]
131
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Any=24 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : int=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Optional[Any]=37 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : str=10 , lowerCamelCase__ : Optional[Any]=0.02 , lowerCamelCase__ : str=None , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Optional[Any]=2 , ): a__ : str = parent a__ : Any = batch_size a__ : Dict = patch_size a__ : List[Any] = max_length a__ : str = num_mel_bins a__ : Optional[Any] = is_training a__ : Optional[int] = use_labels a__ : List[Any] = hidden_size a__ : str = num_hidden_layers a__ : Any = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : List[str] = hidden_act a__ : str = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : List[Any] = type_sequence_label_size a__ : Any = initializer_range a__ : str = scope a__ : List[str] = frequency_stride a__ : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) a__ : List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 a__ : List[str] = (self.max_length - self.patch_size) // self.time_stride + 1 a__ : Tuple = frequency_out_dimension * time_out_dimension a__ : List[str] = num_patches + 2 def _UpperCamelCase( self : List[str] ): a__ : Any = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) a__ : List[Any] = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : List[str] = self.get_config() return config, input_values, labels def _UpperCamelCase( self : Optional[int] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] ): a__ : List[Any] = ASTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : str ): a__ : Dict = self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ) : Optional[int] = config_and_inputs a__ : List[Any] = {"input_values": input_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _lowercase = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _UpperCamelCase( self : str ): a__ : str = ASTModelTester(self ) a__ : Any = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _UpperCamelCase( self : List[str] ): pass def _UpperCamelCase( self : Optional[int] ): a__, a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Any = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : Tuple ): a__, a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowerCamelCase__ ) a__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Optional[Any] = ["input_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Union[str, Any] = ASTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : Optional[int] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) a__, a__ : List[str] = torchaudio.load(__a ) return audio, sampling_rate @require_torch @require_torchaudio class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : List[str] ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _UpperCamelCase( self : Optional[int] ): a__ : int = self.default_feature_extractor a__ : Optional[Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(lowerCamelCase__ ) a__ : Any = self.default_feature_extractor a__, a__ : Dict = prepare_audio() a__ : str = audio.squeeze().numpy() a__ : Any = feature_extractor(lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(**lowerCamelCase__ ) # verify the logits a__ : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) a__ : List[str] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
37
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a__ : @staticmethod def a_ ( *UpperCamelCase_ : Dict , **UpperCamelCase_ : str): """simple docstring""" pass @is_pipeline_test @require_vision class a__ ( unittest.TestCase ): @require_torch def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : int = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) __UpperCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") __UpperCAmelCase : Optional[int] = image_classifier(lowerCamelCase__ , candidate_labels=["a", "b", "c"]) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(lowerCamelCase__) , [ [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}], [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}], ] , ) __UpperCAmelCase : Tuple = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2) self.assertEqual( nested_simplify(lowerCamelCase__) , [ [ {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, ], ] , ) @require_tf def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : List[str] = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf") __UpperCAmelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") __UpperCAmelCase : str = image_classifier(lowerCamelCase__ , candidate_labels=["a", "b", "c"]) self.assertEqual( nested_simplify(lowerCamelCase__) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , ) __UpperCAmelCase : str = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2) self.assertEqual( nested_simplify(lowerCamelCase__) , [ [ {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, ], [ {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, {"score": 0.333, "label": ANY(lowerCamelCase__)}, ], ] , ) @slow @require_torch def a_ ( self : str): """simple docstring""" __UpperCAmelCase : List[Any] = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes __UpperCAmelCase : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") __UpperCAmelCase : Any = image_classifier(lowerCamelCase__ , candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(lowerCamelCase__) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) __UpperCAmelCase : int = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2) self.assertEqual( nested_simplify(lowerCamelCase__) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : Dict = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf") # This is an image of 2 cats with remotes and no planes __UpperCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png") __UpperCAmelCase : int = image_classifier(lowerCamelCase__ , candidate_labels=["cat", "plane", "remote"]) self.assertEqual( nested_simplify(lowerCamelCase__) , [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ] , ) __UpperCAmelCase : List[Any] = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2) self.assertEqual( nested_simplify(lowerCamelCase__) , [ [ {"score": 0.511, "label": "remote"}, {"score": 0.485, "label": "cat"}, {"score": 0.004, "label": "plane"}, ], ] * 5 , )
77
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = XGLMTokenizer _lowercase = XGLMTokenizerFast _lowercase = True _lowercase = True def _UpperCamelCase( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase( self : List[Any] ): a__ : int = "<pad>" a__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCamelCase__ ) , 1_008 ) def _UpperCamelCase( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def _UpperCamelCase( self : Optional[int] ): a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) a__ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a__ : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a__ : List[str] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) a__ : Dict = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _UpperCamelCase( self : Dict ): return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _UpperCamelCase( self : Union[str, Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__ , f.name ) a__ : Any = XGLMTokenizer(f.name , keep_accents=lowerCamelCase__ ) a__ : List[str] = pickle.dumps(lowerCamelCase__ ) pickle.loads(lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): if not self.test_rust_tokenizer: return a__ : Any = self.get_tokenizer() a__ : Optional[Any] = self.get_rust_tokenizer() a__ : Tuple = "I was born in 92000, and this is falsé." a__ : List[str] = tokenizer.tokenize(lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Optional[int] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : Tuple = tokenizer.encode(lowerCamelCase__ ) a__ : Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = "Hello World!" a__ : List[str] = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : Union[str, Any] ): a__ : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off a__ : Union[str, Any] = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : List[Any] ): # fmt: off a__ : Optional[int] = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="facebook/xglm-564M" , padding=lowerCamelCase__ , )
37
0
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef lowerCamelCase_ = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def __lowerCamelCase ( a_ : List[str] , a_ : Any ) -> str: warnings.warn(__a , __a ) requires_backends(__a , '''sklearn''' ) return (preds == labels).mean() def __lowerCamelCase ( a_ : str , a_ : Any ) -> List[Any]: warnings.warn(__a , __a ) requires_backends(__a , '''sklearn''' ) __SCREAMING_SNAKE_CASE :Optional[Any] = simple_accuracy(__a , __a ) __SCREAMING_SNAKE_CASE :Any = fa_score(y_true=__a , y_pred=__a ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def __lowerCamelCase ( a_ : int , a_ : Union[str, Any] ) -> str: warnings.warn(__a , __a ) requires_backends(__a , '''sklearn''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = pearsonr(__a , __a )[0] __SCREAMING_SNAKE_CASE :int = spearmanr(__a , __a )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def __lowerCamelCase ( a_ : Optional[int] , a_ : int , a_ : Dict ) -> Tuple: warnings.warn(__a , __a ) requires_backends(__a , '''sklearn''' ) assert len(__a ) == len(__a ), f'''Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(__a , __a )} elif task_name == "sst-2": return {"acc": simple_accuracy(__a , __a )} elif task_name == "mrpc": return acc_and_fa(__a , __a ) elif task_name == "sts-b": return pearson_and_spearman(__a , __a ) elif task_name == "qqp": return acc_and_fa(__a , __a ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(__a , __a )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(__a , __a )} elif task_name == "qnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "rte": return {"acc": simple_accuracy(__a , __a )} elif task_name == "wnli": return {"acc": simple_accuracy(__a , __a )} elif task_name == "hans": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a ) def __lowerCamelCase ( a_ : Optional[Any] , a_ : Tuple , a_ : Optional[Any] ) -> Tuple: warnings.warn(__a , __a ) requires_backends(__a , '''sklearn''' ) if len(__a ) != len(__a ): raise ValueError(f'''Predictions and labels have mismatched lengths {len(__a )} and {len(__a )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(__a , __a )} else: raise KeyError(__a )
498
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase_ ( ) -> int: a__ : int = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" a__ : Optional[Any] = Image.open(requests.get(__a , stream=__a ).raw ).convert("RGB" ) return image def UpperCamelCase_ ( __a ) -> Optional[Any]: a__ : Any = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : Union[str, Any] = dct.pop(__a ) a__ : List[str] = val def UpperCamelCase_ ( __a , __a ) -> Optional[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a__ : Any = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) a__ : Tuple = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict a__ : str = torch.cat((q_bias, torch.zeros_like(__a , requires_grad=__a ), v_bias) ) a__ : int = qkv_bias def UpperCamelCase_ ( __a ) -> Dict: a__ : Tuple = 364 if "coco" in model_name else 224 a__ : int = InstructBlipVisionConfig(image_size=__a ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: a__ : Tuple = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a__ : Dict = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: a__ : List[Any] = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32_001 ).to_dict() elif "vicuna-13b" in model_name: a__ : Optional[int] = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32_001 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 a__ : Optional[Any] = InstructBlipQFormerConfig(vocab_size=30_523 ).to_dict() a__ : Any = InstructBlipConfig(vision_config=__a , text_config=__a , qformer_config=__a ) return config, image_size @torch.no_grad() def UpperCamelCase_ ( __a , __a=None , __a=False ) -> int: a__ : Tuple = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: a__ : List[Any] = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) a__ : Union[str, Any] = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) a__, a__ : List[str] = get_blipa_config(__a ) a__ : Any = InstructBlipForConditionalGeneration(__a ).eval() a__ : Dict = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } a__, a__ : Dict = model_name_to_original[model_name] # load original model print("Loading original model..." ) a__ : Optional[Any] = "cuda:1" if torch.cuda.is_available() else "cpu" a__ : List[Any] = "cuda:2" if torch.cuda.is_available() else "cpu" a__, a__, a__ : Tuple = load_model_and_preprocess( name=__a , model_type=__a , is_eval=__a , device=__a ) original_model.eval() print("Done!" ) # update state dict keys a__ : Dict = original_model.state_dict() a__ : Optional[int] = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a__ : Optional[int] = state_dict.pop(__a ) if key.startswith("Qformer.bert" ): a__ : List[Any] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: a__ : Any = key.replace("self" , "attention" ) if "llm_proj" in key: a__ : Dict = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: a__ : int = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): a__ : List[str] = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): a__ : str = key.replace("t5" , "language" ) a__ : Dict = val # read in qv biases read_in_q_v_bias(__a , __a ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__a , strict=__a ) a__ : Union[str, Any] = load_demo_image() a__ : int = "What is unusual about this image?" # create processor a__ : Any = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=__a , image_std=__a ) a__ : Tuple = InstructBlipProcessor( image_processor=__a , tokenizer=__a , qformer_tokenizer=__a , ) a__ : Tuple = processor(images=__a , text=__a , return_tensors="pt" ).to(__a ) # make sure processor creates exact same pixel values a__ : Optional[int] = vis_processors["eval"](__a ).unsqueeze(0 ).to(__a ) a__ : Optional[Any] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __a ) original_model.to(__a ) hf_model.to(__a ) with torch.no_grad(): if "vicuna" in model_name: a__ : str = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits a__ : List[str] = hf_model(**__a ).logits else: a__ : List[Any] = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits a__ : str = tokenizer("\n" , return_tensors="pt" ).input_ids.to(__a ) a__ : Dict = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) a__ : Any = hf_model(**__a , labels=__a ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape a__ : Tuple = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , __a , atol=__a ) print("Looks ok!" ) print("Generating with original model..." ) a__ : Tuple = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) a__ : int = hf_model.generate( **__a , do_sample=__a , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? a__ : int = 2 print("Original generation:" , __a ) a__ : str = processor.batch_decode(__a , skip_special_tokens=__a ) a__ : str = [text.strip() for text in output_text] print("HF generation:" , __a ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__a ) hf_model.save_pretrained(__a ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() UpperCamelCase : Optional[int] = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
37
0
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_=13 , snake_case_=30 , snake_case_=2 , snake_case_=3 , snake_case_=True , snake_case_=True , snake_case_=32 , snake_case_=2 , snake_case_=4 , snake_case_=37 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=10 , snake_case_=0.0_2 , snake_case_=3 , snake_case_=None , snake_case_=2 , ): '''simple docstring''' __UpperCAmelCase: str = parent __UpperCAmelCase: Any = batch_size __UpperCAmelCase: Optional[int] = image_size __UpperCAmelCase: Tuple = patch_size __UpperCAmelCase: Union[str, Any] = num_channels __UpperCAmelCase: str = is_training __UpperCAmelCase: Dict = use_labels __UpperCAmelCase: List[str] = hidden_size __UpperCAmelCase: Union[str, Any] = num_hidden_layers __UpperCAmelCase: Tuple = num_attention_heads __UpperCAmelCase: Dict = intermediate_size __UpperCAmelCase: List[Any] = hidden_act __UpperCAmelCase: int = hidden_dropout_prob __UpperCAmelCase: Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase: Dict = type_sequence_label_size __UpperCAmelCase: Optional[Any] = initializer_range __UpperCAmelCase: Tuple = scope __UpperCAmelCase: List[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __UpperCAmelCase: Optional[Any] = (image_size // patch_size) ** 2 __UpperCAmelCase: List[str] = num_patches + 2 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase: List[str] = None if self.use_labels: __UpperCAmelCase: int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase: str = self.get_config() return config, pixel_values, labels def lowercase_ ( self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[str] = TFDeiTModel(config=lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: str = TFDeiTForMaskedImageModeling(config=lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = model(lowerCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCAmelCase: Dict = 1 __UpperCAmelCase: Union[str, Any] = TFDeiTForMaskedImageModeling(lowerCamelCase__ ) __UpperCAmelCase: List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase: int = model(lowerCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self.type_sequence_label_size __UpperCAmelCase: Any = TFDeiTForImageClassification(lowerCamelCase__ ) __UpperCAmelCase: List[Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCAmelCase: List[str] = 1 __UpperCAmelCase: str = TFDeiTForImageClassification(lowerCamelCase__ ) __UpperCAmelCase: Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCAmelCase: Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self.prepare_config_and_inputs() __UpperCAmelCase: Union[str, Any] = config_and_inputs __UpperCAmelCase: List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a ( A__ , A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __lowerCAmelCase = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = TFDeiTModelTester(self ) __UpperCAmelCase: Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def lowercase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase: List[str] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __UpperCAmelCase: Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , tf.keras.layers.Dense ) ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase: str = model_class(lowerCamelCase__ ) __UpperCAmelCase: int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase: List[Any] = [*signature.parameters.keys()] __UpperCAmelCase: Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_=False ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowercase_ ( self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase: Optional[Any] = TFDeiTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase__ ( ) -> Tuple: __UpperCAmelCase: Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: int = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) __UpperCAmelCase: Any = self.default_image_processor __UpperCAmelCase: Any = prepare_img() __UpperCAmelCase: Tuple = image_processor(images=lowerCamelCase__ , return_tensors="""tf""" ) # forward pass __UpperCAmelCase: Dict = model(**lowerCamelCase__ ) # verify the logits __UpperCAmelCase: Any = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __UpperCAmelCase: Optional[Any] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
523
def UpperCamelCase_ ( __a , __a ) -> Tuple: a__ : Optional[int] = [0 for i in range(r + 1 )] # nc0 = 1 a__ : Union[str, Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. a__ : Any = min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
37
0
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A ( A__ , A__ , unittest.TestCase ): a_ = AutoencoderKL a_ = '''sample''' a_ = 1e-2 @property def snake_case__ ( self : str ) -> List[str]: __UpperCAmelCase = 4 __UpperCAmelCase = 3 __UpperCAmelCase = (3_2, 3_2) __UpperCAmelCase = floats_tensor((batch_size, num_channels) + sizes ).to(lowerCamelCase__ ) return {"sample": image} @property def snake_case__ ( self : List[Any] ) -> Tuple: return (3, 3_2, 3_2) @property def snake_case__ ( self : Dict ) -> Dict: return (3, 3_2, 3_2) def snake_case__ ( self : List[str] ) -> Tuple: __UpperCAmelCase = { "block_out_channels": [3_2, 6_4], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } __UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def snake_case__ ( self : Tuple ) -> int: pass def snake_case__ ( self : Any ) -> Optional[Any]: pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def snake_case__ ( self : List[str] ) -> Tuple: # enable deterministic behavior for gradient checkpointing __UpperCAmelCase = self.prepare_init_args_and_inputs_for_common() __UpperCAmelCase = self.model_class(**lowerCamelCase__ ) model.to(lowerCamelCase__ ) assert not model.is_gradient_checkpointing and model.training __UpperCAmelCase = model(**lowerCamelCase__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __UpperCAmelCase = torch.randn_like(lowerCamelCase__ ) __UpperCAmelCase = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __UpperCAmelCase = self.model_class(**lowerCamelCase__ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowerCamelCase__ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __UpperCAmelCase = model_a(**lowerCamelCase__ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __UpperCAmelCase = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) __UpperCAmelCase = dict(model.named_parameters() ) __UpperCAmelCase = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def snake_case__ ( self : Dict ) -> str: __UpperCAmelCase = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowerCamelCase__ ) __UpperCAmelCase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def snake_case__ ( self : Optional[int] ) -> Optional[int]: __UpperCAmelCase = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) __UpperCAmelCase = model.to(lowerCamelCase__ ) model.eval() if torch_device == "mps": __UpperCAmelCase = torch.manual_seed(0 ) else: __UpperCAmelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __UpperCAmelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __UpperCAmelCase = image.to(lowerCamelCase__ ) with torch.no_grad(): __UpperCAmelCase = model(lowerCamelCase__ , sample_posterior=lowerCamelCase__ , generator=lowerCamelCase__ ).sample __UpperCAmelCase = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __UpperCAmelCase = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": __UpperCAmelCase = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __UpperCAmelCase = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(lowerCamelCase__ , lowerCamelCase__ , rtol=1e-2 ) ) @slow class A ( unittest.TestCase ): def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : List[Any] ) -> Optional[Any]: return f"""gaussian_noise_s={seed}_shape={'_'.join([str(lowerCamelCase__ ) for s in shape] )}.npy""" def snake_case__ ( self : Tuple ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Union[str, Any] , __a : Dict=0 , __a : Optional[int]=(4, 3, 5_1_2, 5_1_2) , __a : Tuple=False ) -> Union[str, Any]: __UpperCAmelCase = torch.floataa if fpaa else torch.floataa __UpperCAmelCase = torch.from_numpy(load_hf_numpy(self.get_file_format(lowerCamelCase__ , lowerCamelCase__ ) ) ).to(lowerCamelCase__ ).to(lowerCamelCase__ ) return image def snake_case__ ( self : Optional[int] , __a : List[Any]="CompVis/stable-diffusion-v1-4" , __a : Optional[Any]=False ) -> Tuple: __UpperCAmelCase = "fp16" if fpaa else None __UpperCAmelCase = torch.floataa if fpaa else torch.floataa __UpperCAmelCase = AutoencoderKL.from_pretrained( lowerCamelCase__ , subfolder='''vae''' , torch_dtype=lowerCamelCase__ , revision=lowerCamelCase__ , ) model.to(lowerCamelCase__ ).eval() return model def snake_case__ ( self : Any , __a : int=0 ) -> Union[str, Any]: if torch_device == "mps": return torch.manual_seed(lowerCamelCase__ ) return torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) @parameterized.expand( [ # fmt: off [3_3, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [4_7, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def snake_case__ ( self : Optional[int] , __a : Any , __a : List[str] , __a : str ) -> Tuple: __UpperCAmelCase = self.get_sd_vae_model() __UpperCAmelCase = self.get_sd_image(lowerCamelCase__ ) __UpperCAmelCase = self.get_generator(lowerCamelCase__ ) with torch.no_grad(): __UpperCAmelCase = model(lowerCamelCase__ , generator=lowerCamelCase__ , sample_posterior=lowerCamelCase__ ).sample assert sample.shape == image.shape __UpperCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() __UpperCAmelCase = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowerCamelCase__ , lowerCamelCase__ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [3_3, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [4_7, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def snake_case__ ( self : Dict , __a : List[str] , __a : List[Any] ) -> Union[str, Any]: __UpperCAmelCase = self.get_sd_vae_model(fpaa=lowerCamelCase__ ) __UpperCAmelCase = self.get_sd_image(lowerCamelCase__ , fpaa=lowerCamelCase__ ) __UpperCAmelCase = self.get_generator(lowerCamelCase__ ) with torch.no_grad(): __UpperCAmelCase = model(lowerCamelCase__ , generator=lowerCamelCase__ , sample_posterior=lowerCamelCase__ ).sample assert sample.shape == image.shape __UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() __UpperCAmelCase = torch.tensor(lowerCamelCase__ ) assert torch_all_close(lowerCamelCase__ , lowerCamelCase__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [4_7, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def snake_case__ ( self : Tuple , __a : Tuple , __a : List[Any] , __a : List[Any] ) -> Union[str, Any]: __UpperCAmelCase = self.get_sd_vae_model() __UpperCAmelCase = self.get_sd_image(lowerCamelCase__ ) with torch.no_grad(): __UpperCAmelCase = model(lowerCamelCase__ ).sample assert sample.shape == image.shape __UpperCAmelCase = sample[-1, -2:, -2:, :2].flatten().float().cpu() __UpperCAmelCase = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowerCamelCase__ , lowerCamelCase__ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [1_3, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [3_7, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def snake_case__ ( self : Tuple , __a : Any , __a : List[str] ) -> Optional[Any]: __UpperCAmelCase = self.get_sd_vae_model() __UpperCAmelCase = self.get_sd_image(lowerCamelCase__ , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): __UpperCAmelCase = model.decode(lowerCamelCase__ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] __UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().cpu() __UpperCAmelCase = torch.tensor(lowerCamelCase__ ) assert torch_all_close(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [2_7, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [1_6, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def snake_case__ ( self : Union[str, Any] , __a : Union[str, Any] , __a : Tuple ) -> Optional[Any]: __UpperCAmelCase = self.get_sd_vae_model(fpaa=lowerCamelCase__ ) __UpperCAmelCase = self.get_sd_image(lowerCamelCase__ , shape=(3, 4, 6_4, 6_4) , fpaa=lowerCamelCase__ ) with torch.no_grad(): __UpperCAmelCase = model.decode(lowerCamelCase__ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] __UpperCAmelCase = sample[-1, -2:, :2, -2:].flatten().float().cpu() __UpperCAmelCase = torch.tensor(lowerCamelCase__ ) assert torch_all_close(lowerCamelCase__ , lowerCamelCase__ , atol=5e-3 ) @parameterized.expand([(1_3,), (1_6,), (2_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def snake_case__ ( self : str , __a : List[str] ) -> List[str]: __UpperCAmelCase = self.get_sd_vae_model(fpaa=lowerCamelCase__ ) __UpperCAmelCase = self.get_sd_image(lowerCamelCase__ , shape=(3, 4, 6_4, 6_4) , fpaa=lowerCamelCase__ ) with torch.no_grad(): __UpperCAmelCase = model.decode(lowerCamelCase__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __UpperCAmelCase = model.decode(lowerCamelCase__ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(lowerCamelCase__ , lowerCamelCase__ , atol=1e-1 ) @parameterized.expand([(1_3,), (1_6,), (3_7,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def snake_case__ ( self : List[str] , __a : Optional[Any] ) -> Dict: __UpperCAmelCase = self.get_sd_vae_model() __UpperCAmelCase = self.get_sd_image(lowerCamelCase__ , shape=(3, 4, 6_4, 6_4) ) with torch.no_grad(): __UpperCAmelCase = model.decode(lowerCamelCase__ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __UpperCAmelCase = model.decode(lowerCamelCase__ ).sample assert list(sample.shape ) == [3, 3, 5_1_2, 5_1_2] assert torch_all_close(lowerCamelCase__ , lowerCamelCase__ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [3_3, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [4_7, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def snake_case__ ( self : Optional[int] , __a : Dict , __a : Optional[int] ) -> List[str]: __UpperCAmelCase = self.get_sd_vae_model() __UpperCAmelCase = self.get_sd_image(lowerCamelCase__ ) __UpperCAmelCase = self.get_generator(lowerCamelCase__ ) with torch.no_grad(): __UpperCAmelCase = model.encode(lowerCamelCase__ ).latent_dist __UpperCAmelCase = dist.sample(generator=lowerCamelCase__ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __UpperCAmelCase = sample[0, -1, -3:, -3:].flatten().cpu() __UpperCAmelCase = torch.tensor(lowerCamelCase__ ) __UpperCAmelCase = 3e-3 if torch_device != "mps" else 1e-2 assert torch_all_close(lowerCamelCase__ , lowerCamelCase__ , atol=lowerCamelCase__ )
262
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = LEDTokenizer _lowercase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : int="replace" , lowerCamelCase__ : Union[str, Any]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : str="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Any="<mask>" , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : int=True , **lowerCamelCase__ : Union[str, Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : List[str] = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : Optional[Any] = add_prefix_space a__ : List[str] = pre_tok_class(**lowerCamelCase__ ) a__ : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : Any = "post_processor" a__ : str = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Optional[Any] = tuple(state["sep"] ) if "cls" in state: a__ : Optional[Any] = tuple(state["cls"] ) a__ : Optional[int] = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Dict = add_prefix_space a__ : int = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : List[Any] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : int = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : int = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ): a__ : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : Union[str, Any] = value def _UpperCamelCase( self : Any , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : List[str] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Any , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Optional[Any] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]=None ): a__ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : List[str] = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase( self : Dict , lowerCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): a__ : str = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: a__ : Optional[int] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ : Dict = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase__ ) if needs_to_be_padded: a__ : Union[str, Any] = len(lowerCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ : List[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": a__ : Any = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
37
0
'''simple docstring''' from __future__ import annotations def snake_case ( a_ : Union[str, Any] , a_ : Optional[Any] ) -> list[int]: """simple docstring""" UpperCamelCase_ : Dict = 0 UpperCamelCase_ : Any = len(__a ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase_ : Optional[int] = i + 1 else: UpperCamelCase_ : Optional[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
208
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Union[str, Any] = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } UpperCamelCase : List[str] = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] _lowercase = RobertaTokenizer def __init__( self : List[str] , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]="replace" , lowerCamelCase__ : List[str]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Any="</s>" , lowerCamelCase__ : Any="<s>" , lowerCamelCase__ : int="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : Any=False , lowerCamelCase__ : Dict=True , **lowerCamelCase__ : Optional[Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Any = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : int = add_prefix_space a__ : Tuple = pre_tok_class(**lowerCamelCase__ ) a__ : str = add_prefix_space a__ : Tuple = "post_processor" a__ : Dict = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Tuple = tuple(state["sep"] ) if "cls" in state: a__ : str = tuple(state["cls"] ) a__ : str = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : str = add_prefix_space a__ : Any = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : int = trim_offsets a__ : Dict = True if changes_to_apply: a__ : Union[str, Any] = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : str = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Tuple ): a__ : List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : List[str] = value def _UpperCamelCase( self : Union[str, Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : int ): a__ : Optional[int] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Tuple , *lowerCamelCase__ : Dict , **lowerCamelCase__ : List[str] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : int = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=None ): a__ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : Tuple = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
37
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowercase : List[str] = logging.get_logger(__name__) lowercase : List[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : Union[str, Any] = { """vocab_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt""" ), """google/realm-orqa-nq-openqa""": """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-nq-reader""": """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt""", """google/realm-orqa-wq-openqa""": """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt""", """google/realm-orqa-wq-reader""": """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt""", }, """tokenizer_file""": { """google/realm-cc-news-pretrained-embedder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont""" ), """google/realm-cc-news-pretrained-encoder""": ( """https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-scorer""": ( """https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json""" ), """google/realm-cc-news-pretrained-openqa""": ( """https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json""" ), """google/realm-orqa-nq-openqa""": ( """https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-nq-reader""": ( """https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-openqa""": ( """https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json""" ), """google/realm-orqa-wq-reader""": ( """https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json""" ), }, } lowercase : Optional[int] = { """google/realm-cc-news-pretrained-embedder""": 5_1_2, """google/realm-cc-news-pretrained-encoder""": 5_1_2, """google/realm-cc-news-pretrained-scorer""": 5_1_2, """google/realm-cc-news-pretrained-openqa""": 5_1_2, """google/realm-orqa-nq-openqa""": 5_1_2, """google/realm-orqa-nq-reader""": 5_1_2, """google/realm-orqa-wq-openqa""": 5_1_2, """google/realm-orqa-wq-reader""": 5_1_2, } lowercase : List[str] = { """google/realm-cc-news-pretrained-embedder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-encoder""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-scorer""": {"""do_lower_case""": True}, """google/realm-cc-news-pretrained-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-nq-reader""": {"""do_lower_case""": True}, """google/realm-orqa-wq-openqa""": {"""do_lower_case""": True}, """google/realm-orqa-wq-reader""": {"""do_lower_case""": True}, } class a__ ( A__ ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = RealmTokenizer def __init__( self : str , A_ : str=None , A_ : int=None , A_ : Any=True , A_ : Any="[UNK]" , A_ : Optional[int]="[SEP]" , A_ : Optional[Any]="[PAD]" , A_ : Optional[int]="[CLS]" , A_ : Tuple="[MASK]" , A_ : int=True , A_ : Optional[int]=None , **A_ : str , ) -> str: """simple docstring""" super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) lowerCamelCase_: Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase__ ) != tokenize_chinese_chars ): lowerCamelCase_: Optional[Any] = getattr(lowerCamelCase__ , normalizer_state.pop("""type""" ) ) lowerCamelCase_: List[str] = do_lower_case lowerCamelCase_: List[Any] = strip_accents lowerCamelCase_: Optional[Any] = tokenize_chinese_chars lowerCamelCase_: Optional[int] = normalizer_class(**lowerCamelCase__ ) lowerCamelCase_: Union[str, Any] = do_lower_case def lowerCAmelCase ( self : Any , A_ : int , **A_ : int ) -> Dict: """simple docstring""" lowerCamelCase_: List[str] = PaddingStrategy.MAX_LENGTH lowerCamelCase_: Dict = text lowerCamelCase_: Optional[int] = kwargs.pop("""text_pair""" , lowerCamelCase__ ) lowerCamelCase_: Dict = kwargs.pop("""return_tensors""" , lowerCamelCase__ ) lowerCamelCase_: List[Any] = { "input_ids": [], "attention_mask": [], "token_type_ids": [], } for idx, candidate_text in enumerate(lowerCamelCase__ ): if batch_text_pair is not None: lowerCamelCase_: Dict = batch_text_pair[idx] else: lowerCamelCase_: Union[str, Any] = None lowerCamelCase_: int = super().__call__(lowerCamelCase__ , lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) lowerCamelCase_: Union[str, Any] = encoded_candidates.get("""input_ids""" ) lowerCamelCase_: List[Any] = encoded_candidates.get("""attention_mask""" ) lowerCamelCase_: int = encoded_candidates.get("""token_type_ids""" ) if encoded_input_ids is not None: output_data["input_ids"].append(lowerCamelCase__ ) if encoded_attention_mask is not None: output_data["attention_mask"].append(lowerCamelCase__ ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(lowerCamelCase__ ) lowerCamelCase_: Union[str, Any] = {key: item for key, item in output_data.items() if len(lowerCamelCase__ ) != 0} return BatchEncoding(lowerCamelCase__ , tensor_type=lowerCamelCase__ ) def lowerCAmelCase ( self : List[str] , A_ : Optional[Any] , A_ : str=None ) -> Any: """simple docstring""" lowerCamelCase_: Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self : Dict , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Any: """simple docstring""" lowerCamelCase_: List[Any] = [self.sep_token_id] lowerCamelCase_: Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : List[Any] , A_ : str , A_ : Optional[str] = None ) -> str: """simple docstring""" lowerCamelCase_: Tuple = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
423
from statistics import mean, stdev def UpperCamelCase_ ( __a , __a = 3 ) -> list: a__ : List[str] = min(__a ) a__ : str = max(__a ) # normalize data return [round((x - x_min) / (x_max - x_min) , __a ) for x in data] def UpperCamelCase_ ( __a , __a = 3 ) -> list: a__ : str = mean(__a ) a__ : List[str] = stdev(__a ) # standardize data return [round((x - mu) / (sigma) , __a ) for x in data]
37
0
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __lowerCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __lowerCAmelCase = 4 __lowerCAmelCase = 48 __lowerCAmelCase = "pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __lowerCAmelCase = [6, 6, 6, 6] __lowerCAmelCase = 60 __lowerCAmelCase = [6, 6, 6, 6] __lowerCAmelCase = "pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __lowerCAmelCase = 4 __lowerCAmelCase = "nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __lowerCAmelCase = 1 __lowerCAmelCase = 1 __lowerCAmelCase = 126 __lowerCAmelCase = 7 __lowerCAmelCase = 255.0 __lowerCAmelCase = "" return config def a_ ( lowerCAmelCase_ : List[Any], lowerCAmelCase_ : Union[str, Any] ): if "patch_embed.proj" in name and "layers" not in name: __lowerCAmelCase = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __lowerCAmelCase = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: __lowerCAmelCase = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: __lowerCAmelCase = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: __lowerCAmelCase = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: __lowerCAmelCase = name.replace('attn', 'attention.self' ) if "norm1" in name: __lowerCAmelCase = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: __lowerCAmelCase = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: __lowerCAmelCase = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: __lowerCAmelCase = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: __lowerCAmelCase = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: __lowerCAmelCase = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: __lowerCAmelCase = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: __lowerCAmelCase = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: __lowerCAmelCase = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": __lowerCAmelCase = "layernorm.weight" if name == "norm.bias": __lowerCAmelCase = "layernorm.bias" if "conv_first" in name: __lowerCAmelCase = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __lowerCAmelCase = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __lowerCAmelCase = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: __lowerCAmelCase = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: __lowerCAmelCase = name.replace('upsample.2', 'upsample.convolution_1' ) __lowerCAmelCase = "upsample." + name elif config.upsampler == "pixelshuffledirect": __lowerCAmelCase = name.replace('upsample.0.weight', 'upsample.conv.weight' ) __lowerCAmelCase = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: __lowerCAmelCase = "swin2sr." + name return name def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : str ): for key in orig_state_dict.copy().keys(): __lowerCAmelCase = orig_state_dict.pop(__a ) if "qkv" in key: __lowerCAmelCase = key.split('.' ) __lowerCAmelCase = int(key_split[1] ) __lowerCAmelCase = int(key_split[4] ) __lowerCAmelCase = config.embed_dim if "weight" in key: __lowerCAmelCase = val[:dim, :] __lowerCAmelCase = val[dim : dim * 2, :] __lowerCAmelCase = val[-dim:, :] else: __lowerCAmelCase = val[:dim] __lowerCAmelCase = val[dim : dim * 2] __lowerCAmelCase = val[-dim:] pass else: __lowerCAmelCase = val return orig_state_dict def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Any ): __lowerCAmelCase = get_config(__a ) __lowerCAmelCase = SwinaSRForImageSuperResolution(__a ) model.eval() __lowerCAmelCase = torch.hub.load_state_dict_from_url(__a, map_location='cpu' ) __lowerCAmelCase = convert_state_dict(__a, __a ) __lowerCAmelCase = model.load_state_dict(__a, strict=__a ) if len(__a ) > 0: raise ValueError('Missing keys when converting: {}'.format(__a ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F"""Unexpected key {key} in state_dict""" ) # verify values __lowerCAmelCase = "https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" __lowerCAmelCase = Image.open(requests.get(__a, stream=__a ).raw ).convert('RGB' ) __lowerCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __lowerCAmelCase = 126 if "Jpeg" in checkpoint_url else 256 __lowerCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ), ] ) __lowerCAmelCase = transforms(__a ).unsqueeze(0 ) if config.num_channels == 1: __lowerCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) __lowerCAmelCase = model(__a ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __lowerCAmelCase = torch.Size([1, 3, 512, 512] ) __lowerCAmelCase = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) __lowerCAmelCase = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) __lowerCAmelCase = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __lowerCAmelCase = torch.Size([1, 3, 512, 512] ) __lowerCAmelCase = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __lowerCAmelCase = torch.Size([1, 3, 1024, 1024] ) __lowerCAmelCase = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}""" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], __a, atol=1E-3 ) print('Looks ok!' ) __lowerCAmelCase = { "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } __lowerCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(__a ) if push_to_hub: model.push_to_hub(F"""caidas/{model_name}""" ) processor.push_to_hub(F"""caidas/{model_name}""" ) if __name__ == "__main__": _snake_case : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') _snake_case : Any = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
53
def UpperCamelCase_ ( __a = 50 ) -> int: a__ : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
37
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Optional[Any] = { """configuration_clipseg""": [ """CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CLIPSegConfig""", """CLIPSegTextConfig""", """CLIPSegVisionConfig""", ], """processing_clipseg""": ["""CLIPSegProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ """CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""", """CLIPSegModel""", """CLIPSegPreTrainedModel""", """CLIPSegTextModel""", """CLIPSegVisionModel""", """CLIPSegForImageSegmentation""", ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
130
class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ): a__ : str = name a__ : Optional[int] = value a__ : Dict = weight def __repr__( self : Union[str, Any] ): return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _UpperCamelCase( self : Dict ): return self.value def _UpperCamelCase( self : Optional[Any] ): return self.name def _UpperCamelCase( self : Optional[Any] ): return self.weight def _UpperCamelCase( self : Optional[int] ): return self.value / self.weight def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Optional[Any] = [] for i in range(len(__a ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCamelCase_ ( __a , __a , __a ) -> Union[str, Any]: a__ : List[str] = sorted(__a , key=__a , reverse=__a ) a__ : List[Any] = [] a__, a__ : Union[str, Any] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCamelCase_ ( ) -> Union[str, Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
37
0
"""simple docstring""" import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __lowerCAmelCase : Dict = """<<<<<<< This should probably be modified because it mentions: """ __lowerCAmelCase : List[Any] = """======= >>>>>>> """ __lowerCAmelCase : Optional[Any] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] __lowerCAmelCase : Any = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class a_ ( A__ ): @staticmethod def _SCREAMING_SNAKE_CASE ( snake_case__ : ArgumentParser ): lowerCAmelCase__ = parser.add_parser( """convert""" , help="""Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.""" , ) train_parser.add_argument( """--tfds_path""" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="""Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.""" , ) train_parser.add_argument( """--datasets_directory""" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="""Path to the HuggingFace Datasets folder.""" ) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[str] , snake_case__ : str , snake_case__ : str , *snake_case__ : Tuple ): lowerCAmelCase__ = get_logger("""datasets-cli/converting""" ) lowerCAmelCase__ = tfds_path lowerCAmelCase__ = datasets_directory def _SCREAMING_SNAKE_CASE ( self : int ): if os.path.isdir(self._tfds_path ): lowerCAmelCase__ = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowerCAmelCase__ = os.path.dirname(self._tfds_path ) else: raise ValueError("""--tfds_path is neither a directory nor a file. Please check path.""" ) lowerCAmelCase__ = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = {} if os.path.isdir(self._tfds_path ): lowerCAmelCase__ = os.listdir(lowerCamelCase__ ) else: lowerCAmelCase__ = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) if not os.path.isfile(lowerCamelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("""Skipping file""" ) continue with open(lowerCamelCase__ , encoding="""utf-8""" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [] lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = [] for line in lines: lowerCAmelCase__ = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowerCAmelCase__ = "import datasets\n" elif "import tensorflow" in out_line: # order is important here lowerCAmelCase__ = "" continue elif "from absl import logging" in out_line: lowerCAmelCase__ = "from datasets import logging\n" elif "getLogger" in out_line: lowerCAmelCase__ = out_line.replace("""getLogger""" , """get_logger""" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowerCAmelCase__ = True lowerCAmelCase__ = list(filter(lambda snake_case__ : e in out_line , lowerCamelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCamelCase__ ) + """\n""" ) out_lines.append(lowerCamelCase__ ) out_lines.append(lowerCamelCase__ ) continue else: for pattern, replacement in TO_CONVERT: lowerCAmelCase__ = re.sub(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowerCAmelCase__ = re.match(R"""from\stensorflow_datasets.*import\s([^\.\r\n]+)""" , lowerCamelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(""",""" ) ) lowerCAmelCase__ = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowerCAmelCase__ = True out_lines.append(lowerCamelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowerCAmelCase__ = f_name.replace(""".py""" , """""" ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCamelCase__ ) if needs_manual_update: with_manual_update.append(lowerCamelCase__ ) with open(lowerCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.writelines(lowerCamelCase__ ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: lowerCAmelCase__ = os.path.basename(lowerCamelCase__ ) lowerCAmelCase__ = imports_to_builder_map[f_name.replace(""".py""" , """""" )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(lowerCamelCase__ , lowerCamelCase__ ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.""" )
644
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A__ ( A__ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase__ : Union[str, "sqlalchemy.sql.Selectable"] , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , **lowerCamelCase__ : Optional[int] , ): super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ ) a__ : str = Sql( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , ) def _UpperCamelCase( self : Tuple ): a__ : Optional[Any] = None a__ : Dict = None a__ : Union[str, Any] = None a__ : Union[str, Any] = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , ) # Build dataset for splits a__ : List[str] = self.builder.as_dataset( split="train" , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : Dataset , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Optional[Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) a__ : Any = dataset a__ : str = name a__ : Tuple = con a__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a__ : Any = num_proc a__ : Tuple = to_sql_kwargs def _UpperCamelCase( self : List[Any] ): a__ : Any = self.to_sql_kwargs.pop("sql" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("con" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("index" , lowerCamelCase__ ) a__ : int = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs ) return written def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] ): a__, a__, a__ : Union[str, Any] = args a__ : Any = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs a__ : Tuple = query_table( table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) a__ : str = batch.to_pandas() a__ : List[Any] = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ ) return num_rows or len(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : str = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: a__, a__ : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
37
0
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def lowerCamelCase_ (UpperCamelCase__ : List[str] ): if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(__a , '''_dynamo''' ): return False return isinstance(__a , torch._dynamo.eval_frame.OptimizedModule ) def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : Any = True ): _UpperCAmelCase : Union[str, Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _UpperCAmelCase : List[Any] = is_compiled_module(__a ) if is_compiled: _UpperCAmelCase : Optional[int] = model _UpperCAmelCase : List[str] = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(__a , __a ): _UpperCAmelCase : int = model.module if not keep_fpaa_wrapper: _UpperCAmelCase : Union[str, Any] = getattr(__a , '''forward''' ) _UpperCAmelCase : Union[str, Any] = model.__dict__.pop('''_original_forward''' , __a ) if original_forward is not None: while hasattr(__a , '''__wrapped__''' ): _UpperCAmelCase : int = forward.__wrapped__ if forward == original_forward: break _UpperCAmelCase : Any = forward if getattr(__a , '''_converted_to_transformer_engine''' , __a ): convert_model(__a , to_transformer_engine=__a ) if is_compiled: _UpperCAmelCase : List[str] = model _UpperCAmelCase : Optional[int] = compiled_model return model def lowerCamelCase_ (): PartialState().wait_for_everyone() def lowerCamelCase_ (UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ): if PartialState().distributed_type == DistributedType.TPU: xm.save(__a , __a ) elif PartialState().local_process_index == 0: torch.save(__a , __a ) @contextmanager def lowerCamelCase_ (**UpperCamelCase__ : List[str] ): for key, value in kwargs.items(): _UpperCAmelCase : int = str(__a ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def lowerCamelCase_ (UpperCamelCase__ : Optional[int] ): if not hasattr(__a , '''__qualname__''' ) and not hasattr(__a , '''__name__''' ): _UpperCAmelCase : Union[str, Any] = getattr(__a , '''__class__''' , __a ) if hasattr(__a , '''__qualname__''' ): return obj.__qualname__ if hasattr(__a , '''__name__''' ): return obj.__name__ return str(__a ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ): for key, value in source.items(): if isinstance(__a , __a ): _UpperCAmelCase : Any = destination.setdefault(__a , {} ) merge_dicts(__a , __a ) else: _UpperCAmelCase : List[str] = value return destination def lowerCamelCase_ (UpperCamelCase__ : Dict = None ): if port is None: _UpperCAmelCase : int = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
506
import math from datetime import datetime, timedelta def UpperCamelCase_ ( __a ) -> datetime: a__ : Union[str, Any] = year % 19 a__ : List[str] = year % 4 a__ : str = year % 7 a__ : Any = math.floor(year / 100 ) a__ : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) a__ : Optional[int] = leap_day_inhibits / 4 a__ : Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 a__ : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 a__ : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon a__ : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 18 ) else: return datetime(__a , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCamelCase : Tuple = """will be""" if year > datetime.now().year else """was""" print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
37
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ : int ): return 10 - x * x def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : str ): # Bolzano theory in order to find if there is a root between a and b if equation(__a ) * equation(__a ) >= 0: raise ValueError("Wrong space!" ) _a = a while (b - a) >= 0.01: # Find middle point _a = (a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: _a = c else: _a = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
131
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCamelCase_ ( __a ) -> Union[str, Any]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase__ : nn.Module , lowerCamelCase__ : int ): super().__init__() a__ : int = module a__ : Any = nn.Sequential( nn.Linear(module.in_features , lowerCamelCase__ , bias=lowerCamelCase__ ) , nn.Linear(lowerCamelCase__ , module.out_features , bias=lowerCamelCase__ ) , ) a__ : Tuple = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCamelCase__ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ): return self.module(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) + self.adapter(lowerCamelCase__ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" _lowercase = 'bigscience/bloom-1b7' # Constant values _lowercase = 2.1_09_65_95_52_69_25_74 _lowercase = 'Hello my name is' _lowercase = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) _lowercase = 1_0 def _UpperCamelCase( self : Dict ): # Models and tokenizer a__ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Union[str, Any] ): super().setUp() # Models and tokenizer a__ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) a__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : List[Any] ): a__ : str = self.model_abit.config self.assertTrue(hasattr(lowerCamelCase__ , "quantization_config" ) ) a__ : Optional[Any] = config.to_dict() a__ : int = config.to_diff_dict() a__ : List[str] = config.to_json_string() def _UpperCamelCase( self : int ): from bitsandbytes.nn import Paramsabit a__ : List[Any] = self.model_fpaa.get_memory_footprint() a__ : str = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a__ : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _UpperCamelCase( self : Tuple ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCamelCase__ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _UpperCamelCase( self : str ): a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Tuple = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[Any] = BitsAndBytesConfig() a__ : Optional[int] = True a__ : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , device_map="auto" ) a__ : str = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : int = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : Dict ): with self.assertRaises(lowerCamelCase__ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): a__ : int = BitsAndBytesConfig() with self.assertRaises(lowerCamelCase__ ): a__ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , load_in_abit=lowerCamelCase__ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def _UpperCamelCase( self : int ): with self.assertRaises(lowerCamelCase__ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a__ : int = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Any = self.model_fpaa.to(torch.floataa ) a__ : List[Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.to("cpu" ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.half() # Check this does not throw an error a__ : Dict = self.model_fpaa.float() def _UpperCamelCase( self : Dict ): a__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCamelCase__ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCamelCase( cls : str ): a__ : Dict = "t5-small" a__ : List[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense a__ : int = AutoTokenizer.from_pretrained(cls.model_name ) a__ : str = "Translate in German: Hello, my dog is cute" def _UpperCamelCase( self : Optional[int] ): gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Optional[int] ): from transformers import TaForConditionalGeneration a__ : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules a__ : Optional[Any] = None # test with `t5-small` a__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Any = model.generate(**lowerCamelCase__ ) a__ : Union[str, Any] = modules def _UpperCamelCase( self : List[Any] ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a__ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a__ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Optional[int] = model.generate(**lowerCamelCase__ ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : List[str] ): super().setUp() # model_name a__ : Union[str, Any] = "bigscience/bloom-560m" a__ : Union[str, Any] = "t5-small" # Different types of model a__ : int = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Sequence classification model a__ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # CausalLM model a__ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Seq2seq model a__ : Dict = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Union[str, Any] ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): super().setUp() def _UpperCamelCase( self : int ): del self.pipe gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Tuple ): a__ : int = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a__ : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Tuple ): super().setUp() def _UpperCamelCase( self : List[Any] ): a__ : str = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a__ : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch a__ : List[Any] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): a__ : Any = "facebook/opt-350m" super().setUp() def _UpperCamelCase( self : int ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters a__ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a__ : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a__ : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCamelCase__ ) ): a__ : Dict = LoRALayer(module.q_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.k_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a__ : Dict = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a__ : Optional[Any] = model.forward(**lowerCamelCase__ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCamelCase__ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( A__ ): """simple docstring""" _lowercase = 'gpt2-xl' _lowercase = 3.31_91_85_48_54_15_21_87
37
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> tuple: """simple docstring""" __UpperCAmelCase : Union[str, Any] = namedtuple("result" , "name value" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("Only one argument must be 0" ) elif power < 0: raise ValueError( "Power cannot be negative in any electrical/electronics system" ) elif voltage == 0: return result("voltage" , power / current ) elif current == 0: return result("current" , power / voltage ) elif power == 0: return result("power" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
77
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int]=100 , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[int]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : int=32 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Union[str, Any]=37 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Union[str, Any]=10 , lowerCamelCase__ : str=0.02 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=[0, 1, 2, 3] , ): a__ : Dict = parent a__ : Dict = 100 a__ : Optional[int] = batch_size a__ : Union[str, Any] = image_size a__ : Any = patch_size a__ : Optional[Any] = num_channels a__ : int = is_training a__ : List[str] = use_labels a__ : Optional[Any] = hidden_size a__ : List[Any] = num_hidden_layers a__ : str = num_attention_heads a__ : str = intermediate_size a__ : int = hidden_act a__ : List[Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = type_sequence_label_size a__ : Optional[Any] = initializer_range a__ : List[str] = scope a__ : int = out_indices a__ : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[int] = (image_size // patch_size) ** 2 a__ : Union[str, Any] = num_patches + 1 def _UpperCamelCase( self : int ): a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Optional[Any] = None a__ : Tuple = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCamelCase( self : Tuple ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any ): a__ : str = BeitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ): a__ : int = BeitForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _UpperCamelCase( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ): a__ : List[str] = self.type_sequence_label_size a__ : Optional[Any] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ : Optional[Any] = 1 a__ : List[str] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ : Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): a__ : int = self.num_labels a__ : List[str] = BeitForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Tuple = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _UpperCamelCase( self : Optional[int] ): a__ : Any = self.prepare_config_and_inputs() a__, a__, a__, a__ : Union[str, Any] = config_and_inputs a__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _lowercase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Any ): a__ : int = BeitModelTester(self ) a__ : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _UpperCamelCase( self : str ): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _UpperCamelCase( self : Dict ): pass def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : str ): a__, a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = model_class(lowerCamelCase__ ) a__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): if not self.model_tester.is_training: return a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling]: continue a__ : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() a__ : Any = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : Tuple = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : Tuple ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a__ : List[Any] = False a__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue a__ : Optional[Any] = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() a__ : Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : int = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : List[str] ): a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Dict = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: a__ : str = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _UpperCamelCase( self : Optional[int] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Tuple = BeitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _UpperCamelCase( self : str ): a__ : int = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(lowerCamelCase__ ) a__ : Optional[Any] = self.default_image_processor a__ : Dict = prepare_img() a__ : Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).pixel_values.to(lowerCamelCase__ ) # prepare bool_masked_pos a__ : Optional[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(pixel_values=lowerCamelCase__ , bool_masked_pos=lowerCamelCase__ ) a__ : Tuple = outputs.logits # verify the logits a__ : List[str] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[int] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCamelCase__ , atol=1E-2 ) ) @slow def _UpperCamelCase( self : Dict ): a__ : str = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(lowerCamelCase__ ) a__ : int = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Union[str, Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : Any ): a__ : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( lowerCamelCase__ ) a__ : str = self.default_image_processor a__ : List[str] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Dict = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Optional[int] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Optional[Any] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): a__ : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : Tuple = model.to(lowerCamelCase__ ) a__ : List[Any] = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : Union[str, Any] = Image.open(ds[0]["file"] ) a__ : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Tuple = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: a__ : Dict = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=lowerCamelCase__ , ) else: a__ : Dict = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _UpperCamelCase( self : Tuple ): a__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : List[Any] = model.to(lowerCamelCase__ ) a__ : int = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Optional[int] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : str = Image.open(ds[0]["file"] ) a__ : str = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : List[Any] = model(**lowerCamelCase__ ) a__ : Any = outputs.logits.detach().cpu() a__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(500, 300)] ) a__ : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) a__ : Any = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
37
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__="resnet50" ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = parent __SCREAMING_SNAKE_CASE :Any = out_indices if out_indices is not None else [4] __SCREAMING_SNAKE_CASE :str = stage_names __SCREAMING_SNAKE_CASE :Dict = out_features __SCREAMING_SNAKE_CASE :Dict = backbone __SCREAMING_SNAKE_CASE :Optional[Any] = batch_size __SCREAMING_SNAKE_CASE :int = image_size __SCREAMING_SNAKE_CASE :List[Any] = num_channels __SCREAMING_SNAKE_CASE :List[Any] = use_pretrained_backbone __SCREAMING_SNAKE_CASE :List[Any] = is_training def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE :Tuple = self.get_config() return config, pixel_values def _UpperCamelCase ( self ) -> Dict: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size ,num_channels=self.num_channels ,out_features=self.out_features ,out_indices=self.out_indices ,stage_names=self.stage_names ,use_pretrained_backbone=self.use_pretrained_backbone ,backbone=self.backbone ,) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = TimmBackbone(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE :Dict = model(lowerCamelCase__ ) self.parent.assertEqual( result.feature_map[-1].shape ,(self.batch_size, model.channels[-1], 14, 14) ,) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE :List[str] = config_and_inputs __SCREAMING_SNAKE_CASE :Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch @require_timm class _SCREAMING_SNAKE_CASE( A__ , A__ , A__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = (TimmBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : int = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {} SCREAMING_SNAKE_CASE_ : Dict = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[str] = False SCREAMING_SNAKE_CASE_ : Optional[int] = False def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :str = TimmBackboneModelTester(self ) __SCREAMING_SNAKE_CASE :List[Any] = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = "resnet18" __SCREAMING_SNAKE_CASE :List[Any] = "microsoft/resnet-18" __SCREAMING_SNAKE_CASE :str = AutoBackbone.from_pretrained(lowerCamelCase__ ,use_timm_backbone=lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :List[str] = AutoBackbone.from_pretrained(lowerCamelCase__ ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ) ,len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices ,(-1,) ) self.assertEqual(transformers_model.out_indices ,[len(timm_model.stage_names ) - 1] ) __SCREAMING_SNAKE_CASE :List[Any] = AutoBackbone.from_pretrained(lowerCamelCase__ ,use_timm_backbone=lowerCamelCase__ ,out_indices=[1, 2, 3] ) __SCREAMING_SNAKE_CASE :int = AutoBackbone.from_pretrained(lowerCamelCase__ ,out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices ,transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ) ,len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels ,transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _UpperCamelCase ( self ) -> int: """simple docstring""" pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def _UpperCamelCase ( self ) -> str: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _UpperCamelCase ( self ) -> int: """simple docstring""" pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def _UpperCamelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip('''Safetensors is not supported by timm.''' ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _UpperCamelCase ( self ) -> Dict: """simple docstring""" pass def _UpperCamelCase ( self ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Tuple = model_class(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE :List[Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE :Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE :List[Any] = True __SCREAMING_SNAKE_CASE :List[str] = self.has_attentions # no need to test all models as different heads yield the same functionality __SCREAMING_SNAKE_CASE :Union[str, Any] = self.all_model_classes[0] __SCREAMING_SNAKE_CASE :Dict = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :int = self._prepare_for_class(lowerCamelCase__ ,lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Dict = model(**lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :int = outputs[0][-1] # Encoder-/Decoder-only models __SCREAMING_SNAKE_CASE :List[str] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __SCREAMING_SNAKE_CASE :str = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE :Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __SCREAMING_SNAKE_CASE :List[str] = model(**lowerCamelCase__ ) self.assertEqual(len(result.feature_maps ) ,len(config.out_indices ) ) self.assertEqual(len(model.channels ) ,len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __SCREAMING_SNAKE_CASE :Tuple = copy.deepcopy(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Any = None __SCREAMING_SNAKE_CASE :Optional[Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __SCREAMING_SNAKE_CASE :Optional[int] = model(**lowerCamelCase__ ) self.assertEqual(len(result.feature_maps ) ,1 ) self.assertEqual(len(model.channels ) ,1 ) # Check backbone can be initialized with fresh weights __SCREAMING_SNAKE_CASE :Any = copy.deepcopy(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :List[str] = False __SCREAMING_SNAKE_CASE :Union[str, Any] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __SCREAMING_SNAKE_CASE :Optional[int] = model(**lowerCamelCase__ )
498
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Union[str, Any]: a__ : Tuple = R"\w+[.]\d+" a__ : List[Any] = re.findall(__a , __a ) for pat in pats: a__ : Union[str, Any] = key.replace(__a , "_".join(pat.split("." ) ) ) return key def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): a__ : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: a__ : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: a__ : Union[str, Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer a__ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: a__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": a__ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( __a , __a , __a=42 ) -> str: # Step 1: Convert pytorch tensor to numpy a__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params a__ : Tuple = flax_model.init_weights(PRNGKey(__a ) ) a__ : Optional[Any] = flatten_dict(__a ) a__ : Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : Optional[int] = rename_key(__a ) a__ : Optional[int] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters a__, a__ : Union[str, Any] = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown a__ : str = jnp.asarray(__a ) return unflatten_dict(__a )
37
0
'''simple docstring''' SCREAMING_SNAKE_CASE_ = tuple[float, float, float] SCREAMING_SNAKE_CASE_ = tuple[float, float, float] def UpperCamelCase__ ( _lowercase : Dict , _lowercase : List[str] ) -> Vectorad: __UpperCAmelCase: List[str] = end_pointa[0] - end_pointa[0] __UpperCAmelCase: List[Any] = end_pointa[1] - end_pointa[1] __UpperCAmelCase: Any = end_pointa[2] - end_pointa[2] return (x, y, z) def UpperCamelCase__ ( _lowercase : Union[str, Any] , _lowercase : List[Any] ) -> Vectorad: __UpperCAmelCase: Dict = ab[1] * ac[2] - ab[2] * ac[1] # *i __UpperCAmelCase: int = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j __UpperCAmelCase: Any = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def UpperCamelCase__ ( _lowercase : Tuple , _lowercase : Tuple ) -> bool: return tuple(round(__a , __a ) for x in vector ) == (0, 0, 0) def UpperCamelCase__ ( _lowercase : List[Any] , _lowercase : Optional[int] , _lowercase : Optional[int] , _lowercase : int = 1_0 ) -> bool: __UpperCAmelCase: Dict = create_vector(__a , __a ) __UpperCAmelCase: Union[str, Any] = create_vector(__a , __a ) return is_zero_vector(get_ad_vectors_cross(__a , __a ) , __a )
523
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase_ ( ) -> int: a__ : Any = HfArgumentParser(__a ) a__ : Any = parser.parse_args_into_dataclasses()[0] a__ : Optional[int] = TensorFlowBenchmark(args=__a ) try: a__ : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: a__ : Tuple = "Arg --no_{0} is no longer used, please use --no-{0} instead." a__ : List[Any] = " ".join(str(__a ).split(" " )[:-1] ) a__ : str = "" a__ : List[Any] = eval(str(__a ).split(" " )[-1] ) a__ : List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__a ) if len(__a ) > 0: a__ : Tuple = full_error_msg + begin_error_msg + str(__a ) raise ValueError(__a ) benchmark.run() if __name__ == "__main__": main()
37
0
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __lowerCAmelCase : int = logging.getLogger(__name__) def lowerCAmelCase ( UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Any=3 , UpperCamelCase__ : str=1_6 , UpperCamelCase__ : Optional[int] = 1_0 , UpperCamelCase__ : List[str] = 2 ): """simple docstring""" def get_dataset(UpperCamelCase__ : Any ): __UpperCAmelCase = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__a , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) __UpperCAmelCase = get_dataset(__a ) __UpperCAmelCase = get_dataset(__a ) __UpperCAmelCase = DataLoader(__a , shuffle=__a , batch_size=__a , num_workers=4 ) __UpperCAmelCase = DataLoader(__a , shuffle=__a , batch_size=__a , num_workers=4 ) return (train_dataloader, valid_dataloader) def lowerCAmelCase ( UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any]=None ): """simple docstring""" __UpperCAmelCase = [] for epoch in range(__a ): # Train quickly model.train() for batch in dataloader: __UpperCAmelCase = batch __UpperCAmelCase = model(__a ) __UpperCAmelCase = torch.nn.functional.mse_loss(__a , __a ) accelerator.backward(__a ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class A ( nn.Module ): def __init__( self : Union[str, Any] ) -> Optional[int]: super().__init__() __UpperCAmelCase = nn.Parameter(torch.randn(1 ) ) __UpperCAmelCase = nn.Parameter(torch.randn(1 ) ) def snake_case__ ( self : int , __a : List[Any] ) -> Optional[Any]: return x * self.a + self.b class A ( unittest.TestCase ): def snake_case__ ( self : Dict ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(total_limit=1 , project_dir=lowerCamelCase__ , automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline __UpperCAmelCase = Accelerator(project_config=lowerCamelCase__ ) __UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def snake_case__ ( self : List[str] ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = dummy_dataloaders() # Train baseline __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial __UpperCAmelCase = os.path.join(lowerCamelCase__ , '''initial''' ) accelerator.save_state(lowerCamelCase__ ) (__UpperCAmelCase) = model.a.item(), model.b.item() __UpperCAmelCase = optimizer.state_dict() __UpperCAmelCase = train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (__UpperCAmelCase) = model.a.item(), model.b.item() __UpperCAmelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = Accelerator() __UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(lowerCamelCase__ ) (__UpperCAmelCase) = model.a.item(), model.b.item() __UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase = train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything __UpperCAmelCase = os.path.join(lowerCamelCase__ , '''checkpoint''' ) accelerator.save_state(lowerCamelCase__ ) # Load everything back in and make sure all states work accelerator.load_state(lowerCamelCase__ ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (__UpperCAmelCase) = model.a.item(), model.b.item() __UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self : Union[str, Any] ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline __UpperCAmelCase = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) __UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() (__UpperCAmelCase) = model.a.item(), model.b.item() __UpperCAmelCase = optimizer.state_dict() __UpperCAmelCase = train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (__UpperCAmelCase) = model.a.item(), model.b.item() __UpperCAmelCase = optimizer.state_dict() # Train partially set_seed(4_2 ) __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=lowerCamelCase__ ) __UpperCAmelCase = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) __UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) accelerator.load_state(os.path.join(lowerCamelCase__ , '''checkpoints''' , '''checkpoint_0''' ) ) (__UpperCAmelCase) = model.a.item(), model.b.item() __UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase = train(2 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) (__UpperCAmelCase) = model.a.item(), model.b.item() __UpperCAmelCase = optimizer.state_dict() self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def snake_case__ ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase = torch.tensor([1, 2, 3] ) __UpperCAmelCase = torch.tensor([2, 3, 4] ) __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(net.parameters() ) __UpperCAmelCase = Accelerator() with self.assertRaises(lowerCamelCase__ ) as ve: accelerator.register_for_checkpointing(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def snake_case__ ( self : str ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(lowerCamelCase__ , step_size=1 , gamma=0.9_9 ) __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ ) # Train baseline __UpperCAmelCase = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) __UpperCAmelCase = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save initial accelerator.save_state() __UpperCAmelCase = scheduler.state_dict() train(3 , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) self.assertNotEqual(lowerCamelCase__ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(lowerCamelCase__ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(lowerCamelCase__ , scheduler.state_dict() ) def snake_case__ ( self : Optional[Any] ) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(4_2 ) __UpperCAmelCase = DummyModel() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=lowerCamelCase__ , total_limit=2 ) # Train baseline __UpperCAmelCase = Accelerator(project_dir=lowerCamelCase__ , project_config=lowerCamelCase__ ) __UpperCAmelCase = accelerator.prepare(lowerCamelCase__ ) # Save 3 states: for _ in range(1_1 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(lowerCamelCase__ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCamelCase__ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def snake_case__ ( self : Tuple ) -> Optional[Any]: __UpperCAmelCase = ["torchrun", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) if __name__ == "__main__": __lowerCAmelCase : Optional[Any] = """/tmp/accelerate/state_checkpointing""" __lowerCAmelCase : Optional[int] = DummyModel() __lowerCAmelCase : List[Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3) __lowerCAmelCase : Optional[Any] = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __lowerCAmelCase : Tuple = dummy_dataloaders() __lowerCAmelCase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __lowerCAmelCase : Union[str, Any] = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="no") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __lowerCAmelCase : Dict = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __lowerCAmelCase : List[str] = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __lowerCAmelCase : Tuple = group["""params"""][0].device break assert param_device.type == accelerator.device.type __lowerCAmelCase : Dict = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="cpu") for group in optimizer.param_groups: __lowerCAmelCase : str = group["""params"""][0].device break assert ( param_device.type == torch.device("cpu").type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="on_device") for group in optimizer.param_groups: __lowerCAmelCase : Tuple = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="Unsupported optimizer map location passed"): accelerator.load_state(os.path.join(savedir, "checkpoints", "checkpoint_0"), map_location="invalid") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
262
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCamelCase : Optional[int] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCamelCase_ ( __a ) -> Any: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCamelCase_ ( __a , __a , __a ) -> Any: return max(metric_fn(__a , __a ) for gt in ground_truths ) def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = [] if args.gold_data_mode == "qa": a__ : Any = pd.read_csv(__a , sep="\t" , header=__a ) for answer_list in data[1]: a__ : Union[str, Any] = ast.literal_eval(__a ) answers.append(__a ) else: a__ : List[str] = [line.strip() for line in open(__a , "r" ).readlines()] a__ : List[str] = [[reference] for reference in references] a__ : List[str] = 0 for prediction, ground_truths in zip(__a , __a ): total += 1 em += metric_max_over_ground_truths(__a , __a , __a ) fa += metric_max_over_ground_truths(__a , __a , __a ) a__ : Dict = 100.0 * em / total a__ : Optional[Any] = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Optional[Any] = args.k a__ : str = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = 0 for hypo, reference in zip(__a , __a ): a__ : Any = set(hypo.split("\t" )[:k] ) a__ : Union[str, Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a__ : Union[str, Any] = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: def strip_title(__a ): if title.startswith("\"" ): a__ : Optional[Any] = title[1:] if title.endswith("\"" ): a__ : Union[str, Any] = title[:-1] return title a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="pt" , padding=__a , truncation=__a , )["input_ids"].to(args.device ) a__ : Optional[int] = rag_model.rag.question_encoder(__a ) a__ : Union[str, Any] = question_enc_outputs[0] a__ : Optional[int] = rag_model.retriever( __a , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) a__ : List[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a__ : int = [] for docs in all_docs: a__ : Optional[int] = [strip_title(__a ) for title in docs["title"]] provenance_strings.append("\t".join(__a ) ) return provenance_strings def UpperCamelCase_ ( __a , __a , __a ) -> Dict: with torch.no_grad(): a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="pt" , padding=__a , truncation=__a ) a__ : Any = inputs_dict.input_ids.to(args.device ) a__ : Dict = inputs_dict.attention_mask.to(args.device ) a__ : Optional[int] = rag_model.generate( # rag_model overwrites generate __a , attention_mask=__a , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__a , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a__ : int = rag_model.retriever.generator_tokenizer.batch_decode(__a , skip_special_tokens=__a ) if args.print_predictions: for q, a in zip(__a , __a ): logger.info("Q: {} - A: {}".format(__a , __a ) ) return answers def UpperCamelCase_ ( ) -> List[str]: a__ : int = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=__a , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=__a , choices=["exact", "compressed", "legacy"] , type=__a , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=__a , type=__a , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=__a , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=__a , type=__a , required=__a , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=__a , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=__a , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=__a , type=__a , required=__a , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=__a , type=__a , required=__a , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=__a , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=__a , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=__a , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=__a , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=__a , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=__a , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) a__ : int = parser.parse_args() a__ : Dict = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def UpperCamelCase_ ( __a ) -> Optional[int]: a__ : Tuple = {} if args.model_type is None: a__ : List[str] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): a__ : int = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration a__ : Tuple = args.n_docs if args.index_name is not None: a__ : Any = args.index_name if args.index_path is not None: a__ : int = args.index_path else: a__ : Optional[Any] = BartForConditionalGeneration a__ : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , __a ) a__ : Any = get_scores if args.eval_mode == "e2e" else get_precision_at_k a__ : Union[str, Any] = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__a , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__a ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): a__ : str = RagRetriever.from_pretrained(__a , **__a ) a__ : Optional[int] = model_class.from_pretrained(__a , retriever=__a , **__a ) model.retriever.init_retrieval() else: a__ : Dict = model_class.from_pretrained(__a , **__a ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: a__ : List[Any] = [] for line in tqdm(__a ): questions.append(line.strip() ) if len(__a ) == args.eval_batch_size: a__ : Union[str, Any] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("\n".join(__a ) + "\n" ) preds_file.flush() a__ : Any = [] if len(__a ) > 0: a__ : List[str] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("\n".join(__a ) ) preds_file.flush() score_fn(__a , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCamelCase : List[Any] = get_args() main(args)
37
0
'''simple docstring''' from __future__ import annotations def snake_case ( a_ : List[Any] , a_ : Optional[Any] ) -> list[list[int]]: """simple docstring""" UpperCamelCase_ : list[list[int]] = [] UpperCamelCase_ : list[int] = [] UpperCamelCase_ : List[Any] = 0 UpperCamelCase_ : Dict = sum(__a ) create_state_space_tree(__a , __a , __a , __a , __a , __a ) return result def snake_case ( a_ : Tuple , a_ : str , a_ : Any , a_ : List[str] , a_ : Tuple , a_ : Union[str, Any] , ) -> None: """simple docstring""" if sum(__a ) > max_sum or (remaining_nums_sum + sum(__a )) < max_sum: return if sum(__a ) == max_sum: result.append(__a ) return for index in range(__a , len(__a ) ): create_state_space_tree( __a , __a , index + 1 , [*path, nums[index]] , __a , remaining_nums_sum - nums[index] , ) UpperCamelCase =[3, 34, 4, 12, 5, 2] UpperCamelCase =9 UpperCamelCase =generate_sum_of_subsets_soln(nums, max_sum) print(*result)
208
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a = None , ) -> str: a__ : int = {} if train_file is not None: a__ : int = [train_file] if eval_file is not None: a__ : Union[str, Any] = [eval_file] if test_file is not None: a__ : str = [test_file] a__ : Optional[Any] = datasets.load_dataset("csv" , data_files=__a ) a__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) a__ : str = features_name.pop(__a ) a__ : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) a__ : str = {label: i for i, label in enumerate(__a )} a__ : Tuple = tokenizer.model_input_names a__ : List[str] = {} if len(__a ) == 1: for k in files.keys(): a__ : Optional[Any] = ds[k].map( lambda __a : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__a , max_length=__a , padding="max_length" ) , batched=__a , ) elif len(__a ) == 2: for k in files.keys(): a__ : Dict = ds[k].map( lambda __a : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__a , max_length=__a , padding="max_length" , ) , batched=__a , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: a__ : str = {k: v for k, v in ex.items() if k in input_names} a__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: a__ : Tuple = {k: v for k, v in ex.items() if k in input_names} a__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: a__ : List[Any] = {k: v for k, v in ex.items() if k in input_names} a__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) a__ : Optional[Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: a__ : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: a__ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: a__ : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" _lowercase = field(metadata={'help': 'Which column contains the label'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the training file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the development file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the test file'} ) _lowercase = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _lowercase = field( default=A__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class A__ : """simple docstring""" _lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowercase = field(default=A__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCamelCase_ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) a__, a__, a__ : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a__, a__, a__, a__ : Optional[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) a__ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__a ) , labelaid=__a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): a__ : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , ) def compute_metrics(__a ) -> Dict: a__ : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer a__ : Dict = TFTrainer( model=__a , args=__a , train_dataset=__a , eval_dataset=__a , compute_metrics=__a , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a__ : Dict = trainer.evaluate() a__ : int = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(__a , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__a ) return results if __name__ == "__main__": main()
37
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer lowercase : Any = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : Union[str, Any] = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } lowercase : Optional[int] = { """google/electra-small-generator""": 5_1_2, """google/electra-base-generator""": 5_1_2, """google/electra-large-generator""": 5_1_2, """google/electra-small-discriminator""": 5_1_2, """google/electra-base-discriminator""": 5_1_2, """google/electra-large-discriminator""": 5_1_2, } lowercase : Any = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class a__ ( A__ ): _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_INIT_CONFIGURATION _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ElectraTokenizer def __init__( self : int , A_ : Optional[Any]=None , A_ : Union[str, Any]=None , A_ : Tuple=True , A_ : Optional[Any]="[UNK]" , A_ : List[Any]="[SEP]" , A_ : List[Any]="[PAD]" , A_ : str="[CLS]" , A_ : List[Any]="[MASK]" , A_ : Dict=True , A_ : Optional[int]=None , **A_ : str , ) -> int: """simple docstring""" super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) lowerCamelCase_: List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCamelCase__ ) != tokenize_chinese_chars ): lowerCamelCase_: Any = getattr(lowerCamelCase__ , normalizer_state.pop("""type""" ) ) lowerCamelCase_: Union[str, Any] = do_lower_case lowerCamelCase_: Optional[int] = strip_accents lowerCamelCase_: int = tokenize_chinese_chars lowerCamelCase_: Tuple = normalizer_class(**lowerCamelCase__ ) lowerCamelCase_: Union[str, Any] = do_lower_case def lowerCAmelCase ( self : Any , A_ : Dict , A_ : Dict=None ) -> Tuple: """simple docstring""" lowerCamelCase_: Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict: """simple docstring""" lowerCamelCase_: Optional[int] = [self.sep_token_id] lowerCamelCase_: List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Optional[Any] , A_ : str , A_ : Optional[str] = None ) -> Any: """simple docstring""" lowerCamelCase_: Union[str, Any] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
423
import argparse import collections import json import os import re import string import sys import numpy as np UpperCamelCase : List[str] = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) UpperCamelCase : Union[str, Any] = None def UpperCamelCase_ ( ) -> List[str]: a__ : List[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=__a , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=__a , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def UpperCamelCase_ ( __a ) -> str: a__ : Optional[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : Dict = bool(qa["answers"]["text"] ) return qid_to_has_ans def UpperCamelCase_ ( __a ) -> List[Any]: def remove_articles(__a ): return ARTICLES_REGEX.sub(" " , __a ) def white_space_fix(__a ): return " ".join(text.split() ) def remove_punc(__a ): a__ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__a ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__a ) ) ) ) def UpperCamelCase_ ( __a ) -> Dict: if not s: return [] return normalize_answer(__a ).split() def UpperCamelCase_ ( __a , __a ) -> str: return int(normalize_answer(__a ) == normalize_answer(__a ) ) def UpperCamelCase_ ( __a , __a ) -> Dict: a__ : int = get_tokens(__a ) a__ : Optional[Any] = get_tokens(__a ) a__ : Any = collections.Counter(__a ) & collections.Counter(__a ) a__ : Dict = sum(common.values() ) if len(__a ) == 0 or len(__a ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a__ : Tuple = 1.0 * num_same / len(__a ) a__ : str = 1.0 * num_same / len(__a ) a__ : str = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase_ ( __a , __a ) -> int: a__ : List[str] = {} a__ : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : List[Any] = qa["id"] a__ : Dict = [t for t in qa["answers"]["text"] if normalize_answer(__a )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a__ : Tuple = [""] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue a__ : Tuple = preds[qid] # Take max over all gold answers a__ : Optional[int] = max(compute_exact(__a , __a ) for a in gold_answers ) a__ : str = max(compute_fa(__a , __a ) for a in gold_answers ) return exact_scores, fa_scores def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]: a__ : Optional[Any] = {} for qid, s in scores.items(): a__ : Dict = na_probs[qid] > na_prob_thresh if pred_na: a__ : Dict = float(not qid_to_has_ans[qid] ) else: a__ : Optional[Any] = s return new_scores def UpperCamelCase_ ( __a , __a , __a=None ) -> Tuple: if not qid_list: a__ : Union[str, Any] = len(__a ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: a__ : int = len(__a ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: for k in new_eval: a__ : Optional[Any] = new_eval[k] def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]: plt.step(__a , __a , color="b" , alpha=0.2 , where="post" ) plt.fill_between(__a , __a , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__a ) plt.savefig(__a ) plt.clf() def UpperCamelCase_ ( __a , __a , __a , __a , __a=None , __a=None ) -> Dict: a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] ) a__ : Any = 0.0 a__ : Optional[int] = 1.0 a__ : Optional[int] = 0.0 a__ : Any = [1.0] a__ : Tuple = [0.0] a__ : List[str] = 0.0 for i, qid in enumerate(__a ): if qid_to_has_ans[qid]: true_pos += scores[qid] a__ : Any = true_pos / float(i + 1 ) a__ : int = true_pos / float(__a ) if i == len(__a ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__a ) recalls.append(__a ) if out_image: plot_pr_curve(__a , __a , __a , __a ) return {"ap": 100.0 * avg_prec} def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> str: if out_image_dir and not os.path.exists(__a ): os.makedirs(__a ) a__ : Optional[int] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a__ : Optional[int] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) a__ : Optional[Any] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) a__ : str = {k: float(__a ) for k, v in qid_to_has_ans.items()} a__ : Optional[Any] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(__a , __a , "pr_exact" ) merge_eval(__a , __a , "pr_f1" ) merge_eval(__a , __a , "pr_oracle" ) def UpperCamelCase_ ( __a , __a , __a , __a ) -> str: if not qid_list: return a__ : Optional[Any] = [na_probs[k] for k in qid_list] a__ : str = np.ones_like(__a ) / float(len(__a ) ) plt.hist(__a , weights=__a , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__a , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[Any]: a__ : str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a__ : Optional[Any] = num_no_ans a__ : Dict = cur_score a__ : Any = 0.0 a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] ) for i, qid in enumerate(__a ): if qid not in scores: continue if qid_to_has_ans[qid]: a__ : Optional[int] = scores[qid] else: if preds[qid]: a__ : str = -1 else: a__ : Union[str, Any] = 0 cur_score += diff if cur_score > best_score: a__ : Any = cur_score a__ : Dict = na_probs[qid] return 100.0 * best_score / len(__a ), best_thresh def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> Any: a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a ) a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a ) a__ : Any = best_exact a__ : Any = exact_thresh a__ : List[Any] = best_fa a__ : Optional[int] = fa_thresh def UpperCamelCase_ ( ) -> Tuple: with open(OPTS.data_file ) as f: a__ : List[Any] = json.load(__a ) a__ : Any = dataset_json["data"] with open(OPTS.pred_file ) as f: a__ : int = json.load(__a ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a__ : List[str] = json.load(__a ) else: a__ : Optional[int] = {k: 0.0 for k in preds} a__ : Optional[Any] = make_qid_to_has_ans(__a ) # maps qid to True/False a__ : List[Any] = [k for k, v in qid_to_has_ans.items() if v] a__ : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v] a__, a__ : str = get_raw_scores(__a , __a ) a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh ) a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh ) a__ : Tuple = make_eval_dict(__a , __a ) if has_ans_qids: a__ : str = make_eval_dict(__a , __a , qid_list=__a ) merge_eval(__a , __a , "HasAns" ) if no_ans_qids: a__ : List[Any] = make_eval_dict(__a , __a , qid_list=__a ) merge_eval(__a , __a , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(__a , __a , __a , __a , __a , __a ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__a , __a , __a , __a , __a , OPTS.out_image_dir ) histogram_na_prob(__a , __a , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(__a , __a , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(__a , __a ) else: print(json.dumps(__a , indent=2 ) ) if __name__ == "__main__": UpperCamelCase : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
37
0
import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase ( A__ ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> int: __lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , 'num_attention_heads' ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any]=1_3 , lowerCAmelCase_ : Dict=6_4 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Union[str, Any]=1_6 , lowerCAmelCase_ : List[str]=[1_2_8, 2_5_6, 3_8_4] , lowerCAmelCase_ : Optional[int]=[4, 6, 8] , lowerCAmelCase_ : Optional[int]=[2, 3, 4] , lowerCAmelCase_ : Tuple=[1_6, 1_6, 1_6] , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : Optional[Any]=[2, 2, 2] , lowerCAmelCase_ : int=[2, 2, 2] , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[Any]=2 , ) -> Dict: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = num_channels __lowerCAmelCase = kernel_size __lowerCAmelCase = stride __lowerCAmelCase = padding __lowerCAmelCase = hidden_sizes __lowerCAmelCase = num_attention_heads __lowerCAmelCase = depths __lowerCAmelCase = key_dim __lowerCAmelCase = drop_path_rate __lowerCAmelCase = patch_size __lowerCAmelCase = attention_ratio __lowerCAmelCase = mlp_ratio __lowerCAmelCase = initializer_range __lowerCAmelCase = [ ["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = num_labels __lowerCAmelCase = initializer_range def lowercase ( self : Dict ) -> Tuple: __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowercase ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: __lowerCAmelCase = LevitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCAmelCase = model(lowerCamelCase__ ) __lowerCAmelCase = (self.image_size, self.image_size) __lowerCAmelCase = image_size[0], image_size[1] for _ in range(4 ): __lowerCAmelCase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __lowerCAmelCase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowercase ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ) -> str: __lowerCAmelCase = self.num_labels __lowerCAmelCase = LevitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowerCAmelCase = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self : str ) -> List[Any]: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( A__ , A__ , unittest.TestCase ): """simple docstring""" a_ = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) a_ = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) a_ = False a_ = False a_ = False a_ = False a_ = False def lowercase ( self : Optional[int] ) -> Union[str, Any]: __lowerCAmelCase = LevitModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=3_7 ) def lowercase ( self : Optional[int] ) -> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self : Dict ) -> Union[str, Any]: return @unittest.skip(reason='Levit does not use inputs_embeds' ) def lowercase ( self : Optional[int] ) -> Optional[int]: pass @unittest.skip(reason='Levit does not support input and output embeddings' ) def lowercase ( self : Union[str, Any] ) -> List[Any]: pass @unittest.skip(reason='Levit does not output attentions' ) def lowercase ( self : Optional[int] ) -> Any: pass def lowercase ( self : str ) -> List[str]: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(lowerCamelCase__ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowercase ( self : Dict ) -> Optional[Any]: def check_hidden_states_output(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] ): __lowerCAmelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __lowerCAmelCase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowerCAmelCase = outputs.hidden_states __lowerCAmelCase = len(self.model_tester.depths ) + 1 self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) __lowerCAmelCase = (self.model_tester.image_size, self.model_tester.image_size) __lowerCAmelCase = image_size[0], image_size[1] for _ in range(4 ): __lowerCAmelCase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __lowerCAmelCase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase ( self : Optional[int] ) -> List[str]: pass def lowercase ( self : Optional[int] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : List[str]=False ) -> Tuple: __lowerCAmelCase = super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowercase ( self : List[str] ) -> int: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowercase ( self : str ) -> Tuple: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def lowercase ( self : Union[str, Any] ) -> Optional[Any]: if not self.model_tester.is_training: return __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowerCamelCase__ ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __lowerCAmelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCAmelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) __lowerCAmelCase = model(**lowerCamelCase__ ).loss loss.backward() def lowercase ( self : str ) -> Dict: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCAmelCase = False __lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase__ ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __lowerCAmelCase = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() __lowerCAmelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) __lowerCAmelCase = model(**lowerCamelCase__ ).loss loss.backward() def lowercase ( self : Any ) -> int: __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowerCamelCase__ ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type["title"]}""" ): __lowerCAmelCase = problem_type["title"] __lowerCAmelCase = problem_type["num_labels"] __lowerCAmelCase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() __lowerCAmelCase = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if problem_type["num_labels"] > 1: __lowerCAmelCase = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) __lowerCAmelCase = inputs["labels"].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowerCamelCase__ ) as warning_list: __lowerCAmelCase = model(**lowerCamelCase__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def lowercase ( self : int ) -> str: for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = LevitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def a_ ( ): __lowerCAmelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase ( self : Optional[Any] ) -> List[str]: return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowercase ( self : List[Any] ) -> Optional[int]: __lowerCAmelCase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCamelCase__ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=lowerCamelCase__ , return_tensors='pt' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**lowerCamelCase__ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowerCAmelCase = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
53
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = CLIPTokenizer _lowercase = CLIPTokenizerFast _lowercase = True _lowercase = {} _lowercase = False def _UpperCamelCase( self : List[Any] ): super().setUp() # fmt: off a__ : Any = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) a__ : Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] a__ : Optional[Any] = {"unk_token": "<unk>"} a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) def _UpperCamelCase( self : Dict , **lowerCamelCase__ : int ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , **lowerCamelCase__ : Optional[int] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[Any] ): a__ : int = "lower newer" a__ : Optional[int] = "lower newer" return input_text, output_text def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a__ : int = "lower newer" a__ : List[str] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] a__ : Union[str, Any] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : int = tokens + [tokenizer.unk_token] a__ : Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @require_ftfy def _UpperCamelCase( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : List[str] = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : int = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." a__ : Optional[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : Dict = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a__ : Optional[Any] = "xa\u0303y" + " " + "x\xe3y" a__ : Optional[int] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of space type a__ : str = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a__ : Any = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of line break type a__ : Union[str, Any] = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a__ : List[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a__ : Tuple = f'''{text_of_1_token} {text_of_1_token}''' a__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Union[str, Any] = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) a__ : Optional[Any] = f''' {text}''' a__ : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Dict = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) def _UpperCamelCase( self : int ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCamelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def _UpperCamelCase( self : int ): super().test_tokenization_python_rust_equals() def _UpperCamelCase( self : str ): # CLIP always lower cases letters pass
37
0
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> bool: '''simple docstring''' UpperCAmelCase = str(__a ) return n == n[::-1] def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ = 100_0000 ) -> str: '''simple docstring''' UpperCAmelCase = 0 for i in range(1 , __a ): if is_palindrome(__a ) and is_palindrome(bin(__a ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
130
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCamelCase : Dict = """<<<<<<< This should probably be modified because it mentions: """ UpperCamelCase : List[Any] = """======= >>>>>>> """ UpperCamelCase : Optional[Any] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] UpperCamelCase : Any = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def UpperCamelCase_ ( __a ) -> Optional[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class A__ ( A__ ): """simple docstring""" @staticmethod def _UpperCamelCase( lowerCamelCase__ : ArgumentParser ): a__ : List[str] = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , *lowerCamelCase__ : Tuple ): a__ : str = get_logger("datasets-cli/converting" ) a__ : Optional[Any] = tfds_path a__ : Optional[int] = datasets_directory def _UpperCamelCase( self : int ): if os.path.isdir(self._tfds_path ): a__ : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): a__ : Any = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) a__ : Dict = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) a__ : Tuple = [] a__ : str = [] a__ : List[Any] = {} if os.path.isdir(self._tfds_path ): a__ : List[str] = os.listdir(lowerCamelCase__ ) else: a__ : Union[str, Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) a__ : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) a__ : Dict = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) if not os.path.isfile(lowerCamelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(lowerCamelCase__ , encoding="utf-8" ) as f: a__ : List[Any] = f.readlines() a__ : Union[str, Any] = [] a__ : Union[str, Any] = False a__ : Union[str, Any] = False a__ : Dict = [] for line in lines: a__ : Optional[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: a__ : List[Any] = "import datasets\n" elif "import tensorflow" in out_line: # order is important here a__ : List[str] = "" continue elif "from absl import logging" in out_line: a__ : Dict = "from datasets import logging\n" elif "getLogger" in out_line: a__ : List[Any] = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): a__ : List[str] = True a__ : Dict = list(filter(lambda lowerCamelCase__ : e in out_line , lowerCamelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCamelCase__ ) + "\n" ) out_lines.append(lowerCamelCase__ ) out_lines.append(lowerCamelCase__ ) continue else: for pattern, replacement in TO_CONVERT: a__ : Tuple = re.sub(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: a__ : Optional[int] = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , lowerCamelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) a__ : Optional[Any] = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: a__ : Optional[int] = True out_lines.append(lowerCamelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset a__ : Dict = f_name.replace(".py" , "" ) a__ : Optional[int] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) a__ : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCamelCase__ ) if needs_manual_update: with_manual_update.append(lowerCamelCase__ ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.writelines(lowerCamelCase__ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: a__ : Any = os.path.basename(lowerCamelCase__ ) a__ : Optional[int] = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowerCamelCase__ , lowerCamelCase__ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
37
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class a_ ( A__ ): def __init__( self : Optional[int] , snake_case__ : str = "▁" , snake_case__ : bool = True , snake_case__ : Union[str, AddedToken] = "<unk>" , snake_case__ : Union[str, AddedToken] = "</s>" , snake_case__ : Union[str, AddedToken] = "<pad>" , ): lowerCAmelCase__ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } lowerCAmelCase__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): lowerCAmelCase__ = token_dict["token"] lowerCAmelCase__ = Tokenizer(Unigram() ) lowerCAmelCase__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) lowerCAmelCase__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ), pre_tokenizers.Digits(individual_digits=lowerCamelCase__ ), pre_tokenizers.Punctuation(), ] ) lowerCAmelCase__ = decoders.Metaspace(replacement=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) lowerCAmelCase__ = TemplateProcessing( single=F"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) lowerCAmelCase__ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Union[str, List[str]] , snake_case__ : int = 8000 , snake_case__ : bool = True , ): lowerCAmelCase__ = trainers.UnigramTrainer( vocab_size=lowerCamelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCamelCase__ , ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase__ = [files] self._tokenizer.train(lowerCamelCase__ , trainer=lowerCamelCase__ ) self.add_unk_id() def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : Union[Iterator[str], Iterator[Iterator[str]]] , snake_case__ : int = 8000 , snake_case__ : bool = True , ): lowerCAmelCase__ = trainers.UnigramTrainer( vocab_size=lowerCamelCase__ , special_tokens=self.special_tokens_list , show_progress=lowerCamelCase__ , ) self._tokenizer.train_from_iterator(lowerCamelCase__ , trainer=lowerCamelCase__ ) self.add_unk_id() def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = json.loads(self._tokenizer.to_str() ) lowerCAmelCase__ = self.special_tokens["unk"]["id"] lowerCAmelCase__ = Tokenizer.from_str(json.dumps(lowerCamelCase__ ) )
644
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class A__ ( A__ ): """simple docstring""" _lowercase = '' _lowercase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowercase = None # compression type in fsspec. ex: "gzip" _lowercase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[str] , lowerCamelCase__ : str = "" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[dict] = None , **lowerCamelCase__ : List[str] ): super().__init__(self , **lowerCamelCase__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode a__ : str = fsspec.open( lowerCamelCase__ , mode="rb" , protocol=lowerCamelCase__ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) a__ : Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) a__ : int = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) a__ : List[Any] = None @classmethod def _UpperCamelCase( cls : int , lowerCamelCase__ : int ): # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCamelCase__ ).lstrip("/" ) def _UpperCamelCase( self : Dict ): if self.dir_cache is None: a__ : Dict = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} a__ : int = {f["name"]: f} def _UpperCamelCase( self : Tuple , lowerCamelCase__ : str ): return self.file.open().read() def _UpperCamelCase( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str = "rb" , lowerCamelCase__ : int=None , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Optional[Any] , ): a__ : Optional[int] = self._strip_protocol(lowerCamelCase__ ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class A__ ( A__ ): """simple docstring""" _lowercase = 'bz2' _lowercase = 'bz2' _lowercase = '.bz2' class A__ ( A__ ): """simple docstring""" _lowercase = 'gzip' _lowercase = 'gzip' _lowercase = '.gz' class A__ ( A__ ): """simple docstring""" _lowercase = 'lz4' _lowercase = 'lz4' _lowercase = '.lz4' class A__ ( A__ ): """simple docstring""" _lowercase = 'xz' _lowercase = 'xz' _lowercase = '.xz' class A__ ( A__ ): """simple docstring""" _lowercase = 'zstd' _lowercase = 'zstd' _lowercase = '.zst' def __init__( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : str = "rb" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[dict] = None , lowerCamelCase__ : int = DEFAULT_BLOCK_SIZE , **lowerCamelCase__ : Tuple , ): super().__init__( fo=lowerCamelCase__ , mode=lowerCamelCase__ , target_protocol=lowerCamelCase__ , target_options=lowerCamelCase__ , block_size=lowerCamelCase__ , **lowerCamelCase__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 a__ : Any = self.file.__enter__ class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : str ): a__ : List[Any] = file_ def __enter__( self : str ): self._file.__enter__() return self def __exit__( self : int , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : int ): self._file.__exit__(*lowerCamelCase__ , **lowerCamelCase__ ) def __iter__( self : List[str] ): return iter(self._file ) def _UpperCamelCase( self : Any ): return next(self._file ) def __getattr__( self : Optional[Any] , lowerCamelCase__ : Tuple ): return getattr(self._file , lowerCamelCase__ ) def fixed_enter(*lowerCamelCase__ : List[str] , **lowerCamelCase__ : str ): return WrappedFile(_enter(*lowerCamelCase__ , **lowerCamelCase__ ) ) a__ : Any = fixed_enter
37
0
"""simple docstring""" from math import pi def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
506
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Union[str, Any] = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") a__ : Union[str, Any] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__a ): os.makedirs(__a ) a__ : Any = model.state_dict() def to_tf_var_name(__a ): for patt, repl in iter(__a ): a__ : Tuple = name.replace(__a , __a ) return f'''bert/{name}''' def create_tf_var(__a , __a , __a ): a__ : Tuple = tf.dtypes.as_dtype(tensor.dtype ) a__ : Dict = tf.get_variable(dtype=__a , shape=tensor.shape , name=__a , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__a ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: a__ : int = to_tf_var_name(__a ) a__ : Union[str, Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): a__ : int = torch_tensor.T a__ : Optional[Any] = create_tf_var(tensor=__a , name=__a , session=__a ) tf.keras.backend.set_value(__a , __a ) a__ : int = session.run(__a ) print(f'''Successfully created {tf_name}: {np.allclose(__a , __a )}''' ) a__ : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(__a , os.path.join(__a , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCamelCase_ ( __a=None ) -> int: a__ : Dict = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__a , required=__a , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=__a , default=__a , required=__a , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=__a , required=__a , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=__a , required=__a , help="Directory in which to save tensorflow model" ) a__ : Optional[Any] = parser.parse_args(__a ) a__ : Tuple = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__a , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
37
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __snake_case : List[str] = logging.get_logger(__name__) __snake_case : Optional[int] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED __snake_case : List[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } __snake_case : Optional[Any] = { """allenai/led-base-16384""": 1_6384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def _lowercase ( ): _a = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) _a = bs[:] _a = 0 for b in range(2**8 ): if b not in bs: bs.append(__a ) cs.append(2**8 + n ) n += 1 _a = [chr(__a ) for n in cs] return dict(zip(__a, __a ) ) def _lowercase ( lowerCamelCase__ : List[str] ): _a = set() _a = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _a = char return pairs class A ( A__ ): __UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES __UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : str = ["""input_ids""", """attention_mask"""] def __init__( self , snake_case_ , snake_case_ , snake_case_="replace" , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_=False , **snake_case_ , ) -> str: _a = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token _a = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token _a = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token _a = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token _a = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token _a = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) with open(lowerCamelCase__ , encoding="utf-8" ) as vocab_handle: _a = json.load(lowerCamelCase__ ) _a = {v: k for k, v in self.encoder.items()} _a = errors # how to handle errors in decoding _a = bytes_to_unicode() _a = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ , encoding="utf-8" ) as merges_handle: _a = merges_handle.read().split("\n" )[1:-1] _a = [tuple(merge.split() ) for merge in bpe_merges] _a = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) _a = {} _a = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _a = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def __lowerCAmelCase ( self ) -> int: return len(self.encoder ) def __lowerCAmelCase ( self ) -> Union[str, Any]: return dict(self.encoder , **self.added_tokens_encoder ) def __lowerCAmelCase ( self , snake_case_ ) -> str: if token in self.cache: return self.cache[token] _a = tuple(lowerCamelCase__ ) _a = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: _a = min(lowerCamelCase__ , key=lambda snake_case_ : self.bpe_ranks.get(lowerCamelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _a = bigram _a = [] _a = 0 while i < len(lowerCamelCase__ ): try: _a = word.index(lowerCamelCase__ , lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _a = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _a = tuple(lowerCamelCase__ ) _a = new_word if len(lowerCamelCase__ ) == 1: break else: _a = get_pairs(lowerCamelCase__ ) _a = " ".join(lowerCamelCase__ ) _a = word return word def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = [] for token in re.findall(self.pat , lowerCamelCase__ ): _a = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(" " ) ) return bpe_tokens def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def __lowerCAmelCase ( self , snake_case_ ) -> str: return self.decoder.get(lowerCamelCase__ ) def __lowerCAmelCase ( self , snake_case_ ) -> List[Any]: _a = "".join(lowerCamelCase__ ) _a = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Union[str, Any]: if not os.path.isdir(lowerCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _a = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + "\n" ) _a = 0 with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _a = token_index writer.write(" ".join(lowerCamelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> Optional[Any]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> Optional[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None ) -> List[str]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , snake_case_ , snake_case_=False , **snake_case_ ) -> Optional[Any]: _a = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): _a = " " + text return (text, kwargs) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = None , snake_case_ = PaddingStrategy.DO_NOT_PAD , snake_case_ = None , snake_case_ = None , ) -> Tuple: _a = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: _a = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _a = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _a = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase__ ) if needs_to_be_padded: _a = len(lowerCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _a = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _a = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
131
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Any=24 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : int=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Optional[Any]=37 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : str=10 , lowerCamelCase__ : Optional[Any]=0.02 , lowerCamelCase__ : str=None , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Optional[Any]=2 , ): a__ : str = parent a__ : Any = batch_size a__ : Dict = patch_size a__ : List[Any] = max_length a__ : str = num_mel_bins a__ : Optional[Any] = is_training a__ : Optional[int] = use_labels a__ : List[Any] = hidden_size a__ : str = num_hidden_layers a__ : Any = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : List[str] = hidden_act a__ : str = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : List[Any] = type_sequence_label_size a__ : Any = initializer_range a__ : str = scope a__ : List[str] = frequency_stride a__ : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) a__ : List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 a__ : List[str] = (self.max_length - self.patch_size) // self.time_stride + 1 a__ : Tuple = frequency_out_dimension * time_out_dimension a__ : List[str] = num_patches + 2 def _UpperCamelCase( self : List[str] ): a__ : Any = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) a__ : List[Any] = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : List[str] = self.get_config() return config, input_values, labels def _UpperCamelCase( self : Optional[int] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] ): a__ : List[Any] = ASTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : str ): a__ : Dict = self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ) : Optional[int] = config_and_inputs a__ : List[Any] = {"input_values": input_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _lowercase = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _UpperCamelCase( self : str ): a__ : str = ASTModelTester(self ) a__ : Any = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _UpperCamelCase( self : List[str] ): pass def _UpperCamelCase( self : Optional[int] ): a__, a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Any = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : Tuple ): a__, a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowerCamelCase__ ) a__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Optional[Any] = ["input_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Union[str, Any] = ASTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : Optional[int] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) a__, a__ : List[str] = torchaudio.load(__a ) return audio, sampling_rate @require_torch @require_torchaudio class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : List[str] ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _UpperCamelCase( self : Optional[int] ): a__ : int = self.default_feature_extractor a__ : Optional[Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(lowerCamelCase__ ) a__ : Any = self.default_feature_extractor a__, a__ : Dict = prepare_audio() a__ : str = audio.squeeze().numpy() a__ : Any = feature_extractor(lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(**lowerCamelCase__ ) # verify the logits a__ : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) a__ : List[str] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
37
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A = { """configuration_timesformer""": ["""TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TimesformerConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ """TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TimesformerModel""", """TimesformerForVideoClassification""", """TimesformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
77
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = XGLMTokenizer _lowercase = XGLMTokenizerFast _lowercase = True _lowercase = True def _UpperCamelCase( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase( self : List[Any] ): a__ : int = "<pad>" a__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCamelCase__ ) , 1_008 ) def _UpperCamelCase( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def _UpperCamelCase( self : Optional[int] ): a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) a__ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a__ : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a__ : List[str] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) a__ : Dict = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _UpperCamelCase( self : Dict ): return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _UpperCamelCase( self : Union[str, Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__ , f.name ) a__ : Any = XGLMTokenizer(f.name , keep_accents=lowerCamelCase__ ) a__ : List[str] = pickle.dumps(lowerCamelCase__ ) pickle.loads(lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): if not self.test_rust_tokenizer: return a__ : Any = self.get_tokenizer() a__ : Optional[Any] = self.get_rust_tokenizer() a__ : Tuple = "I was born in 92000, and this is falsé." a__ : List[str] = tokenizer.tokenize(lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Optional[int] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : Tuple = tokenizer.encode(lowerCamelCase__ ) a__ : Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = "Hello World!" a__ : List[str] = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : Union[str, Any] ): a__ : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off a__ : Union[str, Any] = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : List[Any] ): # fmt: off a__ : Optional[int] = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="facebook/xglm-564M" , padding=lowerCamelCase__ , )
37
0
"""simple docstring""" from __future__ import annotations def __lowerCamelCase ( a_ : Optional[int] ) -> int: __SCREAMING_SNAKE_CASE :Optional[int] = len(__a ) // 2 # choose the middle 3 elements __SCREAMING_SNAKE_CASE :Union[str, Any] = lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
498
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase_ ( ) -> int: a__ : int = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" a__ : Optional[Any] = Image.open(requests.get(__a , stream=__a ).raw ).convert("RGB" ) return image def UpperCamelCase_ ( __a ) -> Optional[Any]: a__ : Any = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : Union[str, Any] = dct.pop(__a ) a__ : List[str] = val def UpperCamelCase_ ( __a , __a ) -> Optional[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a__ : Any = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) a__ : Tuple = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict a__ : str = torch.cat((q_bias, torch.zeros_like(__a , requires_grad=__a ), v_bias) ) a__ : int = qkv_bias def UpperCamelCase_ ( __a ) -> Dict: a__ : Tuple = 364 if "coco" in model_name else 224 a__ : int = InstructBlipVisionConfig(image_size=__a ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: a__ : Tuple = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a__ : Dict = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: a__ : List[Any] = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32_001 ).to_dict() elif "vicuna-13b" in model_name: a__ : Optional[int] = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32_001 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 a__ : Optional[Any] = InstructBlipQFormerConfig(vocab_size=30_523 ).to_dict() a__ : Any = InstructBlipConfig(vision_config=__a , text_config=__a , qformer_config=__a ) return config, image_size @torch.no_grad() def UpperCamelCase_ ( __a , __a=None , __a=False ) -> int: a__ : Tuple = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: a__ : List[Any] = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) a__ : Union[str, Any] = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) a__, a__ : List[str] = get_blipa_config(__a ) a__ : Any = InstructBlipForConditionalGeneration(__a ).eval() a__ : Dict = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } a__, a__ : Dict = model_name_to_original[model_name] # load original model print("Loading original model..." ) a__ : Optional[Any] = "cuda:1" if torch.cuda.is_available() else "cpu" a__ : List[Any] = "cuda:2" if torch.cuda.is_available() else "cpu" a__, a__, a__ : Tuple = load_model_and_preprocess( name=__a , model_type=__a , is_eval=__a , device=__a ) original_model.eval() print("Done!" ) # update state dict keys a__ : Dict = original_model.state_dict() a__ : Optional[int] = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a__ : Optional[int] = state_dict.pop(__a ) if key.startswith("Qformer.bert" ): a__ : List[Any] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: a__ : Any = key.replace("self" , "attention" ) if "llm_proj" in key: a__ : Dict = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: a__ : int = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): a__ : List[str] = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): a__ : str = key.replace("t5" , "language" ) a__ : Dict = val # read in qv biases read_in_q_v_bias(__a , __a ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__a , strict=__a ) a__ : Union[str, Any] = load_demo_image() a__ : int = "What is unusual about this image?" # create processor a__ : Any = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=__a , image_std=__a ) a__ : Tuple = InstructBlipProcessor( image_processor=__a , tokenizer=__a , qformer_tokenizer=__a , ) a__ : Tuple = processor(images=__a , text=__a , return_tensors="pt" ).to(__a ) # make sure processor creates exact same pixel values a__ : Optional[int] = vis_processors["eval"](__a ).unsqueeze(0 ).to(__a ) a__ : Optional[Any] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __a ) original_model.to(__a ) hf_model.to(__a ) with torch.no_grad(): if "vicuna" in model_name: a__ : str = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits a__ : List[str] = hf_model(**__a ).logits else: a__ : List[Any] = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits a__ : str = tokenizer("\n" , return_tensors="pt" ).input_ids.to(__a ) a__ : Dict = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) a__ : Any = hf_model(**__a , labels=__a ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape a__ : Tuple = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , __a , atol=__a ) print("Looks ok!" ) print("Generating with original model..." ) a__ : Tuple = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) a__ : int = hf_model.generate( **__a , do_sample=__a , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? a__ : int = 2 print("Original generation:" , __a ) a__ : str = processor.batch_decode(__a , skip_special_tokens=__a ) a__ : str = [text.strip() for text in output_text] print("HF generation:" , __a ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__a ) hf_model.save_pretrained(__a ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() UpperCamelCase : Optional[int] = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
37
0
'''simple docstring''' from __future__ import annotations from typing import Generic, TypeVar SCREAMING_SNAKE_CASE_ = TypeVar('T') class a ( Generic[T] ): """simple docstring""" def __init__( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: int = data __UpperCAmelCase: List[Any] = self __UpperCAmelCase: Optional[Any] = 0 class a ( Generic[T] ): """simple docstring""" def __init__( self ): '''simple docstring''' __UpperCAmelCase: dict[T, DisjointSetTreeNode[T]] = {} def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: str = DisjointSetTreeNode(lowerCamelCase__ ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = self.map[data] if elem_ref != elem_ref.parent: __UpperCAmelCase: Optional[int] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' if nodea.rank > nodea.rank: __UpperCAmelCase: Tuple = nodea else: __UpperCAmelCase: Any = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def lowercase_ ( self , snake_case_ , snake_case_ ): '''simple docstring''' self.link(self.find_set(lowerCamelCase__ ) , self.find_set(lowerCamelCase__ ) ) class a ( Generic[T] ): """simple docstring""" def __init__( self ): '''simple docstring''' __UpperCAmelCase: dict[T, dict[T, int]] = {} def lowercase_ ( self , snake_case_ ): '''simple docstring''' if node not in self.connections: __UpperCAmelCase: List[str] = {} def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' self.add_node(lowerCamelCase__ ) self.add_node(lowerCamelCase__ ) __UpperCAmelCase: Tuple = weight __UpperCAmelCase: Union[str, Any] = weight def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[Any] = [] __UpperCAmelCase: Dict = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda snake_case_ : x[2] ) # creating the disjoint set __UpperCAmelCase: Optional[Any] = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(lowerCamelCase__ ) # MST generation __UpperCAmelCase: List[Any] = 0 __UpperCAmelCase: Union[str, Any] = 0 __UpperCAmelCase: Dict = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: __UpperCAmelCase: str = edges[index] index += 1 __UpperCAmelCase: str = disjoint_set.find_set(lowerCamelCase__ ) __UpperCAmelCase: List[str] = disjoint_set.find_set(lowerCamelCase__ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) disjoint_set.union(lowerCamelCase__ , lowerCamelCase__ ) return graph
523
def UpperCamelCase_ ( __a , __a ) -> Tuple: a__ : Optional[int] = [0 for i in range(r + 1 )] # nc0 = 1 a__ : Union[str, Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. a__ : Any = min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
37
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Dict = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowerCAmelCase : Optional[Any] = 250_004 __lowerCAmelCase : Dict = 250_020 @require_sentencepiece @require_tokenizers class A ( A__ , unittest.TestCase ): a_ = MBartaaTokenizer a_ = MBartaaTokenizerFast a_ = True a_ = True def snake_case__ ( self : str ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase = MBartaaTokenizer(lowerCamelCase__ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : Any ) -> Optional[Any]: __UpperCAmelCase = "<s>" __UpperCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def snake_case__ ( self : Optional[Any] ) -> Union[str, Any]: __UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase__ ) , 1_0_5_4 ) def snake_case__ ( self : Union[str, Any] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def snake_case__ ( self : Dict ) -> Any: __UpperCAmelCase = MBartaaTokenizer(lowerCamelCase__ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase__ ) __UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) __UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase__ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) __UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) __UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def snake_case__ ( self : Optional[int] ) -> Optional[Any]: # fmt: off __UpperCAmelCase = {"input_ids": [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __UpperCAmelCase = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCAmelCase = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(lowerCamelCase__ ) __UpperCAmelCase = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __UpperCAmelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase__ , lowerCamelCase__ ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(lowerCamelCase__ ) __UpperCAmelCase = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=True __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(lowerCamelCase__ , legacy_format=lowerCamelCase__ ) __UpperCAmelCase = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase__ , lowerCamelCase__ ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(lowerCamelCase__ ) __UpperCAmelCase = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) # Save tokenizer rust, legacy_format=False __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = tokenizer_r.save_pretrained(lowerCamelCase__ , legacy_format=lowerCamelCase__ ) __UpperCAmelCase = tokenizer_p.save_pretrained(lowerCamelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __UpperCAmelCase = tokenizer_r.from_pretrained(lowerCamelCase__ ) __UpperCAmelCase = tokenizer_p.from_pretrained(lowerCamelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase__ , lowerCamelCase__ ) ) shutil.rmtree(lowerCamelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class A ( unittest.TestCase ): a_ = '''facebook/mbart-large-50-one-to-many-mmt''' a_ = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] a_ = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] a_ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def snake_case__ ( cls : List[Any] ) -> List[str]: __UpperCAmelCase = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __UpperCAmelCase = 1 return cls def snake_case__ ( self : Dict ) -> int: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 2_5_0_0_3_8 ) def snake_case__ ( self : int ) -> Optional[int]: __UpperCAmelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase__ ) def snake_case__ ( self : Optional[Any] ) -> str: self.assertIn(lowerCamelCase__ , self.tokenizer.all_special_ids ) __UpperCAmelCase = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] __UpperCAmelCase = self.tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __UpperCAmelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase__ ) def snake_case__ ( self : str ) -> Optional[int]: __UpperCAmelCase = ["this is gunna be a long sentence " * 2_0] assert isinstance(src_text[0] , lowerCamelCase__ ) __UpperCAmelCase = 1_0 __UpperCAmelCase = self.tokenizer(lowerCamelCase__ , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) def snake_case__ ( self : Tuple ) -> List[Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def snake_case__ ( self : str ) -> List[str]: __UpperCAmelCase = tempfile.mkdtemp() __UpperCAmelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase__ ) __UpperCAmelCase = MBartaaTokenizer.from_pretrained(lowerCamelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase__ ) @require_torch def snake_case__ ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase__ , return_tensors='''pt''' ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def snake_case__ ( self : Optional[int] ) -> Tuple: __UpperCAmelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __UpperCAmelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) __UpperCAmelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def snake_case__ ( self : List[Any] ) -> Dict: __UpperCAmelCase = self.tokenizer(self.src_text , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=3 , return_tensors='''pt''' ) __UpperCAmelCase = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=1_0 , return_tensors='''pt''' ) __UpperCAmelCase = targets["input_ids"] __UpperCAmelCase = shift_tokens_right(lowerCamelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def snake_case__ ( self : Optional[Any] ) -> Any: __UpperCAmelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase__ ) , { # en_XX, A, test, EOS '''input_ids''': [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
262
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = LEDTokenizer _lowercase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : int="replace" , lowerCamelCase__ : Union[str, Any]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : str="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Any="<mask>" , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : int=True , **lowerCamelCase__ : Union[str, Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : List[str] = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : Optional[Any] = add_prefix_space a__ : List[str] = pre_tok_class(**lowerCamelCase__ ) a__ : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : Any = "post_processor" a__ : str = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Optional[Any] = tuple(state["sep"] ) if "cls" in state: a__ : Optional[Any] = tuple(state["cls"] ) a__ : Optional[int] = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Dict = add_prefix_space a__ : int = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : List[Any] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : int = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : int = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ): a__ : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : Union[str, Any] = value def _UpperCamelCase( self : Any , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : List[str] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Any , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Optional[Any] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]=None ): a__ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : List[str] = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase( self : Dict , lowerCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): a__ : str = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: a__ : Optional[int] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ : Dict = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase__ ) if needs_to_be_padded: a__ : Union[str, Any] = len(lowerCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ : List[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": a__ : Any = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
37
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def snake_case ( a_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" if ( (cp >= 0x4e00 and cp <= 0x9fff) or (cp >= 0x3400 and cp <= 0x4dbf) # or (cp >= 0x20000 and cp <= 0x2a6df) # or (cp >= 0x2a700 and cp <= 0x2b73f) # or (cp >= 0x2b740 and cp <= 0x2b81f) # or (cp >= 0x2b820 and cp <= 0x2ceaf) # or (cp >= 0xf900 and cp <= 0xfaff) or (cp >= 0x2f800 and cp <= 0x2fa1f) # ): # return True return False def snake_case ( a_ : Optional[int] ) -> Optional[int]: """simple docstring""" for char in word: UpperCamelCase_ : Optional[Any] = ord(__a ) if not _is_chinese_char(__a ): return 0 return 1 def snake_case ( a_ : Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Optional[Any] = set() for token in tokens: UpperCamelCase_ : Optional[Any] = len(__a ) > 1 and is_chinese(__a ) if chinese_word: word_set.add(__a ) UpperCamelCase_ : Optional[Any] = list(__a ) return word_list def snake_case ( a_ : Optional[int] , a_ : str ) -> Optional[int]: """simple docstring""" if not chinese_word_set: return bert_tokens UpperCamelCase_ : int = max([len(__a ) for w in chinese_word_set] ) UpperCamelCase_ : Tuple = bert_tokens UpperCamelCase_ : Union[str, Any] = 0, len(__a ) while start < end: UpperCamelCase_ : Tuple = True if is_chinese(bert_word[start] ): UpperCamelCase_ : Optional[int] = min(end - start , __a ) for i in range(__a , 1 , -1 ): UpperCamelCase_ : Tuple = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase_ : Union[str, Any] = "##" + bert_word[j] UpperCamelCase_ : str = start + i UpperCamelCase_ : Optional[Any] = False break if single_word: start += 1 return bert_word def snake_case ( a_ : Dict , a_ : Tuple , a_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Any = [] for i in range(0 , len(__a ) , 100 ): UpperCamelCase_ : List[str] = ltp_tokenizer.seg(lines[i : i + 100] )[0] UpperCamelCase_ : Optional[Any] = [get_chinese_word(__a ) for r in res] ltp_res.extend(__a ) assert len(__a ) == len(__a ) UpperCamelCase_ : List[Any] = [] for i in range(0 , len(__a ) , 100 ): UpperCamelCase_ : List[Any] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__a , truncation=__a , max_length=512 ) bert_res.extend(res["""input_ids"""] ) assert len(__a ) == len(__a ) UpperCamelCase_ : List[Any] = [] for input_ids, chinese_word in zip(__a , __a ): UpperCamelCase_ : List[Any] = [] for id in input_ids: UpperCamelCase_ : Tuple = bert_tokenizer._convert_id_to_token(__a ) input_tokens.append(__a ) UpperCamelCase_ : List[str] = add_sub_symbol(__a , __a ) UpperCamelCase_ : Tuple = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__a ): if token[:2] == "##": UpperCamelCase_ : Optional[Any] = token[2:] # save chinese tokens' pos if len(__a ) == 1 and _is_chinese_char(ord(__a ) ): ref_id.append(__a ) ref_ids.append(__a ) assert len(__a ) == len(__a ) return ref_ids def snake_case ( a_ : Any ) -> Dict: """simple docstring""" with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: UpperCamelCase_ : int = f.readlines() UpperCamelCase_ : Dict = [line.strip() for line in data if len(__a ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase_ : List[Any] = LTP(args.ltp ) # faster in GPU device UpperCamelCase_ : List[str] = BertTokenizer.from_pretrained(args.bert ) UpperCamelCase_ : Optional[int] = prepare_ref(__a , __a , __a ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: UpperCamelCase_ : List[str] = [json.dumps(__a ) + "\n" for ref in ref_ids] f.writelines(__a ) if __name__ == "__main__": UpperCamelCase =argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") UpperCamelCase =parser.parse_args() main(args)
208
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Union[str, Any] = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } UpperCamelCase : List[str] = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] _lowercase = RobertaTokenizer def __init__( self : List[str] , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]="replace" , lowerCamelCase__ : List[str]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Any="</s>" , lowerCamelCase__ : Any="<s>" , lowerCamelCase__ : int="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : Any=False , lowerCamelCase__ : Dict=True , **lowerCamelCase__ : Optional[Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Any = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : int = add_prefix_space a__ : Tuple = pre_tok_class(**lowerCamelCase__ ) a__ : str = add_prefix_space a__ : Tuple = "post_processor" a__ : Dict = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Tuple = tuple(state["sep"] ) if "cls" in state: a__ : str = tuple(state["cls"] ) a__ : str = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : str = add_prefix_space a__ : Any = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : int = trim_offsets a__ : Dict = True if changes_to_apply: a__ : Union[str, Any] = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : str = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Tuple ): a__ : List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : List[str] = value def _UpperCamelCase( self : Union[str, Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : int ): a__ : Optional[int] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Tuple , *lowerCamelCase__ : Dict , **lowerCamelCase__ : List[str] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : int = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=None ): a__ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : Tuple = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
37
0
from itertools import permutations def UpperCAmelCase_ ( _UpperCAmelCase ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False lowerCamelCase_: Tuple = [7, 1_1, 1_3, 1_7] for i, test in enumerate(__a ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def UpperCAmelCase_ ( _UpperCAmelCase = 1_0 ): return sum( int("""""".join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(F"{solution() = }")
423
from statistics import mean, stdev def UpperCamelCase_ ( __a , __a = 3 ) -> list: a__ : List[str] = min(__a ) a__ : str = max(__a ) # normalize data return [round((x - x_min) / (x_max - x_min) , __a ) for x in data] def UpperCamelCase_ ( __a , __a = 3 ) -> list: a__ : str = mean(__a ) a__ : List[str] = stdev(__a ) # standardize data return [round((x - mu) / (sigma) , __a ) for x in data]
37
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Any, lowerCAmelCase_ : Any ): __lowerCAmelCase = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __lowerCAmelCase = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__a ): os.makedirs(__a ) __lowerCAmelCase = model.state_dict() def to_tf_var_name(lowerCAmelCase_ : int ): for patt, repl in iter(__a ): __lowerCAmelCase = name.replace(__a, __a ) return F"""bert/{name}""" def create_tf_var(lowerCAmelCase_ : Dict, lowerCAmelCase_ : Dict, lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = tf.dtypes.as_dtype(tensor.dtype ) __lowerCAmelCase = tf.get_variable(dtype=__a, shape=tensor.shape, name=__a, initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__a ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __lowerCAmelCase = to_tf_var_name(__a ) __lowerCAmelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __lowerCAmelCase = torch_tensor.T __lowerCAmelCase = create_tf_var(tensor=__a, name=__a, session=__a ) tf.keras.backend.set_value(__a, __a ) __lowerCAmelCase = session.run(__a ) print(F"""Successfully created {tf_name}: {np.allclose(__a, __a )}""" ) __lowerCAmelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(__a, os.path.join(__a, model_name.replace('-', '_' ) + '.ckpt' ) ) def a_ ( lowerCAmelCase_ : int=None ): __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--model_name', type=__a, required=__a, help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir', type=__a, default=__a, required=__a, help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path', type=__a, required=__a, help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir', type=__a, required=__a, help='Directory in which to save tensorflow model' ) __lowerCAmelCase = parser.parse_args(__a ) __lowerCAmelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path ), cache_dir=args.cache_dir, ) convert_pytorch_checkpoint_to_tf(model=__a, ckpt_dir=args.tf_cache_dir, model_name=args.model_name ) if __name__ == "__main__": main()
53
def UpperCamelCase_ ( __a = 50 ) -> int: a__ : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
37
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class A_ (datasets.BeamBasedBuilder ): def _lowercase ( self ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=lowerCamelCase__ , ) def _lowercase ( self , _A , _A ): '''simple docstring''' return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )] def _lowercase ( self , _A , _A ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCamelCase__ ) class A_ (datasets.BeamBasedBuilder ): def _lowercase ( self ): '''simple docstring''' return datasets.DatasetInfo( features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=lowerCamelCase__ , ) def _lowercase ( self , _A , _A ): '''simple docstring''' return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} ) ] def _lowercase ( self , _A , _A ): '''simple docstring''' import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(lowerCamelCase__ ) def __SCREAMING_SNAKE_CASE ( ) -> int: '''simple docstring''' return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: '''simple docstring''' return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )] class A_ (A__ ): @require_beam def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=lowerCamelCase__ , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCamelCase__ , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCamelCase__ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCamelCase__ ) self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCamelCase__ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def _lowercase ( self ): '''simple docstring''' import apache_beam as beam UpperCAmelCase = beam.io.parquetio.WriteToParquet UpperCAmelCase = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=lowerCamelCase__ , beam_runner='''DirectRunner''' ) with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock: UpperCAmelCase = partial(lowerCamelCase__ , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( lowerCamelCase__ , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertTrue( os.path.exists( os.path.join( lowerCamelCase__ , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train-00000-of-00002.arrow""" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCamelCase__ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCamelCase__ ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) ) self.assertTrue( os.path.exists(os.path.join(lowerCamelCase__ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset @require_beam def _lowercase ( self ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = DummyBeamDataset(cache_dir=lowerCamelCase__ ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCAmelCase = NestedBeamDataset(cache_dir=lowerCamelCase__ , beam_runner='''DirectRunner''' ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(lowerCamelCase__ , builder.name , '''default''' , '''0.0.0''' , F"""{builder.name}-train.arrow""" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) ) UpperCAmelCase = builder.as_dataset() self.assertEqual(dset['''train'''].num_rows , lowerCamelCase__ ) self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , lowerCamelCase__ ) self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(lowerCamelCase__ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) ) del dset
130
class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ): a__ : str = name a__ : Optional[int] = value a__ : Dict = weight def __repr__( self : Union[str, Any] ): return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _UpperCamelCase( self : Dict ): return self.value def _UpperCamelCase( self : Optional[Any] ): return self.name def _UpperCamelCase( self : Optional[Any] ): return self.weight def _UpperCamelCase( self : Optional[int] ): return self.value / self.weight def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Optional[Any] = [] for i in range(len(__a ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCamelCase_ ( __a , __a , __a ) -> Union[str, Any]: a__ : List[str] = sorted(__a , key=__a , reverse=__a ) a__ : List[Any] = [] a__, a__ : Union[str, Any] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCamelCase_ ( ) -> Union[str, Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
37
0
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( ): """simple docstring""" lowerCAmelCase__ = 10 lowerCAmelCase__ = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) lowerCAmelCase__ = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(__a ) ), } , features=__a , ) return dataset @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=__a ) return filename # FILE_CONTENT + files __lowerCAmelCase : Tuple = """\ Text data. Second line of data.""" @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "file.txt" lowerCAmelCase__ = FILE_CONTENT with open(__a , """w""" ) as f: f.write(__a ) return filename @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" import bza lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "file.txt.bz2" lowerCAmelCase__ = bytes(__a , """utf-8""" ) with bza.open(__a , """wb""" ) as f: f.write(__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" import gzip lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) lowerCAmelCase__ = bytes(__a , """utf-8""" ) with gzip.open(__a , """wb""" ) as f: f.write(__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "file.txt.lz4" lowerCAmelCase__ = bytes(__a , """utf-8""" ) with lza.frame.open(__a , """wb""" ) as f: f.write(__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "file.txt.7z" with pyazr.SevenZipFile(__a , """w""" ) as archive: archive.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" import tarfile lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "file.txt.tar" with tarfile.TarFile(__a , """w""" ) as f: f.add(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" import lzma lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "file.txt.xz" lowerCAmelCase__ = bytes(__a , """utf-8""" ) with lzma.open(__a , """wb""" ) as f: f.write(__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" import zipfile lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "file.txt.zip" with zipfile.ZipFile(__a , """w""" ) as f: f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "file.txt.zst" lowerCAmelCase__ = bytes(__a , """utf-8""" ) with zstd.open(__a , """wb""" ) as f: f.write(__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "file.xml" lowerCAmelCase__ = textwrap.dedent( """\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>""" ) with open(__a , """w""" ) as f: f.write(__a ) return filename __lowerCAmelCase : Tuple = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] __lowerCAmelCase : Any = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] __lowerCAmelCase : str = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } __lowerCAmelCase : str = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] __lowerCAmelCase : List[str] = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( ): """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = datasets.Dataset.from_dict(__a ) lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(__a ) ) as con: lowerCAmelCase__ = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(__a , """w""" , newline="""""" ) as f: lowerCAmelCase__ = csv.DictWriter(__a , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(__a , """w""" , newline="""""" ) as f: lowerCAmelCase__ = csv.DictWriter(__a , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" import bza lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset.csv.bz2" with open(__a , """rb""" ) as f: lowerCAmelCase__ = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(__a , """wb""" ) as f: f.write(__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset.csv.zip" with zipfile.ZipFile(__a , """w""" ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset.csv.zip" with zipfile.ZipFile(__a , """w""" ) as f: f.write(__a , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(__a , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(__a , """w""" ) as f: f.write(__a , arcname=os.path.join("""main_dir""" , os.path.basename(__a ) ) ) f.write(__a , arcname=os.path.join("""main_dir""" , os.path.basename(__a ) ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) lowerCAmelCase__ = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(__a , """wb""" ) as f: lowerCAmelCase__ = pq.ParquetWriter(__a , schema=__a ) lowerCAmelCase__ = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(__a ) )] for k in DATA[0]} , schema=__a ) writer.write_table(__a ) writer.close() return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) lowerCAmelCase__ = {"data": DATA} with open(__a , """w""" ) as f: json.dump(__a , __a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) lowerCAmelCase__ = {"data": DATA_DICT_OF_LISTS} with open(__a , """w""" ) as f: json.dump(__a , __a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(__a , """w""" ) as f: for item in DATA: f.write(json.dumps(__a ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(__a , """w""" ) as f: for item in DATA: f.write(json.dumps(__a ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(__a , """w""" ) as f: for item in DATA_312: f.write(json.dumps(__a ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(__a , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(__a ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" import gzip lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(__a , """rb""" ) as orig_file: with gzip.open(__a , """wb""" ) as zipped_file: zipped_file.writelines(__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" import gzip lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(__a , """rb""" ) as orig_file: with gzip.open(__a , """wb""" ) as zipped_file: zipped_file.writelines(__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset.jsonl.zip" with zipfile.ZipFile(__a , """w""" ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(__a , """w""" ) as f: f.write(__a , arcname=os.path.join("""nested""" , os.path.basename(__a ) ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(__a , """w""" ) as f: f.write(__a , arcname=os.path.join("""main_dir""" , os.path.basename(__a ) ) ) f.write(__a , arcname=os.path.join("""main_dir""" , os.path.basename(__a ) ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset.jsonl.tar" with tarfile.TarFile(__a , """w""" ) as f: f.add(__a , arcname=os.path.basename(__a ) ) f.add(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(__a , """w""" ) as f: f.add(__a , arcname=os.path.join("""nested""" , os.path.basename(__a ) ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ["0", "1", "2", "3"] lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(__a , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ["0", "1", "2", "3"] lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(__a , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ["0", "1", "2", "3"] lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset.abc" with open(__a , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset.text.zip" with zipfile.ZipFile(__a , """w""" ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(__a , """w""" ) as f: f.write(__a , arcname=os.path.join("""main_dir""" , os.path.basename(__a ) ) ) f.write(__a , arcname=os.path.join("""main_dir""" , os.path.basename(__a ) ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset.ext.zip" with zipfile.ZipFile(__a , """w""" ) as f: f.write(__a , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(__a , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = "\n".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) lowerCAmelCase__ = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(__a ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( ): """simple docstring""" return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( ): """simple docstring""" return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data""" ) / "dataset.img.zip" with zipfile.ZipFile(__a , """w""" ) as f: f.write(__a , arcname=os.path.basename(__a ) ) f.write(__a , arcname=os.path.basename(__a ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def _UpperCAmelCase ( lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
644
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A__ ( A__ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase__ : Union[str, "sqlalchemy.sql.Selectable"] , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , **lowerCamelCase__ : Optional[int] , ): super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ ) a__ : str = Sql( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , ) def _UpperCamelCase( self : Tuple ): a__ : Optional[Any] = None a__ : Dict = None a__ : Union[str, Any] = None a__ : Union[str, Any] = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , ) # Build dataset for splits a__ : List[str] = self.builder.as_dataset( split="train" , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : Dataset , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Optional[Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) a__ : Any = dataset a__ : str = name a__ : Tuple = con a__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a__ : Any = num_proc a__ : Tuple = to_sql_kwargs def _UpperCamelCase( self : List[Any] ): a__ : Any = self.to_sql_kwargs.pop("sql" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("con" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("index" , lowerCamelCase__ ) a__ : int = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs ) return written def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] ): a__, a__, a__ : Union[str, Any] = args a__ : Any = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs a__ : Tuple = query_table( table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) a__ : str = batch.to_pandas() a__ : List[Any] = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ ) return num_rows or len(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : str = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: a__, a__ : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
37
0
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class _UpperCAmelCase ( A__ ,A__ ): '''simple docstring''' a__ =1 @register_to_config def __init__( self , A=2_0_0_0 , A=0.1 , A=2_0 , A=1E-3 ) -> List[str]: _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Dict = None _UpperCAmelCase : List[str] = None def __lowerCAmelCase ( self , A , A = None ) -> List[Any]: _UpperCAmelCase : Optional[Any] = torch.linspace(1 , self.config.sampling_eps , lowerCamelCase__ , device=lowerCamelCase__ ) def __lowerCAmelCase ( self , A , A , A , A=None ) -> Optional[int]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score _UpperCAmelCase : Optional[int] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _UpperCAmelCase : Optional[Any] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) _UpperCAmelCase : Any = std.flatten() while len(std.shape ) < len(score.shape ): _UpperCAmelCase : Union[str, Any] = std.unsqueeze(-1 ) _UpperCAmelCase : int = -score / std # compute _UpperCAmelCase : List[Any] = -1.0 / len(self.timesteps ) _UpperCAmelCase : List[str] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _UpperCAmelCase : Any = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): _UpperCAmelCase : int = beta_t.unsqueeze(-1 ) _UpperCAmelCase : Any = -0.5 * beta_t * x _UpperCAmelCase : Tuple = torch.sqrt(lowerCamelCase__ ) _UpperCAmelCase : int = drift - diffusion**2 * score _UpperCAmelCase : int = x + drift * dt # add noise _UpperCAmelCase : Optional[int] = randn_tensor(x.shape , layout=x.layout , generator=lowerCamelCase__ , device=x.device , dtype=x.dtype ) _UpperCAmelCase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ) -> List[str]: return self.config.num_train_timesteps
506
import math from datetime import datetime, timedelta def UpperCamelCase_ ( __a ) -> datetime: a__ : Union[str, Any] = year % 19 a__ : List[str] = year % 4 a__ : str = year % 7 a__ : Any = math.floor(year / 100 ) a__ : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) a__ : Optional[int] = leap_day_inhibits / 4 a__ : Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 a__ : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 a__ : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon a__ : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 18 ) else: return datetime(__a , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCamelCase : Tuple = """will be""" if year > datetime.now().year else """was""" print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
37
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging __snake_case : Dict = logging.get_logger(__name__) def _lowercase ( lowerCamelCase__ : Optional[Any] ): _a = R"\w+[.]\d+" _a = re.findall(__a, __a ) for pat in pats: _a = key.replace(__a, "_".join(pat.split("." ) ) ) return key def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Tuple, lowerCamelCase__ : str ): _a = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _a = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _a = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _a = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer _a = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _a = pt_tensor.transpose(2, 3, 1, 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _a = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": _a = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _a = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _a = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _lowercase ( lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str], lowerCamelCase__ : Union[str, Any]=42 ): # Step 1: Convert pytorch tensor to numpy _a = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _a = flax_model.init_weights(PRNGKey(__a ) ) _a = flatten_dict(__a ) _a = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _a = rename_key(__a ) _a = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters _a = rename_key_and_reshape_tensor(__a, __a, __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown _a = jnp.asarray(__a ) return unflatten_dict(__a )
131
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCamelCase_ ( __a ) -> Union[str, Any]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase__ : nn.Module , lowerCamelCase__ : int ): super().__init__() a__ : int = module a__ : Any = nn.Sequential( nn.Linear(module.in_features , lowerCamelCase__ , bias=lowerCamelCase__ ) , nn.Linear(lowerCamelCase__ , module.out_features , bias=lowerCamelCase__ ) , ) a__ : Tuple = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCamelCase__ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ): return self.module(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) + self.adapter(lowerCamelCase__ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" _lowercase = 'bigscience/bloom-1b7' # Constant values _lowercase = 2.1_09_65_95_52_69_25_74 _lowercase = 'Hello my name is' _lowercase = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) _lowercase = 1_0 def _UpperCamelCase( self : Dict ): # Models and tokenizer a__ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Union[str, Any] ): super().setUp() # Models and tokenizer a__ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) a__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : List[Any] ): a__ : str = self.model_abit.config self.assertTrue(hasattr(lowerCamelCase__ , "quantization_config" ) ) a__ : Optional[Any] = config.to_dict() a__ : int = config.to_diff_dict() a__ : List[str] = config.to_json_string() def _UpperCamelCase( self : int ): from bitsandbytes.nn import Paramsabit a__ : List[Any] = self.model_fpaa.get_memory_footprint() a__ : str = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a__ : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _UpperCamelCase( self : Tuple ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCamelCase__ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _UpperCamelCase( self : str ): a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Tuple = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[Any] = BitsAndBytesConfig() a__ : Optional[int] = True a__ : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , device_map="auto" ) a__ : str = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : int = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : Dict ): with self.assertRaises(lowerCamelCase__ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): a__ : int = BitsAndBytesConfig() with self.assertRaises(lowerCamelCase__ ): a__ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , load_in_abit=lowerCamelCase__ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def _UpperCamelCase( self : int ): with self.assertRaises(lowerCamelCase__ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a__ : int = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Any = self.model_fpaa.to(torch.floataa ) a__ : List[Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.to("cpu" ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.half() # Check this does not throw an error a__ : Dict = self.model_fpaa.float() def _UpperCamelCase( self : Dict ): a__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCamelCase__ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCamelCase( cls : str ): a__ : Dict = "t5-small" a__ : List[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense a__ : int = AutoTokenizer.from_pretrained(cls.model_name ) a__ : str = "Translate in German: Hello, my dog is cute" def _UpperCamelCase( self : Optional[int] ): gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Optional[int] ): from transformers import TaForConditionalGeneration a__ : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules a__ : Optional[Any] = None # test with `t5-small` a__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Any = model.generate(**lowerCamelCase__ ) a__ : Union[str, Any] = modules def _UpperCamelCase( self : List[Any] ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a__ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a__ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Optional[int] = model.generate(**lowerCamelCase__ ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : List[str] ): super().setUp() # model_name a__ : Union[str, Any] = "bigscience/bloom-560m" a__ : Union[str, Any] = "t5-small" # Different types of model a__ : int = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Sequence classification model a__ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # CausalLM model a__ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Seq2seq model a__ : Dict = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Union[str, Any] ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): super().setUp() def _UpperCamelCase( self : int ): del self.pipe gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Tuple ): a__ : int = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a__ : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Tuple ): super().setUp() def _UpperCamelCase( self : List[Any] ): a__ : str = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a__ : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch a__ : List[Any] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): a__ : Any = "facebook/opt-350m" super().setUp() def _UpperCamelCase( self : int ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters a__ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a__ : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a__ : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCamelCase__ ) ): a__ : Dict = LoRALayer(module.q_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.k_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a__ : Dict = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a__ : Optional[Any] = model.forward(**lowerCamelCase__ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCamelCase__ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( A__ ): """simple docstring""" _lowercase = 'gpt2-xl' _lowercase = 3.31_91_85_48_54_15_21_87
37
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch A = random.Random() def _UpperCamelCase ( UpperCamelCase , UpperCamelCase=1.0 , UpperCamelCase=None , UpperCamelCase=None ) -> Union[str, Any]: """simple docstring""" if rng is None: __UpperCAmelCase : Optional[Any] = global_rng __UpperCAmelCase : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class a__ ( unittest.TestCase ): def __init__( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=7 , UpperCamelCase_ : Any=400 , UpperCamelCase_ : str=2000 , UpperCamelCase_ : str=10 , UpperCamelCase_ : List[Any]=160 , UpperCamelCase_ : str=8 , UpperCamelCase_ : str=0.0 , UpperCamelCase_ : List[Any]=4000 , UpperCamelCase_ : str=False , UpperCamelCase_ : int=True , ): """simple docstring""" __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : Dict = batch_size __UpperCAmelCase : List[Any] = min_seq_length __UpperCAmelCase : Union[str, Any] = max_seq_length __UpperCAmelCase : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __UpperCAmelCase : List[str] = padding_value __UpperCAmelCase : Dict = sampling_rate __UpperCAmelCase : Optional[Any] = return_attention_mask __UpperCAmelCase : int = do_normalize __UpperCAmelCase : str = feature_size __UpperCAmelCase : Any = chunk_length __UpperCAmelCase : Optional[Any] = hop_length def a_ ( self : Optional[Any]): """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a_ ( self : Dict , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : str=False): """simple docstring""" def _flatten(UpperCamelCase_ : int): return list(itertools.chain(*lowerCamelCase__)) if equal_length: __UpperCAmelCase : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size __UpperCAmelCase : List[Any] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: __UpperCAmelCase : Union[str, Any] = [np.asarray(lowerCamelCase__) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class a__ ( A__ , unittest.TestCase ): lowercase_ = WhisperFeatureExtractor if is_speech_available() else None def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : Optional[Any] = WhisperFeatureExtractionTester(self) def a_ ( self : Union[str, Any]): """simple docstring""" __UpperCAmelCase : int = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Union[str, Any] = feat_extract_first.save_pretrained(lowerCamelCase__)[0] check_json_file_has_correct_format(lowerCamelCase__) __UpperCAmelCase : str = self.feature_extraction_class.from_pretrained(lowerCamelCase__) __UpperCAmelCase : Any = feat_extract_first.to_dict() __UpperCAmelCase : int = feat_extract_second.to_dict() __UpperCAmelCase : int = feat_extract_first.mel_filters __UpperCAmelCase : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__)) self.assertEqual(lowerCamelCase__ , lowerCamelCase__) def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : int = os.path.join(lowerCamelCase__ , "feat_extract.json") feat_extract_first.to_json_file(lowerCamelCase__) __UpperCAmelCase : Tuple = self.feature_extraction_class.from_json_file(lowerCamelCase__) __UpperCAmelCase : List[str] = feat_extract_first.to_dict() __UpperCAmelCase : List[str] = feat_extract_second.to_dict() __UpperCAmelCase : List[Any] = feat_extract_first.mel_filters __UpperCAmelCase : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__)) self.assertEqual(lowerCamelCase__ , lowerCamelCase__) def a_ ( self : List[str]): """simple docstring""" __UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 __UpperCAmelCase : Tuple = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] __UpperCAmelCase : List[str] = [np.asarray(lowerCamelCase__) for speech_input in speech_inputs] # Test feature size __UpperCAmelCase : Optional[Any] = feature_extractor(lowerCamelCase__ , padding="max_length" , return_tensors="np").input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size) # Test not batched input __UpperCAmelCase : int = feature_extractor(speech_inputs[0] , return_tensors="np").input_features __UpperCAmelCase : int = feature_extractor(np_speech_inputs[0] , return_tensors="np").input_features self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3)) # Test batched __UpperCAmelCase : int = feature_extractor(lowerCamelCase__ , return_tensors="np").input_features __UpperCAmelCase : Union[str, Any] = feature_extractor(lowerCamelCase__ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3)) # Test 2-D numpy arrays are batched. __UpperCAmelCase : Optional[Any] = [floats_list((1, x))[0] for x in (800, 800, 800)] __UpperCAmelCase : int = np.asarray(lowerCamelCase__) __UpperCAmelCase : Dict = feature_extractor(lowerCamelCase__ , return_tensors="np").input_features __UpperCAmelCase : Optional[int] = feature_extractor(lowerCamelCase__ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3)) # Test truncation required __UpperCAmelCase : int = [floats_list((1, x))[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200)] __UpperCAmelCase : List[str] = [np.asarray(lowerCamelCase__) for speech_input in speech_inputs] __UpperCAmelCase : Dict = [x[: feature_extractor.n_samples] for x in speech_inputs] __UpperCAmelCase : List[Any] = [np.asarray(lowerCamelCase__) for speech_input in speech_inputs_truncated] __UpperCAmelCase : List[str] = feature_extractor(lowerCamelCase__ , return_tensors="np").input_features __UpperCAmelCase : List[Any] = feature_extractor(lowerCamelCase__ , return_tensors="np").input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase__ , lowerCamelCase__): self.assertTrue(np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3)) def a_ ( self : Dict): """simple docstring""" import torch __UpperCAmelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __UpperCAmelCase : List[Any] = np.random.rand(100 , 32).astype(np.floataa) __UpperCAmelCase : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __UpperCAmelCase : Dict = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_features.dtype == np.floataa) __UpperCAmelCase : Tuple = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def a_ ( self : Dict , UpperCamelCase_ : List[Any]): """simple docstring""" __UpperCAmelCase : List[str] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech __UpperCAmelCase : Dict = ds.sort("id").select(range(lowerCamelCase__))[:num_samples]["audio"] return [x["array"] for x in speech_samples] def a_ ( self : Tuple): """simple docstring""" __UpperCAmelCase : int = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ]) # fmt: on __UpperCAmelCase : str = self._load_datasamples(1) __UpperCAmelCase : List[str] = WhisperFeatureExtractor() __UpperCAmelCase : Optional[int] = feature_extractor(lowerCamelCase__ , return_tensors="pt").input_features self.assertEqual(input_features.shape , (1, 80, 3000)) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCamelCase__ , atol=1e-4)) def a_ ( self : Optional[int]): """simple docstring""" __UpperCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) __UpperCAmelCase : Dict = self._load_datasamples(1)[0] __UpperCAmelCase : int = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue __UpperCAmelCase : Tuple = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase__)[0] self.assertTrue(np.all(np.mean(lowerCamelCase__) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase__) - 1) < 1e-3))
77
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int]=100 , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[int]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : int=32 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Union[str, Any]=37 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Union[str, Any]=10 , lowerCamelCase__ : str=0.02 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=[0, 1, 2, 3] , ): a__ : Dict = parent a__ : Dict = 100 a__ : Optional[int] = batch_size a__ : Union[str, Any] = image_size a__ : Any = patch_size a__ : Optional[Any] = num_channels a__ : int = is_training a__ : List[str] = use_labels a__ : Optional[Any] = hidden_size a__ : List[Any] = num_hidden_layers a__ : str = num_attention_heads a__ : str = intermediate_size a__ : int = hidden_act a__ : List[Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = type_sequence_label_size a__ : Optional[Any] = initializer_range a__ : List[str] = scope a__ : int = out_indices a__ : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[int] = (image_size // patch_size) ** 2 a__ : Union[str, Any] = num_patches + 1 def _UpperCamelCase( self : int ): a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Optional[Any] = None a__ : Tuple = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCamelCase( self : Tuple ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any ): a__ : str = BeitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ): a__ : int = BeitForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _UpperCamelCase( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ): a__ : List[str] = self.type_sequence_label_size a__ : Optional[Any] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ : Optional[Any] = 1 a__ : List[str] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ : Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): a__ : int = self.num_labels a__ : List[str] = BeitForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Tuple = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _UpperCamelCase( self : Optional[int] ): a__ : Any = self.prepare_config_and_inputs() a__, a__, a__, a__ : Union[str, Any] = config_and_inputs a__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _lowercase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Any ): a__ : int = BeitModelTester(self ) a__ : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _UpperCamelCase( self : str ): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _UpperCamelCase( self : Dict ): pass def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : str ): a__, a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = model_class(lowerCamelCase__ ) a__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): if not self.model_tester.is_training: return a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling]: continue a__ : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() a__ : Any = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : Tuple = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : Tuple ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a__ : List[Any] = False a__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue a__ : Optional[Any] = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() a__ : Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : int = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : List[str] ): a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Dict = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: a__ : str = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _UpperCamelCase( self : Optional[int] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Tuple = BeitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _UpperCamelCase( self : str ): a__ : int = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(lowerCamelCase__ ) a__ : Optional[Any] = self.default_image_processor a__ : Dict = prepare_img() a__ : Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).pixel_values.to(lowerCamelCase__ ) # prepare bool_masked_pos a__ : Optional[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(pixel_values=lowerCamelCase__ , bool_masked_pos=lowerCamelCase__ ) a__ : Tuple = outputs.logits # verify the logits a__ : List[str] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[int] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCamelCase__ , atol=1E-2 ) ) @slow def _UpperCamelCase( self : Dict ): a__ : str = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(lowerCamelCase__ ) a__ : int = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Union[str, Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : Any ): a__ : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( lowerCamelCase__ ) a__ : str = self.default_image_processor a__ : List[str] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Dict = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Optional[int] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Optional[Any] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): a__ : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : Tuple = model.to(lowerCamelCase__ ) a__ : List[Any] = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : Union[str, Any] = Image.open(ds[0]["file"] ) a__ : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Tuple = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: a__ : Dict = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=lowerCamelCase__ , ) else: a__ : Dict = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _UpperCamelCase( self : Tuple ): a__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : List[Any] = model.to(lowerCamelCase__ ) a__ : int = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Optional[int] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : str = Image.open(ds[0]["file"] ) a__ : str = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : List[Any] = model(**lowerCamelCase__ ) a__ : Any = outputs.logits.detach().cpu() a__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(500, 300)] ) a__ : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) a__ : Any = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
37
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class _SCREAMING_SNAKE_CASE( A__ ): SCREAMING_SNAKE_CASE_ : str = '''unispeech-sat''' def __init__( self ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-5 ,SCREAMING_SNAKE_CASE__="group" ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) ,SCREAMING_SNAKE_CASE__=(5, 2, 2, 2, 2, 2, 2) ,SCREAMING_SNAKE_CASE__=(10, 3, 3, 3, 3, 2, 2) ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=1_28 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=0.0_5 ,SCREAMING_SNAKE_CASE__=10 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=10 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=3_20 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=1_00 ,SCREAMING_SNAKE_CASE__=2_56 ,SCREAMING_SNAKE_CASE__=2_56 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__="mean" ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=False ,SCREAMING_SNAKE_CASE__=2_56 ,SCREAMING_SNAKE_CASE__=(5_12, 5_12, 5_12, 5_12, 15_00) ,SCREAMING_SNAKE_CASE__=(5, 3, 3, 1, 1) ,SCREAMING_SNAKE_CASE__=(1, 2, 3, 1, 1) ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=0 ,SCREAMING_SNAKE_CASE__=1 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=5_04 ,**SCREAMING_SNAKE_CASE__ ,) -> int: """simple docstring""" super().__init__(**lowerCamelCase__ ,pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Optional[int] = hidden_size __SCREAMING_SNAKE_CASE :Optional[Any] = feat_extract_norm __SCREAMING_SNAKE_CASE :Any = feat_extract_activation __SCREAMING_SNAKE_CASE :Union[str, Any] = list(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :str = list(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :int = list(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :str = conv_bias __SCREAMING_SNAKE_CASE :List[Any] = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE :Any = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE :Tuple = len(self.conv_dim ) __SCREAMING_SNAKE_CASE :Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE :Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE :Tuple = hidden_act __SCREAMING_SNAKE_CASE :Optional[Any] = num_attention_heads __SCREAMING_SNAKE_CASE :int = hidden_dropout __SCREAMING_SNAKE_CASE :Optional[int] = attention_dropout __SCREAMING_SNAKE_CASE :Dict = activation_dropout __SCREAMING_SNAKE_CASE :Optional[Any] = feat_proj_dropout __SCREAMING_SNAKE_CASE :str = final_dropout __SCREAMING_SNAKE_CASE :List[Any] = layerdrop __SCREAMING_SNAKE_CASE :Any = layer_norm_eps __SCREAMING_SNAKE_CASE :str = initializer_range __SCREAMING_SNAKE_CASE :Dict = vocab_size __SCREAMING_SNAKE_CASE :Tuple = num_clusters __SCREAMING_SNAKE_CASE :Dict = do_stable_layer_norm __SCREAMING_SNAKE_CASE :Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE :List[str] = apply_spec_augment __SCREAMING_SNAKE_CASE :Optional[Any] = mask_time_prob __SCREAMING_SNAKE_CASE :str = mask_time_length __SCREAMING_SNAKE_CASE :Optional[Any] = mask_time_min_masks __SCREAMING_SNAKE_CASE :List[str] = mask_feature_prob __SCREAMING_SNAKE_CASE :Optional[Any] = mask_feature_length __SCREAMING_SNAKE_CASE :str = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __SCREAMING_SNAKE_CASE :List[str] = num_codevectors_per_group __SCREAMING_SNAKE_CASE :int = num_codevector_groups __SCREAMING_SNAKE_CASE :str = contrastive_logits_temperature __SCREAMING_SNAKE_CASE :List[str] = feat_quantizer_dropout __SCREAMING_SNAKE_CASE :int = num_negatives __SCREAMING_SNAKE_CASE :Tuple = codevector_dim __SCREAMING_SNAKE_CASE :Tuple = proj_codevector_dim __SCREAMING_SNAKE_CASE :List[str] = diversity_loss_weight # ctc loss __SCREAMING_SNAKE_CASE :Dict = ctc_loss_reduction __SCREAMING_SNAKE_CASE :Optional[Any] = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE :List[str] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __SCREAMING_SNAKE_CASE :Union[str, Any] = list(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Any = list(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :List[str] = list(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Any = xvector_output_dim @property def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" return functools.reduce(operator.mul ,self.conv_stride ,1 )
498
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Union[str, Any]: a__ : Tuple = R"\w+[.]\d+" a__ : List[Any] = re.findall(__a , __a ) for pat in pats: a__ : Union[str, Any] = key.replace(__a , "_".join(pat.split("." ) ) ) return key def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): a__ : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: a__ : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: a__ : Union[str, Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer a__ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: a__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": a__ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( __a , __a , __a=42 ) -> str: # Step 1: Convert pytorch tensor to numpy a__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params a__ : Tuple = flax_model.init_weights(PRNGKey(__a ) ) a__ : Optional[Any] = flatten_dict(__a ) a__ : Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : Optional[int] = rename_key(__a ) a__ : Optional[int] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters a__, a__ : Union[str, Any] = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown a__ : str = jnp.asarray(__a ) return unflatten_dict(__a )
37
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class a ( A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = CanineTokenizer __lowerCAmelCase = False def lowercase_ ( self ): '''simple docstring''' super().setUp() __UpperCAmelCase: str = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase_ ( self ): '''simple docstring''' return CanineTokenizer.from_pretrained("""google/canine-s""" ) def lowercase_ ( self , **snake_case_ ): '''simple docstring''' __UpperCAmelCase: Dict = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = 1024 return tokenizer @require_torch def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = self.canine_tokenizer __UpperCAmelCase: Union[str, Any] = ["Life is like a box of chocolates.", "You never know what you're gonna get."] # fmt: off __UpperCAmelCase: Dict = [5_7344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 5_7345, 0, 0, 0, 0] # fmt: on __UpperCAmelCase: str = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors="""pt""" ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase: str = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 39) , batch.input_ids.shape ) self.assertEqual((2, 39) , batch.attention_mask.shape ) @require_torch def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = self.canine_tokenizer __UpperCAmelCase: List[Any] = ["Once there was a man.", "He wrote a test in HuggingFace Tranformers."] __UpperCAmelCase: Any = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , lowerCamelCase__ ) self.assertIn("""attention_mask""" , lowerCamelCase__ ) self.assertIn("""token_type_ids""" , lowerCamelCase__ ) @require_torch def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: int = self.canine_tokenizer __UpperCAmelCase: List[Any] = [ "What's the weater?", "It's about 25 degrees.", ] __UpperCAmelCase: Dict = tokenizer( text_target=lowerCamelCase__ , max_length=32 , padding="""max_length""" , truncation=lowerCamelCase__ , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __UpperCAmelCase: List[str] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase: Optional[Any] = tempfile.mkdtemp() __UpperCAmelCase: int = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase: Optional[int] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) __UpperCAmelCase: int = tokenizer.__class__.from_pretrained(lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = after_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) shutil.rmtree(lowerCamelCase__ ) __UpperCAmelCase: Union[str, Any] = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __UpperCAmelCase: Tuple = tempfile.mkdtemp() __UpperCAmelCase: int = " He is very happy, UNwant\u00E9d,running" __UpperCAmelCase: Any = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: __UpperCAmelCase: List[Any] = chr(0XE0_07 ) additional_special_tokens.append(lowerCamelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) __UpperCAmelCase: str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) __UpperCAmelCase: Tuple = tokenizer.__class__.from_pretrained(lowerCamelCase__ ) __UpperCAmelCase: List[Any] = after_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertIn(lowerCamelCase__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __UpperCAmelCase: List[str] = tokenizer.__class__.from_pretrained(lowerCamelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[int] = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase: Tuple = self.get_clean_sequence(lowerCamelCase__ ) # a special token for Canine can be defined as follows: __UpperCAmelCase: List[Any] = 0XE0_05 __UpperCAmelCase: Optional[Any] = chr(lowerCamelCase__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) __UpperCAmelCase: str = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) , 1 ) __UpperCAmelCase: Optional[Any] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCamelCase__ ) __UpperCAmelCase: Any = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __UpperCAmelCase: Any = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , input_encoded + special_token_id ) __UpperCAmelCase: List[Any] = tokenizer.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) self.assertTrue(special_token not in decoded ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase: List[Any] = chr(0XE0_05 ) __UpperCAmelCase: str = chr(0XE0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCamelCase__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) __UpperCAmelCase: Dict = tokenizer.tokenize(lowerCamelCase__ ) __UpperCAmelCase: int = tokenizer.tokenize(lowerCamelCase__ ) self.assertEqual(len(lowerCamelCase__ ) , 1 ) self.assertEqual(len(lowerCamelCase__ ) , 1 ) self.assertEqual(token_a[0] , lowerCamelCase__ ) self.assertEqual(token_a[0] , lowerCamelCase__ ) @require_tokenizers def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # a special token for Canine can be defined as follows: __UpperCAmelCase: List[Any] = 0XE0_06 __UpperCAmelCase: Union[str, Any] = chr(lowerCamelCase__ ) __UpperCAmelCase: Optional[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCamelCase__ ) tokenizer.from_pretrained(lowerCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: str = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: __UpperCAmelCase: Dict = json.load(lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: __UpperCAmelCase: Tuple = json.load(lowerCamelCase__ ) # a special token for Canine can be defined as follows: __UpperCAmelCase: Optional[int] = 0XE0_06 __UpperCAmelCase: Tuple = chr(lowerCamelCase__ ) __UpperCAmelCase: List[Any] = [new_token_a] __UpperCAmelCase: Optional[Any] = [new_token_a] with open(os.path.join(lowerCamelCase__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCamelCase__ , lowerCamelCase__ ) with open(os.path.join(lowerCamelCase__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCamelCase__ , lowerCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __UpperCAmelCase: Any = tokenizer_class.from_pretrained(lowerCamelCase__ , extra_ids=0 ) self.assertIn(lowerCamelCase__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) __UpperCAmelCase: Optional[Any] = 0XE0_07 __UpperCAmelCase: str = chr(lowerCamelCase__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __UpperCAmelCase: List[str] = [AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ )] __UpperCAmelCase: List[str] = tokenizer_class.from_pretrained( lowerCamelCase__ , additional_special_tokens=lowerCamelCase__ , extra_ids=0 ) self.assertIn(lowerCamelCase__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: int = self.get_tokenizers(do_lower_case=lowerCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase: Optional[Any] = "hello world" if self.space_between_special_tokens: __UpperCAmelCase: Any = "[CLS] hello world [SEP]" else: __UpperCAmelCase: str = input __UpperCAmelCase: Any = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __UpperCAmelCase: Dict = tokenizer.decode(lowerCamelCase__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCamelCase__ , [output, output.lower()] ) def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCAmelCase: int = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __UpperCAmelCase: Optional[Any] = "a" __UpperCAmelCase: Optional[Any] = ord(lowerCamelCase__ ) for attr in attributes_list: setattr(lowerCamelCase__ , attr + """_id""" , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , attr + """_id""" ) , lowerCamelCase__ ) setattr(lowerCamelCase__ , attr + """_id""" , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(getattr(lowerCamelCase__ , attr + """_id""" ) , lowerCamelCase__ ) setattr(lowerCamelCase__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(lowerCamelCase__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(lowerCamelCase__ , """additional_special_tokens_ids""" ) , [] ) __UpperCAmelCase: List[Any] = 0XE0_06 __UpperCAmelCase: Dict = chr(lowerCamelCase__ ) setattr(lowerCamelCase__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCamelCase__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCamelCase__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' pass
523
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase_ ( ) -> int: a__ : Any = HfArgumentParser(__a ) a__ : Any = parser.parse_args_into_dataclasses()[0] a__ : Optional[int] = TensorFlowBenchmark(args=__a ) try: a__ : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: a__ : Tuple = "Arg --no_{0} is no longer used, please use --no-{0} instead." a__ : List[Any] = " ".join(str(__a ).split(" " )[:-1] ) a__ : str = "" a__ : List[Any] = eval(str(__a ).split(" " )[-1] ) a__ : List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__a ) if len(__a ) > 0: a__ : Tuple = full_error_msg + begin_error_msg + str(__a ) raise ValueError(__a ) benchmark.run() if __name__ == "__main__": main()
37
0
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __lowerCAmelCase : Tuple = """true""" def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str=8_2 , UpperCamelCase__ : int=1_6 ): """simple docstring""" set_seed(4_2 ) __UpperCAmelCase = RegressionModel() __UpperCAmelCase = deepcopy(__a ) __UpperCAmelCase = RegressionDataset(length=__a ) __UpperCAmelCase = DataLoader(__a , batch_size=__a ) model.to(accelerator.device ) __UpperCAmelCase = accelerator.prepare(__a , __a ) return model, ddp_model, dataloader def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : int=False ): """simple docstring""" __UpperCAmelCase = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __UpperCAmelCase = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(UpperCamelCase__ : Union[str, Any] ): __UpperCAmelCase = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs with accelerator.main_process_first(): __UpperCAmelCase = dataset.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __UpperCAmelCase = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(UpperCamelCase__ : Tuple ): if use_longest: return tokenizer.pad(__a , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(__a , padding='''max_length''' , max_length=1_2_8 , return_tensors='''pt''' ) return DataLoader(__a , shuffle=__a , collate_fn=__a , batch_size=1_6 ) def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict ): """simple docstring""" __UpperCAmelCase = Accelerator(dispatch_batches=__a , split_batches=__a ) __UpperCAmelCase = get_dataloader(__a , not dispatch_batches ) __UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=__a ) __UpperCAmelCase = accelerator.prepare(__a , __a ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): """simple docstring""" __UpperCAmelCase = [] for batch in dataloader: __UpperCAmelCase = batch.values() with torch.no_grad(): __UpperCAmelCase = model(__a ) __UpperCAmelCase = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __UpperCAmelCase = [], [] for logit, targ in logits_and_targets: logits.append(__a ) targs.append(__a ) __UpperCAmelCase = torch.cat(__a ), torch.cat(__a ) return logits, targs def lowerCAmelCase ( UpperCamelCase__ : str , UpperCamelCase__ : Tuple=8_2 , UpperCamelCase__ : Any=False , UpperCamelCase__ : Dict=False , UpperCamelCase__ : List[str]=1_6 ): """simple docstring""" __UpperCAmelCase = get_basic_setup(__a , __a , __a ) __UpperCAmelCase = generate_predictions(__a , __a , __a ) assert ( len(__a ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(__a )}""" def lowerCAmelCase ( UpperCamelCase__ : List[Any] = False , UpperCamelCase__ : Optional[Any] = False ): """simple docstring""" __UpperCAmelCase = evaluate.load('''glue''' , '''mrpc''' ) __UpperCAmelCase = get_mrpc_setup(__a , __a ) # First do baseline __UpperCAmelCase = setup["no"] model.to(__a ) model.eval() for batch in dataloader: batch.to(__a ) with torch.inference_mode(): __UpperCAmelCase = model(**__a ) __UpperCAmelCase = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=__a , references=batch['''labels'''] ) __UpperCAmelCase = metric.compute() # Then do distributed __UpperCAmelCase = setup["ddp"] model.eval() for batch in dataloader: with torch.inference_mode(): __UpperCAmelCase = model(**__a ) __UpperCAmelCase = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase = batch["labels"] __UpperCAmelCase = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=__a , references=__a ) __UpperCAmelCase = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowerCAmelCase ( ): """simple docstring""" __UpperCAmelCase = Accelerator(split_batches=__a , dispatch_batches=__a ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(__a , __a ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __UpperCAmelCase = Accelerator(split_batches=__a , dispatch_batches=__a ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(__a , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __UpperCAmelCase = Accelerator() test_torch_metrics(__a , 5_1_2 ) accelerator.state._reset_state() def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] ): """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
262
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCamelCase : Optional[int] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCamelCase_ ( __a ) -> Any: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCamelCase_ ( __a , __a , __a ) -> Any: return max(metric_fn(__a , __a ) for gt in ground_truths ) def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = [] if args.gold_data_mode == "qa": a__ : Any = pd.read_csv(__a , sep="\t" , header=__a ) for answer_list in data[1]: a__ : Union[str, Any] = ast.literal_eval(__a ) answers.append(__a ) else: a__ : List[str] = [line.strip() for line in open(__a , "r" ).readlines()] a__ : List[str] = [[reference] for reference in references] a__ : List[str] = 0 for prediction, ground_truths in zip(__a , __a ): total += 1 em += metric_max_over_ground_truths(__a , __a , __a ) fa += metric_max_over_ground_truths(__a , __a , __a ) a__ : Dict = 100.0 * em / total a__ : Optional[Any] = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Optional[Any] = args.k a__ : str = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = 0 for hypo, reference in zip(__a , __a ): a__ : Any = set(hypo.split("\t" )[:k] ) a__ : Union[str, Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a__ : Union[str, Any] = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: def strip_title(__a ): if title.startswith("\"" ): a__ : Optional[Any] = title[1:] if title.endswith("\"" ): a__ : Union[str, Any] = title[:-1] return title a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="pt" , padding=__a , truncation=__a , )["input_ids"].to(args.device ) a__ : Optional[int] = rag_model.rag.question_encoder(__a ) a__ : Union[str, Any] = question_enc_outputs[0] a__ : Optional[int] = rag_model.retriever( __a , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) a__ : List[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a__ : int = [] for docs in all_docs: a__ : Optional[int] = [strip_title(__a ) for title in docs["title"]] provenance_strings.append("\t".join(__a ) ) return provenance_strings def UpperCamelCase_ ( __a , __a , __a ) -> Dict: with torch.no_grad(): a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="pt" , padding=__a , truncation=__a ) a__ : Any = inputs_dict.input_ids.to(args.device ) a__ : Dict = inputs_dict.attention_mask.to(args.device ) a__ : Optional[int] = rag_model.generate( # rag_model overwrites generate __a , attention_mask=__a , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__a , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a__ : int = rag_model.retriever.generator_tokenizer.batch_decode(__a , skip_special_tokens=__a ) if args.print_predictions: for q, a in zip(__a , __a ): logger.info("Q: {} - A: {}".format(__a , __a ) ) return answers def UpperCamelCase_ ( ) -> List[str]: a__ : int = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=__a , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=__a , choices=["exact", "compressed", "legacy"] , type=__a , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=__a , type=__a , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=__a , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=__a , type=__a , required=__a , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=__a , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=__a , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=__a , type=__a , required=__a , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=__a , type=__a , required=__a , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=__a , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=__a , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=__a , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=__a , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=__a , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=__a , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) a__ : int = parser.parse_args() a__ : Dict = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def UpperCamelCase_ ( __a ) -> Optional[int]: a__ : Tuple = {} if args.model_type is None: a__ : List[str] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): a__ : int = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration a__ : Tuple = args.n_docs if args.index_name is not None: a__ : Any = args.index_name if args.index_path is not None: a__ : int = args.index_path else: a__ : Optional[Any] = BartForConditionalGeneration a__ : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , __a ) a__ : Any = get_scores if args.eval_mode == "e2e" else get_precision_at_k a__ : Union[str, Any] = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__a , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__a ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): a__ : str = RagRetriever.from_pretrained(__a , **__a ) a__ : Optional[int] = model_class.from_pretrained(__a , retriever=__a , **__a ) model.retriever.init_retrieval() else: a__ : Dict = model_class.from_pretrained(__a , **__a ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: a__ : List[Any] = [] for line in tqdm(__a ): questions.append(line.strip() ) if len(__a ) == args.eval_batch_size: a__ : Union[str, Any] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("\n".join(__a ) + "\n" ) preds_file.flush() a__ : Any = [] if len(__a ) > 0: a__ : List[str] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("\n".join(__a ) ) preds_file.flush() score_fn(__a , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCamelCase : List[Any] = get_args() main(args)
37
0
'''simple docstring''' def snake_case ( a_ : List[Any] ) -> bool: """simple docstring""" return str(__a ) == str(__a )[::-1] def snake_case ( a_ : Tuple ) -> int: """simple docstring""" return int(__a ) + int(str(__a )[::-1] ) def snake_case ( a_ : Optional[int] = 10_000 ) -> int: """simple docstring""" UpperCamelCase_ : Optional[Any] = [] for num in range(1 , __a ): UpperCamelCase_ : Optional[Any] = 0 UpperCamelCase_ : List[Any] = num while iterations < 50: UpperCamelCase_ : Tuple = sum_reverse(__a ) iterations += 1 if is_palindrome(__a ): break else: lychrel_nums.append(__a ) return len(__a ) if __name__ == "__main__": print(f"{solution() = }")
208
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a = None , ) -> str: a__ : int = {} if train_file is not None: a__ : int = [train_file] if eval_file is not None: a__ : Union[str, Any] = [eval_file] if test_file is not None: a__ : str = [test_file] a__ : Optional[Any] = datasets.load_dataset("csv" , data_files=__a ) a__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) a__ : str = features_name.pop(__a ) a__ : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) a__ : str = {label: i for i, label in enumerate(__a )} a__ : Tuple = tokenizer.model_input_names a__ : List[str] = {} if len(__a ) == 1: for k in files.keys(): a__ : Optional[Any] = ds[k].map( lambda __a : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__a , max_length=__a , padding="max_length" ) , batched=__a , ) elif len(__a ) == 2: for k in files.keys(): a__ : Dict = ds[k].map( lambda __a : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__a , max_length=__a , padding="max_length" , ) , batched=__a , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: a__ : str = {k: v for k, v in ex.items() if k in input_names} a__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: a__ : Tuple = {k: v for k, v in ex.items() if k in input_names} a__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: a__ : List[Any] = {k: v for k, v in ex.items() if k in input_names} a__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) a__ : Optional[Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: a__ : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: a__ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: a__ : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" _lowercase = field(metadata={'help': 'Which column contains the label'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the training file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the development file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the test file'} ) _lowercase = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _lowercase = field( default=A__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class A__ : """simple docstring""" _lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowercase = field(default=A__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCamelCase_ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) a__, a__, a__ : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a__, a__, a__, a__ : Optional[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) a__ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__a ) , labelaid=__a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): a__ : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , ) def compute_metrics(__a ) -> Dict: a__ : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer a__ : Dict = TFTrainer( model=__a , args=__a , train_dataset=__a , eval_dataset=__a , compute_metrics=__a , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a__ : Dict = trainer.evaluate() a__ : int = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(__a , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__a ) return results if __name__ == "__main__": main()
37
0
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowercase : Union[str, Any] = getLogger(__name__) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 8 , _UpperCAmelCase = 1_0_2_4 , _UpperCAmelCase="val" , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase="summarization" , _UpperCAmelCase=None , _UpperCAmelCase=1 , _UpperCAmelCase = None , _UpperCAmelCase="" , **_UpperCAmelCase , ): lowerCamelCase_: List[str] = str(__a ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" , rank=__a ) lowerCamelCase_: Tuple = Path(__a ) lowerCamelCase_: Tuple = save_dir.joinpath(f"""rank_{local_rank}_output.json""" ) torch.cuda.set_device(__a ) lowerCamelCase_: Dict = AutoModelForSeqaSeqLM.from_pretrained(__a ).cuda() if fpaa: lowerCamelCase_: List[str] = model.half() # determine if we need to increase num_beams use_task_specific_params(__a , __a ) # update config with task specific params lowerCamelCase_: Optional[int] = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowerCamelCase_: Tuple = num_return_sequences lowerCamelCase_: int = AutoTokenizer.from_pretrained(__a ) logger.info(f"""Inferred tokenizer type: {tokenizer.__class__}""" ) # if this is wrong, check config.model_type. if max_source_length is None: lowerCamelCase_: Optional[int] = tokenizer.model_max_length if prefix is None: lowerCamelCase_: List[str] = prefix or getattr(model.config , """prefix""" , """""" ) or "" lowerCamelCase_: Tuple = SeqaSeqDataset( __a , __a , __a , max_target_length=1_0_2_4 , type_path=__a , n_obs=__a , prefix=__a , **__a , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowerCamelCase_: Any = ds.make_sortish_sampler(__a , distributed=__a , add_extra_examples=__a , shuffle=__a ) lowerCamelCase_: List[str] = DataLoader(__a , sampler=__a , batch_size=__a , collate_fn=ds.collate_fn ) lowerCamelCase_: List[str] = [] for batch in tqdm(__a ): lowerCamelCase_: List[str] = model.generate( input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=__a , num_beams=__a , **__a , ) lowerCamelCase_: int = tokenizer.batch_decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) lowerCamelCase_: Optional[int] = batch["ids"] if num_return_sequences > 1: lowerCamelCase_: Any = chunks(__a , __a ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(__a ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(__a , __a ) return results, sampler.num_replicas def UpperCAmelCase_ ( ): lowerCamelCase_: Any = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" , type=__a , help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" , type=__a , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , ) parser.add_argument("""--save_dir""" , type=__a , help="""where to save""" , default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" , type=__a , default=__a ) parser.add_argument( """--type_path""" , type=__a , default="""test""" , help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" , type=__a , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=__a , default=8 , required=__a , help="""batch size""" ) parser.add_argument( """--local_rank""" , type=__a , default=-1 , required=__a , help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" , type=__a , default=__a , required=__a , help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" , type=__a , default=1 , required=__a , help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" , type=__a , default=6_0_0 , required=__a , help="""How long should master process wait for other processes to finish.""" , ) parser.add_argument("""--src_lang""" , type=__a , default=__a , required=__a ) parser.add_argument("""--tgt_lang""" , type=__a , default=__a , required=__a ) parser.add_argument( """--prefix""" , type=__a , required=__a , default=__a , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--debug""" , action="""store_true""" ) lowerCamelCase_: Tuple = time.time() lowerCamelCase_: str = parser.parse_known_args() lowerCamelCase_: Any = parse_numeric_n_bool_cl_kwargs(__a ) if generate_kwargs and args.local_rank <= 0: print(f"""parsed the following generate kwargs: {generate_kwargs}""" ) lowerCamelCase_: int = Path(args.save_dir + """_tmp""" ) Path(__a ).mkdir(exist_ok=__a ) # this handles locking. lowerCamelCase_: Any = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f"""Found files at {json_save_dir} please move or remove them.""" ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowerCamelCase_: Dict = {} if args.src_lang is not None: lowerCamelCase_: Any = args.src_lang if args.tgt_lang is not None: lowerCamelCase_: Tuple = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=__a ) lowerCamelCase_: int = eval_data_dir( args.data_dir , __a , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=__a , **__a , ) if args.local_rank <= 0: lowerCamelCase_: Tuple = Path(args.save_dir ) save_dir.mkdir(exist_ok=__a ) lowerCamelCase_: Optional[int] = gather_results_from_each_node(__a , __a , args.sync_timeout ) lowerCamelCase_: Tuple = combine_partial_results(__a ) if args.num_return_sequences > 1: lowerCamelCase_: Dict = save_dir.joinpath("""pseudolabel_results.json""" ) print(f"""Saving aggregated results at {save_path}, intermediate in {json_save_dir}/""" ) save_json(__a , __a ) return lowerCamelCase_: str = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(__a ) as f: lowerCamelCase_: Union[str, Any] = [x.rstrip() for x in f.readlines()][: len(__a )] # Calculate metrics, save metrics, and save _generations.txt lowerCamelCase_: Dict = "translation" in args.task lowerCamelCase_: str = calculate_bleu if calc_bleu else calculate_rouge lowerCamelCase_: str = "bleu" if calc_bleu else "rouge" lowerCamelCase_: Dict = score_fn(__a , __a ) lowerCamelCase_: List[str] = len(__a ) lowerCamelCase_: Any = time.time() - start_time lowerCamelCase_: Optional[int] = round(runtime / metrics["""n_obs"""] , 4 ) lowerCamelCase_: int = num_replicas # TODO(@stas00): add whatever metadata to metrics lowerCamelCase_: Dict = save_dir.joinpath(f"""{args.type_path}_{metric_name}.json""" ) save_json(__a , __a , indent=__a ) print(__a ) write_txt_file(__a , save_dir.joinpath(f"""{args.type_path}_generations.txt""" ) ) if args.debug: write_txt_file(__a , save_dir.joinpath(f"""{args.type_path}.target""" ) ) else: shutil.rmtree(__a ) def UpperCAmelCase_ ( _UpperCAmelCase ): lowerCamelCase_: List[str] = [] for partial_result in partial_results: records.extend(__a ) lowerCamelCase_: List[str] = sorted(__a , key=lambda _UpperCAmelCase : x["id"] ) lowerCamelCase_: Union[str, Any] = [x["pred"] for x in records] return preds def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # WAIT FOR lots of .json files lowerCamelCase_: List[Any] = time.time() logger.info("""waiting for all nodes to finish""" ) lowerCamelCase_: Dict = None while (time.time() - start_wait) < timeout: lowerCamelCase_: Optional[Any] = list(save_dir.glob("""rank_*.json""" ) ) if len(__a ) < num_replicas: continue try: # make sure all json files are fully saved lowerCamelCase_: Union[str, Any] = lmap(__a , __a ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
423
import argparse import collections import json import os import re import string import sys import numpy as np UpperCamelCase : List[str] = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) UpperCamelCase : Union[str, Any] = None def UpperCamelCase_ ( ) -> List[str]: a__ : List[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=__a , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=__a , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def UpperCamelCase_ ( __a ) -> str: a__ : Optional[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : Dict = bool(qa["answers"]["text"] ) return qid_to_has_ans def UpperCamelCase_ ( __a ) -> List[Any]: def remove_articles(__a ): return ARTICLES_REGEX.sub(" " , __a ) def white_space_fix(__a ): return " ".join(text.split() ) def remove_punc(__a ): a__ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__a ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__a ) ) ) ) def UpperCamelCase_ ( __a ) -> Dict: if not s: return [] return normalize_answer(__a ).split() def UpperCamelCase_ ( __a , __a ) -> str: return int(normalize_answer(__a ) == normalize_answer(__a ) ) def UpperCamelCase_ ( __a , __a ) -> Dict: a__ : int = get_tokens(__a ) a__ : Optional[Any] = get_tokens(__a ) a__ : Any = collections.Counter(__a ) & collections.Counter(__a ) a__ : Dict = sum(common.values() ) if len(__a ) == 0 or len(__a ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a__ : Tuple = 1.0 * num_same / len(__a ) a__ : str = 1.0 * num_same / len(__a ) a__ : str = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase_ ( __a , __a ) -> int: a__ : List[str] = {} a__ : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : List[Any] = qa["id"] a__ : Dict = [t for t in qa["answers"]["text"] if normalize_answer(__a )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a__ : Tuple = [""] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue a__ : Tuple = preds[qid] # Take max over all gold answers a__ : Optional[int] = max(compute_exact(__a , __a ) for a in gold_answers ) a__ : str = max(compute_fa(__a , __a ) for a in gold_answers ) return exact_scores, fa_scores def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]: a__ : Optional[Any] = {} for qid, s in scores.items(): a__ : Dict = na_probs[qid] > na_prob_thresh if pred_na: a__ : Dict = float(not qid_to_has_ans[qid] ) else: a__ : Optional[Any] = s return new_scores def UpperCamelCase_ ( __a , __a , __a=None ) -> Tuple: if not qid_list: a__ : Union[str, Any] = len(__a ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: a__ : int = len(__a ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: for k in new_eval: a__ : Optional[Any] = new_eval[k] def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]: plt.step(__a , __a , color="b" , alpha=0.2 , where="post" ) plt.fill_between(__a , __a , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__a ) plt.savefig(__a ) plt.clf() def UpperCamelCase_ ( __a , __a , __a , __a , __a=None , __a=None ) -> Dict: a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] ) a__ : Any = 0.0 a__ : Optional[int] = 1.0 a__ : Optional[int] = 0.0 a__ : Any = [1.0] a__ : Tuple = [0.0] a__ : List[str] = 0.0 for i, qid in enumerate(__a ): if qid_to_has_ans[qid]: true_pos += scores[qid] a__ : Any = true_pos / float(i + 1 ) a__ : int = true_pos / float(__a ) if i == len(__a ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__a ) recalls.append(__a ) if out_image: plot_pr_curve(__a , __a , __a , __a ) return {"ap": 100.0 * avg_prec} def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> str: if out_image_dir and not os.path.exists(__a ): os.makedirs(__a ) a__ : Optional[int] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a__ : Optional[int] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) a__ : Optional[Any] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) a__ : str = {k: float(__a ) for k, v in qid_to_has_ans.items()} a__ : Optional[Any] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(__a , __a , "pr_exact" ) merge_eval(__a , __a , "pr_f1" ) merge_eval(__a , __a , "pr_oracle" ) def UpperCamelCase_ ( __a , __a , __a , __a ) -> str: if not qid_list: return a__ : Optional[Any] = [na_probs[k] for k in qid_list] a__ : str = np.ones_like(__a ) / float(len(__a ) ) plt.hist(__a , weights=__a , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__a , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[Any]: a__ : str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a__ : Optional[Any] = num_no_ans a__ : Dict = cur_score a__ : Any = 0.0 a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] ) for i, qid in enumerate(__a ): if qid not in scores: continue if qid_to_has_ans[qid]: a__ : Optional[int] = scores[qid] else: if preds[qid]: a__ : str = -1 else: a__ : Union[str, Any] = 0 cur_score += diff if cur_score > best_score: a__ : Any = cur_score a__ : Dict = na_probs[qid] return 100.0 * best_score / len(__a ), best_thresh def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> Any: a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a ) a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a ) a__ : Any = best_exact a__ : Any = exact_thresh a__ : List[Any] = best_fa a__ : Optional[int] = fa_thresh def UpperCamelCase_ ( ) -> Tuple: with open(OPTS.data_file ) as f: a__ : List[Any] = json.load(__a ) a__ : Any = dataset_json["data"] with open(OPTS.pred_file ) as f: a__ : int = json.load(__a ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a__ : List[str] = json.load(__a ) else: a__ : Optional[int] = {k: 0.0 for k in preds} a__ : Optional[Any] = make_qid_to_has_ans(__a ) # maps qid to True/False a__ : List[Any] = [k for k, v in qid_to_has_ans.items() if v] a__ : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v] a__, a__ : str = get_raw_scores(__a , __a ) a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh ) a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh ) a__ : Tuple = make_eval_dict(__a , __a ) if has_ans_qids: a__ : str = make_eval_dict(__a , __a , qid_list=__a ) merge_eval(__a , __a , "HasAns" ) if no_ans_qids: a__ : List[Any] = make_eval_dict(__a , __a , qid_list=__a ) merge_eval(__a , __a , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(__a , __a , __a , __a , __a , __a ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__a , __a , __a , __a , __a , OPTS.out_image_dir ) histogram_na_prob(__a , __a , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(__a , __a , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(__a , __a ) else: print(json.dumps(__a , indent=2 ) ) if __name__ == "__main__": UpperCamelCase : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
37
0
from __future__ import annotations import numpy as np def a_ ( lowerCAmelCase_ : Any ): return np.maximum(0, __a ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
53
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = CLIPTokenizer _lowercase = CLIPTokenizerFast _lowercase = True _lowercase = {} _lowercase = False def _UpperCamelCase( self : List[Any] ): super().setUp() # fmt: off a__ : Any = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) a__ : Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] a__ : Optional[Any] = {"unk_token": "<unk>"} a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) def _UpperCamelCase( self : Dict , **lowerCamelCase__ : int ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , **lowerCamelCase__ : Optional[int] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[Any] ): a__ : int = "lower newer" a__ : Optional[int] = "lower newer" return input_text, output_text def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a__ : int = "lower newer" a__ : List[str] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] a__ : Union[str, Any] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : int = tokens + [tokenizer.unk_token] a__ : Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @require_ftfy def _UpperCamelCase( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : List[str] = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : int = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." a__ : Optional[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : Dict = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a__ : Optional[Any] = "xa\u0303y" + " " + "x\xe3y" a__ : Optional[int] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of space type a__ : str = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a__ : Any = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of line break type a__ : Union[str, Any] = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a__ : List[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a__ : Tuple = f'''{text_of_1_token} {text_of_1_token}''' a__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Union[str, Any] = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) a__ : Optional[Any] = f''' {text}''' a__ : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Dict = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) def _UpperCamelCase( self : int ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCamelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def _UpperCamelCase( self : int ): super().test_tokenization_python_rust_equals() def _UpperCamelCase( self : str ): # CLIP always lower cases letters pass
37
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class A_ (A__ ): def _lowercase ( self , _A ): '''simple docstring''' with open(lowerCamelCase__ , encoding='''utf-8''' ) as input_file: UpperCAmelCase = re.compile(r'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) UpperCAmelCase = input_file.read() UpperCAmelCase = regexp.search(lowerCamelCase__ ) return match def _lowercase ( self , _A ): '''simple docstring''' with open(lowerCamelCase__ , encoding='''utf-8''' ) as input_file: UpperCAmelCase = re.compile(r'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) UpperCAmelCase = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase = regexp.finditer(lowerCamelCase__ ) UpperCAmelCase = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = Path('''./datasets''' ) UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCamelCase__ ) ): raise AssertionError(F"""open(...) must use utf-8 encoding in {dataset}""" ) def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = Path('''./datasets''' ) UpperCAmelCase = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCamelCase__ ) ): raise AssertionError(F"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
130
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCamelCase : Dict = """<<<<<<< This should probably be modified because it mentions: """ UpperCamelCase : List[Any] = """======= >>>>>>> """ UpperCamelCase : Optional[Any] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] UpperCamelCase : Any = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def UpperCamelCase_ ( __a ) -> Optional[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class A__ ( A__ ): """simple docstring""" @staticmethod def _UpperCamelCase( lowerCamelCase__ : ArgumentParser ): a__ : List[str] = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , *lowerCamelCase__ : Tuple ): a__ : str = get_logger("datasets-cli/converting" ) a__ : Optional[Any] = tfds_path a__ : Optional[int] = datasets_directory def _UpperCamelCase( self : int ): if os.path.isdir(self._tfds_path ): a__ : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): a__ : Any = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) a__ : Dict = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) a__ : Tuple = [] a__ : str = [] a__ : List[Any] = {} if os.path.isdir(self._tfds_path ): a__ : List[str] = os.listdir(lowerCamelCase__ ) else: a__ : Union[str, Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) a__ : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) a__ : Dict = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) if not os.path.isfile(lowerCamelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(lowerCamelCase__ , encoding="utf-8" ) as f: a__ : List[Any] = f.readlines() a__ : Union[str, Any] = [] a__ : Union[str, Any] = False a__ : Union[str, Any] = False a__ : Dict = [] for line in lines: a__ : Optional[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: a__ : List[Any] = "import datasets\n" elif "import tensorflow" in out_line: # order is important here a__ : List[str] = "" continue elif "from absl import logging" in out_line: a__ : Dict = "from datasets import logging\n" elif "getLogger" in out_line: a__ : List[Any] = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): a__ : List[str] = True a__ : Dict = list(filter(lambda lowerCamelCase__ : e in out_line , lowerCamelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCamelCase__ ) + "\n" ) out_lines.append(lowerCamelCase__ ) out_lines.append(lowerCamelCase__ ) continue else: for pattern, replacement in TO_CONVERT: a__ : Tuple = re.sub(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: a__ : Optional[int] = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , lowerCamelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) a__ : Optional[Any] = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: a__ : Optional[int] = True out_lines.append(lowerCamelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset a__ : Dict = f_name.replace(".py" , "" ) a__ : Optional[int] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) a__ : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCamelCase__ ) if needs_manual_update: with_manual_update.append(lowerCamelCase__ ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.writelines(lowerCamelCase__ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: a__ : Any = os.path.basename(lowerCamelCase__ ) a__ : Optional[int] = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowerCamelCase__ , lowerCamelCase__ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
37
0
"""simple docstring""" import math def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__a ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError("""This should never happen""" ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. __lowerCAmelCase : Tuple = """Enter the base and the power separated by a comma: """ __lowerCAmelCase : str = map(int, input(prompt).split(",")) __lowerCAmelCase : Tuple = map(int, input(prompt).split(",")) # We find the log of each number, using the function res(), which takes two # arguments. __lowerCAmelCase : Any = res(xa, ya) __lowerCAmelCase : List[str] = res(xa, ya) # We check for the largest number if resa > resa: print("Largest number is", xa, "^", ya) elif resa > resa: print("Largest number is", xa, "^", ya) else: print("Both are equal")
644
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class A__ ( A__ ): """simple docstring""" _lowercase = '' _lowercase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowercase = None # compression type in fsspec. ex: "gzip" _lowercase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[str] , lowerCamelCase__ : str = "" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[dict] = None , **lowerCamelCase__ : List[str] ): super().__init__(self , **lowerCamelCase__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode a__ : str = fsspec.open( lowerCamelCase__ , mode="rb" , protocol=lowerCamelCase__ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) a__ : Optional[int] = os.path.basename(self.file.path.split("::" )[0] ) a__ : int = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) a__ : List[Any] = None @classmethod def _UpperCamelCase( cls : int , lowerCamelCase__ : int ): # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCamelCase__ ).lstrip("/" ) def _UpperCamelCase( self : Dict ): if self.dir_cache is None: a__ : Dict = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} a__ : int = {f["name"]: f} def _UpperCamelCase( self : Tuple , lowerCamelCase__ : str ): return self.file.open().read() def _UpperCamelCase( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str = "rb" , lowerCamelCase__ : int=None , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Optional[Any] , ): a__ : Optional[int] = self._strip_protocol(lowerCamelCase__ ) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class A__ ( A__ ): """simple docstring""" _lowercase = 'bz2' _lowercase = 'bz2' _lowercase = '.bz2' class A__ ( A__ ): """simple docstring""" _lowercase = 'gzip' _lowercase = 'gzip' _lowercase = '.gz' class A__ ( A__ ): """simple docstring""" _lowercase = 'lz4' _lowercase = 'lz4' _lowercase = '.lz4' class A__ ( A__ ): """simple docstring""" _lowercase = 'xz' _lowercase = 'xz' _lowercase = '.xz' class A__ ( A__ ): """simple docstring""" _lowercase = 'zstd' _lowercase = 'zstd' _lowercase = '.zst' def __init__( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : str = "rb" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[dict] = None , lowerCamelCase__ : int = DEFAULT_BLOCK_SIZE , **lowerCamelCase__ : Tuple , ): super().__init__( fo=lowerCamelCase__ , mode=lowerCamelCase__ , target_protocol=lowerCamelCase__ , target_options=lowerCamelCase__ , block_size=lowerCamelCase__ , **lowerCamelCase__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 a__ : Any = self.file.__enter__ class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : str ): a__ : List[Any] = file_ def __enter__( self : str ): self._file.__enter__() return self def __exit__( self : int , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : int ): self._file.__exit__(*lowerCamelCase__ , **lowerCamelCase__ ) def __iter__( self : List[str] ): return iter(self._file ) def _UpperCamelCase( self : Any ): return next(self._file ) def __getattr__( self : Optional[Any] , lowerCamelCase__ : Tuple ): return getattr(self._file , lowerCamelCase__ ) def fixed_enter(*lowerCamelCase__ : List[str] , **lowerCamelCase__ : str ): return WrappedFile(_enter(*lowerCamelCase__ , **lowerCamelCase__ ) ) a__ : Any = fixed_enter
37
0
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] ): _UpperCAmelCase : Union[str, Any] = len(__a ), len(grid[0] ) if ( min(__a , __a ) < 0 or row == row_length or col == col_length or (row, col) in visit or grid[row][col] == 1 ): return 0 if row == row_length - 1 and col == col_length - 1: return 1 visit.add((row, col) ) _UpperCAmelCase : List[Any] = 0 count += depth_first_search(__a , row + 1 , __a , __a ) count += depth_first_search(__a , row - 1 , __a , __a ) count += depth_first_search(__a , __a , col + 1 , __a ) count += depth_first_search(__a , __a , col - 1 , __a ) visit.remove((row, col) ) return count if __name__ == "__main__": import doctest doctest.testmod()
506
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Union[str, Any] = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") a__ : Union[str, Any] = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__a ): os.makedirs(__a ) a__ : Any = model.state_dict() def to_tf_var_name(__a ): for patt, repl in iter(__a ): a__ : Tuple = name.replace(__a , __a ) return f'''bert/{name}''' def create_tf_var(__a , __a , __a ): a__ : Tuple = tf.dtypes.as_dtype(tensor.dtype ) a__ : Dict = tf.get_variable(dtype=__a , shape=tensor.shape , name=__a , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__a ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: a__ : int = to_tf_var_name(__a ) a__ : Union[str, Any] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): a__ : int = torch_tensor.T a__ : Optional[Any] = create_tf_var(tensor=__a , name=__a , session=__a ) tf.keras.backend.set_value(__a , __a ) a__ : int = session.run(__a ) print(f'''Successfully created {tf_name}: {np.allclose(__a , __a )}''' ) a__ : Any = tf.train.Saver(tf.trainable_variables() ) saver.save(__a , os.path.join(__a , model_name.replace("-" , "_" ) + ".ckpt" ) ) def UpperCamelCase_ ( __a=None ) -> int: a__ : Dict = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__a , required=__a , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=__a , default=__a , required=__a , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=__a , required=__a , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=__a , required=__a , help="Directory in which to save tensorflow model" ) a__ : Optional[Any] = parser.parse_args(__a ) a__ : Tuple = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__a , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
37
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A ( A__ , unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = DanceDiffusionPipeline __UpperCAmelCase : List[str] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __UpperCAmelCase : Dict = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __UpperCAmelCase : Union[str, Any] = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __UpperCAmelCase : Union[str, Any] = False __UpperCAmelCase : Any = False def __lowerCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _a = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=lowerCamelCase__ , use_timestep_embedding=lowerCamelCase__ , time_embedding_type="fourier" , mid_block_type="UNetMidBlock1D" , down_block_types=("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , up_block_types=("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , ) _a = IPNDMScheduler() _a = { "unet": unet, "scheduler": scheduler, } return components def __lowerCAmelCase ( self , snake_case_ , snake_case_=0 ) -> Optional[int]: if str(lowerCamelCase__ ).startswith("mps" ): _a = torch.manual_seed(lowerCamelCase__ ) else: _a = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) _a = { "batch_size": 1, "generator": generator, "num_inference_steps": 4, } return inputs def __lowerCAmelCase ( self ) -> Dict: _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = DanceDiffusionPipeline(**lowerCamelCase__ ) _a = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _a = self.get_dummy_inputs(lowerCamelCase__ ) _a = pipe(**lowerCamelCase__ ) _a = output.audios _a = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _a = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __lowerCAmelCase ( self ) -> Dict: return super().test_save_load_local() @skip_mps def __lowerCAmelCase ( self ) -> Dict: return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __lowerCAmelCase ( self ) -> List[str]: return super().test_save_load_optional_components() @skip_mps def __lowerCAmelCase ( self ) -> List[Any]: return super().test_attention_slicing_forward_pass() def __lowerCAmelCase ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Optional[Any]: _a = torch_device _a = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" ) _a = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _a = torch.manual_seed(0 ) _a = pipe(generator=lowerCamelCase__ , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) _a = output.audios _a = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _a = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCAmelCase ( self ) -> Any: _a = torch_device _a = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k" , torch_dtype=torch.floataa ) _a = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) _a = torch.manual_seed(0 ) _a = pipe(generator=lowerCamelCase__ , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) _a = output.audios _a = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _a = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
131
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Any=24 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : int=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Optional[Any]=37 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : str=10 , lowerCamelCase__ : Optional[Any]=0.02 , lowerCamelCase__ : str=None , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Optional[Any]=2 , ): a__ : str = parent a__ : Any = batch_size a__ : Dict = patch_size a__ : List[Any] = max_length a__ : str = num_mel_bins a__ : Optional[Any] = is_training a__ : Optional[int] = use_labels a__ : List[Any] = hidden_size a__ : str = num_hidden_layers a__ : Any = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : List[str] = hidden_act a__ : str = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : List[Any] = type_sequence_label_size a__ : Any = initializer_range a__ : str = scope a__ : List[str] = frequency_stride a__ : Union[str, Any] = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) a__ : List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 a__ : List[str] = (self.max_length - self.patch_size) // self.time_stride + 1 a__ : Tuple = frequency_out_dimension * time_out_dimension a__ : List[str] = num_patches + 2 def _UpperCamelCase( self : List[str] ): a__ : Any = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) a__ : List[Any] = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : List[str] = self.get_config() return config, input_values, labels def _UpperCamelCase( self : Optional[int] ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] ): a__ : List[Any] = ASTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Dict = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : str ): a__ : Dict = self.prepare_config_and_inputs() ( ( a__ ), ( a__ ), ( a__ ), ) : Optional[int] = config_and_inputs a__ : List[Any] = {"input_values": input_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) _lowercase = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _UpperCamelCase( self : str ): a__ : str = ASTModelTester(self ) a__ : Any = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def _UpperCamelCase( self : List[str] ): pass def _UpperCamelCase( self : Optional[int] ): a__, a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Any = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : Tuple ): a__, a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowerCamelCase__ ) a__ : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Optional[Any] = ["input_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Union[str, Any] = ASTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : Optional[int] = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) a__, a__ : List[str] = torchaudio.load(__a ) return audio, sampling_rate @require_torch @require_torchaudio class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : List[str] ): return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def _UpperCamelCase( self : Optional[int] ): a__ : int = self.default_feature_extractor a__ : Optional[Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(lowerCamelCase__ ) a__ : Any = self.default_feature_extractor a__, a__ : Dict = prepare_audio() a__ : str = audio.squeeze().numpy() a__ : Any = feature_extractor(lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(**lowerCamelCase__ ) # verify the logits a__ : Union[str, Any] = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) a__ : List[str] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
37
0
"""simple docstring""" from __future__ import annotations from collections import deque class a__ : def __init__( self : Any , UpperCamelCase_ : list[str]): """simple docstring""" __UpperCAmelCase : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []}) for keyword in keywords: self.add_keyword(lowerCamelCase__) self.set_fail_transitions() def a_ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : str): """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def a_ ( self : Any , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : List[str] = 0 for character in keyword: __UpperCAmelCase : Tuple = self.find_next_state(lowerCamelCase__ , lowerCamelCase__) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], }) self.adlist[current_state]["next_states"].append(len(self.adlist) - 1) __UpperCAmelCase : Union[str, Any] = len(self.adlist) - 1 else: __UpperCAmelCase : List[str] = next_state self.adlist[current_state]["output"].append(lowerCamelCase__) def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : deque = deque() for node in self.adlist[0]["next_states"]: q.append(lowerCamelCase__) __UpperCAmelCase : Tuple = 0 while q: __UpperCAmelCase : str = q.popleft() for child in self.adlist[r]["next_states"]: q.append(lowerCamelCase__) __UpperCAmelCase : Tuple = self.adlist[r]["fail_state"] while ( self.find_next_state(lowerCamelCase__ , self.adlist[child]["value"]) is None and state != 0 ): __UpperCAmelCase : List[Any] = self.adlist[state]["fail_state"] __UpperCAmelCase : Optional[int] = self.find_next_state( lowerCamelCase__ , self.adlist[child]["value"]) if self.adlist[child]["fail_state"] is None: __UpperCAmelCase : Dict = 0 __UpperCAmelCase : Union[str, Any] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def a_ ( self : Optional[Any] , UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : dict = {} # returns a dict with keywords and list of its occurrences __UpperCAmelCase : Tuple = 0 for i in range(len(lowerCamelCase__)): while ( self.find_next_state(lowerCamelCase__ , string[i]) is None and current_state != 0 ): __UpperCAmelCase : Union[str, Any] = self.adlist[current_state]["fail_state"] __UpperCAmelCase : Optional[Any] = self.find_next_state(lowerCamelCase__ , string[i]) if next_state is None: __UpperCAmelCase : str = 0 else: __UpperCAmelCase : int = next_state for key in self.adlist[current_state]["output"]: if key not in result: __UpperCAmelCase : Optional[Any] = [] result[key].append(i - len(lowerCamelCase__) + 1) return result if __name__ == "__main__": import doctest doctest.testmod()
77
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = XGLMTokenizer _lowercase = XGLMTokenizerFast _lowercase = True _lowercase = True def _UpperCamelCase( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCamelCase( self : List[Any] ): a__ : int = "<pad>" a__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__ : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(len(lowerCamelCase__ ) , 1_008 ) def _UpperCamelCase( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def _UpperCamelCase( self : Optional[int] ): a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ ) a__ : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a__ : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a__ : List[str] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) a__ : Dict = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _UpperCamelCase( self : Dict ): return XGLMTokenizer.from_pretrained("facebook/xglm-564M" ) def _UpperCamelCase( self : Union[str, Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase__ , f.name ) a__ : Any = XGLMTokenizer(f.name , keep_accents=lowerCamelCase__ ) a__ : List[str] = pickle.dumps(lowerCamelCase__ ) pickle.loads(lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): if not self.test_rust_tokenizer: return a__ : Any = self.get_tokenizer() a__ : Optional[Any] = self.get_rust_tokenizer() a__ : Tuple = "I was born in 92000, and this is falsé." a__ : List[str] = tokenizer.tokenize(lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : Optional[int] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) a__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : List[str] = self.get_rust_tokenizer() a__ : Tuple = tokenizer.encode(lowerCamelCase__ ) a__ : Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = "Hello World!" a__ : List[str] = [2, 31_227, 4_447, 35] self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : Union[str, Any] ): a__ : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth" ) # fmt: off a__ : Union[str, Any] = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _UpperCamelCase( self : List[Any] ): # fmt: off a__ : Optional[int] = { "input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name="facebook/xglm-564M" , padding=lowerCamelCase__ , )
37
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class _SCREAMING_SNAKE_CASE: def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=13 ,SCREAMING_SNAKE_CASE__=7 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=99 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=37 ,SCREAMING_SNAKE_CASE__="gelu" ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=0.1 ,SCREAMING_SNAKE_CASE__=5_12 ,SCREAMING_SNAKE_CASE__=16 ,SCREAMING_SNAKE_CASE__=2 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=4 ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=10_00 ,) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = parent __SCREAMING_SNAKE_CASE :Optional[Any] = batch_size __SCREAMING_SNAKE_CASE :Optional[int] = seq_length __SCREAMING_SNAKE_CASE :Any = is_training __SCREAMING_SNAKE_CASE :Tuple = use_input_mask __SCREAMING_SNAKE_CASE :str = use_token_type_ids __SCREAMING_SNAKE_CASE :int = use_labels __SCREAMING_SNAKE_CASE :int = vocab_size __SCREAMING_SNAKE_CASE :int = hidden_size __SCREAMING_SNAKE_CASE :List[str] = num_hidden_layers __SCREAMING_SNAKE_CASE :Tuple = num_attention_heads __SCREAMING_SNAKE_CASE :Any = intermediate_size __SCREAMING_SNAKE_CASE :Tuple = hidden_act __SCREAMING_SNAKE_CASE :List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE :List[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Dict = max_position_embeddings __SCREAMING_SNAKE_CASE :int = type_vocab_size __SCREAMING_SNAKE_CASE :str = type_sequence_label_size __SCREAMING_SNAKE_CASE :List[str] = initializer_range __SCREAMING_SNAKE_CASE :List[str] = num_labels __SCREAMING_SNAKE_CASE :Any = num_choices __SCREAMING_SNAKE_CASE :Union[str, Any] = scope __SCREAMING_SNAKE_CASE :Dict = range_bbox def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) # convert bbox to numpy since TF does not support item assignment __SCREAMING_SNAKE_CASE :Any = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __SCREAMING_SNAKE_CASE :int = bbox[i, j, 3] __SCREAMING_SNAKE_CASE :str = bbox[i, j, 1] __SCREAMING_SNAKE_CASE :int = t if bbox[i, j, 2] < bbox[i, j, 0]: __SCREAMING_SNAKE_CASE :Union[str, Any] = bbox[i, j, 2] __SCREAMING_SNAKE_CASE :int = bbox[i, j, 0] __SCREAMING_SNAKE_CASE :Dict = t __SCREAMING_SNAKE_CASE :List[str] = tf.convert_to_tensor(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = None if self.use_input_mask: __SCREAMING_SNAKE_CASE :List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE :List[Any] = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE :Any = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __SCREAMING_SNAKE_CASE :str = None __SCREAMING_SNAKE_CASE :str = None __SCREAMING_SNAKE_CASE :int = None if self.use_labels: __SCREAMING_SNAKE_CASE :Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE :int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __SCREAMING_SNAKE_CASE :str = ids_tensor([self.batch_size] ,self.num_choices ) __SCREAMING_SNAKE_CASE :Tuple = LayoutLMConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = TFLayoutLMModel(config=lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Any = model(lowerCamelCase__ ,lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :List[Any] = model(lowerCamelCase__ ,lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Tuple = model(lowerCamelCase__ ,lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = TFLayoutLMForMaskedLM(config=lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = model(lowerCamelCase__ ,lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.num_labels __SCREAMING_SNAKE_CASE :Optional[Any] = TFLayoutLMForSequenceClassification(config=lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :int = model(lowerCamelCase__ ,lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = self.num_labels __SCREAMING_SNAKE_CASE :Any = TFLayoutLMForTokenClassification(config=lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :int = model(lowerCamelCase__ ,lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = TFLayoutLMForQuestionAnswering(config=lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :List[str] = model(lowerCamelCase__ ,lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = self.prepare_config_and_inputs() ( __SCREAMING_SNAKE_CASE ) :List[Any] = config_and_inputs __SCREAMING_SNAKE_CASE :Optional[int] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class _SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : int = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ : str = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : int = 10 def _UpperCamelCase ( self ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[int] = TFLayoutLMModelTester(self ) __SCREAMING_SNAKE_CASE :Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase__ ,hidden_size=37 ) def _UpperCamelCase ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _UpperCamelCase ( self ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ ) def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ ) def _UpperCamelCase ( self ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ ) @slow def _UpperCamelCase ( self ) -> Dict: """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE :str = TFLayoutLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip('''Onnx compliancy broke with TF 2.10''' ) def _UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass def __lowerCamelCase ( ) -> List[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off __SCREAMING_SNAKE_CASE :Optional[Any] = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231 __SCREAMING_SNAKE_CASE :Optional[int] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 __SCREAMING_SNAKE_CASE :Tuple = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231 __SCREAMING_SNAKE_CASE :Any = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) __SCREAMING_SNAKE_CASE :List[str] = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Union[str, Any] = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' ) __SCREAMING_SNAKE_CASE :Tuple = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE :Optional[int] = model(input_ids=lowerCamelCase__ ,bbox=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) # test the sequence output on [0, :3, :3] __SCREAMING_SNAKE_CASE :Dict = tf.convert_to_tensor( [[0.1_7_8_5, -0.1_9_4_7, -0.0_4_2_5], [-0.3_2_5_4, -0.2_8_0_7, 0.2_5_5_3], [-0.5_3_9_1, -0.3_3_2_2, 0.3_3_6_4]] ,) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,lowerCamelCase__ ,atol=1E-3 ) ) # test the pooled output on [1, :3] __SCREAMING_SNAKE_CASE :Tuple = tf.convert_to_tensor([-0.6_5_8_0, -0.0_2_1_4, 0.8_5_5_2] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] ,lowerCamelCase__ ,atol=1E-3 ) ) @slow def _UpperCamelCase ( self ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' ,num_labels=2 ) __SCREAMING_SNAKE_CASE :str = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE :Optional[Any] = model( input_ids=lowerCamelCase__ ,bbox=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=tf.convert_to_tensor([1, 1] ) ,) # test whether we get a loss as a scalar __SCREAMING_SNAKE_CASE :Union[str, Any] = outputs.loss __SCREAMING_SNAKE_CASE :Tuple = (2,) self.assertEqual(loss.shape ,lowerCamelCase__ ) # test the shape of the logits __SCREAMING_SNAKE_CASE :Dict = outputs.logits __SCREAMING_SNAKE_CASE :Any = (2, 2) self.assertEqual(logits.shape ,lowerCamelCase__ ) @slow def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' ,num_labels=13 ) __SCREAMING_SNAKE_CASE :Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE :Optional[Any] = model( input_ids=lowerCamelCase__ ,bbox=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ,labels=lowerCamelCase__ ) # test the shape of the logits __SCREAMING_SNAKE_CASE :Any = outputs.logits __SCREAMING_SNAKE_CASE :List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape ,lowerCamelCase__ ) @slow def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' ) __SCREAMING_SNAKE_CASE :Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass __SCREAMING_SNAKE_CASE :List[str] = model(input_ids=lowerCamelCase__ ,bbox=lowerCamelCase__ ,attention_mask=lowerCamelCase__ ,token_type_ids=lowerCamelCase__ ) # test the shape of the logits __SCREAMING_SNAKE_CASE :Dict = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape ,lowerCamelCase__ ) self.assertEqual(outputs.end_logits.shape ,lowerCamelCase__ )
498
import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCamelCase_ ( ) -> int: a__ : int = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg" a__ : Optional[Any] = Image.open(requests.get(__a , stream=__a ).raw ).convert("RGB" ) return image def UpperCamelCase_ ( __a ) -> Optional[Any]: a__ : Any = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") ) # fmt: on return rename_keys def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : Union[str, Any] = dct.pop(__a ) a__ : List[str] = val def UpperCamelCase_ ( __a , __a ) -> Optional[Any]: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases a__ : Any = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) a__ : Tuple = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict a__ : str = torch.cat((q_bias, torch.zeros_like(__a , requires_grad=__a ), v_bias) ) a__ : int = qkv_bias def UpperCamelCase_ ( __a ) -> Dict: a__ : Tuple = 364 if "coco" in model_name else 224 a__ : int = InstructBlipVisionConfig(image_size=__a ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: a__ : Tuple = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: a__ : Dict = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: a__ : List[Any] = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32_001 ).to_dict() elif "vicuna-13b" in model_name: a__ : Optional[int] = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32_001 ).to_dict() else: raise ValueError("Model name not supported" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 a__ : Optional[Any] = InstructBlipQFormerConfig(vocab_size=30_523 ).to_dict() a__ : Any = InstructBlipConfig(vision_config=__a , text_config=__a , qformer_config=__a ) return config, image_size @torch.no_grad() def UpperCamelCase_ ( __a , __a=None , __a=False ) -> int: a__ : Tuple = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" ) qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} ) if "t5" in model_name: a__ : List[Any] = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) a__ : Union[str, Any] = LlamaTokenizerFast.from_pretrained( "huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" ) tokenizer.add_special_tokens({"pad_token": "[PAD]"} ) a__, a__ : List[str] = get_blipa_config(__a ) a__ : Any = InstructBlipForConditionalGeneration(__a ).eval() a__ : Dict = { "instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"), "instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"), "instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"), "instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"), } a__, a__ : Dict = model_name_to_original[model_name] # load original model print("Loading original model..." ) a__ : Optional[Any] = "cuda:1" if torch.cuda.is_available() else "cpu" a__ : List[Any] = "cuda:2" if torch.cuda.is_available() else "cpu" a__, a__, a__ : Tuple = load_model_and_preprocess( name=__a , model_type=__a , is_eval=__a , device=__a ) original_model.eval() print("Done!" ) # update state dict keys a__ : Dict = original_model.state_dict() a__ : Optional[int] = create_rename_keys(__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): a__ : Optional[int] = state_dict.pop(__a ) if key.startswith("Qformer.bert" ): a__ : List[Any] = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: a__ : Any = key.replace("self" , "attention" ) if "llm_proj" in key: a__ : Dict = key.replace("llm_proj" , "language_projection" ) if "t5_proj" in key: a__ : int = key.replace("t5_proj" , "language_projection" ) if key.startswith("llm_model" ): a__ : List[str] = key.replace("llm_model" , "language_model" ) if key.startswith("t5" ): a__ : str = key.replace("t5" , "language" ) a__ : Dict = val # read in qv biases read_in_q_v_bias(__a , __a ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(__a , strict=__a ) a__ : Union[str, Any] = load_demo_image() a__ : int = "What is unusual about this image?" # create processor a__ : Any = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=__a , image_std=__a ) a__ : Tuple = InstructBlipProcessor( image_processor=__a , tokenizer=__a , qformer_tokenizer=__a , ) a__ : Tuple = processor(images=__a , text=__a , return_tensors="pt" ).to(__a ) # make sure processor creates exact same pixel values a__ : Optional[int] = vis_processors["eval"](__a ).unsqueeze(0 ).to(__a ) a__ : Optional[Any] = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __a ) original_model.to(__a ) hf_model.to(__a ) with torch.no_grad(): if "vicuna" in model_name: a__ : str = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits a__ : List[str] = hf_model(**__a ).logits else: a__ : List[Any] = original_model( {"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits a__ : str = tokenizer("\n" , return_tensors="pt" ).input_ids.to(__a ) a__ : Dict = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) a__ : Any = hf_model(**__a , labels=__a ).logits print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape a__ : Tuple = 1e-4 if "vicuna" in model_name else 1e-5 assert torch.allclose(original_logits.to(logits.device ) , __a , atol=__a ) print("Looks ok!" ) print("Generating with original model..." ) a__ : Tuple = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("Generating with HF model..." ) a__ : int = hf_model.generate( **__a , do_sample=__a , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? a__ : int = 2 print("Original generation:" , __a ) a__ : str = processor.batch_decode(__a , skip_special_tokens=__a ) a__ : str = [text.strip() for text in output_text] print("HF generation:" , __a ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__a ) hf_model.save_pretrained(__a ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() UpperCamelCase : Optional[int] = [ """instructblip-vicuna-7b""", """instructblip-vicuna-13b""", """instructblip-flan-t5-xl""", """instructblip-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""instructblip-flan-t5-xl""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) UpperCamelCase : Dict = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
37
0
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a ( A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = """ssube/stable-diffusion-x4-upscaler-onnx""" def lowercase_ ( self , snake_case_=0 ): '''simple docstring''' __UpperCAmelCase: List[str] = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowerCamelCase__ ) ) __UpperCAmelCase: Optional[int] = torch.manual_seed(lowerCamelCase__ ) __UpperCAmelCase: Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCAmelCase: Optional[Any] = self.get_dummy_inputs() __UpperCAmelCase: Any = pipe(**lowerCamelCase__ ).images __UpperCAmelCase: Dict = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) __UpperCAmelCase: Union[str, Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase: List[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCAmelCase: List[Any] = self.get_dummy_inputs() __UpperCAmelCase: Optional[Any] = pipe(**lowerCamelCase__ ).images __UpperCAmelCase: List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase: Tuple = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase: List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCAmelCase: List[Any] = self.get_dummy_inputs() __UpperCAmelCase: Dict = pipe(**lowerCamelCase__ ).images __UpperCAmelCase: str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase: Optional[int] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase: Union[str, Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCAmelCase: Any = self.get_dummy_inputs() __UpperCAmelCase: List[Any] = pipe(**lowerCamelCase__ ).images __UpperCAmelCase: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase: Optional[int] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __UpperCAmelCase: Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = self.get_dummy_inputs() __UpperCAmelCase: int = pipe(**lowerCamelCase__ ).images __UpperCAmelCase: Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __UpperCAmelCase: Optional[int] = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class a ( unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Any = ort.SessionOptions() __UpperCAmelCase: Tuple = False return options def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __UpperCAmelCase: int = init_image.resize((128, 128) ) # using the PNDM scheduler by default __UpperCAmelCase: Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCAmelCase: Any = "A fantasy landscape, trending on artstation" __UpperCAmelCase: Dict = torch.manual_seed(0 ) __UpperCAmelCase: Tuple = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowerCamelCase__ , output_type="""np""" , ) __UpperCAmelCase: Any = output.images __UpperCAmelCase: Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __UpperCAmelCase: List[str] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ): '''simple docstring''' __UpperCAmelCase: Optional[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) __UpperCAmelCase: Optional[Any] = init_image.resize((128, 128) ) __UpperCAmelCase: Optional[int] = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , subfolder="""scheduler""" ) __UpperCAmelCase: Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" , scheduler=lowerCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = "A fantasy landscape, trending on artstation" __UpperCAmelCase: Optional[int] = torch.manual_seed(0 ) __UpperCAmelCase: Tuple = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowerCamelCase__ , output_type="""np""" , ) __UpperCAmelCase: Dict = output.images __UpperCAmelCase: Tuple = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) __UpperCAmelCase: Tuple = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
523
def UpperCamelCase_ ( __a , __a ) -> Tuple: a__ : Optional[int] = [0 for i in range(r + 1 )] # nc0 = 1 a__ : Union[str, Any] = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. a__ : Any = min(__a , __a ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
37
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class A ( metaclass=A__ ): a_ = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : Optional[int] , *__a : int , **__a : int ) -> List[Any]: requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def snake_case__ ( cls : str , *__a : Union[str, Any] , **__a : Optional[int] ) -> Any: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def snake_case__ ( cls : str , *__a : Optional[int] , **__a : Any ) -> int: requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
262
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } UpperCamelCase : Dict = { """allenai/led-base-16384""": 1_6384, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = LEDTokenizer _lowercase = ['input_ids', 'attention_mask'] def __init__( self : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : int="replace" , lowerCamelCase__ : Union[str, Any]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : str="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Any="<mask>" , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : int=True , **lowerCamelCase__ : Union[str, Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : List[str] = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : Optional[Any] = add_prefix_space a__ : List[str] = pre_tok_class(**lowerCamelCase__ ) a__ : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : Any = "post_processor" a__ : str = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Optional[Any] = tuple(state["sep"] ) if "cls" in state: a__ : Optional[Any] = tuple(state["cls"] ) a__ : Optional[int] = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Dict = add_prefix_space a__ : int = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : List[Any] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : int = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : int = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ): a__ : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : Union[str, Any] = value def _UpperCamelCase( self : Any , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : List[str] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Any , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Optional[Any] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]=None ): a__ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : List[str] = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCamelCase( self : Dict , lowerCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ): a__ : str = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: a__ : Optional[int] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: a__ : Tuple = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. a__ : Dict = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase__ ) if needs_to_be_padded: a__ : Union[str, Any] = len(lowerCamelCase__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` a__ : List[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": a__ : Any = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
37
0
'''simple docstring''' def snake_case ( a_ : List[str] ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") UpperCamelCase =int(input("Enter number: ").strip()) print(f"{number} is {'' if perfect(number) else 'not '}a Perfect Number.")
208
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Union[str, Any] = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } UpperCamelCase : List[str] = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] _lowercase = RobertaTokenizer def __init__( self : List[str] , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]="replace" , lowerCamelCase__ : List[str]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Any="</s>" , lowerCamelCase__ : Any="<s>" , lowerCamelCase__ : int="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : Any=False , lowerCamelCase__ : Dict=True , **lowerCamelCase__ : Optional[Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Any = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : int = add_prefix_space a__ : Tuple = pre_tok_class(**lowerCamelCase__ ) a__ : str = add_prefix_space a__ : Tuple = "post_processor" a__ : Dict = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Tuple = tuple(state["sep"] ) if "cls" in state: a__ : str = tuple(state["cls"] ) a__ : str = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : str = add_prefix_space a__ : Any = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : int = trim_offsets a__ : Dict = True if changes_to_apply: a__ : Union[str, Any] = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : str = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Tuple ): a__ : List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : List[str] = value def _UpperCamelCase( self : Union[str, Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : int ): a__ : Optional[int] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Tuple , *lowerCamelCase__ : Dict , **lowerCamelCase__ : List[str] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : int = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=None ): a__ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : Tuple = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
37
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() lowercase : Dict = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=True ): if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) lowerCamelCase_: List[str] = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: lowerCamelCase_: Optional[Any] = cached_file(__a , __a , force_download=not use_cached_models ) lowerCamelCase_: Tuple = config_class.from_json_file(__a ) lowerCamelCase_: List[Any] = True lowerCamelCase_: Optional[int] = True print(f"""Building TensorFlow model from configuration: {config}""" ) lowerCamelCase_: List[str] = model_class(__a ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): lowerCamelCase_: int = cached_file( __a , __a , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: lowerCamelCase_: List[str] = load_pytorch_checkpoint_in_tfa_model(__a , __a ) if compare_with_pt_model: lowerCamelCase_: Optional[int] = tf_model(tf_model.dummy_inputs , training=__a ) # build the network lowerCamelCase_: Union[str, Any] = torch.load(__a , map_location="""cpu""" ) lowerCamelCase_: Optional[Any] = pt_model_class.from_pretrained( pretrained_model_name_or_path=__a , config=__a , state_dict=__a ) with torch.no_grad(): lowerCamelCase_: Dict = pt_model(**pt_model.dummy_inputs ) lowerCamelCase_: str = pto[0].numpy() lowerCamelCase_: Union[str, Any] = tfo[0].numpy() lowerCamelCase_: Any = np.amax(np.abs(np_pt - np_tf ) ) print(f"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2E-2, f"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(f"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(__a , save_format="""h5""" ) def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , ): if args_model_type is None: lowerCamelCase_: str = list(MODEL_CLASSES.keys() ) else: lowerCamelCase_: int = [args_model_type] for j, model_type in enumerate(__a , start=1 ): print("""=""" * 1_0_0 ) print(f""" Converting model type {j}/{len(__a )}: {model_type}""" ) print("""=""" * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) lowerCamelCase_: List[Any] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: lowerCamelCase_: int = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: lowerCamelCase_: Optional[Any] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(__a , __a ) , start=1 ): print("""-""" * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue lowerCamelCase_: Any = model_shortcut_name elif only_convert_finetuned_models: print(f""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( f""" Converting checkpoint {i}/{len(__a )}: {model_shortcut_name} - model_type {model_type}""" ) print("""-""" * 1_0_0 ) if config_shortcut_name in aws_config_map: lowerCamelCase_: Dict = cached_file(__a , __a , force_download=not use_cached_models ) else: lowerCamelCase_: str = config_shortcut_name if model_shortcut_name in aws_model_maps: lowerCamelCase_: List[str] = cached_file(__a , __a , force_download=not use_cached_models ) else: lowerCamelCase_: Optional[Any] = model_shortcut_name if os.path.isfile(__a ): lowerCamelCase_: int = "converted_model" convert_pt_checkpoint_to_tf( model_type=__a , pytorch_checkpoint_path=__a , config_file=__a , tf_dump_path=os.path.join(__a , model_shortcut_name + """-tf_model.h5""" ) , compare_with_pt_model=__a , ) if remove_cached_files: os.remove(__a ) os.remove(__a ) if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( F"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") lowercase : List[Any] = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
423
from statistics import mean, stdev def UpperCamelCase_ ( __a , __a = 3 ) -> list: a__ : List[str] = min(__a ) a__ : str = max(__a ) # normalize data return [round((x - x_min) / (x_max - x_min) , __a ) for x in data] def UpperCamelCase_ ( __a , __a = 3 ) -> list: a__ : str = mean(__a ) a__ : List[str] = stdev(__a ) # standardize data return [round((x - mu) / (sigma) , __a ) for x in data]
37
0
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer _snake_case : Union[str, Any] = logging.get_logger(__name__) _snake_case : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _snake_case : Optional[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _snake_case : Dict = { """allenai/led-base-16384""": 16384, } class _UpperCAmelCase ( A__ ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = LEDTokenizer a_ = ["""input_ids""", """attention_mask"""] def __init__( self : Tuple , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : int="replace" , lowerCAmelCase_ : Union[str, Any]="<s>" , lowerCAmelCase_ : Union[str, Any]="</s>" , lowerCAmelCase_ : Tuple="</s>" , lowerCAmelCase_ : Optional[int]="<s>" , lowerCAmelCase_ : str="<unk>" , lowerCAmelCase_ : Any="<pad>" , lowerCAmelCase_ : Any="<mask>" , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : int=True , **lowerCAmelCase_ : Union[str, Any] , ) -> List[Any]: super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCAmelCase = getattr(lowerCamelCase__ , pre_tok_state.pop('type' ) ) __lowerCAmelCase = add_prefix_space __lowerCAmelCase = pre_tok_class(**lowerCamelCase__ ) __lowerCAmelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __lowerCAmelCase = "post_processor" __lowerCAmelCase = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: __lowerCAmelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCAmelCase = tuple(state['sep'] ) if "cls" in state: __lowerCAmelCase = tuple(state['cls'] ) __lowerCAmelCase = False if state.get('add_prefix_space' , lowerCamelCase__ ) != add_prefix_space: __lowerCAmelCase = add_prefix_space __lowerCAmelCase = True if state.get('trim_offsets' , lowerCamelCase__ ) != trim_offsets: __lowerCAmelCase = trim_offsets __lowerCAmelCase = True if changes_to_apply: __lowerCAmelCase = getattr(lowerCamelCase__ , state.pop('type' ) ) __lowerCAmelCase = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowercase ( self : Union[str, Any] ) -> Dict: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase ( self : Optional[int] , lowerCAmelCase_ : Union[str, Any] ) -> List[Any]: __lowerCAmelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value __lowerCAmelCase = value def lowercase ( self : Any , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = kwargs.get('is_split_into_words' , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase ( self : Any , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = kwargs.get('is_split_into_words' , lowerCamelCase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def lowercase ( self : Optional[int] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> int: __lowerCAmelCase = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def lowercase ( self : Dict , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any]=None ) -> Dict: __lowerCAmelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase ( self : Tuple , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[Any]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase ( self : Dict , lowerCAmelCase_ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[bool] = None , ) -> Optional[int]: __lowerCAmelCase = super()._pad( encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , ) # Load from model defaults if return_attention_mask is None: __lowerCAmelCase = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowerCAmelCase = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowerCAmelCase = len(encoded_inputs['global_attention_mask'] ) != len(lowerCamelCase__ ) if needs_to_be_padded: __lowerCAmelCase = len(lowerCamelCase__ ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowerCAmelCase = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": __lowerCAmelCase = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
53
def UpperCamelCase_ ( __a = 50 ) -> int: a__ : Tuple = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f"""{solution() = }""")
37
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart __A : str = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } __A : Any = { """facebook/bart-base""": 1_024, """facebook/bart-large""": 1_024, """facebook/bart-large-mnli""": 1_024, """facebook/bart-large-cnn""": 1_024, """facebook/bart-large-xsum""": 1_024, """yjernite/bart_eli5""": 1_024, } @lru_cache() def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' UpperCAmelCase = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase = bs[:] UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(__a ) cs.append(2**8 + n ) n += 1 UpperCAmelCase = [chr(__a ) for n in cs] return dict(zip(__a , __a ) ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> Dict: '''simple docstring''' UpperCAmelCase = set() UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase = char return pairs class A_ (A__ ): UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] def __init__( self , _A , _A , _A="replace" , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=False , **_A , ): '''simple docstring''' UpperCAmelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else bos_token UpperCAmelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else eos_token UpperCAmelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else sep_token UpperCAmelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else cls_token UpperCAmelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else unk_token UpperCAmelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else mask_token super().__init__( errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , **lowerCamelCase__ , ) with open(lowerCamelCase__ , encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase = json.load(lowerCamelCase__ ) UpperCAmelCase = {v: k for k, v in self.encoder.items()} UpperCAmelCase = errors # how to handle errors in decoding UpperCAmelCase = bytes_to_unicode() UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase__ , encoding='''utf-8''' ) as merges_handle: UpperCAmelCase = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCAmelCase = {} UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _lowercase ( self ): '''simple docstring''' return len(self.encoder ) def _lowercase ( self ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _lowercase ( self , _A ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase = tuple(lowerCamelCase__ ) UpperCAmelCase = get_pairs(lowerCamelCase__ ) if not pairs: return token while True: UpperCAmelCase = min(lowerCamelCase__ , key=lambda _A : self.bpe_ranks.get(lowerCamelCase__ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase = bigram UpperCAmelCase = [] UpperCAmelCase = 0 while i < len(lowerCamelCase__ ): try: UpperCAmelCase = word.index(lowerCamelCase__ , lowerCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase = j if word[i] == first and i < len(lowerCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase = tuple(lowerCamelCase__ ) UpperCAmelCase = new_word if len(lowerCamelCase__ ) == 1: break else: UpperCAmelCase = get_pairs(lowerCamelCase__ ) UpperCAmelCase = " ".join(lowerCamelCase__ ) UpperCAmelCase = word return word def _lowercase ( self , _A ): '''simple docstring''' UpperCAmelCase = [] for token in re.findall(self.pat , lowerCamelCase__ ): UpperCAmelCase = "".join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase__ ).split(''' ''' ) ) return bpe_tokens def _lowercase ( self , _A ): '''simple docstring''' return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token ) ) def _lowercase ( self , _A ): '''simple docstring''' return self.decoder.get(lowerCamelCase__ ) def _lowercase ( self , _A ): '''simple docstring''' UpperCAmelCase = "".join(lowerCamelCase__ ) UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _lowercase ( self , _A , _A = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join( lowerCamelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__ ) + '''\n''' ) UpperCAmelCase = 0 with open(lowerCamelCase__ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _A : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase = token_index writer.write(''' '''.join(lowerCamelCase__ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _lowercase ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase ( self , _A , _A = None , _A = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ , token_ids_a=lowerCamelCase__ , already_has_special_tokens=lowerCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase__ )) + [1] return [1] + ([0] * len(lowerCamelCase__ )) + [1, 1] + ([0] * len(lowerCamelCase__ )) + [1] def _lowercase ( self , _A , _A = None ): '''simple docstring''' UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase ( self , _A , _A=False , **_A ): '''simple docstring''' UpperCAmelCase = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase__ ) > 0 and not text[0].isspace()): UpperCAmelCase = " " + text return (text, kwargs)
130
class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ): a__ : str = name a__ : Optional[int] = value a__ : Dict = weight def __repr__( self : Union[str, Any] ): return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _UpperCamelCase( self : Dict ): return self.value def _UpperCamelCase( self : Optional[Any] ): return self.name def _UpperCamelCase( self : Optional[Any] ): return self.weight def _UpperCamelCase( self : Optional[int] ): return self.value / self.weight def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Optional[Any] = [] for i in range(len(__a ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def UpperCamelCase_ ( __a , __a , __a ) -> Union[str, Any]: a__ : List[str] = sorted(__a , key=__a , reverse=__a ) a__ : List[Any] = [] a__, a__ : Union[str, Any] = 0.0, 0.0 for i in range(len(__a ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def UpperCamelCase_ ( ) -> Union[str, Any]: pass if __name__ == "__main__": import doctest doctest.testmod()
37
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class a_ ( A__ ): UpperCamelCase_ : Dict = 42 UpperCamelCase_ : List[str] = 42 UpperCamelCase_ : str = None class a_ ( A__ , A__ ): UpperCamelCase_ : int = 2 @register_to_config def __init__( self : List[Any] , snake_case__ : float = 0.02 , snake_case__ : float = 100 , snake_case__ : float = 1.007 , snake_case__ : float = 80 , snake_case__ : float = 0.05 , snake_case__ : float = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase__ = sigma_max # setable values lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # sigma(t_i) def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : Optional[int] = None ): return sample def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int , snake_case__ : Union[str, torch.device] = None ): lowerCAmelCase__ = num_inference_steps lowerCAmelCase__ = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase__ = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) lowerCAmelCase__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase__ = torch.tensor(lowerCamelCase__ , dtype=torch.floataa , device=lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , snake_case__ : torch.FloatTensor , snake_case__ : float , snake_case__ : Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase__ = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase__ = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase__ = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCamelCase__ ).to(sample.device ) lowerCAmelCase__ = sigma + gamma * sigma lowerCAmelCase__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _SCREAMING_SNAKE_CASE ( self : Dict , snake_case__ : torch.FloatTensor , snake_case__ : float , snake_case__ : float , snake_case__ : torch.FloatTensor , snake_case__ : bool = True , ): lowerCAmelCase__ = sample_hat + sigma_hat * model_output lowerCAmelCase__ = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : torch.FloatTensor , snake_case__ : float , snake_case__ : float , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : torch.FloatTensor , snake_case__ : bool = True , ): lowerCAmelCase__ = sample_prev + sigma_prev * model_output lowerCAmelCase__ = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , snake_case__ : int , snake_case__ : int , snake_case__ : int ): raise NotImplementedError()
644
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class A__ ( A__ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase__ : Union[str, "sqlalchemy.sql.Selectable"] , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , **lowerCamelCase__ : Optional[int] , ): super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ ) a__ : str = Sql( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , ) def _UpperCamelCase( self : Tuple ): a__ : Optional[Any] = None a__ : Dict = None a__ : Union[str, Any] = None a__ : Union[str, Any] = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , ) # Build dataset for splits a__ : List[str] = self.builder.as_dataset( split="train" , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset class A__ : """simple docstring""" def __init__( self : List[Any] , lowerCamelCase__ : Dataset , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Optional[Any] , ): if num_proc is not None and num_proc <= 0: raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' ) a__ : Any = dataset a__ : str = name a__ : Tuple = con a__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE a__ : Any = num_proc a__ : Tuple = to_sql_kwargs def _UpperCamelCase( self : List[Any] ): a__ : Any = self.to_sql_kwargs.pop("sql" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("con" , lowerCamelCase__ ) a__ : int = self.to_sql_kwargs.pop("index" , lowerCamelCase__ ) a__ : int = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs ) return written def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] ): a__, a__, a__ : Union[str, Any] = args a__ : Any = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs a__ : Tuple = query_table( table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) a__ : str = batch.to_pandas() a__ : List[Any] = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ ) return num_rows or len(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ): a__ : str = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: a__, a__ : List[str] = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ): written += num_rows return written
37
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase :List[str] = logging.get_logger(__name__) def lowerCamelCase_ (UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any]=False ): _UpperCAmelCase : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : int=False ): for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase : Union[str, Any] = "" else: _UpperCAmelCase : str = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _UpperCAmelCase : Any = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : List[Any] = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase_ (UpperCamelCase__ : int ): _UpperCAmelCase : Union[str, Any] = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__a , __a ) def lowerCamelCase_ (UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple ): _UpperCAmelCase : Optional[int] = dct.pop(__a ) _UpperCAmelCase : str = val def lowerCamelCase_ (): _UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Dict = Image.open(requests.get(__a , stream=__a ).raw ) return im @torch.no_grad() def lowerCamelCase_ (UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=True ): _UpperCAmelCase : Tuple = ViTConfig() # patch_size if model_name[-1] == "8": _UpperCAmelCase : Any = 8 # set labels if required if not base_model: _UpperCAmelCase : str = 1000 _UpperCAmelCase : Tuple = "huggingface/label-files" _UpperCAmelCase : int = "imagenet-1k-id2label.json" _UpperCAmelCase : Dict = json.load(open(hf_hub_download(__a , __a , repo_type='''dataset''' ) , '''r''' ) ) _UpperCAmelCase : List[Any] = {int(__a ): v for k, v in idalabel.items()} _UpperCAmelCase : Tuple = idalabel _UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: _UpperCAmelCase : Dict = 384 _UpperCAmelCase : Tuple = 1536 _UpperCAmelCase : str = 12 _UpperCAmelCase : Union[str, Any] = 6 # load original model from torch hub _UpperCAmelCase : List[Any] = torch.hub.load('''facebookresearch/dino:main''' , __a ) original_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase : Dict = original_model.state_dict() if base_model: remove_classification_head_(__a ) _UpperCAmelCase : Any = create_rename_keys(__a , base_model=__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , __a ) # load HuggingFace model if base_model: _UpperCAmelCase : List[str] = ViTModel(__a , add_pooling_layer=__a ).eval() else: _UpperCAmelCase : List[str] = ViTForImageClassification(__a ).eval() model.load_state_dict(__a ) # Check outputs on an image, prepared by ViTImageProcessor _UpperCAmelCase : Optional[int] = ViTImageProcessor() _UpperCAmelCase : List[Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) _UpperCAmelCase : List[str] = encoding["pixel_values"] _UpperCAmelCase : List[Any] = model(__a ) if base_model: _UpperCAmelCase : List[Any] = original_model(__a ) assert torch.allclose(__a , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: _UpperCAmelCase : List[str] = original_model(__a ) assert logits.shape == outputs.logits.shape assert torch.allclose(__a , outputs.logits , atol=1E-3 ) Path(__a ).mkdir(exist_ok=__a ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__a ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__a ) if __name__ == "__main__": _lowerCAmelCase :Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) _lowerCAmelCase :int = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
506
import math from datetime import datetime, timedelta def UpperCamelCase_ ( __a ) -> datetime: a__ : Union[str, Any] = year % 19 a__ : List[str] = year % 4 a__ : str = year % 7 a__ : Any = math.floor(year / 100 ) a__ : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) a__ : Optional[int] = leap_day_inhibits / 4 a__ : Union[str, Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 a__ : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 a__ : Any = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon a__ : List[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__a , 4 , 18 ) else: return datetime(__a , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1994, 2000, 2010, 2021, 2023): UpperCamelCase : Tuple = """will be""" if year > datetime.now().year else """was""" print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
37
0
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class A ( A__ ): __UpperCAmelCase : Union[str, Any] = """""" __UpperCAmelCase : List[Any] = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __UpperCAmelCase : List[str] = None # compression type in fsspec. ex: "gzip" __UpperCAmelCase : int = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , snake_case_ = "" , snake_case_ = None , snake_case_ = None , **snake_case_ ) -> Optional[Any]: super().__init__(self , **lowerCamelCase__ ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode _a = fsspec.open( lowerCamelCase__ , mode="rb" , protocol=lowerCamelCase__ , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) _a = os.path.basename(self.file.path.split("::" )[0] ) _a = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) _a = None @classmethod def __lowerCAmelCase ( cls , snake_case_ ) -> Optional[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(lowerCamelCase__ ).lstrip("/" ) def __lowerCAmelCase ( self ) -> Any: if self.dir_cache is None: _a = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} _a = {f["name"]: f} def __lowerCAmelCase ( self , snake_case_ ) -> Optional[Any]: return self.file.open().read() def __lowerCAmelCase ( self , snake_case_ , snake_case_ = "rb" , snake_case_=None , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: _a = self._strip_protocol(lowerCamelCase__ ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class A ( A__ ): __UpperCAmelCase : Dict = """bz2""" __UpperCAmelCase : Dict = """bz2""" __UpperCAmelCase : List[str] = """.bz2""" class A ( A__ ): __UpperCAmelCase : List[str] = """gzip""" __UpperCAmelCase : Union[str, Any] = """gzip""" __UpperCAmelCase : Optional[int] = """.gz""" class A ( A__ ): __UpperCAmelCase : List[Any] = """lz4""" __UpperCAmelCase : List[Any] = """lz4""" __UpperCAmelCase : List[str] = """.lz4""" class A ( A__ ): __UpperCAmelCase : Any = """xz""" __UpperCAmelCase : List[str] = """xz""" __UpperCAmelCase : Any = """.xz""" class A ( A__ ): __UpperCAmelCase : int = """zstd""" __UpperCAmelCase : Optional[Any] = """zstd""" __UpperCAmelCase : Dict = """.zst""" def __init__( self , snake_case_ , snake_case_ = "rb" , snake_case_ = None , snake_case_ = None , snake_case_ = DEFAULT_BLOCK_SIZE , **snake_case_ , ) -> int: super().__init__( fo=lowerCamelCase__ , mode=lowerCamelCase__ , target_protocol=lowerCamelCase__ , target_options=lowerCamelCase__ , block_size=lowerCamelCase__ , **lowerCamelCase__ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 _a = self.file.__enter__ class A : def __init__( self , snake_case_ ) -> int: _a = file_ def __enter__( self ) -> int: self._file.__enter__() return self def __exit__( self , *snake_case_ , **snake_case_ ) -> int: self._file.__exit__(*lowerCamelCase__ , **lowerCamelCase__ ) def __iter__( self ) -> int: return iter(self._file ) def __lowerCAmelCase ( self ) -> List[str]: return next(self._file ) def __getattr__( self , snake_case_ ) -> Dict: return getattr(self._file , lowerCamelCase__ ) def fixed_enter(*snake_case_ , **snake_case_ ): return WrappedFile(_enter(*lowerCamelCase__ , **lowerCamelCase__ ) ) _a = fixed_enter
131
import gc import importlib.metadata import tempfile import unittest from packaging import version from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig, pipeline, ) from transformers.testing_utils import ( is_torch_available, require_accelerate, require_bitsandbytes, require_torch, require_torch_gpu, require_torch_multi_gpu, slow, ) def UpperCamelCase_ ( __a ) -> Union[str, Any]: if model.config.model_type == "gpt2": return model.transformer.h[0].mlp.c_fc return model.transformer.h[0].mlp.dense_ah_to_h if is_torch_available(): import torch import torch.nn as nn class A__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , lowerCamelCase__ : nn.Module , lowerCamelCase__ : int ): super().__init__() a__ : int = module a__ : Any = nn.Sequential( nn.Linear(module.in_features , lowerCamelCase__ , bias=lowerCamelCase__ ) , nn.Linear(lowerCamelCase__ , module.out_features , bias=lowerCamelCase__ ) , ) a__ : Tuple = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5 nn.init.normal_(self.adapter[0].weight , std=lowerCamelCase__ ) nn.init.zeros_(self.adapter[1].weight ) self.adapter.to(module.weight.device ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ): return self.module(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) + self.adapter(lowerCamelCase__ ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" _lowercase = 'bigscience/bloom-1b7' # Constant values _lowercase = 2.1_09_65_95_52_69_25_74 _lowercase = 'Hello my name is' _lowercase = set() EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' ) EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' ) EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' ) _lowercase = 1_0 def _UpperCamelCase( self : Dict ): # Models and tokenizer a__ : List[str] = AutoTokenizer.from_pretrained(self.model_name ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Union[str, Any] ): super().setUp() # Models and tokenizer a__ : List[Any] = AutoModelForCausalLM.from_pretrained( self.model_name , torch_dtype=torch.floataa , device_map="auto" ) a__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.model_fpaa del self.model_abit gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : List[Any] ): a__ : str = self.model_abit.config self.assertTrue(hasattr(lowerCamelCase__ , "quantization_config" ) ) a__ : Optional[Any] = config.to_dict() a__ : int = config.to_diff_dict() a__ : List[str] = config.to_json_string() def _UpperCamelCase( self : int ): from bitsandbytes.nn import Paramsabit a__ : List[Any] = self.model_fpaa.get_memory_footprint() a__ : str = self.model_abit.get_memory_footprint() self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE ) a__ : Optional[Any] = get_some_linear_layer(self.model_abit ) self.assertTrue(linear.weight.__class__ == Paramsabit ) def _UpperCamelCase( self : Tuple ): from transformers import TaPreTrainedModel self.model_fpaa.get_memory_footprint() self.model_abit.get_memory_footprint() for name, module in self.model_abit.named_modules(): if isinstance(lowerCamelCase__ , torch.nn.Linear ): if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules: # 4-bit parameters are packed in uint8 variables self.assertTrue(module.weight.dtype == torch.uinta ) def _UpperCamelCase( self : str ): a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Tuple = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[Any] = BitsAndBytesConfig() a__ : Optional[int] = True a__ : int = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , device_map="auto" ) a__ : str = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : int = model_abit_from_config.generate( input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) def _UpperCamelCase( self : Dict ): with self.assertRaises(lowerCamelCase__ ), tempfile.TemporaryDirectory() as tmpdirname: self.model_abit.save_pretrained(lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): a__ : int = BitsAndBytesConfig() with self.assertRaises(lowerCamelCase__ ): a__ : Dict = AutoModelForCausalLM.from_pretrained( self.model_name , quantization_config=lowerCamelCase__ , load_in_abit=lowerCamelCase__ , device_map="auto" , bnb_abit_quant_type="nf4" , ) def _UpperCamelCase( self : int ): with self.assertRaises(lowerCamelCase__ ): # Tries with `str` self.model_abit.to("cpu" ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `dtype`` self.model_abit.to(torch.floataa ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.to(torch.device("cuda:0" ) ) with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.float() with self.assertRaises(lowerCamelCase__ ): # Tries with a `device` self.model_abit.half() # Test if we did not break anything a__ : int = self.tokenizer(self.input_text , return_tensors="pt" ) a__ : Any = self.model_fpaa.to(torch.floataa ) a__ : List[Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.to("cpu" ) # Check this does not throw an error a__ : Tuple = self.model_fpaa.half() # Check this does not throw an error a__ : Dict = self.model_fpaa.float() def _UpperCamelCase( self : Dict ): a__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCamelCase__ , device_map="auto" ) self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa ) @require_bitsandbytes @require_accelerate @require_torch @require_torch_gpu @slow class A__ ( unittest.TestCase ): """simple docstring""" @classmethod def _UpperCamelCase( cls : str ): a__ : Dict = "t5-small" a__ : List[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense a__ : int = AutoTokenizer.from_pretrained(cls.model_name ) a__ : str = "Translate in German: Hello, my dog is cute" def _UpperCamelCase( self : Optional[int] ): gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Optional[int] ): from transformers import TaForConditionalGeneration a__ : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules a__ : Optional[Any] = None # test with `t5-small` a__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : Dict = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Any = model.generate(**lowerCamelCase__ ) a__ : Union[str, Any] = modules def _UpperCamelCase( self : List[Any] ): import bitsandbytes as bnb from transformers import TaForConditionalGeneration # test with `t5-small` a__ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # there was a bug with decoders - this test checks that it is fixed self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) ) a__ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : int = model.generate(**lowerCamelCase__ ) # test with `flan-t5-small` a__ : int = TaForConditionalGeneration.from_pretrained( self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) a__ : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 ) a__ : Optional[int] = model.generate(**lowerCamelCase__ ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : List[str] ): super().setUp() # model_name a__ : Union[str, Any] = "bigscience/bloom-560m" a__ : Union[str, Any] = "t5-small" # Different types of model a__ : int = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Sequence classification model a__ : Dict = AutoModelForSequenceClassification.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # CausalLM model a__ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) # Seq2seq model a__ : Dict = AutoModelForSeqaSeqLM.from_pretrained( self.seq_to_seq_name , load_in_abit=lowerCamelCase__ , device_map="auto" ) def _UpperCamelCase( self : List[Any] ): del self.base_model del self.sequence_model del self.model_abit del self.seq_to_seq_model gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Union[str, Any] ): from bitsandbytes.nn import Paramsabit self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit ) # Other heads should be nn.Parameter self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter ) self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): super().setUp() def _UpperCamelCase( self : int ): del self.pipe gc.collect() torch.cuda.empty_cache() def _UpperCamelCase( self : Tuple ): a__ : int = pipeline( "text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , ) # Real second forward pass a__ : Tuple = self.pipe(self.input_text ) self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS ) @require_torch_multi_gpu class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Tuple ): super().setUp() def _UpperCamelCase( self : List[Any] ): a__ : str = AutoModelForCausalLM.from_pretrained( self.model_name , load_in_abit=lowerCamelCase__ , device_map="balanced" ) # Check correct device map self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} ) # Check that inference pass works on the model a__ : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" ) # Second real batch a__ : List[Any] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 ) self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS ) class A__ ( A__ ): """simple docstring""" def _UpperCamelCase( self : Dict ): a__ : Any = "facebook/opt-350m" super().setUp() def _UpperCamelCase( self : int ): if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ): return # Step 1: freeze all parameters a__ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ ) self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} ) for param in model.parameters(): a__ : Any = False # freeze the model - train adapters later if param.ndim == 1: # cast the small parameters (e.g. layernorm) to fp32 for stability a__ : Tuple = param.data.to(torch.floataa ) # Step 2: add adapters for _, module in model.named_modules(): if "OPTAttention" in repr(type(lowerCamelCase__ ) ): a__ : Dict = LoRALayer(module.q_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.k_proj , rank=16 ) a__ : List[Any] = LoRALayer(module.v_proj , rank=16 ) # Step 3: dummy batch a__ : Dict = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 ) # Step 4: Check if the gradient is not None with torch.cuda.amp.autocast(): a__ : Optional[Any] = model.forward(**lowerCamelCase__ ) out.logits.norm().backward() for module in model.modules(): if isinstance(lowerCamelCase__ , lowerCamelCase__ ): self.assertTrue(module.adapter[1].weight.grad is not None ) self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 ) elif isinstance(lowerCamelCase__ , nn.Embedding ): self.assertTrue(module.weight.grad is None ) class A__ ( A__ ): """simple docstring""" _lowercase = 'gpt2-xl' _lowercase = 3.31_91_85_48_54_15_21_87
37
0
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version A = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" if got_ver is None or want_ver is None: raise ValueError( f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" f" reinstalling {pkg}." ) if not ops[op](version.parse(__a ) , version.parse(__a ) ): raise ImportError( f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def _UpperCamelCase ( UpperCamelCase , UpperCamelCase = None ) -> None: """simple docstring""" __UpperCAmelCase : Optional[int] = f"\n{hint}" if hint is not None else "" # non-versioned check if re.match(R"^[\w_\-\d]+$" , __a ): __UpperCAmelCase : Dict = requirement, None, None else: __UpperCAmelCase : Any = re.findall(R"^([^!=<>\s]+)([\s!=<>]{1,2}.+)" , __a ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but" f" got {requirement}" ) __UpperCAmelCase : Optional[Any] = match[0] __UpperCAmelCase : str = want_full.split("," ) # there could be multiple requirements __UpperCAmelCase : Tuple = {} for w in want_range: __UpperCAmelCase : List[Any] = re.findall(R"^([\s!=<>]{1,2})(.+)" , __a ) if not match: raise ValueError( "requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23," f" but got {requirement}" ) __UpperCAmelCase : Tuple = match[0] __UpperCAmelCase : Optional[int] = want_ver if op not in ops: raise ValueError(f"{requirement}: need one of {list(ops.keys() )}, but got {op}" ) # special case if pkg == "python": __UpperCAmelCase : Union[str, Any] = ".".join([str(__a ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) return # check if any version is installed try: __UpperCAmelCase : Optional[int] = importlib.metadata.version(__a ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"The \'{requirement}\' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__a , __a , __a , __a , __a , __a ) def _UpperCamelCase ( UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Dict = "Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main" return require_version(__a , __a )
77
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class A__ : """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int]=100 , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[int]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : int=32 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Union[str, Any]=37 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Union[str, Any]=10 , lowerCamelCase__ : str=0.02 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=[0, 1, 2, 3] , ): a__ : Dict = parent a__ : Dict = 100 a__ : Optional[int] = batch_size a__ : Union[str, Any] = image_size a__ : Any = patch_size a__ : Optional[Any] = num_channels a__ : int = is_training a__ : List[str] = use_labels a__ : Optional[Any] = hidden_size a__ : List[Any] = num_hidden_layers a__ : str = num_attention_heads a__ : str = intermediate_size a__ : int = hidden_act a__ : List[Any] = hidden_dropout_prob a__ : Dict = attention_probs_dropout_prob a__ : Union[str, Any] = type_sequence_label_size a__ : Optional[Any] = initializer_range a__ : List[str] = scope a__ : int = out_indices a__ : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[int] = (image_size // patch_size) ** 2 a__ : Union[str, Any] = num_patches + 1 def _UpperCamelCase( self : int ): a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Optional[Any] = None a__ : Tuple = None if self.use_labels: a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : Optional[int] = self.get_config() return config, pixel_values, labels, pixel_labels def _UpperCamelCase( self : Tuple ): return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any ): a__ : str = BeitModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ): a__ : int = BeitForMaskedImageModeling(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[Any] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _UpperCamelCase( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ): a__ : List[str] = self.type_sequence_label_size a__ : Optional[Any] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ : Optional[Any] = 1 a__ : List[str] = BeitForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ : Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ): a__ : int = self.num_labels a__ : List[str] = BeitForSemanticSegmentation(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : Tuple = model(lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _UpperCamelCase( self : Optional[int] ): a__ : Any = self.prepare_config_and_inputs() a__, a__, a__, a__ : Union[str, Any] = config_and_inputs a__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) _lowercase = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : Any ): a__ : int = BeitModelTester(self ) a__ : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def _UpperCamelCase( self : List[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _UpperCamelCase( self : str ): pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _UpperCamelCase( self : Dict ): pass def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def _UpperCamelCase( self : str ): a__, a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = model_class(lowerCamelCase__ ) a__ : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] ): a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): if not self.model_tester.is_training: return a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling]: continue a__ : List[str] = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() a__ : Any = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : Tuple = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : Tuple ): a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a__ : List[Any] = False a__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue a__ : Optional[Any] = model_class(lowerCamelCase__ ) model.gradient_checkpointing_enable() model.to(lowerCamelCase__ ) model.train() a__ : Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) a__ : int = model(**lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : List[str] ): a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Dict = _config_zero_init(lowerCamelCase__ ) for model_class in self.all_model_classes: a__ : str = model_class(config=lowerCamelCase__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _UpperCamelCase( self : Optional[int] ): for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Tuple = BeitModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def UpperCamelCase_ ( ) -> Any: a__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : Optional[int] ): return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _UpperCamelCase( self : str ): a__ : int = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(lowerCamelCase__ ) a__ : Optional[Any] = self.default_image_processor a__ : Dict = prepare_img() a__ : Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).pixel_values.to(lowerCamelCase__ ) # prepare bool_masked_pos a__ : Optional[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Any = model(pixel_values=lowerCamelCase__ , bool_masked_pos=lowerCamelCase__ ) a__ : Tuple = outputs.logits # verify the logits a__ : List[str] = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[int] = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCamelCase__ , atol=1E-2 ) ) @slow def _UpperCamelCase( self : Dict ): a__ : str = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(lowerCamelCase__ ) a__ : int = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Union[str, Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Union[str, Any] = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : Any ): a__ : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( lowerCamelCase__ ) a__ : str = self.default_image_processor a__ : List[str] = prepare_img() a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Dict = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Optional[int] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : Optional[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) ) a__ : Optional[Any] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ ) @slow def _UpperCamelCase( self : int ): a__ : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : Tuple = model.to(lowerCamelCase__ ) a__ : List[Any] = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : Union[str, Any] = Image.open(ds[0]["file"] ) a__ : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**lowerCamelCase__ ) a__ : List[str] = outputs.logits # verify the logits a__ : Tuple = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , lowerCamelCase__ ) a__ : int = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: a__ : Dict = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=lowerCamelCase__ , ) else: a__ : Dict = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=lowerCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) ) @slow def _UpperCamelCase( self : Tuple ): a__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : List[Any] = model.to(lowerCamelCase__ ) a__ : int = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ ) a__ : Optional[int] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : str = Image.open(ds[0]["file"] ) a__ : str = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): a__ : List[Any] = model(**lowerCamelCase__ ) a__ : Any = outputs.logits.detach().cpu() a__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(500, 300)] ) a__ : Optional[int] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ ) a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ ) a__ : Any = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
37
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase_ = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } lowerCamelCase_ = { """squeezebert/squeezebert-uncased""": 5_1_2, """squeezebert/squeezebert-mnli""": 5_1_2, """squeezebert/squeezebert-mnli-headless""": 5_1_2, } lowerCamelCase_ = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class _SCREAMING_SNAKE_CASE( A__ ): SCREAMING_SNAKE_CASE_ : Any = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Any = SqueezeBertTokenizer def __init__( self ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__="[UNK]" ,SCREAMING_SNAKE_CASE__="[SEP]" ,SCREAMING_SNAKE_CASE__="[PAD]" ,SCREAMING_SNAKE_CASE__="[CLS]" ,SCREAMING_SNAKE_CASE__="[MASK]" ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[int]: """simple docstring""" super().__init__( lowerCamelCase__ ,tokenizer_file=lowerCamelCase__ ,do_lower_case=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,cls_token=lowerCamelCase__ ,mask_token=lowerCamelCase__ ,tokenize_chinese_chars=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ,**lowerCamelCase__ ,) __SCREAMING_SNAKE_CASE :List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' ,lowerCamelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' ,lowerCamelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' ,lowerCamelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE :Union[str, Any] = getattr(lowerCamelCase__ ,normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE :List[Any] = do_lower_case __SCREAMING_SNAKE_CASE :Optional[Any] = strip_accents __SCREAMING_SNAKE_CASE :str = tokenize_chinese_chars __SCREAMING_SNAKE_CASE :Any = normalizer_class(**lowerCamelCase__ ) __SCREAMING_SNAKE_CASE :Any = do_lower_case def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :str = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE :Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE :List[Any] = self._tokenizer.model.save(lowerCamelCase__ ,name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
498
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase : Dict = logging.get_logger(__name__) def UpperCamelCase_ ( __a ) -> Union[str, Any]: a__ : Tuple = R"\w+[.]\d+" a__ : List[Any] = re.findall(__a , __a ) for pat in pats: a__ : Union[str, Any] = key.replace(__a , "_".join(pat.split("." ) ) ) return key def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : List[str] = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): a__ : Any = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: a__ : Optional[Any] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: a__ : Union[str, Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer a__ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: a__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer a__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": a__ : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight a__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias a__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCamelCase_ ( __a , __a , __a=42 ) -> str: # Step 1: Convert pytorch tensor to numpy a__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params a__ : Tuple = flax_model.init_weights(PRNGKey(__a ) ) a__ : Optional[Any] = flatten_dict(__a ) a__ : Union[str, Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): a__ : Optional[int] = rename_key(__a ) a__ : Optional[int] = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters a__, a__ : Union[str, Any] = rename_key_and_reshape_tensor(__a , __a , __a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown a__ : str = jnp.asarray(__a ) return unflatten_dict(__a )
37
0
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class a : """simple docstring""" def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=0.2 , snake_case_=0.2 ): '''simple docstring''' __UpperCAmelCase: Optional[int] = bp_numa __UpperCAmelCase: Tuple = bp_numa __UpperCAmelCase: Optional[Any] = bp_numa __UpperCAmelCase: str = conva_get[:2] __UpperCAmelCase: Optional[int] = conva_get[2] __UpperCAmelCase: Any = size_pa __UpperCAmelCase: List[str] = rate_w __UpperCAmelCase: str = rate_t __UpperCAmelCase: Optional[int] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] __UpperCAmelCase: Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __UpperCAmelCase: Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __UpperCAmelCase: List[str] = -2 * np.random.rand(self.conva[1] ) + 1 __UpperCAmelCase: List[str] = -2 * np.random.rand(self.num_bpa ) + 1 __UpperCAmelCase: List[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: int = { "num_bp1": self.num_bpa, "num_bp2": self.num_bpa, "num_bp3": self.num_bpa, "conv1": self.conva, "step_conv1": self.step_conva, "size_pooling1": self.size_poolinga, "rate_weight": self.rate_weight, "rate_thre": self.rate_thre, "w_conv1": self.w_conva, "wkj": self.wkj, "vji": self.vji, "thre_conv1": self.thre_conva, "thre_bp2": self.thre_bpa, "thre_bp3": self.thre_bpa, } with open(lowerCamelCase__ , """wb""" ) as f: pickle.dump(lowerCamelCase__ , lowerCamelCase__ ) print(F'''Model saved: {save_path}''' ) @classmethod def lowercase_ ( cls , snake_case_ ): '''simple docstring''' with open(lowerCamelCase__ , """rb""" ) as f: __UpperCAmelCase: Tuple = pickle.load(lowerCamelCase__ ) # noqa: S301 __UpperCAmelCase: List[str] = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) __UpperCAmelCase: Optional[Any] = model_dic.get("""size_pooling1""" ) __UpperCAmelCase: Optional[Any] = model_dic.get("""num_bp1""" ) __UpperCAmelCase: Tuple = model_dic.get("""num_bp2""" ) __UpperCAmelCase: int = model_dic.get("""num_bp3""" ) __UpperCAmelCase: Tuple = model_dic.get("""rate_weight""" ) __UpperCAmelCase: Optional[Any] = model_dic.get("""rate_thre""" ) # create model instance __UpperCAmelCase: Tuple = CNN(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # modify model parameter __UpperCAmelCase: Tuple = model_dic.get("""w_conv1""" ) __UpperCAmelCase: int = model_dic.get("""wkj""" ) __UpperCAmelCase: List[str] = model_dic.get("""vji""" ) __UpperCAmelCase: Optional[int] = model_dic.get("""thre_conv1""" ) __UpperCAmelCase: Optional[int] = model_dic.get("""thre_bp2""" ) __UpperCAmelCase: Optional[int] = model_dic.get("""thre_bp3""" ) return conv_ins def lowercase_ ( self , snake_case_ ): '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def lowercase_ ( self , snake_case_ ): '''simple docstring''' return round(lowerCamelCase__ , 3 ) def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Any = convs[0] __UpperCAmelCase: str = convs[1] __UpperCAmelCase: int = np.shape(lowerCamelCase__ )[0] # get the data slice of original image data, data_focus __UpperCAmelCase: Optional[int] = [] for i_focus in range(0 , size_data - size_conv + 1 , lowerCamelCase__ ): for j_focus in range(0 , size_data - size_conv + 1 , lowerCamelCase__ ): __UpperCAmelCase: List[str] = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowerCamelCase__ ) # calculate the feature map of every single kernel, and saved as list of matrix __UpperCAmelCase: str = [] __UpperCAmelCase: Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(lowerCamelCase__ ): __UpperCAmelCase: Optional[Any] = [] for i_focus in range(len(lowerCamelCase__ ) ): __UpperCAmelCase: Tuple = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(lowerCamelCase__ ) ) __UpperCAmelCase: Optional[int] = np.asmatrix(lowerCamelCase__ ).reshape( lowerCamelCase__ , lowerCamelCase__ ) data_featuremap.append(lowerCamelCase__ ) # expanding the data slice to One dimenssion __UpperCAmelCase: Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowerCamelCase__ ) ) __UpperCAmelCase: Union[str, Any] = np.asarray(lowerCamelCase__ ) return focus_list, data_featuremap def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_="average_pool" ): '''simple docstring''' __UpperCAmelCase: Union[str, Any] = len(featuremaps[0] ) __UpperCAmelCase: Union[str, Any] = int(size_map / size_pooling ) __UpperCAmelCase: List[str] = [] for i_map in range(len(lowerCamelCase__ ) ): __UpperCAmelCase: str = featuremaps[i_map] __UpperCAmelCase: Tuple = [] for i_focus in range(0 , lowerCamelCase__ , lowerCamelCase__ ): for j_focus in range(0 , lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase: Any = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowerCamelCase__ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowerCamelCase__ ) ) __UpperCAmelCase: List[str] = np.asmatrix(lowerCamelCase__ ).reshape(lowerCamelCase__ , lowerCamelCase__ ) featuremap_pooled.append(lowerCamelCase__ ) return featuremap_pooled def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = [] for i in range(len(lowerCamelCase__ ) ): __UpperCAmelCase: Dict = np.shape(data[i] ) __UpperCAmelCase: Union[str, Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) __UpperCAmelCase: List[Any] = data_listed.getA().tolist()[0] data_expanded.extend(lowerCamelCase__ ) __UpperCAmelCase: Dict = np.asarray(lowerCamelCase__ ) return data_expanded def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: str = np.asarray(lowerCamelCase__ ) __UpperCAmelCase: Optional[int] = np.shape(lowerCamelCase__ ) __UpperCAmelCase: Union[str, Any] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' __UpperCAmelCase: int = [] __UpperCAmelCase: int = 0 for i_map in range(lowerCamelCase__ ): __UpperCAmelCase: List[Any] = np.ones((size_map, size_map) ) for i in range(0 , lowerCamelCase__ , lowerCamelCase__ ): for j in range(0 , lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase: Union[str, Any] = pd_pool[ i_pool ] __UpperCAmelCase: str = i_pool + 1 __UpperCAmelCase: Any = np.multiply( lowerCamelCase__ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(lowerCamelCase__ ) return pd_all def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=bool ): '''simple docstring''' print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(lowerCamelCase__ )) ) print((""" - - Shape: Teach_Data """, np.shape(lowerCamelCase__ )) ) __UpperCAmelCase: str = 0 __UpperCAmelCase: List[str] = [] __UpperCAmelCase: int = 1_0000 while rp < n_repeat and mse >= error_accuracy: __UpperCAmelCase: Optional[int] = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(lowerCamelCase__ ) ): # print('------------Learning Image: %d--------------'%p) __UpperCAmelCase: Optional[Any] = np.asmatrix(datas_train[p] ) __UpperCAmelCase: str = np.asarray(datas_teach[p] ) __UpperCAmelCase: Dict = self.convolute( lowerCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __UpperCAmelCase: int = self.pooling(lowerCamelCase__ , self.size_poolinga ) __UpperCAmelCase: Dict = np.shape(lowerCamelCase__ ) __UpperCAmelCase: List[str] = self._expand(lowerCamelCase__ ) __UpperCAmelCase: Dict = data_bp_input __UpperCAmelCase: Dict = np.dot(lowerCamelCase__ , self.vji.T ) - self.thre_bpa __UpperCAmelCase: Optional[int] = self.sig(lowerCamelCase__ ) __UpperCAmelCase: int = np.dot(lowerCamelCase__ , self.wkj.T ) - self.thre_bpa __UpperCAmelCase: int = self.sig(lowerCamelCase__ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- __UpperCAmelCase: Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(lowerCamelCase__ , (1 - bp_outa) ) ) __UpperCAmelCase: Optional[Any] = np.multiply( np.dot(lowerCamelCase__ , self.wkj ) , np.multiply(lowerCamelCase__ , (1 - bp_outa) ) ) __UpperCAmelCase: Optional[Any] = np.dot(lowerCamelCase__ , self.vji ) __UpperCAmelCase: str = pd_i_all / (self.size_poolinga * self.size_poolinga) __UpperCAmelCase: Optional[Any] = pd_conva_pooled.T.getA().tolist() __UpperCAmelCase: Dict = self._calculate_gradient_from_pool( lowerCamelCase__ , lowerCamelCase__ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): __UpperCAmelCase: List[str] = self._expand_mat(pd_conva_all[k_conv] ) __UpperCAmelCase: Any = self.rate_weight * np.dot(lowerCamelCase__ , lowerCamelCase__ ) __UpperCAmelCase: List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) __UpperCAmelCase: Any = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer __UpperCAmelCase: Optional[Any] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight __UpperCAmelCase: str = self.vji + pd_j_all.T * bp_outa * self.rate_weight __UpperCAmelCase: Optional[int] = self.thre_bpa - pd_k_all * self.rate_thre __UpperCAmelCase: List[str] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image __UpperCAmelCase: str = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) __UpperCAmelCase: str = rp + 1 __UpperCAmelCase: Tuple = error_count / patterns all_mse.append(lowerCamelCase__ ) def draw_error(): __UpperCAmelCase: Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(lowerCamelCase__ , """+-""" ) plt.plot(lowerCamelCase__ , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(lowerCamelCase__ , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: Optional[int] = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(lowerCamelCase__ )) ) for p in range(len(lowerCamelCase__ ) ): __UpperCAmelCase: str = np.asmatrix(datas_test[p] ) __UpperCAmelCase: Tuple = self.convolute( lowerCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __UpperCAmelCase: Optional[int] = self.pooling(lowerCamelCase__ , self.size_poolinga ) __UpperCAmelCase: Any = self._expand(lowerCamelCase__ ) __UpperCAmelCase: Any = data_bp_input __UpperCAmelCase: str = bp_outa * self.vji.T - self.thre_bpa __UpperCAmelCase: Tuple = self.sig(lowerCamelCase__ ) __UpperCAmelCase: Any = bp_outa * self.wkj.T - self.thre_bpa __UpperCAmelCase: List[str] = self.sig(lowerCamelCase__ ) produce_out.extend(bp_outa.getA().tolist() ) __UpperCAmelCase: List[str] = [list(map(self.do_round , lowerCamelCase__ ) ) for each in produce_out] return np.asarray(lowerCamelCase__ ) def lowercase_ ( self , snake_case_ ): '''simple docstring''' __UpperCAmelCase: List[Any] = np.asmatrix(lowerCamelCase__ ) __UpperCAmelCase: List[Any] = self.convolute( lowerCamelCase__ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __UpperCAmelCase: Any = self.pooling(lowerCamelCase__ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
523
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCamelCase_ ( ) -> int: a__ : Any = HfArgumentParser(__a ) a__ : Any = parser.parse_args_into_dataclasses()[0] a__ : Optional[int] = TensorFlowBenchmark(args=__a ) try: a__ : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: a__ : Tuple = "Arg --no_{0} is no longer used, please use --no-{0} instead." a__ : List[Any] = " ".join(str(__a ).split(" " )[:-1] ) a__ : str = "" a__ : List[Any] = eval(str(__a ).split(" " )[-1] ) a__ : List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__a ) if len(__a ) > 0: a__ : Tuple = full_error_msg + begin_error_msg + str(__a ) raise ValueError(__a ) benchmark.run() if __name__ == "__main__": main()
37
0
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowerCAmelCase ( UpperCamelCase__ : Any ): """simple docstring""" __UpperCAmelCase = [] if isinstance(__a , __a ): for v in tree.values(): shapes.extend(_fetch_dims(__a ) ) elif isinstance(__a , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__a ) ) elif isinstance(__a , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('''Not supported''' ) return shapes @torch.jit.ignore def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : List[str] ): """simple docstring""" __UpperCAmelCase = [] for d in reversed(__a ): idx.append(flat_idx % d ) __UpperCAmelCase = flat_idx // d return tuple(reversed(__a ) ) @torch.jit.ignore def lowerCAmelCase ( UpperCamelCase__ : int , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any = None , UpperCamelCase__ : Optional[Any] = None , ): """simple docstring""" # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(UpperCamelCase__ : Union[str, Any] ) -> None: __UpperCAmelCase = True for i in range(len(__a ) ): __UpperCAmelCase = -1 * (i + 1) l[reversed_idx] &= tally __UpperCAmelCase = l[reversed_idx] if start_edges is None: __UpperCAmelCase = [s == 0 for s in start] reduce_edge_list(__a ) if end_edges is None: __UpperCAmelCase = [e == (d - 1) for e, d in zip(__a , __a )] reduce_edge_list(__a ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__a ) == 0: return [()] elif len(__a ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __UpperCAmelCase = [] __UpperCAmelCase = [] # Dimensions common to start and end can be selected directly for s, e in zip(__a , __a ): if s == e: path_list.append(slice(__a , s + 1 ) ) else: break __UpperCAmelCase = tuple(__a ) __UpperCAmelCase = len(__a ) # start == end, and we're done if divergence_idx == len(__a ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __UpperCAmelCase = start[divergence_idx] return tuple( path + (slice(__a , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __UpperCAmelCase = end[divergence_idx] return tuple( path + (slice(__a , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __UpperCAmelCase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] ): """simple docstring""" __UpperCAmelCase = t.shape[:no_batch_dims] __UpperCAmelCase = list(_flat_idx_to_idx(__a , __a ) ) # _get_minimal_slice_set is inclusive __UpperCAmelCase = list(_flat_idx_to_idx(flat_end - 1 , __a ) ) # Get an ordered list of slices to perform __UpperCAmelCase = _get_minimal_slice_set( __a , __a , __a , ) __UpperCAmelCase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : str = False , UpperCamelCase__ : Dict = None , UpperCamelCase__ : int = False , ): """simple docstring""" if not (len(__a ) > 0): raise ValueError('''Must provide at least one input''' ) __UpperCAmelCase = [shape[:no_batch_dims] for shape in _fetch_dims(__a )] __UpperCAmelCase = tuple([max(__a ) for s in zip(*__a )] ) def _prep_inputs(UpperCamelCase__ : List[str] ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __UpperCAmelCase = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __UpperCAmelCase = tensor_tree_map(_prep_inputs , __a ) __UpperCAmelCase = None if _out is not None: __UpperCAmelCase = tensor_tree_map(lambda UpperCamelCase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __UpperCAmelCase = 1 for d in orig_batch_dims: flat_batch_dim *= d __UpperCAmelCase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(UpperCamelCase__ : str ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __UpperCAmelCase = 0 __UpperCAmelCase = prepped_outputs for _ in range(__a ): # Chunk the input if not low_mem: __UpperCAmelCase = _select_chunk else: __UpperCAmelCase = partial( _chunk_slice , flat_start=__a , flat_end=min(__a , i + chunk_size ) , no_batch_dims=len(__a ) , ) __UpperCAmelCase = tensor_tree_map(__a , __a ) # Run the layer on the chunk __UpperCAmelCase = layer(**__a ) # Allocate space for the output if out is None: __UpperCAmelCase = tensor_tree_map(lambda UpperCamelCase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __a ) # Put the chunk in its pre-allocated space if isinstance(__a , __a ): def assign(UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] ) -> None: for k, v in da.items(): if isinstance(__a , __a ): assign(__a , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __UpperCAmelCase = da[k] assign(__a , __a ) elif isinstance(__a , __a ): for xa, xa in zip(__a , __a ): if _add_into_out: xa[i : i + chunk_size] += xa else: __UpperCAmelCase = xa elif isinstance(__a , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __UpperCAmelCase = output_chunk else: raise ValueError('''Not supported''' ) i += chunk_size __UpperCAmelCase = tensor_tree_map(lambda UpperCamelCase__ : t.view(orig_batch_dims + t.shape[1:] ) , __a ) return out class A : def __init__( self : Optional[Any] , __a : int = 5_1_2 , ) -> List[Any]: __UpperCAmelCase = max_chunk_size __UpperCAmelCase = None __UpperCAmelCase = None def snake_case__ ( self : str , __a : Callable , __a : tuple , __a : int ) -> Optional[Any]: logging.info('''Tuning chunk size...''' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __UpperCAmelCase = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __UpperCAmelCase = [c for c in candidates if c > min_chunk_size] __UpperCAmelCase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__a : int ) -> bool: try: with torch.no_grad(): fn(*lowerCamelCase__ , chunk_size=lowerCamelCase__ ) return True except RuntimeError: return False __UpperCAmelCase = 0 __UpperCAmelCase = len(lowerCamelCase__ ) - 1 while i > min_viable_chunk_size_index: __UpperCAmelCase = test_chunk_size(candidates[i] ) if not viable: __UpperCAmelCase = (min_viable_chunk_size_index + i) // 2 else: __UpperCAmelCase = i __UpperCAmelCase = (i + len(lowerCamelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def snake_case__ ( self : List[Any] , __a : Iterable , __a : Iterable ) -> Any: __UpperCAmelCase = True for aa, aa in zip(lowerCamelCase__ , lowerCamelCase__ ): assert type(lowerCamelCase__ ) == type(lowerCamelCase__ ) if isinstance(lowerCamelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(lowerCamelCase__ , lowerCamelCase__ ) elif isinstance(lowerCamelCase__ , lowerCamelCase__ ): __UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] __UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] consistent &= self._compare_arg_caches(lowerCamelCase__ , lowerCamelCase__ ) else: consistent &= aa == aa return consistent def snake_case__ ( self : Optional[Any] , __a : Callable , __a : tuple , __a : int , ) -> Union[str, Any]: __UpperCAmelCase = True __UpperCAmelCase = tree_map(lambda __a : a.shape if isinstance(lowerCamelCase__ , torch.Tensor ) else a , lowerCamelCase__ , lowerCamelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowerCamelCase__ ) __UpperCAmelCase = self._compare_arg_caches(self.cached_arg_data , lowerCamelCase__ ) else: # Otherwise, we can reuse the precomputed value __UpperCAmelCase = False if not consistent: __UpperCAmelCase = self._determine_favorable_chunk_size( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) __UpperCAmelCase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
262
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip UpperCamelCase : Optional[int] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCamelCase_ ( __a ) -> Any: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCamelCase_ ( __a , __a , __a ) -> Any: return max(metric_fn(__a , __a ) for gt in ground_truths ) def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = [] if args.gold_data_mode == "qa": a__ : Any = pd.read_csv(__a , sep="\t" , header=__a ) for answer_list in data[1]: a__ : Union[str, Any] = ast.literal_eval(__a ) answers.append(__a ) else: a__ : List[str] = [line.strip() for line in open(__a , "r" ).readlines()] a__ : List[str] = [[reference] for reference in references] a__ : List[str] = 0 for prediction, ground_truths in zip(__a , __a ): total += 1 em += metric_max_over_ground_truths(__a , __a , __a ) fa += metric_max_over_ground_truths(__a , __a , __a ) a__ : Dict = 100.0 * em / total a__ : Optional[Any] = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: a__ : Optional[Any] = args.k a__ : str = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()] a__ : Tuple = 0 for hypo, reference in zip(__a , __a ): a__ : Any = set(hypo.split("\t" )[:k] ) a__ : Union[str, Any] = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a__ : Union[str, Any] = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]: def strip_title(__a ): if title.startswith("\"" ): a__ : Optional[Any] = title[1:] if title.endswith("\"" ): a__ : Union[str, Any] = title[:-1] return title a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="pt" , padding=__a , truncation=__a , )["input_ids"].to(args.device ) a__ : Optional[int] = rag_model.rag.question_encoder(__a ) a__ : Union[str, Any] = question_enc_outputs[0] a__ : Optional[int] = rag_model.retriever( __a , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) a__ : List[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a__ : int = [] for docs in all_docs: a__ : Optional[int] = [strip_title(__a ) for title in docs["title"]] provenance_strings.append("\t".join(__a ) ) return provenance_strings def UpperCamelCase_ ( __a , __a , __a ) -> Dict: with torch.no_grad(): a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __a , return_tensors="pt" , padding=__a , truncation=__a ) a__ : Any = inputs_dict.input_ids.to(args.device ) a__ : Dict = inputs_dict.attention_mask.to(args.device ) a__ : Optional[int] = rag_model.generate( # rag_model overwrites generate __a , attention_mask=__a , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__a , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a__ : int = rag_model.retriever.generator_tokenizer.batch_decode(__a , skip_special_tokens=__a ) if args.print_predictions: for q, a in zip(__a , __a ): logger.info("Q: {} - A: {}".format(__a , __a ) ) return answers def UpperCamelCase_ ( ) -> List[str]: a__ : int = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=__a , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=__a , choices=["exact", "compressed", "legacy"] , type=__a , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=__a , type=__a , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=__a , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=__a , type=__a , required=__a , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=__a , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=__a , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=__a , type=__a , required=__a , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=__a , type=__a , required=__a , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=__a , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=__a , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=__a , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=__a , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=__a , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=__a , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) a__ : int = parser.parse_args() a__ : Dict = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def UpperCamelCase_ ( __a ) -> Optional[int]: a__ : Tuple = {} if args.model_type is None: a__ : List[str] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): a__ : int = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration a__ : Tuple = args.n_docs if args.index_name is not None: a__ : Any = args.index_name if args.index_path is not None: a__ : int = args.index_path else: a__ : Optional[Any] = BartForConditionalGeneration a__ : Tuple = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , __a ) a__ : Any = get_scores if args.eval_mode == "e2e" else get_precision_at_k a__ : Union[str, Any] = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__a , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__a ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): a__ : str = RagRetriever.from_pretrained(__a , **__a ) a__ : Optional[int] = model_class.from_pretrained(__a , retriever=__a , **__a ) model.retriever.init_retrieval() else: a__ : Dict = model_class.from_pretrained(__a , **__a ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: a__ : List[Any] = [] for line in tqdm(__a ): questions.append(line.strip() ) if len(__a ) == args.eval_batch_size: a__ : Union[str, Any] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("\n".join(__a ) + "\n" ) preds_file.flush() a__ : Any = [] if len(__a ) > 0: a__ : List[str] = evaluate_batch_fn(__a , __a , __a ) preds_file.write("\n".join(__a ) ) preds_file.flush() score_fn(__a , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": UpperCamelCase : List[Any] = get_args() main(args)
37
0
'''simple docstring''' import datasets from .evaluate import evaluate UpperCamelCase ="""\ @inproceedings{Rajpurkar2016SQuAD10, title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text}, author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang}, booktitle={EMNLP}, year={2016} } """ UpperCamelCase =""" This metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD). Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span, from the corresponding reading passage, or the question might be unanswerable. """ UpperCamelCase =""" Computes SQuAD scores (F1 and EM). Args: predictions: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair as given in the references (see below) - 'prediction_text': the text of the answer references: List of question-answers dictionaries with the following key-values: - 'id': id of the question-answer pair (see above), - 'answers': a Dict in the SQuAD dataset format { 'text': list of possible texts for the answer, as a list of strings 'answer_start': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: 'exact_match': Exact match (the normalized answer exactly match the gold answer) 'f1': The F-score of predicted tokens versus the gold answer Examples: >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}] >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}] >>> squad_metric = datasets.load_metric(\"squad\") >>> results = squad_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 100.0, 'f1': 100.0} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class A ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )}, """references""": { """id""": datasets.Value("""string""" ), """answers""": datasets.features.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), }, } ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , ) def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ : Any = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} UpperCamelCase_ : Optional[int] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] UpperCamelCase_ : Any = evaluate(dataset=lowerCamelCase__ , predictions=lowerCamelCase__ ) return score
208
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a = None , ) -> str: a__ : int = {} if train_file is not None: a__ : int = [train_file] if eval_file is not None: a__ : Union[str, Any] = [eval_file] if test_file is not None: a__ : str = [test_file] a__ : Optional[Any] = datasets.load_dataset("csv" , data_files=__a ) a__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() ) a__ : str = features_name.pop(__a ) a__ : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) a__ : str = {label: i for i, label in enumerate(__a )} a__ : Tuple = tokenizer.model_input_names a__ : List[str] = {} if len(__a ) == 1: for k in files.keys(): a__ : Optional[Any] = ds[k].map( lambda __a : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__a , max_length=__a , padding="max_length" ) , batched=__a , ) elif len(__a ) == 2: for k in files.keys(): a__ : Dict = ds[k].map( lambda __a : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__a , max_length=__a , padding="max_length" , ) , batched=__a , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: a__ : str = {k: v for k, v in ex.items() if k in input_names} a__ : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: a__ : Tuple = {k: v for k, v in ex.items() if k in input_names} a__ : List[Any] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: a__ : List[Any] = {k: v for k, v in ex.items() if k in input_names} a__ : Optional[int] = labelaid[ex[label_name]] yield (d, label) a__ : Optional[Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: a__ : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: a__ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) a__ : Union[str, Any] = ( tf.data.Dataset.from_generator( __a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: a__ : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid UpperCamelCase : Optional[Any] = logging.getLogger(__name__) @dataclass class A__ : """simple docstring""" _lowercase = field(metadata={'help': 'Which column contains the label'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the training file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the development file'} ) _lowercase = field(default=A__ , metadata={'help': 'The path of the test file'} ) _lowercase = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _lowercase = field( default=A__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class A__ : """simple docstring""" _lowercase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _lowercase = field( default=A__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _lowercase = field(default=A__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _lowercase = field( default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCamelCase_ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) a__, a__, a__ : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) a__, a__, a__, a__ : Optional[Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) a__ : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__a ) , labelaid=__a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): a__ : Any = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , ) def compute_metrics(__a ) -> Dict: a__ : Union[str, Any] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer a__ : Dict = TFTrainer( model=__a , args=__a , train_dataset=__a , eval_dataset=__a , compute_metrics=__a , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation a__ : Optional[Any] = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) a__ : Dict = trainer.evaluate() a__ : int = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(__a , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__a ) return results if __name__ == "__main__": main()
37
0
def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase ): lowerCamelCase_: str = word.split() def justify(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> str: lowerCamelCase_: List[str] = max_width - width lowerCamelCase_: str = len(__a ) if len(__a ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCamelCase_: Dict = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCamelCase_: str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCamelCase_: List[Any] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(__a ): num_spaces_between_words_list[i] += 1 lowerCamelCase_: Union[str, Any] = [] for i in range(__a ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * """ """ ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(__a ) lowerCamelCase_: Any = [] lowerCamelCase_: list[str] = [] lowerCamelCase_: Any = 0 for word in words: if width + len(__a ) + len(__a ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(__a ) width += len(__a ) else: # justify the line and add it to result answer.append(justify(__a , __a , __a ) ) # reset new line and new width lowerCamelCase_: Optional[int] = [word], len(__a ) lowerCamelCase_: int = max_width - width - len(__a ) answer.append(""" """.join(__a ) + (remaining_spaces + 1) * """ """ ) return answer if __name__ == "__main__": from doctest import testmod testmod()
423
import argparse import collections import json import os import re import string import sys import numpy as np UpperCamelCase : List[str] = re.compile(r"""\b(a|an|the)\b""", re.UNICODE) UpperCamelCase : Union[str, Any] = None def UpperCamelCase_ ( ) -> List[str]: a__ : List[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." ) parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." ) parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." ) parser.add_argument( "--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." ) parser.add_argument( "--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." ) parser.add_argument( "--na-prob-thresh" , "-t" , type=__a , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , ) parser.add_argument( "--out-image-dir" , "-p" , metavar="out_images" , default=__a , help="Save precision-recall curves to directory." ) parser.add_argument("--verbose" , "-v" , action="store_true" ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def UpperCamelCase_ ( __a ) -> str: a__ : Optional[Any] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : Dict = bool(qa["answers"]["text"] ) return qid_to_has_ans def UpperCamelCase_ ( __a ) -> List[Any]: def remove_articles(__a ): return ARTICLES_REGEX.sub(" " , __a ) def white_space_fix(__a ): return " ".join(text.split() ) def remove_punc(__a ): a__ : Union[str, Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__a ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__a ) ) ) ) def UpperCamelCase_ ( __a ) -> Dict: if not s: return [] return normalize_answer(__a ).split() def UpperCamelCase_ ( __a , __a ) -> str: return int(normalize_answer(__a ) == normalize_answer(__a ) ) def UpperCamelCase_ ( __a , __a ) -> Dict: a__ : int = get_tokens(__a ) a__ : Optional[Any] = get_tokens(__a ) a__ : Any = collections.Counter(__a ) & collections.Counter(__a ) a__ : Dict = sum(common.values() ) if len(__a ) == 0 or len(__a ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 a__ : Tuple = 1.0 * num_same / len(__a ) a__ : str = 1.0 * num_same / len(__a ) a__ : str = (2 * precision * recall) / (precision + recall) return fa def UpperCamelCase_ ( __a , __a ) -> int: a__ : List[str] = {} a__ : Optional[int] = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: a__ : List[Any] = qa["id"] a__ : Dict = [t for t in qa["answers"]["text"] if normalize_answer(__a )] if not gold_answers: # For unanswerable questions, only correct answer is empty string a__ : Tuple = [""] if qid not in preds: print(f'''Missing prediction for {qid}''' ) continue a__ : Tuple = preds[qid] # Take max over all gold answers a__ : Optional[int] = max(compute_exact(__a , __a ) for a in gold_answers ) a__ : str = max(compute_fa(__a , __a ) for a in gold_answers ) return exact_scores, fa_scores def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]: a__ : Optional[Any] = {} for qid, s in scores.items(): a__ : Dict = na_probs[qid] > na_prob_thresh if pred_na: a__ : Dict = float(not qid_to_has_ans[qid] ) else: a__ : Optional[Any] = s return new_scores def UpperCamelCase_ ( __a , __a , __a=None ) -> Tuple: if not qid_list: a__ : Union[str, Any] = len(__a ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores.values() ) / total), ("f1", 100.0 * sum(fa_scores.values() ) / total), ("total", total), ] ) else: a__ : int = len(__a ) return collections.OrderedDict( [ ("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total), ("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total), ("total", total), ] ) def UpperCamelCase_ ( __a , __a , __a ) -> List[str]: for k in new_eval: a__ : Optional[Any] = new_eval[k] def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]: plt.step(__a , __a , color="b" , alpha=0.2 , where="post" ) plt.fill_between(__a , __a , step="post" , alpha=0.2 , color="b" ) plt.xlabel("Recall" ) plt.ylabel("Precision" ) plt.xlim([0.0, 1.05] ) plt.ylim([0.0, 1.05] ) plt.title(__a ) plt.savefig(__a ) plt.clf() def UpperCamelCase_ ( __a , __a , __a , __a , __a=None , __a=None ) -> Dict: a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] ) a__ : Any = 0.0 a__ : Optional[int] = 1.0 a__ : Optional[int] = 0.0 a__ : Any = [1.0] a__ : Tuple = [0.0] a__ : List[str] = 0.0 for i, qid in enumerate(__a ): if qid_to_has_ans[qid]: true_pos += scores[qid] a__ : Any = true_pos / float(i + 1 ) a__ : int = true_pos / float(__a ) if i == len(__a ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__a ) recalls.append(__a ) if out_image: plot_pr_curve(__a , __a , __a , __a ) return {"ap": 100.0 * avg_prec} def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> str: if out_image_dir and not os.path.exists(__a ): os.makedirs(__a ) a__ : Optional[int] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return a__ : Optional[int] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , ) a__ : Optional[Any] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , ) a__ : str = {k: float(__a ) for k, v in qid_to_has_ans.items()} a__ : Optional[Any] = make_precision_recall_eval( __a , __a , __a , __a , out_image=os.path.join(__a , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , ) merge_eval(__a , __a , "pr_exact" ) merge_eval(__a , __a , "pr_f1" ) merge_eval(__a , __a , "pr_oracle" ) def UpperCamelCase_ ( __a , __a , __a , __a ) -> str: if not qid_list: return a__ : Optional[Any] = [na_probs[k] for k in qid_list] a__ : str = np.ones_like(__a ) / float(len(__a ) ) plt.hist(__a , weights=__a , bins=20 , range=(0.0, 1.0) ) plt.xlabel("Model probability of no-answer" ) plt.ylabel("Proportion of dataset" ) plt.title(f'''Histogram of no-answer probability: {name}''' ) plt.savefig(os.path.join(__a , f'''na_prob_hist_{name}.png''' ) ) plt.clf() def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[Any]: a__ : str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) a__ : Optional[Any] = num_no_ans a__ : Dict = cur_score a__ : Any = 0.0 a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] ) for i, qid in enumerate(__a ): if qid not in scores: continue if qid_to_has_ans[qid]: a__ : Optional[int] = scores[qid] else: if preds[qid]: a__ : str = -1 else: a__ : Union[str, Any] = 0 cur_score += diff if cur_score > best_score: a__ : Any = cur_score a__ : Dict = na_probs[qid] return 100.0 * best_score / len(__a ), best_thresh def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> Any: a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a ) a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a ) a__ : Any = best_exact a__ : Any = exact_thresh a__ : List[Any] = best_fa a__ : Optional[int] = fa_thresh def UpperCamelCase_ ( ) -> Tuple: with open(OPTS.data_file ) as f: a__ : List[Any] = json.load(__a ) a__ : Any = dataset_json["data"] with open(OPTS.pred_file ) as f: a__ : int = json.load(__a ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: a__ : List[str] = json.load(__a ) else: a__ : Optional[int] = {k: 0.0 for k in preds} a__ : Optional[Any] = make_qid_to_has_ans(__a ) # maps qid to True/False a__ : List[Any] = [k for k, v in qid_to_has_ans.items() if v] a__ : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v] a__, a__ : str = get_raw_scores(__a , __a ) a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh ) a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh ) a__ : Tuple = make_eval_dict(__a , __a ) if has_ans_qids: a__ : str = make_eval_dict(__a , __a , qid_list=__a ) merge_eval(__a , __a , "HasAns" ) if no_ans_qids: a__ : List[Any] = make_eval_dict(__a , __a , qid_list=__a ) merge_eval(__a , __a , "NoAns" ) if OPTS.na_prob_file: find_all_best_thresh(__a , __a , __a , __a , __a , __a ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__a , __a , __a , __a , __a , OPTS.out_image_dir ) histogram_na_prob(__a , __a , OPTS.out_image_dir , "hasAns" ) histogram_na_prob(__a , __a , OPTS.out_image_dir , "noAns" ) if OPTS.out_file: with open(OPTS.out_file , "w" ) as f: json.dump(__a , __a ) else: print(json.dumps(__a , indent=2 ) ) if __name__ == "__main__": UpperCamelCase : Any = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("""Agg""") import matplotlib.pyplot as plt main()
37
0
from __future__ import annotations import math def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : List[Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[int] ): if depth < 0: raise ValueError('Depth cannot be less than 0' ) if len(__a ) == 0: raise ValueError('Scores cannot be empty' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1, node_index * 2, __a, __a, __a ), minimax(depth + 1, node_index * 2 + 1, __a, __a, __a ), ) return min( minimax(depth + 1, node_index * 2, __a, __a, __a ), minimax(depth + 1, node_index * 2 + 1, __a, __a, __a ), ) def a_ ( ): __lowerCAmelCase = [90, 23, 6, 33, 21, 65, 123, 3_4423] __lowerCAmelCase = math.log(len(__a ), 2 ) print('Optimal value : ', end='' ) print(minimax(0, 0, __a, __a, __a ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
53
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = CLIPTokenizer _lowercase = CLIPTokenizerFast _lowercase = True _lowercase = {} _lowercase = False def _UpperCamelCase( self : List[Any] ): super().setUp() # fmt: off a__ : Any = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) a__ : Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] a__ : Optional[Any] = {"unk_token": "<unk>"} a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) def _UpperCamelCase( self : Dict , **lowerCamelCase__ : int ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , **lowerCamelCase__ : Optional[int] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[Any] ): a__ : int = "lower newer" a__ : Optional[int] = "lower newer" return input_text, output_text def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a__ : int = "lower newer" a__ : List[str] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] a__ : Union[str, Any] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : int = tokens + [tokenizer.unk_token] a__ : Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @require_ftfy def _UpperCamelCase( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : List[str] = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : int = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." a__ : Optional[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : Dict = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a__ : Optional[Any] = "xa\u0303y" + " " + "x\xe3y" a__ : Optional[int] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of space type a__ : str = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a__ : Any = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of line break type a__ : Union[str, Any] = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a__ : List[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a__ : Tuple = f'''{text_of_1_token} {text_of_1_token}''' a__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Union[str, Any] = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) a__ : Optional[Any] = f''' {text}''' a__ : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Dict = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) def _UpperCamelCase( self : int ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCamelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def _UpperCamelCase( self : int ): super().test_tokenization_python_rust_equals() def _UpperCamelCase( self : str ): # CLIP always lower cases letters pass
37
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __A : int = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ) -> List[Any]: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False elif args.student_type == "gpt2": UpperCAmelCase = False def __SCREAMING_SNAKE_CASE ( UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: '''simple docstring''' if args.student_type == "roberta": UpperCAmelCase = False def __SCREAMING_SNAKE_CASE ( ) -> Any: '''simple docstring''' UpperCAmelCase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=__a , required=__a , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=__a , required=__a , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=__a , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=__a , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=__a , required=__a , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=__a , type=__a , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=__a , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=__a , required=__a , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=__a , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=__a , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=__a , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=__a , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=__a , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=__a , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=__a , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=__a , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=__a , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=__a , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=__a , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=__a , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=__a , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=__a , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=__a , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=__a , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=__a , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=__a , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=__a , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=__a , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=__a , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=__a , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=__a , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=__a , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=__a , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=__a , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=__a , default=4000 , help='''Checkpoint interval.''' ) UpperCAmelCase = parser.parse_args() sanity_checks(__a ) # ARGS # init_gpu_params(__a ) set_seed(__a ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(__a ) , __a , indent=4 ) git_log(args.dump_path ) UpperCAmelCase = MODEL_CLASSES[args.student_type] UpperCAmelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # UpperCAmelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) UpperCAmelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): UpperCAmelCase = tokenizer.all_special_tokens.index(__a ) UpperCAmelCase = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) UpperCAmelCase = special_tok_ids UpperCAmelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: UpperCAmelCase = pickle.load(__a ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: UpperCAmelCase = pickle.load(__a ) UpperCAmelCase = np.maximum(__a , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): UpperCAmelCase = 0.0 # do not predict special tokens UpperCAmelCase = torch.from_numpy(__a ) else: UpperCAmelCase = None UpperCAmelCase = LmSeqsDataset(params=__a , data=__a ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) UpperCAmelCase = student_config_class.from_pretrained(args.student_config ) UpperCAmelCase = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) UpperCAmelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=__a ) else: UpperCAmelCase = student_model_class(__a ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # UpperCAmelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__a ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__a , __a ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__a , __a ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() UpperCAmelCase = Distiller( params=__a , dataset=__a , token_probs=__a , student=__a , teacher=__a ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
130
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCamelCase : Dict = """<<<<<<< This should probably be modified because it mentions: """ UpperCamelCase : List[Any] = """======= >>>>>>> """ UpperCamelCase : Optional[Any] = [ """TextEncoderConfig""", """ByteTextEncoder""", """SubwordTextEncoder""", """encoder_config""", """maybe_build_from_corpus""", """manual_dir""", ] UpperCamelCase : Any = [ # (pattern, replacement) # Order is important here for some replacements (r"""tfds\.core""", r"""datasets"""), (r"""tf\.io\.gfile\.GFile""", r"""open"""), (r"""tf\.([\w\d]+)""", r"""datasets.Value('\1')"""), (r"""tfds\.features\.Text\(\)""", r"""datasets.Value('string')"""), (r"""tfds\.features\.Text\(""", r"""datasets.Value('string'),"""), (r"""features\s*=\s*tfds.features.FeaturesDict\(""", r"""features=datasets.Features("""), (r"""tfds\.features\.FeaturesDict\(""", r"""dict("""), (r"""The TensorFlow Datasets Authors""", r"""The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"""), (r"""tfds\.""", r"""datasets."""), (r"""dl_manager\.manual_dir""", r"""self.config.data_dir"""), (r"""self\.builder_config""", r"""self.config"""), ] def UpperCamelCase_ ( __a ) -> Optional[Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class A__ ( A__ ): """simple docstring""" @staticmethod def _UpperCamelCase( lowerCamelCase__ : ArgumentParser ): a__ : List[str] = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=lowerCamelCase__ , required=lowerCamelCase__ , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=lowerCamelCase__ ) def __init__( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , *lowerCamelCase__ : Tuple ): a__ : str = get_logger("datasets-cli/converting" ) a__ : Optional[Any] = tfds_path a__ : Optional[int] = datasets_directory def _UpperCamelCase( self : int ): if os.path.isdir(self._tfds_path ): a__ : List[str] = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): a__ : Any = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) a__ : Dict = os.path.abspath(self._datasets_directory ) self._logger.info(f'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) a__ : Tuple = [] a__ : str = [] a__ : List[Any] = {} if os.path.isdir(self._tfds_path ): a__ : List[str] = os.listdir(lowerCamelCase__ ) else: a__ : Union[str, Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f'''Looking at file {f_name}''' ) a__ : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) a__ : Dict = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) if not os.path.isfile(lowerCamelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(lowerCamelCase__ , encoding="utf-8" ) as f: a__ : List[Any] = f.readlines() a__ : Union[str, Any] = [] a__ : Union[str, Any] = False a__ : Union[str, Any] = False a__ : Dict = [] for line in lines: a__ : Optional[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: a__ : List[Any] = "import datasets\n" elif "import tensorflow" in out_line: # order is important here a__ : List[str] = "" continue elif "from absl import logging" in out_line: a__ : Dict = "from datasets import logging\n" elif "getLogger" in out_line: a__ : List[Any] = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): a__ : List[str] = True a__ : Dict = list(filter(lambda lowerCamelCase__ : e in out_line , lowerCamelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCamelCase__ ) + "\n" ) out_lines.append(lowerCamelCase__ ) out_lines.append(lowerCamelCase__ ) continue else: for pattern, replacement in TO_CONVERT: a__ : Tuple = re.sub(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: a__ : Optional[int] = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , lowerCamelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) a__ : Optional[Any] = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: a__ : Optional[int] = True out_lines.append(lowerCamelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset a__ : Dict = f_name.replace(".py" , "" ) a__ : Optional[int] = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) a__ : Any = os.path.join(lowerCamelCase__ , lowerCamelCase__ ) os.makedirs(lowerCamelCase__ , exist_ok=lowerCamelCase__ ) self._logger.info(f'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCamelCase__ ) if needs_manual_update: with_manual_update.append(lowerCamelCase__ ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.writelines(lowerCamelCase__ ) self._logger.info(f'''Converted in {output_file}''' ) for utils_file in utils_files: try: a__ : Any = os.path.basename(lowerCamelCase__ ) a__ : Optional[int] = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(f'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowerCamelCase__ , lowerCamelCase__ ) except KeyError: self._logger.error(f'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
37
0