code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
__lowerCAmelCase : Optional[int] = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:])
__lowerCAmelCase : Any = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(1_00_00):
out_file.write(data)
__lowerCAmelCase : Optional[Any] = BeautifulSoup(res.text, "html.parser")
__lowerCAmelCase : Dict = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(F"https://google.com{link.get('href')}")
| 644 |
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class A__ ( A__ ):
"""simple docstring"""
_lowercase = ''
_lowercase = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
_lowercase = None # compression type in fsspec. ex: "gzip"
_lowercase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self : List[str] , lowerCamelCase__ : str = "" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[dict] = None , **lowerCamelCase__ : List[str] ):
super().__init__(self , **lowerCamelCase__ )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
a__ : str = fsspec.open(
lowerCamelCase__ , mode="rb" , protocol=lowerCamelCase__ , compression=self.compression , client_kwargs={
"requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459
"trust_env": True, # Enable reading proxy env variables.
**(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed.
} , **(target_options or {}) , )
a__ : Optional[int] = os.path.basename(self.file.path.split("::" )[0] )
a__ : int = (
self.compressed_name[: self.compressed_name.rindex("." )]
if "." in self.compressed_name
else self.compressed_name
)
a__ : List[Any] = None
@classmethod
def _UpperCamelCase( cls : int , lowerCamelCase__ : int ):
# compressed file paths are always relative to the archive root
return super()._strip_protocol(lowerCamelCase__ ).lstrip("/" )
def _UpperCamelCase( self : Dict ):
if self.dir_cache is None:
a__ : Dict = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name}
a__ : int = {f["name"]: f}
def _UpperCamelCase( self : Tuple , lowerCamelCase__ : str ):
return self.file.open().read()
def _UpperCamelCase( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str = "rb" , lowerCamelCase__ : int=None , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Optional[Any] , ):
a__ : Optional[int] = self._strip_protocol(lowerCamelCase__ )
if mode != "rb":
raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' )
return self.file.open()
class A__ ( A__ ):
"""simple docstring"""
_lowercase = 'bz2'
_lowercase = 'bz2'
_lowercase = '.bz2'
class A__ ( A__ ):
"""simple docstring"""
_lowercase = 'gzip'
_lowercase = 'gzip'
_lowercase = '.gz'
class A__ ( A__ ):
"""simple docstring"""
_lowercase = 'lz4'
_lowercase = 'lz4'
_lowercase = '.lz4'
class A__ ( A__ ):
"""simple docstring"""
_lowercase = 'xz'
_lowercase = 'xz'
_lowercase = '.xz'
class A__ ( A__ ):
"""simple docstring"""
_lowercase = 'zstd'
_lowercase = 'zstd'
_lowercase = '.zst'
def __init__( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : str = "rb" , lowerCamelCase__ : Optional[str] = None , lowerCamelCase__ : Optional[dict] = None , lowerCamelCase__ : int = DEFAULT_BLOCK_SIZE , **lowerCamelCase__ : Tuple , ):
super().__init__(
fo=lowerCamelCase__ , mode=lowerCamelCase__ , target_protocol=lowerCamelCase__ , target_options=lowerCamelCase__ , block_size=lowerCamelCase__ , **lowerCamelCase__ , )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
a__ : Any = self.file.__enter__
class A__ :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCamelCase__ : str ):
a__ : List[Any] = file_
def __enter__( self : str ):
self._file.__enter__()
return self
def __exit__( self : int , *lowerCamelCase__ : List[str] , **lowerCamelCase__ : int ):
self._file.__exit__(*lowerCamelCase__ , **lowerCamelCase__ )
def __iter__( self : List[str] ):
return iter(self._file )
def _UpperCamelCase( self : Any ):
return next(self._file )
def __getattr__( self : Optional[Any] , lowerCamelCase__ : Tuple ):
return getattr(self._file , lowerCamelCase__ )
def fixed_enter(*lowerCamelCase__ : List[str] , **lowerCamelCase__ : str ):
return WrappedFile(_enter(*lowerCamelCase__ , **lowerCamelCase__ ) )
a__ : Any = fixed_enter
| 37 | 0 |
"""simple docstring"""
import unittest
from transformers import MPNetConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
class _UpperCAmelCase :
'''simple docstring'''
def __init__( self , A , A=1_3 , A=7 , A=True , A=True , A=False , A=True , A=9_9 , A=6_4 , A=5 , A=4 , A=6_4 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=1_6 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str:
_UpperCAmelCase : Optional[Any] = parent
_UpperCAmelCase : List[str] = batch_size
_UpperCAmelCase : Tuple = seq_length
_UpperCAmelCase : Dict = is_training
_UpperCAmelCase : str = use_input_mask
_UpperCAmelCase : int = use_token_type_ids
_UpperCAmelCase : Any = use_labels
_UpperCAmelCase : List[Any] = vocab_size
_UpperCAmelCase : Optional[Any] = hidden_size
_UpperCAmelCase : int = num_hidden_layers
_UpperCAmelCase : Optional[Any] = num_attention_heads
_UpperCAmelCase : Union[str, Any] = intermediate_size
_UpperCAmelCase : Tuple = hidden_act
_UpperCAmelCase : Dict = hidden_dropout_prob
_UpperCAmelCase : List[str] = attention_probs_dropout_prob
_UpperCAmelCase : Any = max_position_embeddings
_UpperCAmelCase : int = type_vocab_size
_UpperCAmelCase : List[Any] = type_sequence_label_size
_UpperCAmelCase : Tuple = initializer_range
_UpperCAmelCase : Any = num_labels
_UpperCAmelCase : Optional[int] = num_choices
_UpperCAmelCase : Union[str, Any] = scope
def __lowerCAmelCase ( self ) -> List[str]:
return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' )
def __lowerCAmelCase ( self ) -> Optional[int]:
_UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase : Union[str, Any] = None
if self.use_input_mask:
_UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] )
_UpperCAmelCase : Optional[Any] = None
_UpperCAmelCase : List[Any] = None
_UpperCAmelCase : str = None
if self.use_labels:
_UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices )
_UpperCAmelCase : Optional[int] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self ) -> Any:
return MPNetConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , )
def __lowerCAmelCase ( self , A , A , A , A , A , A ) -> Optional[Any]:
_UpperCAmelCase : Union[str, Any] = MPNetModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_UpperCAmelCase : int = model(lowerCamelCase__ , lowerCamelCase__ )
_UpperCAmelCase : str = model(lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def __lowerCAmelCase ( self , A , A , A , A , A , A ) -> int:
_UpperCAmelCase : Union[str, Any] = MPNetForQuestionAnswering(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_UpperCAmelCase : Optional[int] = model(
lowerCamelCase__ , attention_mask=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self , A , A , A , A , A , A ) -> int:
_UpperCAmelCase : Union[str, Any] = self.num_labels
_UpperCAmelCase : Tuple = MPNetForSequenceClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_UpperCAmelCase : Tuple = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self , A , A , A , A , A , A ) -> List[str]:
_UpperCAmelCase : str = self.num_choices
_UpperCAmelCase : List[Any] = MPNetForMultipleChoice(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_UpperCAmelCase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_UpperCAmelCase : List[Any] = model(
lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self , A , A , A , A , A , A ) -> Optional[Any]:
_UpperCAmelCase : Any = self.num_labels
_UpperCAmelCase : Any = MPNetForTokenClassification(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_UpperCAmelCase : int = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self ) -> List[Any]:
_UpperCAmelCase : Any = self.prepare_config_and_inputs()
(_UpperCAmelCase) : Optional[Any] = config_and_inputs
_UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( A__ ,A__ ,unittest.TestCase ):
'''simple docstring'''
a__ =(
(
MPNetForMaskedLM,
MPNetForMultipleChoice,
MPNetForQuestionAnswering,
MPNetForSequenceClassification,
MPNetForTokenClassification,
MPNetModel,
)
if is_torch_available()
else ()
)
a__ =(
{
'''feature-extraction''': MPNetModel,
'''fill-mask''': MPNetForMaskedLM,
'''question-answering''': MPNetForQuestionAnswering,
'''text-classification''': MPNetForSequenceClassification,
'''token-classification''': MPNetForTokenClassification,
'''zero-shot''': MPNetForSequenceClassification,
}
if is_torch_available()
else {}
)
a__ =False
a__ =True
def __lowerCAmelCase ( self ) -> List[Any]:
_UpperCAmelCase : str = MPNetModelTester(self )
_UpperCAmelCase : List[Any] = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=3_7 )
def __lowerCAmelCase ( self ) -> Optional[Any]:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> Optional[Any]:
_UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_model(*lowerCamelCase__ )
def __lowerCAmelCase ( self ) -> Optional[Any]:
_UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowerCamelCase__ )
def __lowerCAmelCase ( self ) -> Optional[Any]:
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowerCamelCase__ )
def __lowerCAmelCase ( self ) -> str:
_UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_token_classification(*lowerCamelCase__ )
def __lowerCAmelCase ( self ) -> Union[str, Any]:
_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mpnet_for_question_answering(*lowerCamelCase__ )
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@slow
def __lowerCAmelCase ( self ) -> Optional[int]:
_UpperCAmelCase : Dict = MPNetModel.from_pretrained('''microsoft/mpnet-base''' )
_UpperCAmelCase : List[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] )
_UpperCAmelCase : List[str] = model(lowerCamelCase__ )[0]
_UpperCAmelCase : Any = torch.Size((1, 1_1, 7_6_8) )
self.assertEqual(output.shape , lowerCamelCase__ )
_UpperCAmelCase : Tuple = torch.tensor(
[[[-0.0_550, 0.1_943, -0.0_740], [-0.0_562, 0.2_211, -0.0_579], [-0.0_437, 0.3_337, -0.0_641]]] )
# compare the actual values for a slice.
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
| 506 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]:
a__ : Union[str, Any] = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value")
a__ : Union[str, Any] = (
("layer.", "layer_"),
("word_embeddings.weight", "word_embeddings"),
("position_embeddings.weight", "position_embeddings"),
("token_type_embeddings.weight", "token_type_embeddings"),
(".", "/"),
("LayerNorm/weight", "LayerNorm/gamma"),
("LayerNorm/bias", "LayerNorm/beta"),
("weight", "kernel"),
)
if not os.path.isdir(__a ):
os.makedirs(__a )
a__ : Any = model.state_dict()
def to_tf_var_name(__a ):
for patt, repl in iter(__a ):
a__ : Tuple = name.replace(__a , __a )
return f'''bert/{name}'''
def create_tf_var(__a , __a , __a ):
a__ : Tuple = tf.dtypes.as_dtype(tensor.dtype )
a__ : Dict = tf.get_variable(dtype=__a , shape=tensor.shape , name=__a , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(__a )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
a__ : int = to_tf_var_name(__a )
a__ : Union[str, Any] = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
a__ : int = torch_tensor.T
a__ : Optional[Any] = create_tf_var(tensor=__a , name=__a , session=__a )
tf.keras.backend.set_value(__a , __a )
a__ : int = session.run(__a )
print(f'''Successfully created {tf_name}: {np.allclose(__a , __a )}''' )
a__ : Any = tf.train.Saver(tf.trainable_variables() )
saver.save(__a , os.path.join(__a , model_name.replace("-" , "_" ) + ".ckpt" ) )
def UpperCamelCase_ ( __a=None ) -> int:
a__ : Dict = argparse.ArgumentParser()
parser.add_argument("--model_name" , type=__a , required=__a , help="model name e.g. bert-base-uncased" )
parser.add_argument(
"--cache_dir" , type=__a , default=__a , required=__a , help="Directory containing pytorch model" )
parser.add_argument("--pytorch_model_path" , type=__a , required=__a , help="/path/to/<pytorch-model-name>.bin" )
parser.add_argument("--tf_cache_dir" , type=__a , required=__a , help="Directory in which to save tensorflow model" )
a__ : Optional[Any] = parser.parse_args(__a )
a__ : Tuple = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=__a , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 37 | 0 |
'''simple docstring'''
import argparse
from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta
from transformers.utils import logging
logging.set_verbosity_info()
def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Union[str, Any] ):
# Initialise PyTorch model
_a = TaConfig.from_json_file(__a )
print(F'''Building PyTorch model from configuration: {config}''' )
_a = TaForConditionalGeneration(__a )
# Load weights from tf checkpoint
load_tf_weights_in_ta(__a, __a, __a )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(__a )
if __name__ == "__main__":
__snake_case : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__snake_case : Tuple = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 131 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ASTConfig
from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_torchaudio_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ASTForAudioClassification, ASTModel
from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
if is_torchaudio_available():
import torchaudio
from transformers import ASTFeatureExtractor
class A__ :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[Any]=2 , lowerCamelCase__ : Any=24 , lowerCamelCase__ : Optional[Any]=16 , lowerCamelCase__ : int=True , lowerCamelCase__ : List[str]=True , lowerCamelCase__ : List[Any]=32 , lowerCamelCase__ : List[str]=5 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Optional[Any]=37 , lowerCamelCase__ : Any="gelu" , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : Optional[int]=0.1 , lowerCamelCase__ : str=10 , lowerCamelCase__ : Optional[Any]=0.02 , lowerCamelCase__ : str=None , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Optional[Any]=2 , ):
a__ : str = parent
a__ : Any = batch_size
a__ : Dict = patch_size
a__ : List[Any] = max_length
a__ : str = num_mel_bins
a__ : Optional[Any] = is_training
a__ : Optional[int] = use_labels
a__ : List[Any] = hidden_size
a__ : str = num_hidden_layers
a__ : Any = num_attention_heads
a__ : Union[str, Any] = intermediate_size
a__ : List[str] = hidden_act
a__ : str = hidden_dropout_prob
a__ : Tuple = attention_probs_dropout_prob
a__ : List[Any] = type_sequence_label_size
a__ : Any = initializer_range
a__ : str = scope
a__ : List[str] = frequency_stride
a__ : Union[str, Any] = time_stride
# in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
a__ : List[Any] = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1
a__ : List[str] = (self.max_length - self.patch_size) // self.time_stride + 1
a__ : Tuple = frequency_out_dimension * time_out_dimension
a__ : List[str] = num_patches + 2
def _UpperCamelCase( self : List[str] ):
a__ : Any = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] )
a__ : List[Any] = None
if self.use_labels:
a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a__ : List[str] = self.get_config()
return config, input_values, labels
def _UpperCamelCase( self : Optional[int] ):
return ASTConfig(
patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , )
def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : int , lowerCamelCase__ : Optional[int] ):
a__ : List[Any] = ASTModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
a__ : Dict = model(lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase( self : str ):
a__ : Dict = self.prepare_config_and_inputs()
(
(
a__
), (
a__
), (
a__
),
) : Optional[int] = config_and_inputs
a__ : List[Any] = {"input_values": input_values}
return config, inputs_dict
@require_torch
class A__ ( A__ , A__ , unittest.TestCase ):
"""simple docstring"""
_lowercase = (
(
ASTModel,
ASTForAudioClassification,
)
if is_torch_available()
else ()
)
_lowercase = (
{'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel}
if is_torch_available()
else {}
)
_lowercase = False
_lowercase = False
_lowercase = False
_lowercase = False
def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ):
if pipeline_test_casse_name == "AudioClassificationPipelineTests":
return True
return False
def _UpperCamelCase( self : str ):
a__ : str = ASTModelTester(self )
a__ : Any = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 )
def _UpperCamelCase( self : List[str] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="AST does not use inputs_embeds" )
def _UpperCamelCase( self : List[str] ):
pass
def _UpperCamelCase( self : Optional[int] ):
a__, a__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ : Any = model_class(lowerCamelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
a__ : Union[str, Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) )
def _UpperCamelCase( self : Tuple ):
a__, a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ : Dict = model_class(lowerCamelCase__ )
a__ : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a__ : Optional[int] = [*signature.parameters.keys()]
a__ : Optional[Any] = ["input_values"]
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
def _UpperCamelCase( self : Optional[Any] ):
a__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase__ )
@slow
def _UpperCamelCase( self : int ):
for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a__ : Union[str, Any] = ASTModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def UpperCamelCase_ ( ) -> Any:
a__ : Optional[int] = hf_hub_download(
repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" )
a__, a__ : List[str] = torchaudio.load(__a )
return audio, sampling_rate
@require_torch
@require_torchaudio
class A__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _UpperCamelCase( self : List[str] ):
return (
ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" )
if is_torchaudio_available()
else None
)
@slow
def _UpperCamelCase( self : Optional[int] ):
a__ : int = self.default_feature_extractor
a__ : Optional[Any] = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(lowerCamelCase__ )
a__ : Any = self.default_feature_extractor
a__, a__ : Dict = prepare_audio()
a__ : str = audio.squeeze().numpy()
a__ : Any = feature_extractor(lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ )
# forward pass
with torch.no_grad():
a__ : Any = model(**lowerCamelCase__ )
# verify the logits
a__ : Union[str, Any] = torch.Size((1, 527) )
self.assertEqual(outputs.logits.shape , lowerCamelCase__ )
a__ : List[str] = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
| 37 | 0 |
"""simple docstring"""
from typing import List, Optional, Union
import torch
from transformers import (
XLMRobertaTokenizer,
)
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
from .text_encoder import MultilingualCLIP
A = logging.get_logger(__name__) # pylint: disable=invalid-name
A = """
Examples:
```py
>>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline
>>> import torch
>>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\")
>>> pipe_prior.to(\"cuda\")
>>> prompt = \"red cat, 4k photo\"
>>> out = pipe_prior(prompt)
>>> image_emb = out.image_embeds
>>> negative_image_emb = out.negative_image_embeds
>>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\")
>>> pipe.to(\"cuda\")
>>> image = pipe(
... prompt,
... image_embeds=image_emb,
... negative_image_embeds=negative_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... ).images
>>> image[0].save(\"cat.png\")
```
"""
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase=8 ) -> List[str]:
"""simple docstring"""
__UpperCAmelCase : List[str] = h // scale_factor**2
if h % scale_factor**2 != 0:
new_h += 1
__UpperCAmelCase : Optional[Any] = w // scale_factor**2
if w % scale_factor**2 != 0:
new_w += 1
return new_h * scale_factor, new_w * scale_factor
class a__ ( A__ ):
def __init__( self : Dict , UpperCamelCase_ : MultilingualCLIP , UpperCamelCase_ : XLMRobertaTokenizer , UpperCamelCase_ : UNetaDConditionModel , UpperCamelCase_ : Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase_ : VQModel , ):
"""simple docstring"""
super().__init__()
self.register_modules(
text_encoder=lowerCamelCase__ , tokenizer=lowerCamelCase__ , unet=lowerCamelCase__ , scheduler=lowerCamelCase__ , movq=lowerCamelCase__ , )
__UpperCAmelCase : int = 2 ** (len(self.movq.config.block_out_channels) - 1)
def a_ ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int]):
"""simple docstring"""
if latents is None:
__UpperCAmelCase : Tuple = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__)
else:
if latents.shape != shape:
raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}")
__UpperCAmelCase : Optional[Any] = latents.to(lowerCamelCase__)
__UpperCAmelCase : Tuple = latents * scheduler.init_noise_sigma
return latents
def a_ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=None , ):
"""simple docstring"""
__UpperCAmelCase : Union[str, Any] = len(lowerCamelCase__) if isinstance(lowerCamelCase__ , lowerCamelCase__) else 1
# get prompt text embeddings
__UpperCAmelCase : List[Any] = self.tokenizer(
lowerCamelCase__ , padding="max_length" , truncation=lowerCamelCase__ , max_length=77 , return_attention_mask=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors="pt" , )
__UpperCAmelCase : Tuple = text_inputs.input_ids
__UpperCAmelCase : Union[str, Any] = self.tokenizer(lowerCamelCase__ , padding="longest" , return_tensors="pt").input_ids
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowerCamelCase__ , lowerCamelCase__):
__UpperCAmelCase : Optional[int] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
logger.warning(
"The following part of your input was truncated because CLIP can only handle sequences up to"
F" {self.tokenizer.model_max_length} tokens: {removed_text}")
__UpperCAmelCase : Optional[Any] = text_input_ids.to(lowerCamelCase__)
__UpperCAmelCase : List[Any] = text_inputs.attention_mask.to(lowerCamelCase__)
__UpperCAmelCase : str = self.text_encoder(
input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__)
__UpperCAmelCase : Any = prompt_embeds.repeat_interleave(lowerCamelCase__ , dim=0)
__UpperCAmelCase : Optional[Any] = text_encoder_hidden_states.repeat_interleave(lowerCamelCase__ , dim=0)
__UpperCAmelCase : Optional[int] = text_mask.repeat_interleave(lowerCamelCase__ , dim=0)
if do_classifier_free_guidance:
__UpperCAmelCase : List[str]
if negative_prompt is None:
__UpperCAmelCase : Optional[int] = [""] * batch_size
elif type(lowerCamelCase__) is not type(lowerCamelCase__):
raise TypeError(
F"`negative_prompt` should be the same type to `prompt`, but got {type(lowerCamelCase__)} !="
F" {type(lowerCamelCase__)}.")
elif isinstance(lowerCamelCase__ , lowerCamelCase__):
__UpperCAmelCase : Dict = [negative_prompt]
elif batch_size != len(lowerCamelCase__):
raise ValueError(
F"`negative_prompt`: {negative_prompt} has batch size {len(lowerCamelCase__)}, but `prompt`:"
F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`.")
else:
__UpperCAmelCase : Any = negative_prompt
__UpperCAmelCase : Any = self.tokenizer(
lowerCamelCase__ , padding="max_length" , max_length=77 , truncation=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , return_tensors="pt" , )
__UpperCAmelCase : Dict = uncond_input.input_ids.to(lowerCamelCase__)
__UpperCAmelCase : Dict = uncond_input.attention_mask.to(lowerCamelCase__)
__UpperCAmelCase : Any = self.text_encoder(
input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__)
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
__UpperCAmelCase : Tuple = negative_prompt_embeds.shape[1]
__UpperCAmelCase : List[Any] = negative_prompt_embeds.repeat(1 , lowerCamelCase__)
__UpperCAmelCase : Dict = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCamelCase__)
__UpperCAmelCase : List[str] = uncond_text_encoder_hidden_states.shape[1]
__UpperCAmelCase : Dict = uncond_text_encoder_hidden_states.repeat(1 , lowerCamelCase__ , 1)
__UpperCAmelCase : List[str] = uncond_text_encoder_hidden_states.view(
batch_size * num_images_per_prompt , lowerCamelCase__ , -1)
__UpperCAmelCase : List[str] = uncond_text_mask.repeat_interleave(lowerCamelCase__ , dim=0)
# done duplicates
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
__UpperCAmelCase : List[str] = torch.cat([negative_prompt_embeds, prompt_embeds])
__UpperCAmelCase : Union[str, Any] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states])
__UpperCAmelCase : str = torch.cat([uncond_text_mask, text_mask])
return prompt_embeds, text_encoder_hidden_states, text_mask
def a_ ( self : Tuple , UpperCamelCase_ : List[str]=0):
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
__UpperCAmelCase : str = torch.device(F"cuda:{gpu_id}")
__UpperCAmelCase : Dict = [
self.unet,
self.text_encoder,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowerCamelCase__ , lowerCamelCase__)
def a_ ( self : int , UpperCamelCase_ : str=0):
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0"):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
__UpperCAmelCase : List[str] = torch.device(F"cuda:{gpu_id}")
if self.device.type != "cpu":
self.to("cpu" , silence_dtype_warnings=lowerCamelCase__)
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
__UpperCAmelCase : Optional[int] = None
for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]:
__UpperCAmelCase : Optional[Any] = cpu_offload_with_hook(lowerCamelCase__ , lowerCamelCase__ , prev_module_hook=lowerCamelCase__)
if self.safety_checker is not None:
__UpperCAmelCase : List[Any] = cpu_offload_with_hook(self.safety_checker , lowerCamelCase__ , prev_module_hook=lowerCamelCase__)
# We'll offload the last model manually.
__UpperCAmelCase : Optional[int] = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def a_ ( self : Union[str, Any]):
"""simple docstring"""
if not hasattr(self.unet , "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(lowerCamelCase__ , "_hf_hook")
and hasattr(module._hf_hook , "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
@torch.no_grad()
@replace_example_docstring(lowerCamelCase__)
def __call__( self : List[Any] , UpperCamelCase_ : Union[str, List[str]] , UpperCamelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase_ : Optional[Union[str, List[str]]] = None , UpperCamelCase_ : int = 512 , UpperCamelCase_ : int = 512 , UpperCamelCase_ : int = 100 , UpperCamelCase_ : float = 4.0 , UpperCamelCase_ : int = 1 , UpperCamelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase_ : Optional[torch.FloatTensor] = None , UpperCamelCase_ : Optional[str] = "pil" , UpperCamelCase_ : bool = True , ):
"""simple docstring"""
if isinstance(lowerCamelCase__ , lowerCamelCase__):
__UpperCAmelCase : int = 1
elif isinstance(lowerCamelCase__ , lowerCamelCase__):
__UpperCAmelCase : List[str] = len(lowerCamelCase__)
else:
raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowerCamelCase__)}")
__UpperCAmelCase : Dict = self._execution_device
__UpperCAmelCase : List[str] = batch_size * num_images_per_prompt
__UpperCAmelCase : Tuple = guidance_scale > 1.0
__UpperCAmelCase : Optional[int] = self._encode_prompt(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__)
if isinstance(lowerCamelCase__ , lowerCamelCase__):
__UpperCAmelCase : List[Any] = torch.cat(lowerCamelCase__ , dim=0)
if isinstance(lowerCamelCase__ , lowerCamelCase__):
__UpperCAmelCase : int = torch.cat(lowerCamelCase__ , dim=0)
if do_classifier_free_guidance:
__UpperCAmelCase : Any = image_embeds.repeat_interleave(lowerCamelCase__ , dim=0)
__UpperCAmelCase : Any = negative_image_embeds.repeat_interleave(lowerCamelCase__ , dim=0)
__UpperCAmelCase : List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(
dtype=prompt_embeds.dtype , device=lowerCamelCase__)
self.scheduler.set_timesteps(lowerCamelCase__ , device=lowerCamelCase__)
__UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps
__UpperCAmelCase : Any = self.unet.config.in_channels
__UpperCAmelCase : Optional[int] = get_new_h_w(lowerCamelCase__ , lowerCamelCase__ , self.movq_scale_factor)
# create initial latent
__UpperCAmelCase : Tuple = self.prepare_latents(
(batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.scheduler , )
for i, t in enumerate(self.progress_bar(lowerCamelCase__)):
# expand the latents if we are doing classifier free guidance
__UpperCAmelCase : Optional[int] = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
__UpperCAmelCase : Optional[int] = {"text_embeds": prompt_embeds, "image_embeds": image_embeds}
__UpperCAmelCase : Dict = self.unet(
sample=lowerCamelCase__ , timestep=lowerCamelCase__ , encoder_hidden_states=lowerCamelCase__ , added_cond_kwargs=lowerCamelCase__ , return_dict=lowerCamelCase__ , )[0]
if do_classifier_free_guidance:
__UpperCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1)
__UpperCAmelCase : Tuple = noise_pred.chunk(2)
__UpperCAmelCase : Dict = variance_pred.chunk(2)
__UpperCAmelCase : Union[str, Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
__UpperCAmelCase : List[str] = torch.cat([noise_pred, variance_pred_text] , dim=1)
if not (
hasattr(self.scheduler.config , "variance_type")
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
__UpperCAmelCase : Dict = noise_pred.split(latents.shape[1] , dim=1)
# compute the previous noisy sample x_t -> x_t-1
__UpperCAmelCase : Tuple = self.scheduler.step(
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , generator=lowerCamelCase__ , ).prev_sample
# post-processing
__UpperCAmelCase : Any = self.movq.decode(lowerCamelCase__ , force_not_quantize=lowerCamelCase__)["sample"]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}")
if output_type in ["np", "pil"]:
__UpperCAmelCase : Optional[Any] = image * 0.5 + 0.5
__UpperCAmelCase : List[str] = image.clamp(0 , 1)
__UpperCAmelCase : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy()
if output_type == "pil":
__UpperCAmelCase : Tuple = self.numpy_to_pil(lowerCamelCase__)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCamelCase__)
| 77 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
@require_tokenizers
class A__ ( A__ , unittest.TestCase ):
"""simple docstring"""
_lowercase = XGLMTokenizer
_lowercase = XGLMTokenizerFast
_lowercase = True
_lowercase = True
def _UpperCamelCase( self : List[Any] ):
super().setUp()
# We have a SentencePiece fixture for testing
a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def _UpperCamelCase( self : List[Any] ):
a__ : int = "<pad>"
a__ : Union[str, Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ )
def _UpperCamelCase( self : Optional[Any] ):
a__ : List[str] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(len(lowerCamelCase__ ) , 1_008 )
def _UpperCamelCase( self : Dict ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_008 )
def _UpperCamelCase( self : Optional[int] ):
a__ : str = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ )
a__ : List[str] = tokenizer.tokenize("This is a test" )
self.assertListEqual(lowerCamelCase__ , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
a__ : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
lowerCamelCase__ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
a__ : List[str] = tokenizer.convert_tokens_to_ids(lowerCamelCase__ )
self.assertListEqual(
lowerCamelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
a__ : Dict = tokenizer.convert_ids_to_tokens(lowerCamelCase__ )
self.assertListEqual(
lowerCamelCase__ , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
@cached_property
def _UpperCamelCase( self : Dict ):
return XGLMTokenizer.from_pretrained("facebook/xglm-564M" )
def _UpperCamelCase( self : Union[str, Any] ):
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(lowerCamelCase__ , f.name )
a__ : Any = XGLMTokenizer(f.name , keep_accents=lowerCamelCase__ )
a__ : List[str] = pickle.dumps(lowerCamelCase__ )
pickle.loads(lowerCamelCase__ )
def _UpperCamelCase( self : List[Any] ):
if not self.test_rust_tokenizer:
return
a__ : Any = self.get_tokenizer()
a__ : Optional[Any] = self.get_rust_tokenizer()
a__ : Tuple = "I was born in 92000, and this is falsé."
a__ : List[str] = tokenizer.tokenize(lowerCamelCase__ )
a__ : Union[str, Any] = rust_tokenizer.tokenize(lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
a__ : Optional[int] = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ )
a__ : Union[str, Any] = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
a__ : List[str] = self.get_rust_tokenizer()
a__ : Tuple = tokenizer.encode(lowerCamelCase__ )
a__ : Optional[Any] = rust_tokenizer.encode(lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
@slow
def _UpperCamelCase( self : List[str] ):
a__ : Union[str, Any] = "Hello World!"
a__ : List[str] = [2, 31_227, 4_447, 35]
self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) )
@slow
def _UpperCamelCase( self : Union[str, Any] ):
a__ : Optional[int] = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth"
)
# fmt: off
a__ : Union[str, Any] = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735]
# fmt: on
self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) )
@slow
def _UpperCamelCase( self : List[Any] ):
# fmt: off
a__ : Optional[int] = {
"input_ids": [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]],
"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCamelCase__ , model_name="facebook/xglm-564M" , padding=lowerCamelCase__ , )
| 37 | 0 |
"""simple docstring"""
import os
import sys
import warnings
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen
from ..table import array_cast
from ..utils.file_utils import is_local_path
from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
import PIL.Image
from .features import FeatureType
lowerCamelCase_ = None
lowerCamelCase_ = """<""" if sys.byteorder == """little""" else """>"""
# Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image
lowerCamelCase_ = [
np.dtype("|b1"),
np.dtype("|u1"),
np.dtype("<u2"),
np.dtype(">u2"),
np.dtype("<i2"),
np.dtype(">i2"),
np.dtype("<u4"),
np.dtype(">u4"),
np.dtype("<i4"),
np.dtype(">i4"),
np.dtype("<f4"),
np.dtype(">f4"),
np.dtype("<f8"),
np.dtype(">f8"),
]
@dataclass
class _SCREAMING_SNAKE_CASE:
SCREAMING_SNAKE_CASE_ : Optional[int] = True
SCREAMING_SNAKE_CASE_ : List[str] = None
# Automatically constructed
SCREAMING_SNAKE_CASE_ : List[str] = '''PIL.Image.Image'''
SCREAMING_SNAKE_CASE_ : Any = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = field(default='''Image''' , init=A__ , repr=A__ )
def __call__( self ) -> int:
"""simple docstring"""
return self.pa_type
def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]:
"""simple docstring"""
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
if isinstance(lowerCamelCase__ ,lowerCamelCase__ ):
__SCREAMING_SNAKE_CASE :Union[str, Any] = np.array(lowerCamelCase__ )
if isinstance(lowerCamelCase__ ,lowerCamelCase__ ):
return {"path": value, "bytes": None}
elif isinstance(lowerCamelCase__ ,lowerCamelCase__ ):
return {"path": None, "bytes": value}
elif isinstance(lowerCamelCase__ ,np.ndarray ):
# convert the image array to PNG/TIFF bytes
return encode_np_array(lowerCamelCase__ )
elif isinstance(lowerCamelCase__ ,PIL.Image.Image ):
# convert the PIL image to bytes (default format is PNG/TIFF)
return encode_pil_image(lowerCamelCase__ )
elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ):
# we set "bytes": None to not duplicate the data if they're already available locally
return {"bytes": None, "path": value.get('''path''' )}
elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None:
# store the image bytes, and path is used to infer the image format using the file extension
return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )}
else:
raise ValueError(
f'''An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__=None ) -> List[str]:
"""simple docstring"""
if not self.decode:
raise RuntimeError('''Decoding is disabled for this feature. Please use Image(decode=True) instead.''' )
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support decoding images, please install \'Pillow\'.''' )
if token_per_repo_id is None:
__SCREAMING_SNAKE_CASE :List[Any] = {}
__SCREAMING_SNAKE_CASE :str = value["path"], value["bytes"]
if bytes_ is None:
if path is None:
raise ValueError(f'''An image should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
else:
if is_local_path(lowerCamelCase__ ):
__SCREAMING_SNAKE_CASE :Optional[int] = PIL.Image.open(lowerCamelCase__ )
else:
__SCREAMING_SNAKE_CASE :Any = path.split('''::''' )[-1]
try:
__SCREAMING_SNAKE_CASE :Tuple = string_to_dict(lowerCamelCase__ ,config.HUB_DATASETS_URL )["repo_id"]
__SCREAMING_SNAKE_CASE :int = token_per_repo_id.get(lowerCamelCase__ )
except ValueError:
__SCREAMING_SNAKE_CASE :List[Any] = None
with xopen(lowerCamelCase__ ,'''rb''' ,use_auth_token=lowerCamelCase__ ) as f:
__SCREAMING_SNAKE_CASE :Tuple = BytesIO(f.read() )
__SCREAMING_SNAKE_CASE :Tuple = PIL.Image.open(bytes_ )
else:
__SCREAMING_SNAKE_CASE :int = PIL.Image.open(BytesIO(bytes_ ) )
image.load() # to avoid "Too many open files" errors
return image
def _UpperCamelCase ( self ) -> Union[str, Any]:
"""simple docstring"""
from .features import Value
return (
self
if self.decode
else {
"bytes": Value('''binary''' ),
"path": Value('''string''' ),
}
)
def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[Any]:
"""simple docstring"""
if pa.types.is_string(storage.type ):
__SCREAMING_SNAKE_CASE :Dict = pa.array([None] * len(lowerCamelCase__ ) ,type=pa.binary() )
__SCREAMING_SNAKE_CASE :List[str] = pa.StructArray.from_arrays([bytes_array, storage] ,['''bytes''', '''path'''] ,mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__SCREAMING_SNAKE_CASE :str = pa.array([None] * len(lowerCamelCase__ ) ,type=pa.string() )
__SCREAMING_SNAKE_CASE :Tuple = pa.StructArray.from_arrays([storage, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index('''bytes''' ) >= 0:
__SCREAMING_SNAKE_CASE :Any = storage.field('''bytes''' )
else:
__SCREAMING_SNAKE_CASE :List[str] = pa.array([None] * len(lowerCamelCase__ ) ,type=pa.binary() )
if storage.type.get_field_index('''path''' ) >= 0:
__SCREAMING_SNAKE_CASE :Tuple = storage.field('''path''' )
else:
__SCREAMING_SNAKE_CASE :List[Any] = pa.array([None] * len(lowerCamelCase__ ) ,type=pa.string() )
__SCREAMING_SNAKE_CASE :Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=storage.is_null() )
elif pa.types.is_list(storage.type ):
__SCREAMING_SNAKE_CASE :Tuple = pa.array(
[encode_np_array(np.array(lowerCamelCase__ ) )['''bytes'''] if arr is not None else None for arr in storage.to_pylist()] ,type=pa.binary() ,)
__SCREAMING_SNAKE_CASE :Tuple = pa.array([None] * len(lowerCamelCase__ ) ,type=pa.string() )
__SCREAMING_SNAKE_CASE :Union[str, Any] = pa.StructArray.from_arrays(
[bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() )
return array_cast(lowerCamelCase__ ,self.pa_type )
def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Any:
"""simple docstring"""
@no_op_if_value_is_null
def path_to_bytes(SCREAMING_SNAKE_CASE__ ):
with xopen(lowerCamelCase__ ,'''rb''' ) as f:
__SCREAMING_SNAKE_CASE :int = f.read()
return bytes_
__SCREAMING_SNAKE_CASE :int = pa.array(
[
(path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None
for x in storage.to_pylist()
] ,type=pa.binary() ,)
__SCREAMING_SNAKE_CASE :Union[str, Any] = pa.array(
[os.path.basename(lowerCamelCase__ ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] ,type=pa.string() ,)
__SCREAMING_SNAKE_CASE :Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] ,['''bytes''', '''path'''] ,mask=bytes_array.is_null() )
return array_cast(lowerCamelCase__ ,self.pa_type )
def __lowerCamelCase ( ) -> List[str]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
global _IMAGE_COMPRESSION_FORMATS
if _IMAGE_COMPRESSION_FORMATS is None:
PIL.Image.init()
__SCREAMING_SNAKE_CASE :Union[str, Any] = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) )
return _IMAGE_COMPRESSION_FORMATS
def __lowerCamelCase ( a_ : Dict ) -> bytes:
__SCREAMING_SNAKE_CASE :Optional[Any] = BytesIO()
if image.format in list_image_compression_formats():
__SCREAMING_SNAKE_CASE :List[Any] = image.format
else:
__SCREAMING_SNAKE_CASE :Union[str, Any] = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF"
image.save(__a , format=__a )
return buffer.getvalue()
def __lowerCamelCase ( a_ : Union[str, Any] ) -> dict:
if hasattr(__a , '''filename''' ) and image.filename != "":
return {"path": image.filename, "bytes": None}
else:
return {"path": None, "bytes": image_to_bytes(__a )}
def __lowerCamelCase ( a_ : Optional[Any] ) -> dict:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
__SCREAMING_SNAKE_CASE :List[Any] = array.dtype
__SCREAMING_SNAKE_CASE :Tuple = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER
__SCREAMING_SNAKE_CASE :Optional[int] = dtype.kind
__SCREAMING_SNAKE_CASE :Any = dtype.itemsize
__SCREAMING_SNAKE_CASE :int = None
# Multi-channel array case (only np.dtype("|u1") is allowed)
if array.shape[2:]:
__SCREAMING_SNAKE_CASE :Optional[Any] = np.dtype('''|u1''' )
if dtype_kind not in ["u", "i"]:
raise TypeError(
f'''Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.''' )
if dtype is not dest_dtype:
warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
# Exact match
elif dtype in _VALID_IMAGE_ARRAY_DTPYES:
__SCREAMING_SNAKE_CASE :Optional[int] = dtype
else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually)
while dtype_itemsize >= 1:
__SCREAMING_SNAKE_CASE :Optional[Any] = dtype_byteorder + dtype_kind + str(__a )
__SCREAMING_SNAKE_CASE :int = np.dtype(__a )
if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES:
warnings.warn(f'''Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'''' )
break
else:
dtype_itemsize //= 2
if dest_dtype is None:
raise TypeError(
f'''Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}''' )
__SCREAMING_SNAKE_CASE :Tuple = PIL.Image.fromarray(array.astype(__a ) )
return {"path": None, "bytes": image_to_bytes(__a )}
def __lowerCamelCase ( a_ : Tuple ) -> List[dict]:
if config.PIL_AVAILABLE:
import PIL.Image
else:
raise ImportError('''To support encoding images, please install \'Pillow\'.''' )
if objs:
__SCREAMING_SNAKE_CASE :Any = first_non_null_value(__a )
if isinstance(__a , __a ):
return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs]
if isinstance(__a , np.ndarray ):
__SCREAMING_SNAKE_CASE :Optional[Any] = no_op_if_value_is_null(__a )
return [obj_to_image_dict_func(__a ) for obj in objs]
elif isinstance(__a , PIL.Image.Image ):
__SCREAMING_SNAKE_CASE :Optional[int] = no_op_if_value_is_null(__a )
return [obj_to_image_dict_func(__a ) for obj in objs]
else:
return objs
else:
return objs | 498 |
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch)
# also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml
# same for Vicuna-13b
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipImageProcessor,
InstructBlipConfig,
InstructBlipForConditionalGeneration,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
LlamaConfig,
LlamaTokenizerFast,
TaConfig,
TaTokenizerFast,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def UpperCamelCase_ ( ) -> int:
a__ : int = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
a__ : Optional[Any] = Image.open(requests.get(__a , stream=__a ).raw ).convert("RGB" )
return image
def UpperCamelCase_ ( __a ) -> Optional[Any]:
a__ : Any = []
# fmt: off
# vision encoder
rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") )
rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") )
rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") )
rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") )
rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") )
rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") )
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") )
# fmt: on
return rename_keys
def UpperCamelCase_ ( __a , __a , __a ) -> List[str]:
a__ : Union[str, Any] = dct.pop(__a )
a__ : List[str] = val
def UpperCamelCase_ ( __a , __a ) -> Optional[Any]:
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
a__ : Any = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' )
a__ : Tuple = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
a__ : str = torch.cat((q_bias, torch.zeros_like(__a , requires_grad=__a ), v_bias) )
a__ : int = qkv_bias
def UpperCamelCase_ ( __a ) -> Dict:
a__ : Tuple = 364 if "coco" in model_name else 224
a__ : int = InstructBlipVisionConfig(image_size=__a ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "t5-xl" in model_name:
a__ : Tuple = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
a__ : Dict = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "vicuna-7b" in model_name:
a__ : List[Any] = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=32_001 ).to_dict()
elif "vicuna-13b" in model_name:
a__ : Optional[int] = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=32_001 ).to_dict()
else:
raise ValueError("Model name not supported" )
# the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1
a__ : Optional[Any] = InstructBlipQFormerConfig(vocab_size=30_523 ).to_dict()
a__ : Any = InstructBlipConfig(vision_config=__a , text_config=__a , qformer_config=__a )
return config, image_size
@torch.no_grad()
def UpperCamelCase_ ( __a , __a=None , __a=False ) -> int:
a__ : Tuple = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" )
qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} )
if "t5" in model_name:
a__ : List[Any] = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" )
elif "vicuna" in model_name:
# the following was used in the original implementation:
# tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left")
# tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# tokenizer.add_special_tokens({"bos_token": "</s>"})
# tokenizer.add_special_tokens({"eos_token": "</s>"})
# tokenizer.add_special_tokens({"unk_token": "</s>"})
a__ : Union[str, Any] = LlamaTokenizerFast.from_pretrained(
"huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" )
tokenizer.add_special_tokens({"pad_token": "[PAD]"} )
a__, a__ : List[str] = get_blipa_config(__a )
a__ : Any = InstructBlipForConditionalGeneration(__a ).eval()
a__ : Dict = {
"instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"),
"instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"),
"instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"),
"instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"),
}
a__, a__ : Dict = model_name_to_original[model_name]
# load original model
print("Loading original model..." )
a__ : Optional[Any] = "cuda:1" if torch.cuda.is_available() else "cpu"
a__ : List[Any] = "cuda:2" if torch.cuda.is_available() else "cpu"
a__, a__, a__ : Tuple = load_model_and_preprocess(
name=__a , model_type=__a , is_eval=__a , device=__a )
original_model.eval()
print("Done!" )
# update state dict keys
a__ : Dict = original_model.state_dict()
a__ : Optional[int] = create_rename_keys(__a )
for src, dest in rename_keys:
rename_key(__a , __a , __a )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
a__ : Optional[int] = state_dict.pop(__a )
if key.startswith("Qformer.bert" ):
a__ : List[Any] = key.replace("Qformer.bert" , "qformer" )
if "attention.self" in key:
a__ : Any = key.replace("self" , "attention" )
if "llm_proj" in key:
a__ : Dict = key.replace("llm_proj" , "language_projection" )
if "t5_proj" in key:
a__ : int = key.replace("t5_proj" , "language_projection" )
if key.startswith("llm_model" ):
a__ : List[str] = key.replace("llm_model" , "language_model" )
if key.startswith("t5" ):
a__ : str = key.replace("t5" , "language" )
a__ : Dict = val
# read in qv biases
read_in_q_v_bias(__a , __a )
# note: weights get loaded in torch.float32 by default
hf_model.load_state_dict(__a , strict=__a )
a__ : Union[str, Any] = load_demo_image()
a__ : int = "What is unusual about this image?"
# create processor
a__ : Any = BlipImageProcessor(
size={"height": image_size, "width": image_size} , image_mean=__a , image_std=__a )
a__ : Tuple = InstructBlipProcessor(
image_processor=__a , tokenizer=__a , qformer_tokenizer=__a , )
a__ : Tuple = processor(images=__a , text=__a , return_tensors="pt" ).to(__a )
# make sure processor creates exact same pixel values
a__ : Optional[int] = vis_processors["eval"](__a ).unsqueeze(0 ).to(__a )
a__ : Optional[Any] = inputs.pixel_values
assert torch.allclose(original_pixel_values.to(pixel_values.device ) , __a )
original_model.to(__a )
hf_model.to(__a )
with torch.no_grad():
if "vicuna" in model_name:
a__ : str = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits
a__ : List[str] = hf_model(**__a ).logits
else:
a__ : List[Any] = original_model(
{"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits
a__ : str = tokenizer("\n" , return_tensors="pt" ).input_ids.to(__a )
a__ : Dict = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 )
a__ : Any = hf_model(**__a , labels=__a ).logits
print("First values of original logits:" , original_logits[0, :3, :3] )
print("First values of HF logits:" , logits[0, :3, :3] )
# assert values
assert original_logits.shape == logits.shape
a__ : Tuple = 1e-4 if "vicuna" in model_name else 1e-5
assert torch.allclose(original_logits.to(logits.device ) , __a , atol=__a )
print("Looks ok!" )
print("Generating with original model..." )
a__ : Tuple = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 )
# important: we need to cast the weights of the HF model to the appropriate type
print("Generating with HF model..." )
a__ : int = hf_model.generate(
**__a , do_sample=__a , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , )
if "vicuna" in model_name:
# convert output id 0 to 2 (eos_token_id)
# TODO add this in the generate method?
a__ : int = 2
print("Original generation:" , __a )
a__ : str = processor.batch_decode(__a , skip_special_tokens=__a )
a__ : str = [text.strip() for text in output_text]
print("HF generation:" , __a )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(__a )
hf_model.save_pretrained(__a )
if push_to_hub:
processor.push_to_hub(f'''Salesforce/{model_name}''' )
hf_model.push_to_hub(f'''Salesforce/{model_name}''' )
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
UpperCamelCase : Optional[int] = [
"""instructblip-vicuna-7b""",
"""instructblip-vicuna-13b""",
"""instructblip-flan-t5-xl""",
"""instructblip-flan-t5-xxl""",
]
parser.add_argument(
"""--model_name""",
default="""instructblip-flan-t5-xl""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
UpperCamelCase : Dict = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 37 | 0 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class a :
"""simple docstring"""
def __init__( self , snake_case_ , snake_case_=2 , snake_case_=True , snake_case_=False , snake_case_=10 , snake_case_=3 , snake_case_=32 * 8 , snake_case_=32 * 8 , snake_case_=4 , snake_case_=64 , ):
'''simple docstring'''
__UpperCAmelCase: List[str] = parent
__UpperCAmelCase: List[Any] = batch_size
__UpperCAmelCase: Any = is_training
__UpperCAmelCase: Optional[Any] = use_auxiliary_loss
__UpperCAmelCase: Dict = num_queries
__UpperCAmelCase: Any = num_channels
__UpperCAmelCase: List[Any] = min_size
__UpperCAmelCase: Dict = max_size
__UpperCAmelCase: Dict = num_labels
__UpperCAmelCase: str = hidden_dim
__UpperCAmelCase: int = hidden_dim
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
lowerCamelCase__ )
__UpperCAmelCase: List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ )
__UpperCAmelCase: List[str] = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5
).float()
__UpperCAmelCase: Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long()
__UpperCAmelCase: Tuple = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Dict = MaskaFormerConfig(
hidden_size=self.hidden_dim , )
__UpperCAmelCase: str = self.num_queries
__UpperCAmelCase: Tuple = self.num_labels
__UpperCAmelCase: Optional[int] = [1, 1, 1, 1]
__UpperCAmelCase: Dict = self.num_channels
__UpperCAmelCase: int = 64
__UpperCAmelCase: Optional[Any] = 128
__UpperCAmelCase: Optional[int] = self.hidden_dim
__UpperCAmelCase: Dict = self.hidden_dim
__UpperCAmelCase: Optional[Any] = self.hidden_dim
return config
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Union[str, Any] = self.prepare_config_and_inputs()
__UpperCAmelCase: Dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask}
return config, inputs_dict
def lowercase_ ( self , snake_case_ , snake_case_ ):
'''simple docstring'''
__UpperCAmelCase: Any = output.encoder_hidden_states
__UpperCAmelCase: Optional[Any] = output.pixel_decoder_hidden_states
__UpperCAmelCase: str = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers )
def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_=False ):
'''simple docstring'''
with torch.no_grad():
__UpperCAmelCase: List[str] = MaskaFormerModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
__UpperCAmelCase: int = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__UpperCAmelCase: List[str] = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ )
def lowercase_ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
'''simple docstring'''
__UpperCAmelCase: str = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
def comm_check_on_output(snake_case_ ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
__UpperCAmelCase: Tuple = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ )
__UpperCAmelCase: int = model(lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
__UpperCAmelCase: Optional[Any] = model(
pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
comm_check_on_output(lowerCamelCase__ )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class a ( A__ , A__ , unittest.TestCase ):
"""simple docstring"""
__lowerCAmelCase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
__lowerCAmelCase = {"""feature-extraction""": MaskaFormerModel} if is_torch_available() else {}
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Dict = MaskaFormerModelTester(self )
__UpperCAmelCase: List[str] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ )
def lowercase_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ )
@unittest.skip(reason="""Mask2Former does not use inputs_embeds""" )
def lowercase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" )
def lowercase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former is not a generative model""" )
def lowercase_ ( self ):
'''simple docstring'''
pass
@unittest.skip(reason="""Mask2Former does not use token embeddings""" )
def lowercase_ ( self ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase_ ( self ):
'''simple docstring'''
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase_ ( self ):
'''simple docstring'''
pass
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase: Dict = model_class(lowerCamelCase__ )
__UpperCAmelCase: Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCAmelCase: List[str] = [*signature.parameters.keys()]
__UpperCAmelCase: Optional[Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
@slow
def lowercase_ ( self ):
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
__UpperCAmelCase: Union[str, Any] = MaskaFormerModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: int = (self.model_tester.min_size,) * 2
__UpperCAmelCase: Tuple = {
"pixel_values": torch.randn((2, 3, *size) , device=lowerCamelCase__ ),
"mask_labels": torch.randn((2, 10, *size) , device=lowerCamelCase__ ),
"class_labels": torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(),
}
__UpperCAmelCase: int = self.model_tester.get_config()
__UpperCAmelCase: Any = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ )
__UpperCAmelCase: Optional[int] = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None )
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ )
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCAmelCase: Optional[Any] = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
__UpperCAmelCase: Any = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ )
self.assertTrue(outputs.attentions is not None )
def lowercase_ ( self ):
'''simple docstring'''
if not self.model_tester.is_training:
return
__UpperCAmelCase: Union[str, Any] = self.all_model_classes[1]
__UpperCAmelCase: List[str] = self.model_tester.prepare_config_and_inputs()
__UpperCAmelCase: Tuple = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.train()
__UpperCAmelCase: int = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss
loss.backward()
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: str = self.all_model_classes[1]
__UpperCAmelCase: int = self.model_tester.prepare_config_and_inputs()
__UpperCAmelCase: Optional[Any] = True
__UpperCAmelCase: str = True
__UpperCAmelCase: Any = model_class(lowerCamelCase__ ).to(lowerCamelCase__ )
model.train()
__UpperCAmelCase: Union[str, Any] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ )
__UpperCAmelCase: Dict = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
__UpperCAmelCase: Optional[Any] = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
__UpperCAmelCase: List[Any] = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
__UpperCAmelCase: List[str] = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=lowerCamelCase__ )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
SCREAMING_SNAKE_CASE_ = 1E-4
def UpperCamelCase__ ( ) -> str:
__UpperCAmelCase: str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class a ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase_ ( self ):
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def lowercase_ ( self ):
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Dict = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ )
__UpperCAmelCase: List[Any] = self.default_image_processor
__UpperCAmelCase: List[Any] = prepare_img()
__UpperCAmelCase: Optional[Any] = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ )
__UpperCAmelCase: Dict = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__UpperCAmelCase: str = model(**lowerCamelCase__ )
__UpperCAmelCase: str = torch.tensor(
[[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__UpperCAmelCase: List[str] = torch.tensor(
[[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
__UpperCAmelCase: Tuple = torch.tensor(
[[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(lowerCamelCase__ )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: str = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__UpperCAmelCase: List[Any] = self.default_image_processor
__UpperCAmelCase: str = prepare_img()
__UpperCAmelCase: Union[str, Any] = image_processor(lowerCamelCase__ , return_tensors="""pt""" ).to(lowerCamelCase__ )
__UpperCAmelCase: str = inputs["pixel_values"].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) )
with torch.no_grad():
__UpperCAmelCase: Union[str, Any] = model(**lowerCamelCase__ )
# masks_queries_logits
__UpperCAmelCase: Tuple = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
__UpperCAmelCase: Optional[int] = [
[-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1],
[-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1],
[-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5],
]
__UpperCAmelCase: int = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
# class_queries_logits
__UpperCAmelCase: Any = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) )
__UpperCAmelCase: List[str] = torch.tensor(
[
[1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2],
[0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3],
[0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5],
] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) )
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval()
__UpperCAmelCase: List[Any] = self.default_image_processor
__UpperCAmelCase: Union[str, Any] = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , )
__UpperCAmelCase: Any = inputs["pixel_values"].to(lowerCamelCase__ )
__UpperCAmelCase: List[Any] = [el.to(lowerCamelCase__ ) for el in inputs["mask_labels"]]
__UpperCAmelCase: List[Any] = [el.to(lowerCamelCase__ ) for el in inputs["class_labels"]]
with torch.no_grad():
__UpperCAmelCase: List[Any] = model(**lowerCamelCase__ )
self.assertTrue(outputs.loss is not None ) | 523 |
def UpperCamelCase_ ( __a , __a ) -> Tuple:
a__ : Optional[int] = [0 for i in range(r + 1 )]
# nc0 = 1
a__ : Union[str, Any] = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
a__ : Any = min(__a , __a )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 37 | 0 |
'''simple docstring'''
__lowerCAmelCase : Optional[int] = """Input must be a string of 8 numbers plus letter"""
__lowerCAmelCase : Tuple = """TRWAGMYFPDXBNJZSQVHLCKE"""
def lowerCAmelCase ( UpperCamelCase__ : Tuple ):
"""simple docstring"""
if not isinstance(__a , __a ):
__UpperCAmelCase = f"""Expected string as input, found {type(__a ).__name__}"""
raise TypeError(__a )
__UpperCAmelCase = spanish_id.replace('''-''' , '''''' ).upper()
if len(__a ) != 9:
raise ValueError(__a )
try:
__UpperCAmelCase = int(spanish_id_clean[0:8] )
__UpperCAmelCase = spanish_id_clean[8]
except ValueError as ex:
raise ValueError(__a ) from ex
if letter.isdigit():
raise ValueError(__a )
return letter == LOOKUP_LETTERS[number % 2_3]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 262 |
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import PaddingStrategy, logging
from .tokenization_led import LEDTokenizer
UpperCamelCase : Union[str, Any] = logging.get_logger(__name__)
UpperCamelCase : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
UpperCamelCase : Optional[Any] = {
"""vocab_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""",
},
"""merges_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""",
},
}
UpperCamelCase : Dict = {
"""allenai/led-base-16384""": 1_6384,
}
class A__ ( A__ ):
"""simple docstring"""
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = LEDTokenizer
_lowercase = ['input_ids', 'attention_mask']
def __init__( self : Tuple , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[str]=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : int="replace" , lowerCamelCase__ : Union[str, Any]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Tuple="</s>" , lowerCamelCase__ : Optional[int]="<s>" , lowerCamelCase__ : str="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Any="<mask>" , lowerCamelCase__ : Optional[int]=False , lowerCamelCase__ : int=True , **lowerCamelCase__ : Union[str, Any] , ):
super().__init__(
lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , )
a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space:
a__ : List[str] = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) )
a__ : Optional[Any] = add_prefix_space
a__ : List[str] = pre_tok_class(**lowerCamelCase__ )
a__ : Optional[int] = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
a__ : Any = "post_processor"
a__ : str = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ )
if tokenizer_component_instance:
a__ : Any = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
a__ : Optional[Any] = tuple(state["sep"] )
if "cls" in state:
a__ : Optional[Any] = tuple(state["cls"] )
a__ : Optional[int] = False
if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space:
a__ : Dict = add_prefix_space
a__ : int = True
if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets:
a__ : List[Any] = trim_offsets
a__ : List[str] = True
if changes_to_apply:
a__ : int = getattr(lowerCamelCase__ , state.pop("type" ) )
a__ : int = component_class(**lowerCamelCase__ )
setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ )
@property
# Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED
def _UpperCamelCase( self : Union[str, Any] ):
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Union[str, Any] ):
a__ : Any = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value
a__ : Union[str, Any] = value
def _UpperCamelCase( self : Any , *lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ):
a__ : List[str] = kwargs.get("is_split_into_words" , lowerCamelCase__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs." )
return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ )
def _UpperCamelCase( self : Any , *lowerCamelCase__ : Dict , **lowerCamelCase__ : Optional[Any] ):
a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ )
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs." )
return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ )
def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ):
a__ : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ )
return tuple(lowerCamelCase__ )
def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[Any]=None ):
a__ : Any = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ):
a__ : List[str] = [self.sep_token_id]
a__ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _UpperCamelCase( self : Dict , lowerCamelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , ):
a__ : str = super()._pad(
encoded_inputs=lowerCamelCase__ , max_length=lowerCamelCase__ , padding_strategy=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , )
# Load from model defaults
if return_attention_mask is None:
a__ : Optional[int] = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
a__ : Tuple = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
a__ : Dict = len(encoded_inputs["global_attention_mask"] ) != len(lowerCamelCase__ )
if needs_to_be_padded:
a__ : Union[str, Any] = len(lowerCamelCase__ ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
a__ : List[Any] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
a__ : Any = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 37 | 0 |
'''simple docstring'''
import tempfile
import torch
from diffusers import PNDMScheduler
from .test_schedulers import SchedulerCommonTest
class A ( A__ ):
"""simple docstring"""
__a : Any = (PNDMScheduler,)
__a : int = (('''num_inference_steps''', 50),)
def _UpperCAmelCase ( self , **__lowerCAmelCase ):
UpperCamelCase_ : Optional[int] = {
"num_train_timesteps": 10_00,
"beta_start": 0.00_01,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**lowerCamelCase__ )
return config
def _UpperCAmelCase ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ):
UpperCamelCase_ : List[str] = dict(self.forward_default_kwargs )
UpperCamelCase_ : Any = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ )
UpperCamelCase_ : Union[str, Any] = self.dummy_sample
UpperCamelCase_ : Optional[int] = 0.1 * sample
UpperCamelCase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCamelCase_ : List[Any] = self.get_scheduler_config(**lowerCamelCase__ )
UpperCamelCase_ : str = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(lowerCamelCase__ )
# copy over dummy past residuals
UpperCamelCase_ : Optional[Any] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase__ )
UpperCamelCase_ : Tuple = scheduler_class.from_pretrained(lowerCamelCase__ )
new_scheduler.set_timesteps(lowerCamelCase__ )
# copy over dummy past residuals
UpperCamelCase_ : Optional[Any] = dummy_past_residuals[:]
UpperCamelCase_ : int = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
UpperCamelCase_ : Optional[Any] = new_scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCamelCase_ : Optional[Any] = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
UpperCamelCase_ : Dict = new_scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _UpperCAmelCase ( self ):
pass
def _UpperCAmelCase ( self , __lowerCAmelCase=0 , **__lowerCAmelCase ):
UpperCamelCase_ : List[Any] = dict(self.forward_default_kwargs )
UpperCamelCase_ : List[Any] = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ )
UpperCamelCase_ : int = self.dummy_sample
UpperCamelCase_ : List[str] = 0.1 * sample
UpperCamelCase_ : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
UpperCamelCase_ : List[str] = self.get_scheduler_config()
UpperCamelCase_ : List[str] = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(lowerCamelCase__ )
# copy over dummy past residuals (must be after setting timesteps)
UpperCamelCase_ : Optional[int] = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase__ )
UpperCamelCase_ : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase__ )
# copy over dummy past residuals
new_scheduler.set_timesteps(lowerCamelCase__ )
# copy over dummy past residual (must be after setting timesteps)
UpperCamelCase_ : Optional[Any] = dummy_past_residuals[:]
UpperCamelCase_ : List[str] = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
UpperCamelCase_ : List[Any] = new_scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
UpperCamelCase_ : Union[str, Any] = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
UpperCamelCase_ : str = new_scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def _UpperCAmelCase ( self , **__lowerCAmelCase ):
UpperCamelCase_ : Union[str, Any] = self.scheduler_classes[0]
UpperCamelCase_ : Dict = self.get_scheduler_config(**lowerCamelCase__ )
UpperCamelCase_ : Optional[Any] = scheduler_class(**lowerCamelCase__ )
UpperCamelCase_ : Any = 10
UpperCamelCase_ : List[str] = self.dummy_model()
UpperCamelCase_ : Tuple = self.dummy_sample_deter
scheduler.set_timesteps(lowerCamelCase__ )
for i, t in enumerate(scheduler.prk_timesteps ):
UpperCamelCase_ : Tuple = model(lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase_ : str = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample
for i, t in enumerate(scheduler.plms_timesteps ):
UpperCamelCase_ : str = model(lowerCamelCase__ , lowerCamelCase__ )
UpperCamelCase_ : Optional[int] = scheduler.step_plms(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample
return sample
def _UpperCAmelCase ( self ):
UpperCamelCase_ : Optional[Any] = dict(self.forward_default_kwargs )
UpperCamelCase_ : Tuple = kwargs.pop("""num_inference_steps""" , lowerCamelCase__ )
for scheduler_class in self.scheduler_classes:
UpperCamelCase_ : int = self.get_scheduler_config()
UpperCamelCase_ : List[Any] = scheduler_class(**lowerCamelCase__ )
UpperCamelCase_ : Dict = self.dummy_sample
UpperCamelCase_ : Tuple = 0.1 * sample
if num_inference_steps is not None and hasattr(lowerCamelCase__ , """set_timesteps""" ):
scheduler.set_timesteps(lowerCamelCase__ )
elif num_inference_steps is not None and not hasattr(lowerCamelCase__ , """set_timesteps""" ):
UpperCamelCase_ : str = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCamelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
UpperCamelCase_ : Dict = dummy_past_residuals[:]
UpperCamelCase_ : str = scheduler.step_prk(lowerCamelCase__ , 0 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
UpperCamelCase_ : Union[str, Any] = scheduler.step_prk(lowerCamelCase__ , 1 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
UpperCamelCase_ : Dict = scheduler.step_plms(lowerCamelCase__ , 0 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
UpperCamelCase_ : str = scheduler.step_plms(lowerCamelCase__ , 1 , lowerCamelCase__ , **lowerCamelCase__ ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def _UpperCAmelCase ( self ):
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCamelCase__ )
def _UpperCAmelCase ( self ):
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=lowerCamelCase__ )
UpperCamelCase_ : str = self.scheduler_classes[0]
UpperCamelCase_ : str = self.get_scheduler_config(steps_offset=1 )
UpperCamelCase_ : Optional[Any] = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(10 )
assert torch.equal(
scheduler.timesteps , torch.LongTensor(
[9_01, 8_51, 8_51, 8_01, 8_01, 7_51, 7_51, 7_01, 7_01, 6_51, 6_51, 6_01, 6_01, 5_01, 4_01, 3_01, 2_01, 1_01, 1] ) , )
def _UpperCAmelCase ( self ):
for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ):
self.check_over_configs(beta_start=lowerCamelCase__ , beta_end=lowerCamelCase__ )
def _UpperCAmelCase ( self ):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCamelCase__ )
def _UpperCAmelCase ( self ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCamelCase__ )
def _UpperCAmelCase ( self ):
for t in [1, 5, 10]:
self.check_over_forward(time_step=lowerCamelCase__ )
def _UpperCAmelCase ( self ):
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=lowerCamelCase__ )
def _UpperCAmelCase ( self ):
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
UpperCamelCase_ : Optional[int] = 27
for scheduler_class in self.scheduler_classes:
UpperCamelCase_ : int = self.dummy_sample
UpperCamelCase_ : Optional[int] = 0.1 * sample
UpperCamelCase_ : str = self.get_scheduler_config()
UpperCamelCase_ : List[str] = scheduler_class(**lowerCamelCase__ )
scheduler.set_timesteps(lowerCamelCase__ )
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2] ):
UpperCamelCase_ : Dict = scheduler.step_prk(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample
def _UpperCAmelCase ( self ):
with self.assertRaises(lowerCamelCase__ ):
UpperCamelCase_ : Union[str, Any] = self.scheduler_classes[0]
UpperCamelCase_ : Optional[Any] = self.get_scheduler_config()
UpperCamelCase_ : Union[str, Any] = scheduler_class(**lowerCamelCase__ )
scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample
def _UpperCAmelCase ( self ):
UpperCamelCase_ : Union[str, Any] = self.full_loop()
UpperCamelCase_ : str = torch.sum(torch.abs(lowerCamelCase__ ) )
UpperCamelCase_ : Dict = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_sum.item() - 1_98.13_18 ) < 1E-2
assert abs(result_mean.item() - 0.25_80 ) < 1E-3
def _UpperCAmelCase ( self ):
UpperCamelCase_ : Dict = self.full_loop(prediction_type="""v_prediction""" )
UpperCamelCase_ : Optional[int] = torch.sum(torch.abs(lowerCamelCase__ ) )
UpperCamelCase_ : int = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_sum.item() - 67.39_86 ) < 1E-2
assert abs(result_mean.item() - 0.08_78 ) < 1E-3
def _UpperCAmelCase ( self ):
# We specify different beta, so that the first alpha is 0.99
UpperCamelCase_ : Tuple = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.01 )
UpperCamelCase_ : Tuple = torch.sum(torch.abs(lowerCamelCase__ ) )
UpperCamelCase_ : Tuple = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_sum.item() - 2_30.03_99 ) < 1E-2
assert abs(result_mean.item() - 0.29_95 ) < 1E-3
def _UpperCAmelCase ( self ):
# We specify different beta, so that the first alpha is 0.99
UpperCamelCase_ : List[str] = self.full_loop(set_alpha_to_one=lowerCamelCase__ , beta_start=0.01 )
UpperCamelCase_ : Optional[int] = torch.sum(torch.abs(lowerCamelCase__ ) )
UpperCamelCase_ : Union[str, Any] = torch.mean(torch.abs(lowerCamelCase__ ) )
assert abs(result_sum.item() - 1_86.94_82 ) < 1E-2
assert abs(result_mean.item() - 0.24_34 ) < 1E-3
| 208 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
UpperCamelCase : Any = logging.get_logger(__name__)
UpperCamelCase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
UpperCamelCase : Union[str, Any] = {
"""vocab_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json"""
),
},
"""merges_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""",
"""roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""",
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt"""
),
},
"""tokenizer_file""": {
"""roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""",
"""roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""",
"""roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""",
"""distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""",
"""roberta-base-openai-detector""": (
"""https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json"""
),
"""roberta-large-openai-detector""": (
"""https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json"""
),
},
}
UpperCamelCase : List[str] = {
"""roberta-base""": 512,
"""roberta-large""": 512,
"""roberta-large-mnli""": 512,
"""distilroberta-base""": 512,
"""roberta-base-openai-detector""": 512,
"""roberta-large-openai-detector""": 512,
}
class A__ ( A__ ):
"""simple docstring"""
_lowercase = VOCAB_FILES_NAMES
_lowercase = PRETRAINED_VOCAB_FILES_MAP
_lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_lowercase = ['input_ids', 'attention_mask']
_lowercase = RobertaTokenizer
def __init__( self : List[str] , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]="replace" , lowerCamelCase__ : List[str]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Any="</s>" , lowerCamelCase__ : Any="<s>" , lowerCamelCase__ : int="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : Any=False , lowerCamelCase__ : Dict=True , **lowerCamelCase__ : Optional[Any] , ):
super().__init__(
lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , )
a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space:
a__ : Any = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) )
a__ : int = add_prefix_space
a__ : Tuple = pre_tok_class(**lowerCamelCase__ )
a__ : str = add_prefix_space
a__ : Tuple = "post_processor"
a__ : Dict = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ )
if tokenizer_component_instance:
a__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
a__ : Tuple = tuple(state["sep"] )
if "cls" in state:
a__ : str = tuple(state["cls"] )
a__ : str = False
if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space:
a__ : str = add_prefix_space
a__ : Any = True
if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets:
a__ : int = trim_offsets
a__ : Dict = True
if changes_to_apply:
a__ : Union[str, Any] = getattr(lowerCamelCase__ , state.pop("type" ) )
a__ : str = component_class(**lowerCamelCase__ )
setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ )
@property
def _UpperCamelCase( self : Union[str, Any] ):
if self._mask_token is None:
if self.verbose:
logger.error("Using mask_token, but it is not set yet." )
return None
return str(self._mask_token )
@mask_token.setter
def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Tuple ):
a__ : List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value
a__ : List[str] = value
def _UpperCamelCase( self : Union[str, Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : int ):
a__ : Optional[int] = kwargs.get("is_split_into_words" , lowerCamelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ )
def _UpperCamelCase( self : Tuple , *lowerCamelCase__ : Dict , **lowerCamelCase__ : List[str] ):
a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ )
def _UpperCamelCase( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ):
a__ : int = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ )
return tuple(lowerCamelCase__ )
def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=None ):
a__ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _UpperCamelCase( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ):
a__ : Tuple = [self.sep_token_id]
a__ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 37 | 0 |
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class a__ ( unittest.TestCase ):
def __init__( self : Tuple , A_ : Union[str, Any] , A_ : Union[str, Any]=13 , A_ : str=7 , A_ : List[str]=True , A_ : Optional[int]=True , A_ : Union[str, Any]=True , A_ : List[Any]=True , A_ : Tuple=99 , A_ : int=32 , A_ : List[Any]=5 , A_ : str=4 , A_ : str=37 , A_ : Dict="gelu" , A_ : Tuple=0.1 , A_ : Tuple=0.1 , A_ : Tuple=5_12 , A_ : Optional[int]=16 , A_ : List[str]=2 , A_ : Union[str, Any]=0.02 , A_ : List[Any]=4 , ) -> List[str]:
"""simple docstring"""
lowerCamelCase_: Optional[Any] = parent
lowerCamelCase_: List[str] = batch_size
lowerCamelCase_: str = seq_length
lowerCamelCase_: Optional[int] = is_training
lowerCamelCase_: Optional[Any] = use_attention_mask
lowerCamelCase_: str = use_token_type_ids
lowerCamelCase_: Optional[Any] = use_labels
lowerCamelCase_: str = vocab_size
lowerCamelCase_: Optional[Any] = hidden_size
lowerCamelCase_: str = num_hidden_layers
lowerCamelCase_: int = num_attention_heads
lowerCamelCase_: Tuple = intermediate_size
lowerCamelCase_: List[Any] = hidden_act
lowerCamelCase_: Optional[int] = hidden_dropout_prob
lowerCamelCase_: Any = attention_probs_dropout_prob
lowerCamelCase_: str = max_position_embeddings
lowerCamelCase_: Optional[int] = type_vocab_size
lowerCamelCase_: Tuple = type_sequence_label_size
lowerCamelCase_: Optional[int] = initializer_range
lowerCamelCase_: List[Any] = num_choices
def lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowerCamelCase_: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase_: int = None
if self.use_attention_mask:
lowerCamelCase_: str = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase_: Dict = None
if self.use_token_type_ids:
lowerCamelCase_: Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase_: int = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
lowerCamelCase_: str = self.prepare_config_and_inputs()
lowerCamelCase_: Optional[Any] = config_and_inputs
lowerCamelCase_: Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
def lowerCAmelCase ( self : str ) -> Tuple:
"""simple docstring"""
lowerCamelCase_: Optional[Any] = self.prepare_config_and_inputs()
lowerCamelCase_: Union[str, Any] = config_and_inputs
lowerCamelCase_: Optional[int] = True
lowerCamelCase_: Dict = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
lowerCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class a__ ( A__ , unittest.TestCase ):
_A = True
_A = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_: Dict = FlaxRobertaPreLayerNormModelTester(self )
@slow
def lowerCAmelCase ( self : Dict ) -> Dict:
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowerCamelCase_: List[str] = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase__ )
lowerCamelCase_: Optional[int] = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCamelCase__ )
@require_flax
class a__ ( unittest.TestCase ):
@slow
def lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_: Any = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase__ )
lowerCamelCase_: str = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa )
lowerCamelCase_: int = model(lowerCamelCase__ )[0]
lowerCamelCase_: int = [1, 11, 5_02_65]
self.assertEqual(list(output.shape ) , lowerCamelCase__ )
# compare the actual values for a slice.
lowerCamelCase_: str = np.array(
[[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
@slow
def lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
lowerCamelCase_: int = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=lowerCamelCase__ )
lowerCamelCase_: Any = np.array([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] , dtype=jnp.intaa )
lowerCamelCase_: str = model(lowerCamelCase__ )[0]
# compare the actual values for a slice.
lowerCamelCase_: Optional[Any] = np.array(
[[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
| 423 |
from statistics import mean, stdev
def UpperCamelCase_ ( __a , __a = 3 ) -> list:
a__ : List[str] = min(__a )
a__ : str = max(__a )
# normalize data
return [round((x - x_min) / (x_max - x_min) , __a ) for x in data]
def UpperCamelCase_ ( __a , __a = 3 ) -> list:
a__ : str = mean(__a )
a__ : List[str] = stdev(__a )
# standardize data
return [round((x - mu) / (sigma) , __a ) for x in data]
| 37 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_snake_case : List[str] = {
"""configuration_bridgetower""": [
"""BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BridgeTowerConfig""",
"""BridgeTowerTextConfig""",
"""BridgeTowerVisionConfig""",
],
"""processing_bridgetower""": ["""BridgeTowerProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : int = ["""BridgeTowerImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case : str = [
"""BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BridgeTowerForContrastiveLearning""",
"""BridgeTowerForImageAndTextRetrieval""",
"""BridgeTowerForMaskedLM""",
"""BridgeTowerModel""",
"""BridgeTowerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_bridgetower import (
BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP,
BridgeTowerConfig,
BridgeTowerTextConfig,
BridgeTowerVisionConfig,
)
from .processing_bridgetower import BridgeTowerProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_bridgetower import BridgeTowerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bridgetower import (
BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST,
BridgeTowerForContrastiveLearning,
BridgeTowerForImageAndTextRetrieval,
BridgeTowerForMaskedLM,
BridgeTowerModel,
BridgeTowerPreTrainedModel,
)
else:
import sys
_snake_case : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
| 53 |
def UpperCamelCase_ ( __a = 50 ) -> int:
a__ : Tuple = [[0] * 3 for _ in range(length + 1 )]
for row_length in range(length + 1 ):
for tile_length in range(2 , 5 ):
for tile_start in range(row_length - tile_length + 1 ):
different_colour_ways_number[row_length][tile_length - 2] += (
different_colour_ways_number[row_length - tile_start - tile_length][
tile_length - 2
]
+ 1
)
return sum(different_colour_ways_number[length] )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 37 | 0 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__A : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class A_ (A__ , unittest.TestCase ):
UpperCAmelCase__ = XGLMTokenizer
UpperCAmelCase__ = XGLMTokenizerFast
UpperCAmelCase__ = True
UpperCAmelCase__ = True
def _lowercase ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
UpperCAmelCase = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = "<pad>"
UpperCAmelCase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ )
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(len(lowerCamelCase__ ) , 1_0_0_8 )
def _lowercase ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_8 )
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = XGLMTokenizer(lowerCamelCase__ , keep_accents=lowerCamelCase__ )
UpperCAmelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(lowerCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
lowerCamelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowerCamelCase__ )
self.assertListEqual(
lowerCamelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4]
] , )
UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowerCamelCase__ )
self.assertListEqual(
lowerCamelCase__ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
@cached_property
def _lowercase ( self ):
'''simple docstring'''
return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
def _lowercase ( self ):
'''simple docstring'''
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(lowerCamelCase__ , f.name )
UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=lowerCamelCase__ )
UpperCAmelCase = pickle.dumps(lowerCamelCase__ )
pickle.loads(lowerCamelCase__ )
def _lowercase ( self ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
UpperCAmelCase = self.get_tokenizer()
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = "I was born in 92000, and this is falsé."
UpperCAmelCase = tokenizer.tokenize(lowerCamelCase__ )
UpperCAmelCase = rust_tokenizer.tokenize(lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
UpperCAmelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ )
UpperCAmelCase = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
UpperCAmelCase = self.get_rust_tokenizer()
UpperCAmelCase = tokenizer.encode(lowerCamelCase__ )
UpperCAmelCase = rust_tokenizer.encode(lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
@slow
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = "Hello World!"
UpperCAmelCase = [2, 3_1_2_2_7, 4_4_4_7, 3_5]
self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) )
@slow
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth"
)
# fmt: off
UpperCAmelCase = [2, 1_0_1_8, 6_7, 1_1, 1_9_8_8, 2_6_1_7, 5_6_3_1, 2_7_8, 1_1, 3_4_0_7, 4_8, 7_1_6_3_0, 2_8_0_8_5, 4, 3_2_3_4, 1_5_7, 1_3, 6, 5, 6, 4, 3_5_2_6, 7_6_8, 1_5, 6_5_9, 5_7, 2_9_8, 3_9_8_3, 8_6_4, 1_2_9, 2_1, 6, 5, 1_3_6_7_5, 3_7_7, 6_5_2, 7_5_8_0, 1_0_3_4_1, 1_5_5, 2_8_1_7, 4_2_2, 1_6_6_6, 7, 1_6_7_4, 5_3, 1_1_3, 2_0_2_2_7_7, 1_7_8_9_2, 3_3, 6_0, 8_7, 4, 3_2_3_4, 1_5_7, 6_1, 2_6_6_7, 5_2_3_7_6, 1_9, 8_8, 2_3, 7_3_5]
# fmt: on
self.assertListEqual(lowerCamelCase__ , self.big_tokenizer.encode(lowerCamelCase__ ) )
@slow
def _lowercase ( self ):
'''simple docstring'''
UpperCAmelCase = {
"input_ids": [[2, 1_0_8_8_2_5, 1_1_6_3, 1_5, 8_8_0_1_0, 4_7_3, 1_5_8_9_8, 1_5_7, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 2_3_8_0_2_1, 1_1_6_3, 5_3, 1_3_6_7_2, 1_8_5_7, 3_1_2, 8, 5_3_2_8_3, 1_8_2_3_9_6, 8, 1_8_5_6_6, 1_6, 3_6_7_3_3, 4_1_0_1, 8, 2_3_0, 2_4_4_0_1_7, 1_2_2_5_5_3, 7, 1_5, 1_3_2_5_9_7, 4, 2_9_3, 1_2_5_1_1, 7_6_1_0, 4, 3_4_1_4, 1_3_2_5_9_7, 9, 4, 3_2_3_6_1, 3_6_2, 4, 7_3_4, 2_8_5_1_2, 3_2_5_6_9, 1_8, 4, 3_2_3_6_1, 2_6_0_9_6, 1_4_9_8_2, 7_3, 1_8_7_1_5, 2_1_4_3_3, 2_3_5_2_6_1, 1_5, 4_9_2, 1_2_4_2_7, 1_6, 5_3, 1_8_7_1_5, 2_1_4_3_3, 6_5_4_5_4, 1_5, 2_3_6_5_9, 5_6_3, 1_6, 2_7_8, 5_9_7, 2_8_4_3, 5_9_5, 7_9_3_1, 1_8_2_3_9_6, 6_4_1_8_6, 2_2, 8_8_6, 5_9_5, 1_3_2_9_8_1, 5_3, 2_5_5_4_0, 3_4_4_9, 4_3_9_8_2, 3_9_9_0_1, 5_9_5_1, 8_7_8, 3_3_0, 4, 2_7_6_9_4, 8_0_2_6_9, 3_1_2, 5_3, 6_5_1_7, 1_1_7_8_0, 6_1_1, 2_0_4_0_8, 5], [2, 6, 1_3_2_5_9_7, 6_7, 4_2_8_9_7, 3_3, 5_9_2, 8, 1_6_3_7_2_9, 2_5_5_4_0, 3_6_1, 1_3_6_9_9_7, 1_0_9_5_1_4, 1_7_3_2_3_0, 7, 5_0_1, 6_0, 1_0_2_9_1_3, 1_9_6, 5_6_3_1, 2_3_5, 6_3_2_4_3, 4_7_3, 6, 2_3_1_7_5_7, 7_4, 5_2_7_7, 7_9_0_5, 5_3, 3_0_9_5, 3_7_3_1_7, 2_2, 4_5_4, 1_8_3_8_7_4, 5], [2, 2_6_8, 3_1_2_9_8, 4_6_5_3_0, 6, 1_3_2_9_3_5, 4_3_8_3_1, 7, 5_9_7, 3_2, 2_4, 3_6_8_8, 9_8_6_5, 5]],
"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCamelCase__ , model_name='''facebook/xglm-564M''' , padding=lowerCamelCase__ , )
| 130 |
class A__ :
"""simple docstring"""
def __init__( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] ):
a__ : str = name
a__ : Optional[int] = value
a__ : Dict = weight
def __repr__( self : Union[str, Any] ):
return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})'''
def _UpperCamelCase( self : Dict ):
return self.value
def _UpperCamelCase( self : Optional[Any] ):
return self.name
def _UpperCamelCase( self : Optional[Any] ):
return self.weight
def _UpperCamelCase( self : Optional[int] ):
return self.value / self.weight
def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]:
a__ : Optional[Any] = []
for i in range(len(__a ) ):
menu.append(Things(name[i] , value[i] , weight[i] ) )
return menu
def UpperCamelCase_ ( __a , __a , __a ) -> Union[str, Any]:
a__ : List[str] = sorted(__a , key=__a , reverse=__a )
a__ : List[Any] = []
a__, a__ : Union[str, Any] = 0.0, 0.0
for i in range(len(__a ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def UpperCamelCase_ ( ) -> Union[str, Any]:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 37 | 0 |
"""simple docstring"""
def _UpperCAmelCase ( lowerCamelCase__ = 100_0000 ):
"""simple docstring"""
lowerCAmelCase__ = limit + 1
lowerCAmelCase__ = [0] * limit
for first_term in range(1 , __a ):
for n in range(__a , __a , __a ):
lowerCAmelCase__ = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
lowerCAmelCase__ = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F"{solution() = }")
| 644 |
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class A__ ( A__ ):
"""simple docstring"""
def __init__( self : Dict , lowerCamelCase__ : Union[str, "sqlalchemy.sql.Selectable"] , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[Features] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : bool = False , **lowerCamelCase__ : Optional[int] , ):
super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ )
a__ : str = Sql(
cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , )
def _UpperCamelCase( self : Tuple ):
a__ : Optional[Any] = None
a__ : Dict = None
a__ : Union[str, Any] = None
a__ : Union[str, Any] = None
self.builder.download_and_prepare(
download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , )
# Build dataset for splits
a__ : List[str] = self.builder.as_dataset(
split="train" , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory )
return dataset
class A__ :
"""simple docstring"""
def __init__( self : List[Any] , lowerCamelCase__ : Dataset , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[int] = None , **lowerCamelCase__ : Optional[Any] , ):
if num_proc is not None and num_proc <= 0:
raise ValueError(f'''num_proc {num_proc} must be an integer > 0.''' )
a__ : Any = dataset
a__ : str = name
a__ : Tuple = con
a__ : List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
a__ : Any = num_proc
a__ : Tuple = to_sql_kwargs
def _UpperCamelCase( self : List[Any] ):
a__ : Any = self.to_sql_kwargs.pop("sql" , lowerCamelCase__ )
a__ : int = self.to_sql_kwargs.pop("con" , lowerCamelCase__ )
a__ : int = self.to_sql_kwargs.pop("index" , lowerCamelCase__ )
a__ : int = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs )
return written
def _UpperCamelCase( self : Any , lowerCamelCase__ : List[str] ):
a__, a__, a__ : Union[str, Any] = args
a__ : Any = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs
a__ : Tuple = query_table(
table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , )
a__ : str = batch.to_pandas()
a__ : List[Any] = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ )
return num_rows or len(lowerCamelCase__ )
def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : Optional[int] , **lowerCamelCase__ : Optional[Any] ):
a__ : str = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
a__, a__ : List[str] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating SQL from Arrow format" , ):
written += num_rows
return written
| 37 | 0 |
"""simple docstring"""
import math
import qiskit
def lowerCamelCase_ (UpperCamelCase__ : Optional[int] = 1 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : Optional[int] = 1 ):
if (
isinstance(__a , __a )
or isinstance(__a , __a )
or isinstance(__a , __a )
):
raise TypeError('''inputs must be integers.''' )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError('''inputs must be positive.''' )
if (
(math.floor(__a ) != input_a)
or (math.floor(__a ) != input_a)
or (math.floor(__a ) != carry_in)
):
raise ValueError('''inputs must be exact integers.''' )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError('''inputs must be less or equal to 2.''' )
# build registers
_UpperCAmelCase : Union[str, Any] = qiskit.QuantumRegister(4 , '''qr''' )
_UpperCAmelCase : Optional[Any] = qiskit.ClassicalRegister(2 , '''cr''' )
# list the entries
_UpperCAmelCase : int = [input_a, input_a, carry_in]
_UpperCAmelCase : str = qiskit.QuantumCircuit(__a , __a )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(__a ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(__a ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(__a ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , __a ) # measure the last two qbits
_UpperCAmelCase : Any = qiskit.Aer.get_backend('''aer_simulator''' )
_UpperCAmelCase : List[Any] = qiskit.execute(__a , __a , shots=1000 )
return job.result().get_counts(__a )
if __name__ == "__main__":
print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
| 506 |
import math
from datetime import datetime, timedelta
def UpperCamelCase_ ( __a ) -> datetime:
a__ : Union[str, Any] = year % 19
a__ : List[str] = year % 4
a__ : str = year % 7
a__ : Any = math.floor(year / 100 )
a__ : List[str] = math.floor((13 + 8 * leap_day_inhibits) / 25 )
a__ : Optional[int] = leap_day_inhibits / 4
a__ : Union[str, Any] = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
a__ : Dict = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
a__ : Any = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
a__ : List[Any] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(__a , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(__a , 4 , 18 )
else:
return datetime(__a , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (1994, 2000, 2010, 2021, 2023):
UpperCamelCase : Tuple = """will be""" if year > datetime.now().year else """was"""
print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
| 37 | 0 |
'''simple docstring'''
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class A ( A__ ):
def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=7 , snake_case_=True , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=9_9 , snake_case_=3_2 , snake_case_=5 , snake_case_=4 , snake_case_=6_4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=1_6 , snake_case_=2 , snake_case_=0.02 , snake_case_=3 , snake_case_=4 , snake_case_=None , snake_case_=2 , snake_case_=2 , snake_case_=2 , snake_case_=2 , snake_case_=4 , snake_case_=1 , ) -> Optional[int]:
_a = parent
_a = batch_size
_a = seq_length
_a = is_training
_a = use_input_mask
_a = use_token_type_ids
_a = use_labels
_a = vocab_size
_a = hidden_size
_a = num_hidden_layers
_a = num_attention_heads
_a = intermediate_size
_a = hidden_act
_a = hidden_dropout_prob
_a = attention_probs_dropout_prob
_a = max_position_embeddings
_a = type_vocab_size
_a = type_sequence_label_size
_a = initializer_range
_a = num_labels
_a = num_choices
_a = scope
_a = q_groups
_a = k_groups
_a = v_groups
_a = post_attention_groups
_a = intermediate_groups
_a = output_groups
def __lowerCAmelCase ( self ) -> Optional[Any]:
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = None
if self.use_input_mask:
_a = random_attention_mask([self.batch_size, self.seq_length] )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __lowerCAmelCase ( self ) -> Any:
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]:
_a = SqueezeBertModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_a = model(lowerCamelCase__ , lowerCamelCase__ )
_a = model(lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[Any]:
_a = SqueezeBertForMaskedLM(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_a = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any:
_a = SqueezeBertForQuestionAnswering(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_a = model(
lowerCamelCase__ , attention_mask=lowerCamelCase__ , start_positions=lowerCamelCase__ , end_positions=lowerCamelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> str:
_a = self.num_labels
_a = SqueezeBertForSequenceClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_a = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Dict:
_a = self.num_labels
_a = SqueezeBertForTokenClassification(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_a = model(lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]:
_a = self.num_choices
_a = SqueezeBertForMultipleChoice(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
_a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_a = model(
lowerCamelCase__ , attention_mask=lowerCamelCase__ , labels=lowerCamelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __lowerCAmelCase ( self ) -> int:
_a = self.prepare_config_and_inputs()
(_a) = config_and_inputs
_a = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class A ( A__ , A__ , unittest.TestCase ):
__UpperCAmelCase : Optional[int] = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
__UpperCAmelCase : Optional[Any] = (
{
"""feature-extraction""": SqueezeBertModel,
"""fill-mask""": SqueezeBertForMaskedLM,
"""question-answering""": SqueezeBertForQuestionAnswering,
"""text-classification""": SqueezeBertForSequenceClassification,
"""token-classification""": SqueezeBertForTokenClassification,
"""zero-shot""": SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : Tuple = False
def __lowerCAmelCase ( self ) -> Optional[Any]:
_a = SqueezeBertModelTester(self )
_a = ConfigTester(self , config_class=lowerCamelCase__ , dim=3_7 )
def __lowerCAmelCase ( self ) -> Any:
self.config_tester.run_common_tests()
def __lowerCAmelCase ( self ) -> Tuple:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*lowerCamelCase__ )
def __lowerCAmelCase ( self ) -> str:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCamelCase__ )
def __lowerCAmelCase ( self ) -> Any:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCamelCase__ )
def __lowerCAmelCase ( self ) -> str:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCamelCase__ )
def __lowerCAmelCase ( self ) -> Any:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCamelCase__ )
def __lowerCAmelCase ( self ) -> Optional[int]:
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCamelCase__ )
@slow
def __lowerCAmelCase ( self ) -> List[str]:
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = SqueezeBertModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
@require_sentencepiece
@require_tokenizers
@require_torch
class A ( unittest.TestCase ):
@slow
def __lowerCAmelCase ( self ) -> int:
_a = SqueezeBertForSequenceClassification.from_pretrained("squeezebert/squeezebert-mnli" )
_a = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] )
_a = model(lowerCamelCase__ )[0]
_a = torch.Size((1, 3) )
self.assertEqual(output.shape , lowerCamelCase__ )
_a = torch.tensor([[0.6_401, -0.0_349, -0.6_041]] )
self.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-4 ) )
| 131 |
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def UpperCamelCase_ ( __a ) -> Union[str, Any]:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class A__ ( nn.Module ):
"""simple docstring"""
def __init__( self : List[str] , lowerCamelCase__ : nn.Module , lowerCamelCase__ : int ):
super().__init__()
a__ : int = module
a__ : Any = nn.Sequential(
nn.Linear(module.in_features , lowerCamelCase__ , bias=lowerCamelCase__ ) , nn.Linear(lowerCamelCase__ , module.out_features , bias=lowerCamelCase__ ) , )
a__ : Tuple = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=lowerCamelCase__ )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , *lowerCamelCase__ : int , **lowerCamelCase__ : Dict ):
return self.module(lowerCamelCase__ , *lowerCamelCase__ , **lowerCamelCase__ ) + self.adapter(lowerCamelCase__ )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
"""simple docstring"""
_lowercase = 'bigscience/bloom-1b7'
# Constant values
_lowercase = 2.1_09_65_95_52_69_25_74
_lowercase = 'Hello my name is'
_lowercase = set()
EXPECTED_OUTPUTS.add('Hello my name is John and I am a professional photographer. I' )
EXPECTED_OUTPUTS.add('Hello my name is John.\nI am a friend of your father.\n' )
EXPECTED_OUTPUTS.add('Hello my name is John Doe, I am a student at the University' )
_lowercase = 1_0
def _UpperCamelCase( self : Dict ):
# Models and tokenizer
a__ : List[str] = AutoTokenizer.from_pretrained(self.model_name )
class A__ ( A__ ):
"""simple docstring"""
def _UpperCamelCase( self : Union[str, Any] ):
super().setUp()
# Models and tokenizer
a__ : List[Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map="auto" )
a__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" )
def _UpperCamelCase( self : List[Any] ):
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase( self : List[Any] ):
a__ : str = self.model_abit.config
self.assertTrue(hasattr(lowerCamelCase__ , "quantization_config" ) )
a__ : Optional[Any] = config.to_dict()
a__ : int = config.to_diff_dict()
a__ : List[str] = config.to_json_string()
def _UpperCamelCase( self : int ):
from bitsandbytes.nn import Paramsabit
a__ : List[Any] = self.model_fpaa.get_memory_footprint()
a__ : str = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
a__ : Optional[Any] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def _UpperCamelCase( self : Tuple ):
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(lowerCamelCase__ , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def _UpperCamelCase( self : str ):
a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" )
a__ : Tuple = self.model_abit.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS )
def _UpperCamelCase( self : List[Any] ):
a__ : Optional[Any] = BitsAndBytesConfig()
a__ : Optional[int] = True
a__ : int = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCamelCase__ , device_map="auto" )
a__ : str = self.tokenizer(self.input_text , return_tensors="pt" )
a__ : int = model_abit_from_config.generate(
input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS )
def _UpperCamelCase( self : Dict ):
with self.assertRaises(lowerCamelCase__ ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(lowerCamelCase__ )
def _UpperCamelCase( self : Union[str, Any] ):
a__ : int = BitsAndBytesConfig()
with self.assertRaises(lowerCamelCase__ ):
a__ : Dict = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=lowerCamelCase__ , load_in_abit=lowerCamelCase__ , device_map="auto" , bnb_abit_quant_type="nf4" , )
def _UpperCamelCase( self : int ):
with self.assertRaises(lowerCamelCase__ ):
# Tries with `str`
self.model_abit.to("cpu" )
with self.assertRaises(lowerCamelCase__ ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(lowerCamelCase__ ):
# Tries with a `device`
self.model_abit.to(torch.device("cuda:0" ) )
with self.assertRaises(lowerCamelCase__ ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(lowerCamelCase__ ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
a__ : int = self.tokenizer(self.input_text , return_tensors="pt" )
a__ : Any = self.model_fpaa.to(torch.floataa )
a__ : List[Any] = self.model_fpaa.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
a__ : Tuple = self.model_fpaa.to("cpu" )
# Check this does not throw an error
a__ : Tuple = self.model_fpaa.half()
# Check this does not throw an error
a__ : Dict = self.model_fpaa.float()
def _UpperCamelCase( self : Dict ):
a__ : List[str] = AutoModelForSeqaSeqLM.from_pretrained("t5-small" , load_in_abit=lowerCamelCase__ , device_map="auto" )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class A__ ( unittest.TestCase ):
"""simple docstring"""
@classmethod
def _UpperCamelCase( cls : str ):
a__ : Dict = "t5-small"
a__ : List[Any] = "google/flan-t5-small" # flan-t5 uses dense-act instead of dense-relu-dense
a__ : int = AutoTokenizer.from_pretrained(cls.model_name )
a__ : str = "Translate in German: Hello, my dog is cute"
def _UpperCamelCase( self : Optional[int] ):
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase( self : Optional[int] ):
from transformers import TaForConditionalGeneration
a__ : List[Any] = TaForConditionalGeneration._keep_in_fpaa_modules
a__ : Optional[Any] = None
# test with `t5-small`
a__ : Any = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" )
a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
a__ : int = model.generate(**lowerCamelCase__ )
# test with `flan-t5-small`
a__ : Dict = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" )
a__ : Dict = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
a__ : Any = model.generate(**lowerCamelCase__ )
a__ : Union[str, Any] = modules
def _UpperCamelCase( self : List[Any] ):
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
a__ : List[str] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
a__ : Union[str, Any] = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
a__ : int = model.generate(**lowerCamelCase__ )
# test with `flan-t5-small`
a__ : int = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=lowerCamelCase__ , device_map="auto" )
a__ : Any = self.tokenizer(self.input_text , return_tensors="pt" ).to(0 )
a__ : Optional[int] = model.generate(**lowerCamelCase__ )
class A__ ( A__ ):
"""simple docstring"""
def _UpperCamelCase( self : List[str] ):
super().setUp()
# model_name
a__ : Union[str, Any] = "bigscience/bloom-560m"
a__ : Union[str, Any] = "t5-small"
# Different types of model
a__ : int = AutoModel.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" )
# Sequence classification model
a__ : Dict = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" )
# CausalLM model
a__ : str = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ , device_map="auto" )
# Seq2seq model
a__ : Dict = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=lowerCamelCase__ , device_map="auto" )
def _UpperCamelCase( self : List[Any] ):
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase( self : Union[str, Any] ):
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class A__ ( A__ ):
"""simple docstring"""
def _UpperCamelCase( self : Dict ):
super().setUp()
def _UpperCamelCase( self : int ):
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def _UpperCamelCase( self : Tuple ):
a__ : int = pipeline(
"text-generation" , model=self.model_name , model_kwargs={"device_map": "auto", "load_in_4bit": True, "torch_dtype": torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
a__ : Tuple = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]["generated_text"] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class A__ ( A__ ):
"""simple docstring"""
def _UpperCamelCase( self : Tuple ):
super().setUp()
def _UpperCamelCase( self : List[Any] ):
a__ : str = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=lowerCamelCase__ , device_map="balanced" )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
a__ : List[Any] = self.tokenizer(self.input_text , return_tensors="pt" )
# Second real batch
a__ : List[Any] = model_parallel.generate(input_ids=encoded_input["input_ids"].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=lowerCamelCase__ ) , self.EXPECTED_OUTPUTS )
class A__ ( A__ ):
"""simple docstring"""
def _UpperCamelCase( self : Dict ):
a__ : Any = "facebook/opt-350m"
super().setUp()
def _UpperCamelCase( self : int ):
if version.parse(importlib.metadata.version("bitsandbytes" ) ) < version.parse("0.37.0" ):
return
# Step 1: freeze all parameters
a__ : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=lowerCamelCase__ )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
a__ : Any = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
a__ : Tuple = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(lowerCamelCase__ ) ):
a__ : Dict = LoRALayer(module.q_proj , rank=16 )
a__ : List[Any] = LoRALayer(module.k_proj , rank=16 )
a__ : List[Any] = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
a__ : Dict = self.tokenizer("Test batch " , return_tensors="pt" ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
a__ : Optional[Any] = model.forward(**lowerCamelCase__ )
out.logits.norm().backward()
for module in model.modules():
if isinstance(lowerCamelCase__ , lowerCamelCase__ ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(lowerCamelCase__ , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class A__ ( A__ ):
"""simple docstring"""
_lowercase = 'gpt2-xl'
_lowercase = 3.31_91_85_48_54_15_21_87
| 37 | 0 |
"""simple docstring"""
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class a__ ( unittest.TestCase ):
def a_ ( self : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any]):
"""simple docstring"""
self.assertEqual(len(lowerCamelCase__) , len(lowerCamelCase__))
for a, b in zip(lowerCamelCase__ , lowerCamelCase__):
self.assertAlmostEqual(lowerCamelCase__ , lowerCamelCase__ , delta=lowerCamelCase__)
def a_ ( self : Union[str, Any]):
"""simple docstring"""
__UpperCAmelCase : List[str] = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0])])
accumulator([tf.constant([-2.0, 1.0])])
accumulator([tf.constant([-1.0, 2.0])])
with self.assertRaises(lowerCamelCase__):
accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])])
self.assertEqual(accumulator.step , 3)
self.assertEqual(len(accumulator.gradients) , 1)
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2)
accumulator.reset()
self.assertEqual(accumulator.step , 0)
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2)
def a_ ( self : List[Any]):
"""simple docstring"""
__UpperCAmelCase : Tuple = None
ops.enable_eager_execution_internal()
__UpperCAmelCase : Dict = tf.config.list_physical_devices("CPU")
if len(lowerCamelCase__) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()])
__UpperCAmelCase : Optional[int] = tf.config.list_logical_devices(device_type="CPU")
__UpperCAmelCase : Tuple = tf.distribute.MirroredStrategy(devices=devices[:2])
with strategy.scope():
__UpperCAmelCase : List[Any] = GradientAccumulator()
__UpperCAmelCase : str = tf.Variable([4.0, 3.0])
__UpperCAmelCase : Union[str, Any] = create_optimizer(5e-5 , 10 , 5)
__UpperCAmelCase : Optional[int] = tf.Variable([0.0, 0.0] , trainable=lowerCamelCase__)
def accumulate_on_replica(UpperCamelCase_ : Any):
accumulator([gradient])
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable])))
@tf.function
def accumulate(UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any]):
with strategy.scope():
__UpperCAmelCase : Tuple = strategy.experimental_local_results(lowerCamelCase__)
local_variables[0].assign(lowerCamelCase__)
local_variables[1].assign(lowerCamelCase__)
strategy.run(lowerCamelCase__ , args=(gradient_placeholder,))
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(lowerCamelCase__)
def _check_local_values(UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int]):
__UpperCAmelCase : Optional[int] = strategy.experimental_local_results(accumulator._gradients[0])
self.assertListAlmostEqual(values[0].value() , lowerCamelCase__ , tol=1e-2)
self.assertListAlmostEqual(values[1].value() , lowerCamelCase__ , tol=1e-2)
accumulate([1.0, 2.0] , [-1.0, 1.0])
accumulate([3.0, -1.0] , [-1.0, -1.0])
accumulate([-2.0, 2.0] , [3.0, -2.0])
self.assertEqual(accumulator.step , 3)
_check_local_values([2.0, 3.0] , [1.0, -2.0])
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2)
accumulator.reset()
self.assertEqual(accumulator.step , 0)
_check_local_values([0.0, 0.0] , [0.0, 0.0])
| 77 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class A__ :
"""simple docstring"""
def __init__( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[int]=100 , lowerCamelCase__ : str=13 , lowerCamelCase__ : Optional[int]=30 , lowerCamelCase__ : Union[str, Any]=2 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : List[Any]=True , lowerCamelCase__ : Tuple=True , lowerCamelCase__ : int=32 , lowerCamelCase__ : Union[str, Any]=4 , lowerCamelCase__ : Dict=4 , lowerCamelCase__ : Union[str, Any]=37 , lowerCamelCase__ : List[Any]="gelu" , lowerCamelCase__ : List[Any]=0.1 , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Union[str, Any]=10 , lowerCamelCase__ : str=0.02 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]=[0, 1, 2, 3] , ):
a__ : Dict = parent
a__ : Dict = 100
a__ : Optional[int] = batch_size
a__ : Union[str, Any] = image_size
a__ : Any = patch_size
a__ : Optional[Any] = num_channels
a__ : int = is_training
a__ : List[str] = use_labels
a__ : Optional[Any] = hidden_size
a__ : List[Any] = num_hidden_layers
a__ : str = num_attention_heads
a__ : str = intermediate_size
a__ : int = hidden_act
a__ : List[Any] = hidden_dropout_prob
a__ : Dict = attention_probs_dropout_prob
a__ : Union[str, Any] = type_sequence_label_size
a__ : Optional[Any] = initializer_range
a__ : List[str] = scope
a__ : int = out_indices
a__ : List[str] = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
a__ : Optional[int] = (image_size // patch_size) ** 2
a__ : Union[str, Any] = num_patches + 1
def _UpperCamelCase( self : int ):
a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
a__ : Optional[Any] = None
a__ : Tuple = None
if self.use_labels:
a__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
a__ : Optional[int] = self.get_config()
return config, pixel_values, labels, pixel_labels
def _UpperCamelCase( self : Tuple ):
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def _UpperCamelCase( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Any ):
a__ : str = BeitModel(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
a__ : List[str] = model(lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCamelCase( self : Tuple , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ):
a__ : int = BeitForMaskedImageModeling(config=lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
a__ : List[Any] = model(lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _UpperCamelCase( self : str , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ):
a__ : List[str] = self.type_sequence_label_size
a__ : Optional[Any] = BeitForImageClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
a__ : Optional[Any] = 1
a__ : List[str] = BeitForImageClassification(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
a__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
a__ : Union[str, Any] = model(lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _UpperCamelCase( self : Any , lowerCamelCase__ : str , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : Dict ):
a__ : int = self.num_labels
a__ : List[str] = BeitForSemanticSegmentation(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.eval()
a__ : Tuple = model(lowerCamelCase__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
a__ : str = model(lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _UpperCamelCase( self : Optional[int] ):
a__ : Any = self.prepare_config_and_inputs()
a__, a__, a__, a__ : Union[str, Any] = config_and_inputs
a__ : Dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class A__ ( A__ , A__ , unittest.TestCase ):
"""simple docstring"""
_lowercase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
_lowercase = (
{
'feature-extraction': BeitModel,
'image-classification': BeitForImageClassification,
'image-segmentation': BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
_lowercase = False
_lowercase = False
_lowercase = False
def _UpperCamelCase( self : Any ):
a__ : int = BeitModelTester(self )
a__ : Optional[Any] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 )
def _UpperCamelCase( self : List[Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds" )
def _UpperCamelCase( self : str ):
pass
@require_torch_multi_gpu
@unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def _UpperCamelCase( self : Dict ):
pass
def _UpperCamelCase( self : Optional[Any] ):
a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ : List[str] = model_class(lowerCamelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
a__ : Optional[int] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) )
def _UpperCamelCase( self : str ):
a__, a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ : int = model_class(lowerCamelCase__ )
a__ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a__ : Optional[int] = [*signature.parameters.keys()]
a__ : Any = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowerCamelCase__ )
def _UpperCamelCase( self : List[Any] ):
a__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase__ )
def _UpperCamelCase( self : int ):
a__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ )
def _UpperCamelCase( self : List[Any] ):
a__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ )
def _UpperCamelCase( self : Optional[int] ):
a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase__ )
def _UpperCamelCase( self : Optional[Any] ):
if not self.model_tester.is_training:
return
a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
a__ : str = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling]:
continue
a__ : List[str] = model_class(lowerCamelCase__ )
model.to(lowerCamelCase__ )
model.train()
a__ : Any = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ )
a__ : Tuple = model(**lowerCamelCase__ ).loss
loss.backward()
def _UpperCamelCase( self : Tuple ):
a__, a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
a__ : List[Any] = False
a__ : List[str] = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(lowerCamelCase__ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
a__ : Optional[Any] = model_class(lowerCamelCase__ )
model.gradient_checkpointing_enable()
model.to(lowerCamelCase__ )
model.train()
a__ : Union[str, Any] = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ )
a__ : int = model(**lowerCamelCase__ ).loss
loss.backward()
def _UpperCamelCase( self : List[str] ):
a__, a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
a__ : Dict = _config_zero_init(lowerCamelCase__ )
for model_class in self.all_model_classes:
a__ : str = model_class(config=lowerCamelCase__ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def _UpperCamelCase( self : Optional[int] ):
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a__ : Tuple = BeitModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
def UpperCamelCase_ ( ) -> Any:
a__ : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class A__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def _UpperCamelCase( self : Optional[int] ):
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _UpperCamelCase( self : str ):
a__ : int = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(lowerCamelCase__ )
a__ : Optional[Any] = self.default_image_processor
a__ : Dict = prepare_img()
a__ : Optional[int] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).pixel_values.to(lowerCamelCase__ )
# prepare bool_masked_pos
a__ : Optional[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(lowerCamelCase__ )
# forward pass
with torch.no_grad():
a__ : Any = model(pixel_values=lowerCamelCase__ , bool_masked_pos=lowerCamelCase__ )
a__ : Tuple = outputs.logits
# verify the logits
a__ : List[str] = torch.Size((1, 196, 8_192) )
self.assertEqual(logits.shape , lowerCamelCase__ )
a__ : Optional[int] = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , lowerCamelCase__ , atol=1E-2 ) )
@slow
def _UpperCamelCase( self : Dict ):
a__ : str = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(lowerCamelCase__ )
a__ : int = self.default_image_processor
a__ : List[Any] = prepare_img()
a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ )
# forward pass
with torch.no_grad():
a__ : Union[str, Any] = model(**lowerCamelCase__ )
a__ : List[str] = outputs.logits
# verify the logits
a__ : Union[str, Any] = torch.Size((1, 1_000) )
self.assertEqual(logits.shape , lowerCamelCase__ )
a__ : int = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
a__ : Tuple = 281
self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ )
@slow
def _UpperCamelCase( self : Any ):
a__ : Dict = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to(
lowerCamelCase__ )
a__ : str = self.default_image_processor
a__ : List[str] = prepare_img()
a__ : Tuple = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ )
# forward pass
with torch.no_grad():
a__ : Dict = model(**lowerCamelCase__ )
a__ : List[str] = outputs.logits
# verify the logits
a__ : Optional[int] = torch.Size((1, 21_841) )
self.assertEqual(logits.shape , lowerCamelCase__ )
a__ : Optional[Any] = torch.tensor([1.6881, -0.2787, 0.5901] ).to(lowerCamelCase__ )
self.assertTrue(torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
a__ : Optional[Any] = 2_396
self.assertEqual(logits.argmax(-1 ).item() , lowerCamelCase__ )
@slow
def _UpperCamelCase( self : int ):
a__ : Optional[Any] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
a__ : Tuple = model.to(lowerCamelCase__ )
a__ : List[Any] = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ )
a__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
a__ : Union[str, Any] = Image.open(ds[0]["file"] )
a__ : List[Any] = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ )
# forward pass
with torch.no_grad():
a__ : Optional[Any] = model(**lowerCamelCase__ )
a__ : List[str] = outputs.logits
# verify the logits
a__ : Tuple = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , lowerCamelCase__ )
a__ : int = version.parse(PIL.__version__ ) < version.parse("9.0.0" )
if is_pillow_less_than_a:
a__ : Dict = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
] , device=lowerCamelCase__ , )
else:
a__ : Dict = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
] , device=lowerCamelCase__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowerCamelCase__ , atol=1E-4 ) )
@slow
def _UpperCamelCase( self : Tuple ):
a__ : str = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
a__ : List[Any] = model.to(lowerCamelCase__ )
a__ : int = BeitImageProcessor(do_resize=lowerCamelCase__ , size=640 , do_center_crop=lowerCamelCase__ )
a__ : Optional[int] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
a__ : str = Image.open(ds[0]["file"] )
a__ : str = image_processor(images=lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ )
# forward pass
with torch.no_grad():
a__ : List[Any] = model(**lowerCamelCase__ )
a__ : Any = outputs.logits.detach().cpu()
a__ : List[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ , target_sizes=[(500, 300)] )
a__ : Optional[int] = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase__ )
a__ : Any = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , lowerCamelCase__ )
| 37 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCamelCase_ = logging.get_logger(__name__)
class _SCREAMING_SNAKE_CASE( A__ ):
SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''timm_backbone'''
def __init__( self ,SCREAMING_SNAKE_CASE__=None ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=True ,SCREAMING_SNAKE_CASE__=None ,**SCREAMING_SNAKE_CASE__ ,) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**lowerCamelCase__ )
__SCREAMING_SNAKE_CASE :Any = backbone
__SCREAMING_SNAKE_CASE :Any = num_channels
__SCREAMING_SNAKE_CASE :Union[str, Any] = features_only
__SCREAMING_SNAKE_CASE :List[str] = use_pretrained_backbone
__SCREAMING_SNAKE_CASE :Optional[Any] = True
__SCREAMING_SNAKE_CASE :Optional[int] = out_indices if out_indices is not None else (-1,) | 498 |
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
UpperCamelCase : Dict = logging.get_logger(__name__)
def UpperCamelCase_ ( __a ) -> Union[str, Any]:
a__ : Tuple = R"\w+[.]\d+"
a__ : List[Any] = re.findall(__a , __a )
for pat in pats:
a__ : Union[str, Any] = key.replace(__a , "_".join(pat.split("." ) ) )
return key
def UpperCamelCase_ ( __a , __a , __a ) -> List[str]:
a__ : List[str] = pt_tuple_key[:-1] + ("scale",)
if (
any("norm" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
a__ : Any = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
a__ : Optional[Any] = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
a__ : Union[str, Any] = pt_tuple_key[:-1] + ("embedding",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
a__ : List[str] = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
a__ : str = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
a__ : Tuple = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight":
a__ : Tuple = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
a__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
a__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def UpperCamelCase_ ( __a , __a , __a=42 ) -> str:
# Step 1: Convert pytorch tensor to numpy
a__ : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
a__ : Tuple = flax_model.init_weights(PRNGKey(__a ) )
a__ : Optional[Any] = flatten_dict(__a )
a__ : Union[str, Any] = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
a__ : Optional[int] = rename_key(__a )
a__ : Optional[int] = tuple(renamed_pt_key.split("." ) )
# Correctly rename weight parameters
a__, a__ : Union[str, Any] = rename_key_and_reshape_tensor(__a , __a , __a )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
f'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape '''
f'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' )
# also add unexpected weight so that warning is thrown
a__ : str = jnp.asarray(__a )
return unflatten_dict(__a )
| 37 | 0 |
'''simple docstring'''
import multiprocessing
from typing import TYPE_CHECKING, Optional, Union
from .. import Dataset, Features, config
from ..formatting import query_table
from ..packaged_modules.sql.sql import Sql
from ..utils import logging
from .abc import AbstractDatasetInputStream
if TYPE_CHECKING:
import sqlitea
import sqlalchemy
class a ( A__ ):
"""simple docstring"""
def __init__( self , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = False , **snake_case_ , ):
'''simple docstring'''
super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ )
__UpperCAmelCase: str = Sql(
cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , )
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Optional[Any] = None
__UpperCAmelCase: Dict = None
__UpperCAmelCase: Union[str, Any] = None
__UpperCAmelCase: Union[str, Any] = None
self.builder.download_and_prepare(
download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , )
# Build dataset for splits
__UpperCAmelCase: List[str] = self.builder.as_dataset(
split="""train""" , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory )
return dataset
class a :
"""simple docstring"""
def __init__( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , snake_case_ = None , **snake_case_ , ):
'''simple docstring'''
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' )
__UpperCAmelCase: Any = dataset
__UpperCAmelCase: str = name
__UpperCAmelCase: Tuple = con
__UpperCAmelCase: List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
__UpperCAmelCase: Any = num_proc
__UpperCAmelCase: Tuple = to_sql_kwargs
def lowercase_ ( self ):
'''simple docstring'''
__UpperCAmelCase: Any = self.to_sql_kwargs.pop("""sql""" , lowerCamelCase__ )
__UpperCAmelCase: int = self.to_sql_kwargs.pop("""con""" , lowerCamelCase__ )
__UpperCAmelCase: int = self.to_sql_kwargs.pop("""index""" , lowerCamelCase__ )
__UpperCAmelCase: int = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs )
return written
def lowercase_ ( self , snake_case_ ):
'''simple docstring'''
__UpperCAmelCase: Union[str, Any] = args
__UpperCAmelCase: Any = {**to_sql_kwargs, "if_exists": "append"} if offset > 0 else to_sql_kwargs
__UpperCAmelCase: Tuple = query_table(
table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , )
__UpperCAmelCase: str = batch.to_pandas()
__UpperCAmelCase: List[Any] = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ )
return num_rows or len(lowerCamelCase__ )
def lowercase_ ( self , snake_case_ , **snake_case_ ):
'''simple docstring'''
__UpperCAmelCase: str = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += self._batch_sql((offset, index, to_sql_kwargs) )
else:
__UpperCAmelCase: List[str] = len(self.dataset ), self.batch_size
with multiprocessing.Pool(self.num_proc ) as pool:
for num_rows in logging.tqdm(
pool.imap(
self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating SQL from Arrow format""" , ):
written += num_rows
return written | 523 |
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments
def UpperCamelCase_ ( ) -> int:
a__ : Any = HfArgumentParser(__a )
a__ : Any = parser.parse_args_into_dataclasses()[0]
a__ : Optional[int] = TensorFlowBenchmark(args=__a )
try:
a__ : Optional[int] = parser.parse_args_into_dataclasses()[0]
except ValueError as e:
a__ : Tuple = "Arg --no_{0} is no longer used, please use --no-{0} instead."
a__ : List[Any] = " ".join(str(__a ).split(" " )[:-1] )
a__ : str = ""
a__ : List[Any] = eval(str(__a ).split(" " )[-1] )
a__ : List[str] = []
for arg in depreciated_args:
# arg[2:] removes '--'
if arg[2:] in TensorFlowBenchmark.deprecated_args:
# arg[5:] removes '--no_'
full_error_msg += arg_error_msg.format(arg[5:] )
else:
wrong_args.append(__a )
if len(__a ) > 0:
a__ : Tuple = full_error_msg + begin_error_msg + str(__a )
raise ValueError(__a )
benchmark.run()
if __name__ == "__main__":
main()
| 37 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__lowerCAmelCase : Tuple = logging.get_logger(__name__)
__lowerCAmelCase : str = {
"""xlm-mlm-en-2048""": """https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json""",
"""xlm-mlm-ende-1024""": """https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json""",
"""xlm-mlm-enfr-1024""": """https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json""",
"""xlm-mlm-enro-1024""": """https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json""",
"""xlm-mlm-tlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json""",
"""xlm-mlm-xnli15-1024""": """https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json""",
"""xlm-clm-enfr-1024""": """https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json""",
"""xlm-clm-ende-1024""": """https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json""",
"""xlm-mlm-17-1280""": """https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json""",
"""xlm-mlm-100-1280""": """https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json""",
}
class A ( A__ ):
a_ = '''xlm'''
a_ = {
'''hidden_size''': '''emb_dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
'''n_words''': '''vocab_size''', # For backward compatibility
}
def __init__( self : Tuple , __a : List[Any]=3_0_1_4_5 , __a : Any=2_0_4_8 , __a : int=1_2 , __a : Dict=1_6 , __a : Optional[int]=0.1 , __a : Any=0.1 , __a : Union[str, Any]=True , __a : Dict=False , __a : Optional[int]=False , __a : List[Any]=False , __a : List[str]=1 , __a : str=True , __a : str=5_1_2 , __a : List[str]=2_0_4_8**-0.5 , __a : List[str]=1e-12 , __a : Any=0.0_2 , __a : Tuple=0 , __a : Any=1 , __a : Optional[Any]=2 , __a : Optional[Any]=3 , __a : Optional[Any]=5 , __a : Tuple=True , __a : Optional[Any]="first" , __a : Optional[int]=True , __a : Tuple=None , __a : int=True , __a : Dict=0.1 , __a : Tuple=5 , __a : Any=5 , __a : List[Any]=0 , __a : Optional[int]=0 , __a : Optional[Any]=2 , __a : Tuple=0 , **__a : List[str] , ) -> List[str]:
__UpperCAmelCase = vocab_size
__UpperCAmelCase = emb_dim
__UpperCAmelCase = n_layers
__UpperCAmelCase = n_heads
__UpperCAmelCase = dropout
__UpperCAmelCase = attention_dropout
__UpperCAmelCase = gelu_activation
__UpperCAmelCase = sinusoidal_embeddings
__UpperCAmelCase = causal
__UpperCAmelCase = asm
__UpperCAmelCase = n_langs
__UpperCAmelCase = use_lang_emb
__UpperCAmelCase = layer_norm_eps
__UpperCAmelCase = bos_index
__UpperCAmelCase = eos_index
__UpperCAmelCase = pad_index
__UpperCAmelCase = unk_index
__UpperCAmelCase = mask_index
__UpperCAmelCase = is_encoder
__UpperCAmelCase = max_position_embeddings
__UpperCAmelCase = embed_init_std
__UpperCAmelCase = init_std
__UpperCAmelCase = summary_type
__UpperCAmelCase = summary_use_proj
__UpperCAmelCase = summary_activation
__UpperCAmelCase = summary_proj_to_labels
__UpperCAmelCase = summary_first_dropout
__UpperCAmelCase = start_n_top
__UpperCAmelCase = end_n_top
__UpperCAmelCase = mask_token_id
__UpperCAmelCase = lang_id
if "n_words" in kwargs:
__UpperCAmelCase = kwargs["n_words"]
super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , **lowerCamelCase__ )
class A ( A__ ):
@property
def snake_case__ ( self : Dict ) -> Dict:
if self.task == "multiple-choice":
__UpperCAmelCase = {0: "batch", 1: "choice", 2: "sequence"}
else:
__UpperCAmelCase = {0: "batch", 1: "sequence"}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 262 |
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
UpperCamelCase : Optional[int] = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def UpperCamelCase_ ( __a ) -> Any:
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def UpperCamelCase_ ( __a , __a , __a ) -> Any:
return max(metric_fn(__a , __a ) for gt in ground_truths )
def UpperCamelCase_ ( __a , __a , __a ) -> List[str]:
a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()]
a__ : Tuple = []
if args.gold_data_mode == "qa":
a__ : Any = pd.read_csv(__a , sep="\t" , header=__a )
for answer_list in data[1]:
a__ : Union[str, Any] = ast.literal_eval(__a )
answers.append(__a )
else:
a__ : List[str] = [line.strip() for line in open(__a , "r" ).readlines()]
a__ : List[str] = [[reference] for reference in references]
a__ : List[str] = 0
for prediction, ground_truths in zip(__a , __a ):
total += 1
em += metric_max_over_ground_truths(__a , __a , __a )
fa += metric_max_over_ground_truths(__a , __a , __a )
a__ : Dict = 100.0 * em / total
a__ : Optional[Any] = 100.0 * fa / total
logger.info(f'''F1: {fa:.2f}''' )
logger.info(f'''EM: {em:.2f}''' )
def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]:
a__ : Optional[Any] = args.k
a__ : str = [line.strip() for line in open(__a , "r" ).readlines()]
a__ : Tuple = [line.strip() for line in open(__a , "r" ).readlines()]
a__ : Tuple = 0
for hypo, reference in zip(__a , __a ):
a__ : Any = set(hypo.split("\t" )[:k] )
a__ : Union[str, Any] = set(reference.split("\t" ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
a__ : Union[str, Any] = 100.0 * em / total
logger.info(f'''Precision@{k}: {em: .2f}''' )
def UpperCamelCase_ ( __a , __a , __a ) -> Optional[Any]:
def strip_title(__a ):
if title.startswith("\"" ):
a__ : Optional[Any] = title[1:]
if title.endswith("\"" ):
a__ : Union[str, Any] = title[:-1]
return title
a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
__a , return_tensors="pt" , padding=__a , truncation=__a , )["input_ids"].to(args.device )
a__ : Optional[int] = rag_model.rag.question_encoder(__a )
a__ : Union[str, Any] = question_enc_outputs[0]
a__ : Optional[int] = rag_model.retriever(
__a , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , )
a__ : List[Any] = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
a__ : int = []
for docs in all_docs:
a__ : Optional[int] = [strip_title(__a ) for title in docs["title"]]
provenance_strings.append("\t".join(__a ) )
return provenance_strings
def UpperCamelCase_ ( __a , __a , __a ) -> Dict:
with torch.no_grad():
a__ : Optional[int] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
__a , return_tensors="pt" , padding=__a , truncation=__a )
a__ : Any = inputs_dict.input_ids.to(args.device )
a__ : Dict = inputs_dict.attention_mask.to(args.device )
a__ : Optional[int] = rag_model.generate( # rag_model overwrites generate
__a , attention_mask=__a , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__a , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
a__ : int = rag_model.retriever.generator_tokenizer.batch_decode(__a , skip_special_tokens=__a )
if args.print_predictions:
for q, a in zip(__a , __a ):
logger.info("Q: {} - A: {}".format(__a , __a ) )
return answers
def UpperCamelCase_ ( ) -> List[str]:
a__ : int = argparse.ArgumentParser()
parser.add_argument(
"--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=__a , help=(
"RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the"
" model_name_or_path"
) , )
parser.add_argument(
"--index_name" , default=__a , choices=["exact", "compressed", "legacy"] , type=__a , help="RAG model retriever type" , )
parser.add_argument(
"--index_path" , default=__a , type=__a , help="Path to the retrieval index" , )
parser.add_argument("--n_docs" , default=5 , type=__a , help="Number of retrieved docs" )
parser.add_argument(
"--model_name_or_path" , default=__a , type=__a , required=__a , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , )
parser.add_argument(
"--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=__a , help=(
"Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates"
" precision@k."
) , )
parser.add_argument("--k" , default=1 , type=__a , help="k for the precision@k calculation" )
parser.add_argument(
"--evaluation_set" , default=__a , type=__a , required=__a , help="Path to a file containing evaluation samples" , )
parser.add_argument(
"--gold_data_path" , default=__a , type=__a , required=__a , help="Path to a tab-separated file with gold samples" , )
parser.add_argument(
"--gold_data_mode" , default="qa" , type=__a , choices=["qa", "ans"] , help=(
"Format of the gold data file"
"qa - a single line in the following format: question [tab] answer_list"
"ans - a single line of the gold file contains the expected answer string"
) , )
parser.add_argument(
"--predictions_path" , type=__a , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , )
parser.add_argument(
"--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , )
parser.add_argument(
"--eval_batch_size" , default=8 , type=__a , help="Batch size per GPU/CPU for evaluation." , )
parser.add_argument(
"--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , )
parser.add_argument(
"--num_beams" , default=4 , type=__a , help="Number of beams to be used when generating answers" , )
parser.add_argument("--min_length" , default=1 , type=__a , help="Min length of the generated answers" )
parser.add_argument("--max_length" , default=50 , type=__a , help="Max length of the generated answers" )
parser.add_argument(
"--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , )
parser.add_argument(
"--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , )
a__ : int = parser.parse_args()
a__ : Dict = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
return args
def UpperCamelCase_ ( __a ) -> Optional[int]:
a__ : Tuple = {}
if args.model_type is None:
a__ : List[str] = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith("rag" ):
a__ : int = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration
a__ : Tuple = args.n_docs
if args.index_name is not None:
a__ : Any = args.index_name
if args.index_path is not None:
a__ : int = args.index_path
else:
a__ : Optional[Any] = BartForConditionalGeneration
a__ : Tuple = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info("Evaluate the following checkpoints: %s" , __a )
a__ : Any = get_scores if args.eval_mode == "e2e" else get_precision_at_k
a__ : Union[str, Any] = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) )
score_fn(__a , args.predictions_path , args.gold_data_path )
continue
logger.info("***** Running evaluation for {} *****".format(__a ) )
logger.info(" Batch size = %d" , args.eval_batch_size )
logger.info(" Predictions will be stored under {}".format(args.predictions_path ) )
if args.model_type.startswith("rag" ):
a__ : str = RagRetriever.from_pretrained(__a , **__a )
a__ : Optional[int] = model_class.from_pretrained(__a , retriever=__a , **__a )
model.retriever.init_retrieval()
else:
a__ : Dict = model_class.from_pretrained(__a , **__a )
model.to(args.device )
with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file:
a__ : List[Any] = []
for line in tqdm(__a ):
questions.append(line.strip() )
if len(__a ) == args.eval_batch_size:
a__ : Union[str, Any] = evaluate_batch_fn(__a , __a , __a )
preds_file.write("\n".join(__a ) + "\n" )
preds_file.flush()
a__ : Any = []
if len(__a ) > 0:
a__ : List[str] = evaluate_batch_fn(__a , __a , __a )
preds_file.write("\n".join(__a ) )
preds_file.flush()
score_fn(__a , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
UpperCamelCase : List[Any] = get_args()
main(args)
| 37 | 0 |
'''simple docstring'''
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
UpperCamelCase =logging.getLogger(__name__)
UpperCamelCase ={"""facebook/bart-base""": BartForConditionalGeneration}
UpperCamelCase ={"""facebook/bart-base""": BartTokenizer}
def snake_case ( ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase_ : Optional[Any] = argparse.ArgumentParser(description="""Export Bart model + Beam Search to ONNX graph.""" )
parser.add_argument(
"""--validation_file""" , type=__a , default=__a , help="""A csv or a json file containing the validation data.""" )
parser.add_argument(
"""--max_length""" , type=__a , default=5 , help="""The maximum total input sequence length after tokenization.""" , )
parser.add_argument(
"""--num_beams""" , type=__a , default=__a , help=(
"""Number of beams to use for evaluation. This argument will be """
"""passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."""
) , )
parser.add_argument(
"""--model_name_or_path""" , type=__a , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=__a , )
parser.add_argument(
"""--config_name""" , type=__a , default=__a , help="""Pretrained config name or path if not the same as model_name""" , )
parser.add_argument(
"""--device""" , type=__a , default="""cpu""" , help="""Device where the model will be run""" , )
parser.add_argument("""--output_file_path""" , type=__a , default=__a , help="""Where to store the final ONNX file.""" )
UpperCamelCase_ : str = parser.parse_args()
return args
def snake_case ( a_ : List[Any] , a_ : Union[str, Any]="cpu" ) -> List[Any]:
"""simple docstring"""
UpperCamelCase_ : Any = model_dict[model_name].from_pretrained(__a ).to(__a )
UpperCamelCase_ : List[str] = tokenizer_dict[model_name].from_pretrained(__a )
if model_name in ["facebook/bart-base"]:
UpperCamelCase_ : Optional[int] = 0
UpperCamelCase_ : Union[str, Any] = None
UpperCamelCase_ : Union[str, Any] = 0
return huggingface_model, tokenizer
def snake_case ( a_ : Optional[int] , a_ : Optional[Any] , a_ : List[str] , a_ : List[str] , a_ : str ) -> Union[str, Any]:
"""simple docstring"""
model.eval()
UpperCamelCase_ : int = None
UpperCamelCase_ : str = torch.jit.script(BARTBeamSearchGenerator(__a ) )
with torch.no_grad():
UpperCamelCase_ : int = "My friends are cool but they eat too many carbs."
UpperCamelCase_ : str = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors="""pt""" ).to(model.device )
UpperCamelCase_ : int = model.generate(
inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , num_beams=__a , max_length=__a , early_stopping=__a , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
__a , (
inputs["""input_ids"""],
inputs["""attention_mask"""],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , __a , opset_version=14 , input_names=["""input_ids""", """attention_mask""", """num_beams""", """max_length""", """decoder_start_token_id"""] , output_names=["""output_ids"""] , dynamic_axes={
"""input_ids""": {0: """batch""", 1: """seq"""},
"""output_ids""": {0: """batch""", 1: """seq_out"""},
} , example_outputs=__a , )
logger.info("""Model exported to {}""".format(__a ) )
UpperCamelCase_ : List[str] = remove_dup_initializers(os.path.abspath(__a ) )
logger.info("""Deduplicated and optimized model written to {}""".format(__a ) )
UpperCamelCase_ : Dict = onnxruntime.InferenceSession(__a )
UpperCamelCase_ : Tuple = ort_sess.run(
__a , {
"""input_ids""": inputs["""input_ids"""].cpu().numpy(),
"""attention_mask""": inputs["""attention_mask"""].cpu().numpy(),
"""num_beams""": np.array(__a ),
"""max_length""": np.array(__a ),
"""decoder_start_token_id""": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 )
logger.info("""Model outputs from torch and ONNX Runtime are similar.""" )
logger.info("""Success.""" )
def snake_case ( ) -> Tuple:
"""simple docstring"""
UpperCamelCase_ : int = parse_args()
UpperCamelCase_ : str = 5
UpperCamelCase_ : str = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
UpperCamelCase_ : Optional[int] = torch.device(args.device )
UpperCamelCase_ : int = load_model_tokenizer(args.model_name_or_path , __a )
if model.config.decoder_start_token_id is None:
raise ValueError("""Make sure that `config.decoder_start_token_id` is correctly defined""" )
model.to(__a )
if args.max_length:
UpperCamelCase_ : Optional[int] = args.max_length
if args.num_beams:
UpperCamelCase_ : int = args.num_beams
if args.output_file_path:
UpperCamelCase_ : str = args.output_file_path
else:
UpperCamelCase_ : Optional[Any] = "BART.onnx"
logger.info("""Exporting model to ONNX""" )
export_and_validate_model(__a , __a , __a , __a , __a )
if __name__ == "__main__":
main()
| 208 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a = None , ) -> str:
a__ : int = {}
if train_file is not None:
a__ : int = [train_file]
if eval_file is not None:
a__ : Union[str, Any] = [eval_file]
if test_file is not None:
a__ : str = [test_file]
a__ : Optional[Any] = datasets.load_dataset("csv" , data_files=__a )
a__ : List[Any] = list(ds[list(files.keys() )[0]].features.keys() )
a__ : str = features_name.pop(__a )
a__ : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) )
a__ : str = {label: i for i, label in enumerate(__a )}
a__ : Tuple = tokenizer.model_input_names
a__ : List[str] = {}
if len(__a ) == 1:
for k in files.keys():
a__ : Optional[Any] = ds[k].map(
lambda __a : tokenizer.batch_encode_plus(
example[features_name[0]] , truncation=__a , max_length=__a , padding="max_length" ) , batched=__a , )
elif len(__a ) == 2:
for k in files.keys():
a__ : Dict = ds[k].map(
lambda __a : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]) , truncation=__a , max_length=__a , padding="max_length" , ) , batched=__a , )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
a__ : str = {k: v for k, v in ex.items() if k in input_names}
a__ : str = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
a__ : Tuple = {k: v for k, v in ex.items() if k in input_names}
a__ : List[Any] = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
a__ : List[Any] = {k: v for k, v in ex.items() if k in input_names}
a__ : Optional[int] = labelaid[ex[label_name]]
yield (d, label)
a__ : Optional[Any] = (
tf.data.Dataset.from_generator(
__a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
a__ : Optional[int] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
a__ : Union[str, Any] = (
tf.data.Dataset.from_generator(
__a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
a__ : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
a__ : Union[str, Any] = (
tf.data.Dataset.from_generator(
__a , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
a__ : Tuple = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
UpperCamelCase : Optional[Any] = logging.getLogger(__name__)
@dataclass
class A__ :
"""simple docstring"""
_lowercase = field(metadata={'help': 'Which column contains the label'} )
_lowercase = field(default=A__ , metadata={'help': 'The path of the training file'} )
_lowercase = field(default=A__ , metadata={'help': 'The path of the development file'} )
_lowercase = field(default=A__ , metadata={'help': 'The path of the test file'} )
_lowercase = field(
default=1_2_8 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
_lowercase = field(
default=A__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
@dataclass
class A__ :
"""simple docstring"""
_lowercase = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
_lowercase = field(
default=A__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
_lowercase = field(
default=A__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
_lowercase = field(default=A__ , metadata={'help': 'Set this flag to use fast tokenization.'} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
_lowercase = field(
default=A__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
def UpperCamelCase_ ( ) -> Union[str, Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
a__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
a__, a__, a__ : str = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use'''
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.info(
f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '''
f'''16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
a__ : Union[str, Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
a__, a__, a__, a__ : Optional[Any] = get_tfds(
train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__a , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , )
a__ : Optional[int] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__a ) , labelaid=__a , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , )
with training_args.strategy.scope():
a__ : Any = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__a , cache_dir=model_args.cache_dir , )
def compute_metrics(__a ) -> Dict:
a__ : Union[str, Any] = np.argmax(p.predictions , axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
a__ : Dict = TFTrainer(
model=__a , args=__a , train_dataset=__a , eval_dataset=__a , compute_metrics=__a , )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
a__ : Optional[Any] = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
a__ : Dict = trainer.evaluate()
a__ : int = os.path.join(training_args.output_dir , "eval_results.txt" )
with open(__a , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(f''' {key} = {value}''' )
writer.write(f'''{key} = {value}\n''' )
results.update(__a )
return results
if __name__ == "__main__":
main()
| 37 | 0 |
import json
import os
import unittest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class a__ ( A__ , unittest.TestCase ):
_A = CLIPTokenizer
_A = CLIPTokenizerFast
_A = True
_A = {}
_A = False
def lowerCAmelCase ( self : List[Any] ) -> Any:
"""simple docstring"""
super().setUp()
# fmt: off
lowerCamelCase_: Any = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"]
# fmt: on
lowerCamelCase_: Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) )
lowerCamelCase_: Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"]
lowerCamelCase_: Optional[Any] = {"unk_token": "<unk>"}
lowerCamelCase_: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
lowerCamelCase_: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCamelCase__ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(lowerCamelCase__ ) )
def lowerCAmelCase ( self : Dict , **A_ : int ) -> Union[str, Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ )
def lowerCAmelCase ( self : Union[str, Any] , **A_ : Optional[int] ) -> Optional[Any]:
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ )
def lowerCAmelCase ( self : Dict , A_ : Optional[Any] ) -> Tuple:
"""simple docstring"""
lowerCamelCase_: int = "lower newer"
lowerCamelCase_: Optional[int] = "lower newer"
return input_text, output_text
def lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_: Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
lowerCamelCase_: int = "lower newer"
lowerCamelCase_: List[str] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"]
lowerCamelCase_: Union[str, Any] = tokenizer.tokenize(lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
lowerCamelCase_: int = tokens + [tokenizer.unk_token]
lowerCamelCase_: Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ )
@require_ftfy
def lowerCAmelCase ( self : Optional[Any] ) -> str:
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowerCamelCase_: List[str] = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ )
lowerCamelCase_: Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ )
lowerCamelCase_: int = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d."
lowerCamelCase_: Optional[Any] = tokenizer_s.tokenize(lowerCamelCase__ )
lowerCamelCase_: Dict = tokenizer_r.tokenize(lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
# Test that the tokenization is identical on an example containing a character (Latin Small Letter A
# with Tilde) encoded in 2 different ways
lowerCamelCase_: Optional[Any] = "xa\u0303y" + " " + "x\xe3y"
lowerCamelCase_: Optional[int] = tokenizer_s.tokenize(lowerCamelCase__ )
lowerCamelCase_: int = tokenizer_r.tokenize(lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
# Test that the tokenization is identical on unicode of space type
lowerCamelCase_: str = [
"\u0009", # (horizontal tab, '\t')
"\u000B", # (vertical tab)
"\u000C", # (form feed)
"\u0020", # (space, ' ')
"\u200E", # (left-to-right mark):w
"\u200F", # (right-to-left mark)
]
for unicode_seq in spaces_unicodes:
lowerCamelCase_: Any = tokenizer_s.tokenize(lowerCamelCase__ )
lowerCamelCase_: int = tokenizer_r.tokenize(lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
# Test that the tokenization is identical on unicode of line break type
lowerCamelCase_: Union[str, Any] = [
"\u000A", # (line feed, '\n')
"\r\n", # (carriage return and line feed, '\r\n')
"\u000D", # (carriage return, '\r')
"\r", # (carriage return, '\r')
"\u000D", # (carriage return, '\r')
"\u2028", # (line separator)
"\u2029", # (paragraph separator)
# "\u0085", # (next line)
]
# The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms
# it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a
# space (and thus into an empty list).
for unicode_seq in line_break_unicodes:
lowerCamelCase_: List[Any] = tokenizer_s.tokenize(lowerCamelCase__ )
lowerCamelCase_: int = tokenizer_r.tokenize(lowerCamelCase__ )
self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
lowerCamelCase_: str = "hello" # `hello` is a token in the vocabulary of `pretrained_name`
lowerCamelCase_: Tuple = f"""{text_of_1_token} {text_of_1_token}"""
lowerCamelCase_: Optional[int] = self.rust_tokenizer_class.from_pretrained(
lowerCamelCase__ , use_fast=lowerCamelCase__ , )
lowerCamelCase_: Union[str, Any] = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , )
lowerCamelCase_: Optional[Any] = f""" {text}"""
lowerCamelCase_: str = self.rust_tokenizer_class.from_pretrained(
lowerCamelCase__ , use_fast=lowerCamelCase__ , )
lowerCamelCase_: Dict = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , )
def lowerCAmelCase ( self : int ) -> int:
"""simple docstring"""
# Test related to the breaking change introduced in transformers v4.17.0
# We need to check that an error in raised when the user try to load a previous version of the tokenizer.
with self.assertRaises(lowerCamelCase__ ) as context:
self.rust_tokenizer_class.from_pretrained("""robot-test/old-clip-tokenizer""" )
self.assertTrue(
context.exception.args[0].startswith(
"""The `backend_tokenizer` provided does not match the expected format.""" ) )
@require_ftfy
def lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
super().test_tokenization_python_rust_equals()
def lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
# CLIP always lower cases letters
pass
| 423 |
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
UpperCamelCase : List[str] = re.compile(r"""\b(a|an|the)\b""", re.UNICODE)
UpperCamelCase : Union[str, Any] = None
def UpperCamelCase_ ( ) -> List[str]:
a__ : List[Any] = argparse.ArgumentParser("Official evaluation script for SQuAD version 2.0." )
parser.add_argument("data_file" , metavar="data.json" , help="Input data JSON file." )
parser.add_argument("pred_file" , metavar="pred.json" , help="Model predictions." )
parser.add_argument(
"--out-file" , "-o" , metavar="eval.json" , help="Write accuracy metrics to file (default is stdout)." )
parser.add_argument(
"--na-prob-file" , "-n" , metavar="na_prob.json" , help="Model estimates of probability of no answer." )
parser.add_argument(
"--na-prob-thresh" , "-t" , type=__a , default=1.0 , help="Predict \"\" if no-answer probability exceeds this (default = 1.0)." , )
parser.add_argument(
"--out-image-dir" , "-p" , metavar="out_images" , default=__a , help="Save precision-recall curves to directory." )
parser.add_argument("--verbose" , "-v" , action="store_true" )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def UpperCamelCase_ ( __a ) -> str:
a__ : Optional[Any] = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
a__ : Dict = bool(qa["answers"]["text"] )
return qid_to_has_ans
def UpperCamelCase_ ( __a ) -> List[Any]:
def remove_articles(__a ):
return ARTICLES_REGEX.sub(" " , __a )
def white_space_fix(__a ):
return " ".join(text.split() )
def remove_punc(__a ):
a__ : Union[str, Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__a ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(__a ) ) ) )
def UpperCamelCase_ ( __a ) -> Dict:
if not s:
return []
return normalize_answer(__a ).split()
def UpperCamelCase_ ( __a , __a ) -> str:
return int(normalize_answer(__a ) == normalize_answer(__a ) )
def UpperCamelCase_ ( __a , __a ) -> Dict:
a__ : int = get_tokens(__a )
a__ : Optional[Any] = get_tokens(__a )
a__ : Any = collections.Counter(__a ) & collections.Counter(__a )
a__ : Dict = sum(common.values() )
if len(__a ) == 0 or len(__a ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
a__ : Tuple = 1.0 * num_same / len(__a )
a__ : str = 1.0 * num_same / len(__a )
a__ : str = (2 * precision * recall) / (precision + recall)
return fa
def UpperCamelCase_ ( __a , __a ) -> int:
a__ : List[str] = {}
a__ : Optional[int] = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
a__ : List[Any] = qa["id"]
a__ : Dict = [t for t in qa["answers"]["text"] if normalize_answer(__a )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
a__ : Tuple = [""]
if qid not in preds:
print(f'''Missing prediction for {qid}''' )
continue
a__ : Tuple = preds[qid]
# Take max over all gold answers
a__ : Optional[int] = max(compute_exact(__a , __a ) for a in gold_answers )
a__ : str = max(compute_fa(__a , __a ) for a in gold_answers )
return exact_scores, fa_scores
def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]:
a__ : Optional[Any] = {}
for qid, s in scores.items():
a__ : Dict = na_probs[qid] > na_prob_thresh
if pred_na:
a__ : Dict = float(not qid_to_has_ans[qid] )
else:
a__ : Optional[Any] = s
return new_scores
def UpperCamelCase_ ( __a , __a , __a=None ) -> Tuple:
if not qid_list:
a__ : Union[str, Any] = len(__a )
return collections.OrderedDict(
[
("exact", 100.0 * sum(exact_scores.values() ) / total),
("f1", 100.0 * sum(fa_scores.values() ) / total),
("total", total),
] )
else:
a__ : int = len(__a )
return collections.OrderedDict(
[
("exact", 100.0 * sum(exact_scores[k] for k in qid_list ) / total),
("f1", 100.0 * sum(fa_scores[k] for k in qid_list ) / total),
("total", total),
] )
def UpperCamelCase_ ( __a , __a , __a ) -> List[str]:
for k in new_eval:
a__ : Optional[Any] = new_eval[k]
def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[int]:
plt.step(__a , __a , color="b" , alpha=0.2 , where="post" )
plt.fill_between(__a , __a , step="post" , alpha=0.2 , color="b" )
plt.xlabel("Recall" )
plt.ylabel("Precision" )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(__a )
plt.savefig(__a )
plt.clf()
def UpperCamelCase_ ( __a , __a , __a , __a , __a=None , __a=None ) -> Dict:
a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] )
a__ : Any = 0.0
a__ : Optional[int] = 1.0
a__ : Optional[int] = 0.0
a__ : Any = [1.0]
a__ : Tuple = [0.0]
a__ : List[str] = 0.0
for i, qid in enumerate(__a ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
a__ : Any = true_pos / float(i + 1 )
a__ : int = true_pos / float(__a )
if i == len(__a ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(__a )
recalls.append(__a )
if out_image:
plot_pr_curve(__a , __a , __a , __a )
return {"ap": 100.0 * avg_prec}
def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> str:
if out_image_dir and not os.path.exists(__a ):
os.makedirs(__a )
a__ : Optional[int] = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
a__ : Optional[int] = make_precision_recall_eval(
__a , __a , __a , __a , out_image=os.path.join(__a , "pr_exact.png" ) , title="Precision-Recall curve for Exact Match score" , )
a__ : Optional[Any] = make_precision_recall_eval(
__a , __a , __a , __a , out_image=os.path.join(__a , "pr_f1.png" ) , title="Precision-Recall curve for F1 score" , )
a__ : str = {k: float(__a ) for k, v in qid_to_has_ans.items()}
a__ : Optional[Any] = make_precision_recall_eval(
__a , __a , __a , __a , out_image=os.path.join(__a , "pr_oracle.png" ) , title="Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)" , )
merge_eval(__a , __a , "pr_exact" )
merge_eval(__a , __a , "pr_f1" )
merge_eval(__a , __a , "pr_oracle" )
def UpperCamelCase_ ( __a , __a , __a , __a ) -> str:
if not qid_list:
return
a__ : Optional[Any] = [na_probs[k] for k in qid_list]
a__ : str = np.ones_like(__a ) / float(len(__a ) )
plt.hist(__a , weights=__a , bins=20 , range=(0.0, 1.0) )
plt.xlabel("Model probability of no-answer" )
plt.ylabel("Proportion of dataset" )
plt.title(f'''Histogram of no-answer probability: {name}''' )
plt.savefig(os.path.join(__a , f'''na_prob_hist_{name}.png''' ) )
plt.clf()
def UpperCamelCase_ ( __a , __a , __a , __a ) -> Optional[Any]:
a__ : str = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
a__ : Optional[Any] = num_no_ans
a__ : Dict = cur_score
a__ : Any = 0.0
a__ : Optional[Any] = sorted(__a , key=lambda __a : na_probs[k] )
for i, qid in enumerate(__a ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
a__ : Optional[int] = scores[qid]
else:
if preds[qid]:
a__ : str = -1
else:
a__ : Union[str, Any] = 0
cur_score += diff
if cur_score > best_score:
a__ : Any = cur_score
a__ : Dict = na_probs[qid]
return 100.0 * best_score / len(__a ), best_thresh
def UpperCamelCase_ ( __a , __a , __a , __a , __a , __a ) -> Any:
a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a )
a__, a__ : Tuple = find_best_thresh(__a , __a , __a , __a )
a__ : Any = best_exact
a__ : Any = exact_thresh
a__ : List[Any] = best_fa
a__ : Optional[int] = fa_thresh
def UpperCamelCase_ ( ) -> Tuple:
with open(OPTS.data_file ) as f:
a__ : List[Any] = json.load(__a )
a__ : Any = dataset_json["data"]
with open(OPTS.pred_file ) as f:
a__ : int = json.load(__a )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
a__ : List[str] = json.load(__a )
else:
a__ : Optional[int] = {k: 0.0 for k in preds}
a__ : Optional[Any] = make_qid_to_has_ans(__a ) # maps qid to True/False
a__ : List[Any] = [k for k, v in qid_to_has_ans.items() if v]
a__ : Union[str, Any] = [k for k, v in qid_to_has_ans.items() if not v]
a__, a__ : str = get_raw_scores(__a , __a )
a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh )
a__ : str = apply_no_ans_threshold(__a , __a , __a , OPTS.na_prob_thresh )
a__ : Tuple = make_eval_dict(__a , __a )
if has_ans_qids:
a__ : str = make_eval_dict(__a , __a , qid_list=__a )
merge_eval(__a , __a , "HasAns" )
if no_ans_qids:
a__ : List[Any] = make_eval_dict(__a , __a , qid_list=__a )
merge_eval(__a , __a , "NoAns" )
if OPTS.na_prob_file:
find_all_best_thresh(__a , __a , __a , __a , __a , __a )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(__a , __a , __a , __a , __a , OPTS.out_image_dir )
histogram_na_prob(__a , __a , OPTS.out_image_dir , "hasAns" )
histogram_na_prob(__a , __a , OPTS.out_image_dir , "noAns" )
if OPTS.out_file:
with open(OPTS.out_file , "w" ) as f:
json.dump(__a , __a )
else:
print(json.dumps(__a , indent=2 ) )
if __name__ == "__main__":
UpperCamelCase : Any = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use("""Agg""")
import matplotlib.pyplot as plt
main()
| 37 | 0 |
'''simple docstring'''
from __future__ import annotations
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : str ) -> bool:
'''simple docstring'''
snake_case__ : Union[str, Any] = get_failure_array(__magic_name__ )
# 2) Step through text searching for pattern
snake_case__ , snake_case__ : List[str] = 0, 0 # index into text, pattern
while i < len(__magic_name__ ):
if pattern[j] == text[i]:
if j == (len(__magic_name__ ) - 1):
return True
j += 1
# if this is a prefix in our pattern
# just go back far enough to continue
elif j > 0:
snake_case__ : Dict = failure[j - 1]
continue
i += 1
return False
def UpperCamelCase__ ( __magic_name__ : str ) -> list[int]:
'''simple docstring'''
snake_case__ : Union[str, Any] = [0]
snake_case__ : int = 0
snake_case__ : Any = 1
while j < len(__magic_name__ ):
if pattern[i] == pattern[j]:
i += 1
elif i > 0:
snake_case__ : List[str] = failure[i - 1]
continue
j += 1
failure.append(__magic_name__ )
return failure
if __name__ == "__main__":
# Test 1)
A_ : Optional[Any] = "abc1abc12"
A_ : List[str] = "alskfjaldsabc1abc1abc12k23adsfabcabc"
A_ : Union[str, Any] = "alskfjaldsk23adsfabcabc"
assert kmp(pattern, texta) and not kmp(pattern, texta)
# Test 2)
A_ : Dict = "ABABX"
A_ : int = "ABABZABABYABABX"
assert kmp(pattern, text)
# Test 3)
A_ : List[Any] = "AAAB"
A_ : List[str] = "ABAAAAAB"
assert kmp(pattern, text)
# Test 4)
A_ : Optional[int] = "abcdabcy"
A_ : List[str] = "abcxabcdabxabcdabcdabcy"
assert kmp(pattern, text)
# Test 5)
A_ : Tuple = "aabaabaaa"
assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
| 38 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Optional[int] = logging.get_logger(__name__)
A_ : Tuple = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''segformer'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , __SCREAMING_SNAKE_CASE=[3_2, 6_4, 1_6_0, 2_5_6] , __SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , __SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=2_5_5 , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __SCREAMING_SNAKE_CASE , )
snake_case__ : Dict = num_channels
snake_case__ : Optional[Any] = num_encoder_blocks
snake_case__ : Any = depths
snake_case__ : Optional[int] = sr_ratios
snake_case__ : Tuple = hidden_sizes
snake_case__ : List[str] = patch_sizes
snake_case__ : str = strides
snake_case__ : Optional[int] = mlp_ratios
snake_case__ : Optional[Any] = num_attention_heads
snake_case__ : Dict = hidden_act
snake_case__ : Optional[int] = hidden_dropout_prob
snake_case__ : List[str] = attention_probs_dropout_prob
snake_case__ : List[Any] = classifier_dropout_prob
snake_case__ : int = initializer_range
snake_case__ : List[str] = drop_path_rate
snake_case__ : int = layer_norm_eps
snake_case__ : List[Any] = decoder_hidden_size
snake_case__ : List[Any] = kwargs.get("""reshape_last_stage""" , __SCREAMING_SNAKE_CASE )
snake_case__ : Dict = semantic_loss_ignore_index
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def __UpperCamelCase ( self ):
return 1e-4
@property
def __UpperCamelCase ( self ):
return 1_2
| 38 | 1 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union
import pyarrow as pa
if TYPE_CHECKING:
from .features import FeatureType
@dataclass
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = 42
lowerCamelCase__ = None
# Automatically constructed
lowerCamelCase__ = "dict"
lowerCamelCase__ = None
lowerCamelCase__ = field(default='''Translation''' , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ):
return pa.struct({lang: pa.string() for lang in sorted(self.languages )} )
def __UpperCamelCase ( self ):
from .features import Value
return {k: Value("""string""" ) for k in sorted(self.languages )}
@dataclass
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = None
lowerCamelCase__ = None
lowerCamelCase__ = None
# Automatically constructed
lowerCamelCase__ = "dict"
lowerCamelCase__ = None
lowerCamelCase__ = field(default='''TranslationVariableLanguages''' , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : str = sorted(set(self.languages ) ) if self.languages else None
snake_case__ : int = len(self.languages ) if self.languages else None
def __call__( self ):
return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[str] = set(self.languages )
if self.languages and set(__SCREAMING_SNAKE_CASE ) - lang_set:
raise ValueError(
f"Some languages in example ({', '.join(sorted(set(__SCREAMING_SNAKE_CASE ) - lang_set ) )}) are not in valid set ({', '.join(__SCREAMING_SNAKE_CASE )})." )
# Convert dictionary into tuples, splitting out cases where there are
# multiple translations for a single language.
snake_case__ : Optional[int] = []
for lang, text in translation_dict.items():
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
translation_tuples.append((lang, text) )
else:
translation_tuples.extend([(lang, el) for el in text] )
# Ensure translations are in ascending order by language code.
snake_case__ , snake_case__ : Any = zip(*sorted(__SCREAMING_SNAKE_CASE ) )
return {"language": languages, "translation": translations}
def __UpperCamelCase ( self ):
from .features import Sequence, Value
return {
"language": Sequence(Value("""string""" ) ),
"translation": Sequence(Value("""string""" ) ),
}
| 38 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : str = None
if token is not None:
snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"
snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json()
snake_case__ : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(__magic_name__ ):
snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]:
'''simple docstring'''
snake_case__ : Optional[Any] = None
if token is not None:
snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"
snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json()
snake_case__ : Dict = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(__magic_name__ ):
snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict:
'''simple docstring'''
snake_case__ : Optional[Any] = None
if token is not None:
snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ )
snake_case__ : Any = result.headers["""Location"""]
snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ )
snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" )
with open(__magic_name__ , """wb""" ) as fp:
fp.write(response.content )
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Any = []
snake_case__ : Union[str, Any] = []
snake_case__ : Any = None
with zipfile.ZipFile(__magic_name__ ) as z:
for filename in z.namelist():
if not os.path.isdir(__magic_name__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(__magic_name__ ) as f:
for line in f:
snake_case__ : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
snake_case__ : str = line[: line.index(""": """ )]
snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
snake_case__ : Dict = line[len("""FAILED """ ) :]
failed_tests.append(__magic_name__ )
elif filename == "job_name.txt":
snake_case__ : Optional[Any] = line
if len(__magic_name__ ) != len(__magic_name__ ):
raise ValueError(
f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` "
f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"
""" problem.""" )
snake_case__ : Optional[Any] = None
if job_name and job_links:
snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ )
# A list with elements of the form (line of error, error, failed test)
snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )]
return result
def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : str = []
snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) )
return errors
def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]:
'''simple docstring'''
snake_case__ : Any = Counter()
counter.update([x[1] for x in logs] )
snake_case__ : Dict = counter.most_common()
snake_case__ : Any = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) )
return r
def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]:
'''simple docstring'''
snake_case__ : str = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
snake_case__ : Tuple = test.split("""/""" )[2]
else:
snake_case__ : Any = None
return test
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]:
'''simple docstring'''
snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs]
snake_case__ : List[Any] = [x for x in logs if x[2] is not None]
snake_case__ : Any = {x[2] for x in logs}
snake_case__ : Optional[Any] = {}
for test in tests:
snake_case__ : str = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
snake_case__ : Optional[int] = counter.most_common()
snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
snake_case__ : int = sum(error_counts.values() )
if n_errors > 0:
snake_case__ : str = {"""count""": n_errors, """errors""": error_counts}
snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) )
return r
def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Optional[Any] = """| no. | error | status |"""
snake_case__ : int = """|-:|:-|:-|"""
snake_case__ : int = [header, sep]
for error in reduced_by_error:
snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""]
snake_case__ : Dict = f"| {count} | {error[:1_00]} | |"
lines.append(__magic_name__ )
return "\n".join(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]:
'''simple docstring'''
snake_case__ : List[Any] = """| model | no. of errors | major error | count |"""
snake_case__ : Optional[int] = """|-:|-:|-:|-:|"""
snake_case__ : Dict = [header, sep]
for model in reduced_by_model:
snake_case__ : Tuple = reduced_by_model[model]["""count"""]
snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0]
snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |"
lines.append(__magic_name__ )
return "\n".join(__magic_name__ )
if __name__ == "__main__":
A_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
A_ : int = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token)
A_ : Optional[Any] = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
A_ : int = k.find(" / ")
A_ : List[Any] = k[index + len(" / ") :]
A_ : List[str] = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
A_ : str = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
A_ : List[str] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
A_ : Any = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
A_ : Any = reduce_by_error(errors)
A_ : Union[str, Any] = reduce_by_model(errors)
A_ : Any = make_github_table(reduced_by_error)
A_ : Optional[Any] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 38 | 1 |
'''simple docstring'''
from __future__ import annotations
def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : List[str] , __magic_name__ : int , __magic_name__ : Union[str, Any] ) -> Optional[Any]: # noqa: E741
'''simple docstring'''
while r - l > 1:
snake_case__ : Optional[Any] = (l + r) // 2
if v[m] >= key:
snake_case__ : List[str] = m
else:
snake_case__ : List[Any] = m # noqa: E741
return r
def UpperCamelCase__ ( __magic_name__ : list[int] ) -> int:
'''simple docstring'''
if len(__magic_name__ ) == 0:
return 0
snake_case__ : str = [0] * len(__magic_name__ )
snake_case__ : Any = 1
snake_case__ : Union[str, Any] = v[0]
for i in range(1 , len(__magic_name__ ) ):
if v[i] < tail[0]:
snake_case__ : List[str] = v[i]
elif v[i] > tail[length - 1]:
snake_case__ : str = v[i]
length += 1
else:
snake_case__ : List[Any] = v[i]
return length
if __name__ == "__main__":
import doctest
doctest.testmod()
| 38 |
'''simple docstring'''
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
A_ : Tuple = get_logger(__name__)
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = '''dummy_data'''
lowerCamelCase__ = '''datasets'''
lowerCamelCase__ = False
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ):
snake_case__ : List[Any] = 0
snake_case__ : Union[str, Any] = dataset_name
snake_case__ : Optional[int] = cache_dir
snake_case__ : Union[str, Any] = use_local_dummy_data
snake_case__ : int = config
# download_callbacks take a single url as input
snake_case__ : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
snake_case__ : Union[str, Any] = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
snake_case__ : Union[str, Any] = str(__SCREAMING_SNAKE_CASE )
# to be downloaded
snake_case__ : List[str] = None
snake_case__ : List[str] = None
@property
def __UpperCamelCase ( self ):
if self._dummy_file is None:
snake_case__ : List[str] = self.download_dummy_data()
return self._dummy_file
@property
def __UpperCamelCase ( self ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("""dummy""" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("""dummy""" , self.version_name )
@property
def __UpperCamelCase ( self ):
return os.path.join(self.dummy_data_folder , """dummy_data.zip""" )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
snake_case__ : Optional[int] = cached_path(
__SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE )
return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name )
@property
def __UpperCamelCase ( self ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def __UpperCamelCase ( self ):
if self._bucket_url is None:
snake_case__ : List[str] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) )
return self._bucket_url
@property
def __UpperCamelCase ( self ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
snake_case__ : List[Any] = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
snake_case__ : List[Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ):
return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ):
return self.download_and_extract(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return self.download_and_extract(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
return path
def __UpperCamelCase ( self ):
return {}
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : int = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for single_url in single_urls:
download_callback(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : List[str] = single_urls
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Tuple = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls]
else:
snake_case__ : List[Any] = single_urls
snake_case__ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) )
snake_case__ : Optional[int] = value
# make sure that values are unique
if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
snake_case__ : List[Any] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Dict = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
snake_case__ : Tuple = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __SCREAMING_SNAKE_CASE ) ) for url in data_url )
snake_case__ : List[Any] = all(
url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
snake_case__ : List[str] = [data_url[0]] * len(__SCREAMING_SNAKE_CASE )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
snake_case__ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) )
dummy_data_list.append(__SCREAMING_SNAKE_CASE )
return dummy_data_list
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for download_callback in self.download_callbacks:
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
snake_case__ : Any = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) )
if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
def _iter_archive_members(__SCREAMING_SNAKE_CASE ):
# this preserves the order of the members inside the ZIP archive
snake_case__ : List[str] = Path(self.dummy_file ).parent
snake_case__ : Dict = path.relative_to(__SCREAMING_SNAKE_CASE )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
snake_case__ : Optional[int] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = Path(__SCREAMING_SNAKE_CASE )
snake_case__ : int = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob("""*""" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ):
yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open("""rb""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[int] = [paths]
for path in paths:
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ):
if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ):
continue
dirnames.sort()
for filename in sorted(__SCREAMING_SNAKE_CASE ):
if filename.startswith((""".""", """__""") ):
continue
yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 38 | 1 |
'''simple docstring'''
def UpperCamelCase__ ( __magic_name__ : str ) -> list[int]:
'''simple docstring'''
snake_case__ : Dict = [0 for i in range(len(__magic_name__ ) )]
# initialize interval's left pointer and right pointer
snake_case__ , snake_case__ : List[str] = 0, 0
for i in range(1 , len(__magic_name__ ) ):
# case when current index is inside the interval
if i <= right_pointer:
snake_case__ : List[Any] = min(right_pointer - i + 1 , z_result[i - left_pointer] )
snake_case__ : Tuple = min_edge
while go_next(__magic_name__ , __magic_name__ , __magic_name__ ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
snake_case__ , snake_case__ : Tuple = i, i + z_result[i] - 1
return z_result
def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : str ) -> bool:
'''simple docstring'''
return i + z_result[i] < len(__magic_name__ ) and s[z_result[i]] == s[i + z_result[i]]
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : str ) -> int:
'''simple docstring'''
snake_case__ : Tuple = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
snake_case__ : Union[str, Any] = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(__magic_name__ ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 38 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = IFImgaImgSuperResolutionPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''}
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} )
lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __UpperCamelCase ( self ):
return self._get_superresolution_dummy_components()
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ):
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
snake_case__ : List[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : Tuple = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __UpperCamelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def __UpperCamelCase ( self ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def __UpperCamelCase ( self ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __UpperCamelCase ( self ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __UpperCamelCase ( self ):
self._test_save_load_local()
def __UpperCamelCase ( self ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 38 | 1 |
'''simple docstring'''
import os
import sys
import unittest
A_ : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
A_ : Dict = os.path.join("tests", "models", "bert", "test_modeling_bert.py")
A_ : str = os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = get_test_to_tester_mapping(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = get_test_to_tester_mapping(__SCREAMING_SNAKE_CASE )
snake_case__ : int = {"""BertModelTest""": """BertModelTester"""}
snake_case__ : List[str] = {
"""BlipModelTest""": """BlipModelTester""",
"""BlipTextImageModelTest""": """BlipTextImageModelsModelTester""",
"""BlipTextModelTest""": """BlipTextModelTester""",
"""BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""",
"""BlipVQAModelTest""": """BlipVQAModelTester""",
"""BlipVisionModelTest""": """BlipVisionModelTester""",
}
self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Dict = get_model_to_test_mapping(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = get_model_to_test_mapping(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = {
"""BertForMaskedLM""": ["""BertModelTest"""],
"""BertForMultipleChoice""": ["""BertModelTest"""],
"""BertForNextSentencePrediction""": ["""BertModelTest"""],
"""BertForPreTraining""": ["""BertModelTest"""],
"""BertForQuestionAnswering""": ["""BertModelTest"""],
"""BertForSequenceClassification""": ["""BertModelTest"""],
"""BertForTokenClassification""": ["""BertModelTest"""],
"""BertLMHeadModel""": ["""BertModelTest"""],
"""BertModel""": ["""BertModelTest"""],
}
snake_case__ : Any = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTest"""],
"""BlipModel""": ["""BlipModelTest"""],
"""BlipTextModel""": ["""BlipTextModelTest"""],
"""BlipVisionModel""": ["""BlipVisionModelTest"""],
}
self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : List[str] = get_model_to_tester_mapping(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = get_model_to_tester_mapping(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = {
"""BertForMaskedLM""": ["""BertModelTester"""],
"""BertForMultipleChoice""": ["""BertModelTester"""],
"""BertForNextSentencePrediction""": ["""BertModelTester"""],
"""BertForPreTraining""": ["""BertModelTester"""],
"""BertForQuestionAnswering""": ["""BertModelTester"""],
"""BertForSequenceClassification""": ["""BertModelTester"""],
"""BertForTokenClassification""": ["""BertModelTester"""],
"""BertLMHeadModel""": ["""BertModelTester"""],
"""BertModel""": ["""BertModelTester"""],
}
snake_case__ : Optional[Any] = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTester"""],
"""BlipModel""": ["""BlipModelTester"""],
"""BlipTextModel""": ["""BlipTextModelTester"""],
"""BlipVisionModel""": ["""BlipVisionModelTester"""],
}
self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(get_test_info.to_json(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
| 38 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
A_ : Dict = [
"EAGER",
"AOT_EAGER",
"INDUCTOR",
"NVFUSER",
"AOT_NVFUSER",
"AOT_CUDAGRAPHS",
"OFI",
"FX2TRT",
"ONNXRT",
"IPEX",
]
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None ) -> Dict:
'''simple docstring'''
snake_case__ : Optional[int] = True
while ask_again:
snake_case__ : Optional[Any] = input(__magic_name__ )
try:
if default is not None and len(__magic_name__ ) == 0:
return default
return convert_value(__magic_name__ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Any=[] , __magic_name__ : Optional[int]=None , __magic_name__ : int=0 ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Union[str, Any] = BulletMenu(__magic_name__ , __magic_name__ )
snake_case__ : Optional[Any] = menu.run(default_choice=__magic_name__ )
return convert_value(__magic_name__ ) if convert_value is not None else result
def UpperCamelCase__ ( __magic_name__ : Any ) -> int:
'''simple docstring'''
snake_case__ : Tuple = int(__magic_name__ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple:
'''simple docstring'''
snake_case__ : List[Any] = int(__magic_name__ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]:
'''simple docstring'''
snake_case__ : Union[str, Any] = int(__magic_name__ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Optional[Any] = int(__magic_name__ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
snake_case__ : Optional[Any] = int(__magic_name__ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase__ ( __magic_name__ : Dict ) -> Tuple:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class __snake_case ( argparse.RawDescriptionHelpFormatter ):
'''simple docstring'''
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : str = usage.replace("""<command> [<args>] """ , """""" )
return usage
| 38 | 1 |
'''simple docstring'''
from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __lt__( self , __SCREAMING_SNAKE_CASE ):
return self[-1] < other[-1]
def __eq__( self , __SCREAMING_SNAKE_CASE ):
return self[-1] == other[-1]
def UpperCamelCase__ ( __magic_name__ : list ) -> list:
'''simple docstring'''
snake_case__ : list[Stack] = []
# sort into stacks
for element in collection:
snake_case__ : Optional[int] = Stack([element] )
snake_case__ : Optional[Any] = bisect_left(__magic_name__ , __magic_name__ )
if i != len(__magic_name__ ):
stacks[i].append(__magic_name__ )
else:
stacks.append(__magic_name__ )
# use a heap-based merge to merge stack efficiently
snake_case__ : Optional[int] = merge(*(reversed(__magic_name__ ) for stack in stacks) )
return collection
if __name__ == "__main__":
A_ : Optional[Any] = input("Enter numbers separated by a comma:\n").strip()
A_ : Tuple = [int(item) for item in user_input.split(",")]
print(patience_sort(unsorted))
| 38 |
'''simple docstring'''
from __future__ import annotations
def UpperCamelCase__ ( __magic_name__ : list ) -> float:
'''simple docstring'''
if not nums:
raise ValueError("""List is empty""" )
return sum(__magic_name__ ) / len(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 38 | 1 |
'''simple docstring'''
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __get__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
# See docs.python.org/3/howto/descriptor.html#properties
if obj is None:
return self
if self.fget is None:
raise AttributeError("""unreadable attribute""" )
snake_case__ : List[Any] = """__cached_""" + self.fget.__name__
snake_case__ : str = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if cached is None:
snake_case__ : Optional[Any] = self.fget(__SCREAMING_SNAKE_CASE )
setattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return cached
def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> str:
'''simple docstring'''
snake_case__ : List[Any] = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f"invalid truth value {val!r}" )
def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> str:
'''simple docstring'''
if is_torch_fx_proxy(__magic_name__ ):
return True
if is_torch_available():
import torch
if isinstance(__magic_name__ , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(__magic_name__ , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(__magic_name__ , (jnp.ndarray, Tracer) ):
return True
return isinstance(__magic_name__ , np.ndarray )
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[str]:
'''simple docstring'''
return isinstance(__magic_name__ , np.ndarray )
def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
return _is_numpy(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : Tuple ) -> List[Any]:
'''simple docstring'''
import torch
return isinstance(__magic_name__ , torch.Tensor )
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return False if not is_torch_available() else _is_torch(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : Dict ) -> Union[str, Any]:
'''simple docstring'''
import torch
return isinstance(__magic_name__ , torch.device )
def UpperCamelCase__ ( __magic_name__ : str ) -> Dict:
'''simple docstring'''
return False if not is_torch_available() else _is_torch_device(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> int:
'''simple docstring'''
import torch
if isinstance(__magic_name__ , __magic_name__ ):
if hasattr(__magic_name__ , __magic_name__ ):
snake_case__ : Optional[Any] = getattr(__magic_name__ , __magic_name__ )
else:
return False
return isinstance(__magic_name__ , torch.dtype )
def UpperCamelCase__ ( __magic_name__ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
return False if not is_torch_available() else _is_torch_dtype(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
import tensorflow as tf
return isinstance(__magic_name__ , tf.Tensor )
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return False if not is_tf_available() else _is_tensorflow(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(__magic_name__ , """is_symbolic_tensor""" ):
return tf.is_symbolic_tensor(__magic_name__ )
return type(__magic_name__ ) == tf.Tensor
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> int:
'''simple docstring'''
return False if not is_tf_available() else _is_tf_symbolic_tensor(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
import jax.numpy as jnp # noqa: F811
return isinstance(__magic_name__ , jnp.ndarray )
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[str]:
'''simple docstring'''
return False if not is_flax_available() else _is_jax(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
if isinstance(__magic_name__ , (dict, UserDict) ):
return {k: to_py_obj(__magic_name__ ) for k, v in obj.items()}
elif isinstance(__magic_name__ , (list, tuple) ):
return [to_py_obj(__magic_name__ ) for o in obj]
elif is_tf_tensor(__magic_name__ ):
return obj.numpy().tolist()
elif is_torch_tensor(__magic_name__ ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(__magic_name__ ):
return np.asarray(__magic_name__ ).tolist()
elif isinstance(__magic_name__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(__magic_name__ , (dict, UserDict) ):
return {k: to_numpy(__magic_name__ ) for k, v in obj.items()}
elif isinstance(__magic_name__ , (list, tuple) ):
return np.array(__magic_name__ )
elif is_tf_tensor(__magic_name__ ):
return obj.numpy()
elif is_torch_tensor(__magic_name__ ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(__magic_name__ ):
return np.asarray(__magic_name__ )
else:
return obj
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = fields(self )
# Safety and consistency checks
if not len(__SCREAMING_SNAKE_CASE ):
raise ValueError(f"{self.__class__.__name__} has no fields." )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(f"{self.__class__.__name__} should not have more than one required field." )
snake_case__ : List[Any] = getattr(self , class_fields[0].name )
snake_case__ : Tuple = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(__SCREAMING_SNAKE_CASE ):
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = first_field.items()
snake_case__ : Dict = True
else:
try:
snake_case__ : Union[str, Any] = iter(__SCREAMING_SNAKE_CASE )
snake_case__ : str = True
except TypeError:
snake_case__ : int = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(__SCREAMING_SNAKE_CASE ):
if (
not isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) )
or not len(__SCREAMING_SNAKE_CASE ) == 2
or not isinstance(element[0] , __SCREAMING_SNAKE_CASE )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
snake_case__ : Union[str, Any] = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
snake_case__ : List[str] = element[1]
elif first_field is not None:
snake_case__ : int = first_field
else:
for field in class_fields:
snake_case__ : Union[str, Any] = getattr(self , field.name )
if v is not None:
snake_case__ : Any = v
def __delitem__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." )
def __UpperCamelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." )
def __UpperCamelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance." )
def __UpperCamelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance." )
def __getitem__( self , __SCREAMING_SNAKE_CASE ):
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
super().__setattr__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __setitem__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# Will raise a KeyException if needed
super().__setitem__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
return tuple(self[k] for k in self.keys() )
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@classmethod
def __UpperCamelCase ( cls , __SCREAMING_SNAKE_CASE ):
raise ValueError(
f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" )
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''longest'''
lowerCamelCase__ = '''max_length'''
lowerCamelCase__ = '''do_not_pad'''
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''pt'''
lowerCamelCase__ = '''tf'''
lowerCamelCase__ = '''np'''
lowerCamelCase__ = '''jax'''
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Union[str, Any] = context_managers
snake_case__ : str = ExitStack()
def __enter__( self ):
for context_manager in self.context_managers:
self.stack.enter_context(__SCREAMING_SNAKE_CASE )
def __exit__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.stack.__exit__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Dict = infer_framework(__magic_name__ )
if framework == "tf":
snake_case__ : Union[str, Any] = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
snake_case__ : int = inspect.signature(model_class.forward ) # PyTorch models
else:
snake_case__ : Optional[int] = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def UpperCamelCase__ ( __magic_name__ : Any ) -> List[str]:
'''simple docstring'''
snake_case__ : List[Any] = model_class.__name__
snake_case__ : Union[str, Any] = infer_framework(__magic_name__ )
if framework == "tf":
snake_case__ : int = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
snake_case__ : Dict = inspect.signature(model_class.forward ) # PyTorch models
else:
snake_case__ : List[str] = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def UpperCamelCase__ ( __magic_name__ : MutableMapping , __magic_name__ : str = "" , __magic_name__ : str = "." ) -> Dict:
'''simple docstring'''
def _flatten_dict(__magic_name__ : str , __magic_name__ : int="" , __magic_name__ : Optional[int]="." ):
for k, v in d.items():
snake_case__ : Tuple = str(__magic_name__ ) + delimiter + str(__magic_name__ ) if parent_key else k
if v and isinstance(__magic_name__ , __magic_name__ ):
yield from flatten_dict(__magic_name__ , __magic_name__ , delimiter=__magic_name__ ).items()
else:
yield key, v
return dict(_flatten_dict(__magic_name__ , __magic_name__ , __magic_name__ ) )
@contextmanager
def UpperCamelCase__ ( __magic_name__ : Union[str, Any] , __magic_name__ : bool = False ) -> List[str]:
'''simple docstring'''
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : Any=None ) -> Dict:
'''simple docstring'''
if is_numpy_array(__magic_name__ ):
return np.transpose(__magic_name__ , axes=__magic_name__ )
elif is_torch_tensor(__magic_name__ ):
return array.T if axes is None else array.permute(*__magic_name__ )
elif is_tf_tensor(__magic_name__ ):
import tensorflow as tf
return tf.transpose(__magic_name__ , perm=__magic_name__ )
elif is_jax_tensor(__magic_name__ ):
return jnp.transpose(__magic_name__ , axes=__magic_name__ )
else:
raise ValueError(f"Type not supported for transpose: {type(__magic_name__ )}." )
def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Optional[Any] ) -> List[Any]:
'''simple docstring'''
if is_numpy_array(__magic_name__ ):
return np.reshape(__magic_name__ , __magic_name__ )
elif is_torch_tensor(__magic_name__ ):
return array.reshape(*__magic_name__ )
elif is_tf_tensor(__magic_name__ ):
import tensorflow as tf
return tf.reshape(__magic_name__ , __magic_name__ )
elif is_jax_tensor(__magic_name__ ):
return jnp.reshape(__magic_name__ , __magic_name__ )
else:
raise ValueError(f"Type not supported for reshape: {type(__magic_name__ )}." )
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Optional[Any]=None ) -> Dict:
'''simple docstring'''
if is_numpy_array(__magic_name__ ):
return np.squeeze(__magic_name__ , axis=__magic_name__ )
elif is_torch_tensor(__magic_name__ ):
return array.squeeze() if axis is None else array.squeeze(dim=__magic_name__ )
elif is_tf_tensor(__magic_name__ ):
import tensorflow as tf
return tf.squeeze(__magic_name__ , axis=__magic_name__ )
elif is_jax_tensor(__magic_name__ ):
return jnp.squeeze(__magic_name__ , axis=__magic_name__ )
else:
raise ValueError(f"Type not supported for squeeze: {type(__magic_name__ )}." )
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : int ) -> List[Any]:
'''simple docstring'''
if is_numpy_array(__magic_name__ ):
return np.expand_dims(__magic_name__ , __magic_name__ )
elif is_torch_tensor(__magic_name__ ):
return array.unsqueeze(dim=__magic_name__ )
elif is_tf_tensor(__magic_name__ ):
import tensorflow as tf
return tf.expand_dims(__magic_name__ , axis=__magic_name__ )
elif is_jax_tensor(__magic_name__ ):
return jnp.expand_dims(__magic_name__ , axis=__magic_name__ )
else:
raise ValueError(f"Type not supported for expand_dims: {type(__magic_name__ )}." )
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Optional[Any]:
'''simple docstring'''
if is_numpy_array(__magic_name__ ):
return np.size(__magic_name__ )
elif is_torch_tensor(__magic_name__ ):
return array.numel()
elif is_tf_tensor(__magic_name__ ):
import tensorflow as tf
return tf.size(__magic_name__ )
elif is_jax_tensor(__magic_name__ ):
return array.size
else:
raise ValueError(f"Type not supported for expand_dims: {type(__magic_name__ )}." )
def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
for key, value in auto_map.items():
if isinstance(__magic_name__ , (tuple, list) ):
snake_case__ : Optional[int] = [f"{repo_id}--{v}" if (v is not None and """--""" not in v) else v for v in value]
elif value is not None and "--" not in value:
snake_case__ : Optional[int] = f"{repo_id}--{value}"
return auto_map
def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple:
'''simple docstring'''
for base_class in inspect.getmro(__magic_name__ ):
snake_case__ : List[Any] = base_class.__module__
snake_case__ : Tuple = base_class.__name__
if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith("""torch""" ) or name == "PreTrainedModel":
return "pt"
elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f"Could not infer framework from class {model_class}." )
| 38 |
'''simple docstring'''
from __future__ import annotations
A_ : str = "Muhammad Umer Farooq"
A_ : Optional[Any] = "MIT"
A_ : int = "1.0.0"
A_ : int = "Muhammad Umer Farooq"
A_ : int = "[email protected]"
A_ : Dict = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
super().__init__()
snake_case__ : list[str] = []
snake_case__ : List[Any] = domain
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE )
self.urls.append(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
return parse.urlparse(__magic_name__ ).netloc
def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]:
'''simple docstring'''
snake_case__ : List[str] = get_domain_name(__magic_name__ )
# Initialize the parser
snake_case__ : Optional[Any] = Parser(__magic_name__ )
try:
# Open URL
snake_case__ : Any = requests.get(__magic_name__ )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
snake_case__ : List[str] = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
snake_case__ : Tuple = requests.get(__magic_name__ )
# Get the valid email.
snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(__magic_name__ )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(__magic_name__ )
if __name__ == "__main__":
A_ : str = emails_from_url("https://github.com")
print(F'{len(emails)} emails found:')
print("\n".join(sorted(emails)))
| 38 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Dict = logging.get_logger(__name__)
A_ : Any = {
"camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json",
"umberto-commoncrawl-cased-v1": (
"https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json"
),
"umberto-wikipedia-uncased-v1": (
"https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json"
),
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''camembert'''
def __init__( self , __SCREAMING_SNAKE_CASE=3_0_5_2_2 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=3_0_7_2 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = vocab_size
snake_case__ : List[Any] = hidden_size
snake_case__ : int = num_hidden_layers
snake_case__ : Optional[int] = num_attention_heads
snake_case__ : List[str] = hidden_act
snake_case__ : str = intermediate_size
snake_case__ : str = hidden_dropout_prob
snake_case__ : str = attention_probs_dropout_prob
snake_case__ : Union[str, Any] = max_position_embeddings
snake_case__ : List[Any] = type_vocab_size
snake_case__ : int = initializer_range
snake_case__ : Any = layer_norm_eps
snake_case__ : Union[str, Any] = position_embedding_type
snake_case__ : Tuple = use_cache
snake_case__ : Dict = classifier_dropout
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def __UpperCamelCase ( self ):
if self.task == "multiple-choice":
snake_case__ : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
snake_case__ : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 38 |
'''simple docstring'''
def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Tuple:
'''simple docstring'''
if not head:
return True
# split the list to two parts
snake_case__ , snake_case__ : Dict = head.next, head
while fast and fast.next:
snake_case__ : Any = fast.next.next
snake_case__ : int = slow.next
snake_case__ : Dict = slow.next
snake_case__ : List[str] = None # Don't forget here! But forget still works!
# reverse the second part
snake_case__ : Tuple = None
while second:
snake_case__ : Tuple = second.next
snake_case__ : Any = node
snake_case__ : str = second
snake_case__ : Optional[Any] = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
snake_case__ : List[Any] = node.next
snake_case__ : int = head.next
return True
def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]:
'''simple docstring'''
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
snake_case__ : List[Any] = head
while fast and fast.next:
snake_case__ , snake_case__ : Any = fast.next.next, slow.next
# 2. Push the second half into the stack
snake_case__ : Tuple = [slow.val]
while slow.next:
snake_case__ : Optional[Any] = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
snake_case__ : str = cur.next
return True
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
if not head or not head.next:
return True
snake_case__ : int = {}
snake_case__ : Union[str, Any] = 0
while head:
if head.val in d:
d[head.val].append(__magic_name__ )
else:
snake_case__ : Tuple = [pos]
snake_case__ : Optional[Any] = head.next
pos += 1
snake_case__ : int = pos - 1
snake_case__ : str = 0
for v in d.values():
if len(__magic_name__ ) % 2 != 0:
middle += 1
else:
snake_case__ : List[str] = 0
for i in range(0 , len(__magic_name__ ) ):
if v[i] + v[len(__magic_name__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 38 | 1 |
'''simple docstring'''
from typing import List, Optional
from tokenizers import ByteLevelBPETokenizer
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
A_ : Optional[int] = logging.get_logger(__name__)
A_ : List[str] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
A_ : List[Any] = {
"vocab_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json"
},
"merges_file": {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt"
},
"tokenizer_config_file": {
"facebook/blenderbot_small-90M": (
"https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json"
)
},
}
A_ : Optional[Any] = {
"facebook/blenderbot_small-90M": 512,
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = BlenderbotSmallTokenizer
def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ):
super().__init__(
ByteLevelBPETokenizer(
vocab=__SCREAMING_SNAKE_CASE , merges=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE , ) , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
snake_case__ : str = add_prefix_space
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
snake_case__ : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
snake_case__ : Union[str, Any] = [self.sep_token_id]
snake_case__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
| 38 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
A_ : str = 250004
A_ : str = 250020
@require_sentencepiece
@require_tokenizers
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MBartTokenizer
lowerCamelCase__ = MBartTokenizerFast
lowerCamelCase__ = True
lowerCamelCase__ = True
def __UpperCamelCase ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
def __UpperCamelCase ( self ):
snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
snake_case__ : int = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def __UpperCamelCase ( self ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
snake_case__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = tempfile.mkdtemp()
snake_case__ : int = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
snake_case__ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
snake_case__ : Tuple = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=True
snake_case__ : Any = tempfile.mkdtemp()
snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
snake_case__ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
snake_case__ : List[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=False
snake_case__ : Dict = tempfile.mkdtemp()
snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
snake_case__ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
@require_torch
@require_sentencepiece
@require_tokenizers
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = '''facebook/mbart-large-en-ro'''
lowerCamelCase__ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
lowerCamelCase__ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
lowerCamelCase__ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE]
@classmethod
def __UpperCamelCase ( cls ):
snake_case__ : MBartTokenizer = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
snake_case__ : Any = 1
return cls
def __UpperCamelCase ( self ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 )
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids )
snake_case__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2]
snake_case__ : List[Any] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Dict = ["""this is gunna be a long sentence """ * 2_0]
assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = 1_0
snake_case__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = tempfile.mkdtemp()
snake_case__ : Dict = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE )
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
snake_case__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
snake_case__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertEqual((2, 1_4) , batch.input_ids.shape )
self.assertEqual((2, 1_4) , batch.attention_mask.shape )
snake_case__ : Tuple = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" )
snake_case__ : Optional[int] = self.tokenizer(
text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=1_0 , return_tensors="""pt""" )
snake_case__ : str = targets["""input_ids"""]
snake_case__ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 )
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , {
# A, test, EOS, en_XX
"""input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 2_5_0_0_0_1,
} , )
| 38 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...processing_utils import ProcessorMixin
from ...utils import logging
from ...utils.hub import get_file_from_repo
from ..auto import AutoTokenizer
A_ : str = logging.get_logger(__name__)
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''AutoTokenizer'''
lowerCamelCase__ = ['''tokenizer''']
lowerCamelCase__ = {
'''semantic_prompt''': 1,
'''coarse_prompt''': 2,
'''fine_prompt''': 2,
}
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
super().__init__(__SCREAMING_SNAKE_CASE )
snake_case__ : int = speaker_embeddings
@classmethod
def __UpperCamelCase ( cls , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , **__SCREAMING_SNAKE_CASE ):
if speaker_embeddings_dict_path is not None:
snake_case__ : Dict = get_file_from_repo(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , subfolder=kwargs.pop("""subfolder""" , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("""cache_dir""" , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("""force_download""" , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("""proxies""" , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("""resume_download""" , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("""local_files_only""" , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("""use_auth_token""" , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("""revision""" , __SCREAMING_SNAKE_CASE ) , )
if speaker_embeddings_path is None:
logger.warning(
f"`{os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`." )
snake_case__ : str = None
else:
with open(__SCREAMING_SNAKE_CASE ) as speaker_embeddings_json:
snake_case__ : Optional[int] = json.load(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : Tuple = None
snake_case__ : List[str] = AutoTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
return cls(tokenizer=__SCREAMING_SNAKE_CASE , speaker_embeddings=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="speaker_embeddings_path.json" , __SCREAMING_SNAKE_CASE="speaker_embeddings" , __SCREAMING_SNAKE_CASE = False , **__SCREAMING_SNAKE_CASE , ):
if self.speaker_embeddings is not None:
os.makedirs(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , """v2""" ) , exist_ok=__SCREAMING_SNAKE_CASE )
snake_case__ : str = {}
snake_case__ : Tuple = save_directory
for prompt_key in self.speaker_embeddings:
if prompt_key != "repo_or_path":
snake_case__ : Dict = self._load_voice_preset(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = {}
for key in self.speaker_embeddings[prompt_key]:
np.save(
os.path.join(
embeddings_dict["""repo_or_path"""] , __SCREAMING_SNAKE_CASE , f"{prompt_key}_{key}" ) , voice_preset[key] , allow_pickle=__SCREAMING_SNAKE_CASE , )
snake_case__ : Optional[Any] = os.path.join(__SCREAMING_SNAKE_CASE , f"{prompt_key}_{key}.npy" )
snake_case__ : Any = tmp_dict
with open(os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , """w""" ) as fp:
json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
super().save_pretrained(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE ):
snake_case__ : Dict = self.speaker_embeddings[voice_preset]
snake_case__ : str = {}
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset_paths:
raise ValueError(
f"Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}]." )
snake_case__ : Tuple = get_file_from_repo(
self.speaker_embeddings.get("""repo_or_path""" , """/""" ) , voice_preset_paths[key] , subfolder=kwargs.pop("""subfolder""" , __SCREAMING_SNAKE_CASE ) , cache_dir=kwargs.pop("""cache_dir""" , __SCREAMING_SNAKE_CASE ) , force_download=kwargs.pop("""force_download""" , __SCREAMING_SNAKE_CASE ) , proxies=kwargs.pop("""proxies""" , __SCREAMING_SNAKE_CASE ) , resume_download=kwargs.pop("""resume_download""" , __SCREAMING_SNAKE_CASE ) , local_files_only=kwargs.pop("""local_files_only""" , __SCREAMING_SNAKE_CASE ) , use_auth_token=kwargs.pop("""use_auth_token""" , __SCREAMING_SNAKE_CASE ) , revision=kwargs.pop("""revision""" , __SCREAMING_SNAKE_CASE ) , )
if path is None:
raise ValueError(
f"`{os.path.join(self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings." )
snake_case__ : Dict = np.load(__SCREAMING_SNAKE_CASE )
return voice_preset_dict
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None ):
for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]:
if key not in voice_preset:
raise ValueError(f"Voice preset unrecognized, missing {key} as a key." )
if not isinstance(voice_preset[key] , np.ndarray ):
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
if len(voice_preset[key].shape ) != self.preset_shape[key]:
raise ValueError(f"{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray." )
def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="pt" , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ):
if voice_preset is not None and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if (
isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
and self.speaker_embeddings is not None
and voice_preset in self.speaker_embeddings
):
snake_case__ : List[Any] = self._load_voice_preset(__SCREAMING_SNAKE_CASE )
else:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not voice_preset.endswith(""".npz""" ):
snake_case__ : Optional[Any] = voice_preset + """.npz"""
snake_case__ : Any = np.load(__SCREAMING_SNAKE_CASE )
if voice_preset is not None:
self._validate_voice_preset_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = self.tokenizer(
__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
if voice_preset is not None:
snake_case__ : Any = voice_preset
return encoded_text
| 38 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A_ : int = logging.get_logger(__name__)
A_ : Dict = {
"google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json",
}
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''bit'''
lowerCamelCase__ = ['''preactivation''', '''bottleneck''']
lowerCamelCase__ = ['''SAME''', '''VALID''']
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
snake_case__ : Tuple = global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported" )
snake_case__ : List[str] = num_channels
snake_case__ : Tuple = embedding_size
snake_case__ : str = hidden_sizes
snake_case__ : Optional[Any] = depths
snake_case__ : List[Any] = layer_type
snake_case__ : Dict = hidden_act
snake_case__ : Union[str, Any] = global_padding
snake_case__ : List[str] = num_groups
snake_case__ : str = drop_path_rate
snake_case__ : List[Any] = embedding_dynamic_padding
snake_case__ : List[str] = output_stride
snake_case__ : Dict = width_factor
snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )]
snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices(
out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
| 38 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
A_ : List[Any] = logging.get_logger(__name__)
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Optional[Any]=False , __magic_name__ : Dict=False ) -> Optional[int]:
'''simple docstring'''
snake_case__ : int = """backbone.""" if is_semantic else """"""
snake_case__ : List[Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"{prefix}blocks.{i}.norm1.weight", f"beit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"{prefix}blocks.{i}.norm1.bias", f"beit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append(
(f"{prefix}blocks.{i}.attn.proj.weight", f"beit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append(
(f"{prefix}blocks.{i}.attn.proj.bias", f"beit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"{prefix}blocks.{i}.norm2.weight", f"beit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"{prefix}blocks.{i}.norm2.bias", f"beit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.weight", f"beit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc1.bias", f"beit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.weight", f"beit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"{prefix}blocks.{i}.mlp.fc2.bias", f"beit.encoder.layer.{i}.output.dense.bias") )
# projection layer + position embeddings
rename_keys.extend(
[
(f"{prefix}cls_token", """beit.embeddings.cls_token"""),
(f"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""),
(f"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""),
(f"{prefix}pos_embed", """beit.embeddings.position_embeddings"""),
] )
if has_lm_head:
# mask token + layernorm
rename_keys.extend(
[
("""mask_token""", """beit.embeddings.mask_token"""),
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
] )
else:
# layernorm + classification head
rename_keys.extend(
[
("""fc_norm.weight""", """beit.pooler.layernorm.weight"""),
("""fc_norm.bias""", """beit.pooler.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
return rename_keys
def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : Tuple=False , __magic_name__ : Any=False ) -> Dict:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
snake_case__ : Tuple = """backbone.""" if is_semantic else """"""
# queries, keys and values
snake_case__ : int = state_dict.pop(f"{prefix}blocks.{i}.attn.qkv.weight" )
snake_case__ : List[str] = state_dict.pop(f"{prefix}blocks.{i}.attn.q_bias" )
snake_case__ : Any = state_dict.pop(f"{prefix}blocks.{i}.attn.v_bias" )
snake_case__ : Optional[int] = in_proj_weight[
: config.hidden_size, :
]
snake_case__ : Optional[int] = q_bias
snake_case__ : Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case__ : int = in_proj_weight[
-config.hidden_size :, :
]
snake_case__ : List[str] = v_bias
# gamma_1 and gamma_2
# we call them lambda because otherwise they are renamed when using .from_pretrained
snake_case__ : Tuple = state_dict.pop(f"{prefix}blocks.{i}.gamma_1" )
snake_case__ : str = state_dict.pop(f"{prefix}blocks.{i}.gamma_2" )
snake_case__ : int = gamma_a
snake_case__ : Dict = gamma_a
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Any ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Optional[int] = dct.pop(__magic_name__ )
snake_case__ : str = val
def UpperCamelCase__ ( ) -> Dict:
'''simple docstring'''
snake_case__ : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case__ : Dict = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def UpperCamelCase__ ( __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] , __magic_name__ : Any=False ) -> Any:
'''simple docstring'''
snake_case__ : Any = False if """rvlcdip""" in checkpoint_url else True
snake_case__ : Optional[Any] = BeitConfig(use_absolute_position_embeddings=__magic_name__ , use_mask_token=__magic_name__ )
# size of the architecture
if "large" in checkpoint_url or "dit-l" in checkpoint_url:
snake_case__ : Optional[Any] = 10_24
snake_case__ : Optional[Any] = 40_96
snake_case__ : int = 24
snake_case__ : Tuple = 16
# labels
if "rvlcdip" in checkpoint_url:
snake_case__ : Union[str, Any] = 16
snake_case__ : Dict = """huggingface/label-files"""
snake_case__ : str = """rvlcdip-id2label.json"""
snake_case__ : Tuple = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) )
snake_case__ : List[str] = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case__ : int = idalabel
snake_case__ : List[str] = {v: k for k, v in idalabel.items()}
# load state_dict of original model, remove and rename some keys
snake_case__ : List[str] = torch.hub.load_state_dict_from_url(__magic_name__ , map_location="""cpu""" )["""model"""]
snake_case__ : Tuple = create_rename_keys(__magic_name__ , has_lm_head=__magic_name__ )
for src, dest in rename_keys:
rename_key(__magic_name__ , __magic_name__ , __magic_name__ )
read_in_q_k_v(__magic_name__ , __magic_name__ , has_lm_head=__magic_name__ )
# load HuggingFace model
snake_case__ : str = BeitForMaskedImageModeling(__magic_name__ ) if has_lm_head else BeitForImageClassification(__magic_name__ )
model.eval()
model.load_state_dict(__magic_name__ )
# Check outputs on an image
snake_case__ : Tuple = BeitImageProcessor(
size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=__magic_name__ )
snake_case__ : str = prepare_img()
snake_case__ : List[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" )
snake_case__ : Dict = encoding["""pixel_values"""]
snake_case__ : Union[str, Any] = model(__magic_name__ )
snake_case__ : Optional[int] = outputs.logits
# verify logits
snake_case__ : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 1_96, 81_92]
assert logits.shape == torch.Size(__magic_name__ ), "Shape of logits not as expected"
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(f"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(__magic_name__ )
if push_to_hub:
if has_lm_head:
snake_case__ : Optional[int] = """dit-base""" if """base""" in checkpoint_url else """dit-large"""
else:
snake_case__ : Dict = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip"""
image_processor.push_to_hub(
repo_path_or_name=Path(__magic_name__ , __magic_name__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=__magic_name__ , )
model.push_to_hub(
repo_path_or_name=Path(__magic_name__ , __magic_name__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=__magic_name__ , )
if __name__ == "__main__":
A_ : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth",
type=str,
help="URL to the original PyTorch checkpoint (.pth file).",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
)
A_ : Optional[Any] = parser.parse_args()
convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 38 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import (
BitConfig,
ViTHybridConfig,
ViTHybridForImageClassification,
ViTHybridImageProcessor,
ViTHybridModel,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
A_ : Optional[int] = logging.get_logger(__name__)
def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=False ) -> Tuple:
'''simple docstring'''
snake_case__ : int = []
# fmt: off
# stem:
rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") )
rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") )
rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") )
# backbone
rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") )
rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") )
rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") )
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") )
# transformer encoder
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
# fmt: on
return rename_keys
def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple=False ) -> str:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
snake_case__ : int = """"""
else:
snake_case__ : Dict = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case__ : int = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
snake_case__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
snake_case__ : Optional[int] = in_proj_weight[
: config.hidden_size, :
]
snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size]
snake_case__ : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case__ : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :]
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
snake_case__ : str = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__magic_name__ , __magic_name__ )
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : List[str] = dct.pop(__magic_name__ )
snake_case__ : Dict = val
def UpperCamelCase__ ( ) -> str:
'''simple docstring'''
snake_case__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case__ : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> Optional[int]:
'''simple docstring'''
snake_case__ : int = BitConfig(
global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=__magic_name__ , )
snake_case__ : Optional[int] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=3_84 , num_labels=10_00 )
snake_case__ : Union[str, Any] = False
# load original model from timm
snake_case__ : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case__ : Optional[int] = timm_model.state_dict()
if base_model:
remove_classification_head_(__magic_name__ )
snake_case__ : int = create_rename_keys(__magic_name__ , __magic_name__ )
for src, dest in rename_keys:
rename_key(__magic_name__ , __magic_name__ , __magic_name__ )
read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ )
snake_case__ : str = """huggingface/label-files"""
snake_case__ : Union[str, Any] = """imagenet-1k-id2label.json"""
snake_case__ : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) )
snake_case__ : List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case__ : int = idalabel
snake_case__ : str = {v: k for k, v in idalabel.items()}
# load HuggingFace model
if vit_name[-5:] == "in21k":
snake_case__ : str = ViTHybridModel(__magic_name__ ).eval()
else:
snake_case__ : Union[str, Any] = ViTHybridForImageClassification(__magic_name__ ).eval()
model.load_state_dict(__magic_name__ )
# create image processor
snake_case__ : Optional[Any] = create_transform(**resolve_data_config({} , model=__magic_name__ ) )
snake_case__ : Union[str, Any] = transform.transforms
snake_case__ : Tuple = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
snake_case__ : Any = ViTHybridImageProcessor(
do_resize=__magic_name__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
snake_case__ : Any = prepare_img()
snake_case__ : int = transform(__magic_name__ ).unsqueeze(0 )
snake_case__ : List[str] = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(__magic_name__ , __magic_name__ )
# verify logits
with torch.no_grad():
snake_case__ : Optional[Any] = model(__magic_name__ )
snake_case__ : Union[str, Any] = outputs.logits
print("""Predicted class:""" , logits.argmax(-1 ).item() )
if base_model:
snake_case__ : Dict = timm_model.forward_features(__magic_name__ )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1E-3 )
else:
snake_case__ : int = timm_model(__magic_name__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(f"Saving processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(__magic_name__ )
if push_to_hub:
print(f"Pushing model and processor to the hub {vit_name}" )
model.push_to_hub(f"ybelkada/{vit_name}" )
processor.push_to_hub(f"ybelkada/{vit_name}" )
if __name__ == "__main__":
A_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--vit_name",
default="vit_base_r50_s16_384",
type=str,
help="Name of the hybrid ViT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub."
)
A_ : Union[str, Any] = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 38 | 1 |
'''simple docstring'''
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A_ : Optional[Any] = logging.get_logger(__name__)
A_ : str = {"vocab_file": "vocab.json"}
A_ : List[str] = {
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
A_ : Any = {"mgp-str": 27}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="[GO]" , __SCREAMING_SNAKE_CASE="[GO]" , __SCREAMING_SNAKE_CASE="[s]" , __SCREAMING_SNAKE_CASE="[GO]" , **__SCREAMING_SNAKE_CASE ):
super().__init__(
unk_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
with open(__SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as vocab_handle:
snake_case__ : List[Any] = json.load(__SCREAMING_SNAKE_CASE )
snake_case__ : int = {v: k for k, v in self.vocab.items()}
@property
def __UpperCamelCase ( self ):
return len(self.vocab )
def __UpperCamelCase ( self ):
return dict(self.vocab , **self.added_tokens_encoder )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Tuple = []
for s in text:
char_tokens.extend(__SCREAMING_SNAKE_CASE )
return char_tokens
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
return self.vocab.get(__SCREAMING_SNAKE_CASE , self.vocab.get(self.unk_token ) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
return self.decoder.get(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
if not os.path.isdir(__SCREAMING_SNAKE_CASE ):
logger.error("""Vocabulary path ({}) should be a directory""".format(__SCREAMING_SNAKE_CASE ) )
return
snake_case__ : int = os.path.join(
__SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
with open(__SCREAMING_SNAKE_CASE , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=__SCREAMING_SNAKE_CASE , ensure_ascii=__SCREAMING_SNAKE_CASE ) + """\n""" )
return (vocab_file,)
| 38 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = 42
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE=True , ):
super().__init__()
snake_case__ : str = layers_per_block
snake_case__ : int = torch.nn.Convad(
__SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : List[Any] = None
snake_case__ : List[Any] = nn.ModuleList([] )
# down
snake_case__ : Union[str, Any] = block_out_channels[0]
for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = output_channel
snake_case__ : Union[str, Any] = block_out_channels[i]
snake_case__ : int = i == len(__SCREAMING_SNAKE_CASE ) - 1
snake_case__ : str = get_down_block(
__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
self.down_blocks.append(__SCREAMING_SNAKE_CASE )
# mid
snake_case__ : Optional[Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
# out
snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 )
snake_case__ : Tuple = nn.SiLU()
snake_case__ : str = 2 * out_channels if double_z else out_channels
snake_case__ : int = nn.Convad(block_out_channels[-1] , __SCREAMING_SNAKE_CASE , 3 , padding=1 )
snake_case__ : Union[str, Any] = False
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = x
snake_case__ : int = self.conv_in(__SCREAMING_SNAKE_CASE )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
# middle
snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
else:
for down_block in self.down_blocks:
snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# middle
snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE )
else:
# down
for down_block in self.down_blocks:
snake_case__ : List[str] = down_block(__SCREAMING_SNAKE_CASE )
# middle
snake_case__ : str = self.mid_block(__SCREAMING_SNAKE_CASE )
# post-process
snake_case__ : Any = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = self.conv_act(__SCREAMING_SNAKE_CASE )
snake_case__ : str = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE="group" , ):
super().__init__()
snake_case__ : Any = layers_per_block
snake_case__ : Optional[Any] = nn.Convad(
__SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : Union[str, Any] = None
snake_case__ : Dict = nn.ModuleList([] )
snake_case__ : Optional[int] = in_channels if norm_type == """spatial""" else None
# mid
snake_case__ : Tuple = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
# up
snake_case__ : List[Any] = list(reversed(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Optional[Any] = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = output_channel
snake_case__ : Optional[Any] = reversed_block_out_channels[i]
snake_case__ : List[str] = i == len(__SCREAMING_SNAKE_CASE ) - 1
snake_case__ : int = get_up_block(
__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , resnet_time_scale_shift=__SCREAMING_SNAKE_CASE , )
self.up_blocks.append(__SCREAMING_SNAKE_CASE )
snake_case__ : int = output_channel
# out
if norm_type == "spatial":
snake_case__ : List[Any] = SpatialNorm(block_out_channels[0] , __SCREAMING_SNAKE_CASE )
else:
snake_case__ : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 )
snake_case__ : Tuple = nn.SiLU()
snake_case__ : Union[str, Any] = nn.Convad(block_out_channels[0] , __SCREAMING_SNAKE_CASE , 3 , padding=1 )
snake_case__ : int = False
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
snake_case__ : Union[str, Any] = z
snake_case__ : Any = self.conv_in(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
snake_case__ : int = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
snake_case__ : int = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : List[str] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
else:
# middle
snake_case__ : Dict = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
# middle
snake_case__ : List[Any] = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : Dict = up_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# post-process
if latent_embeds is None:
snake_case__ : Optional[Any] = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : str = self.conv_norm_out(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.conv_act(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="random" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ):
super().__init__()
snake_case__ : int = n_e
snake_case__ : Optional[int] = vq_embed_dim
snake_case__ : int = beta
snake_case__ : Optional[int] = legacy
snake_case__ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
snake_case__ : List[str] = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
snake_case__ : Optional[Any] = self.used.shape[0]
snake_case__ : List[str] = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
snake_case__ : Dict = self.re_embed
snake_case__ : List[str] = self.re_embed + 1
print(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices." )
else:
snake_case__ : Union[str, Any] = n_e
snake_case__ : str = sane_index_shape
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
snake_case__ : Dict = inds.reshape(ishape[0] , -1 )
snake_case__ : Any = self.used.to(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = (inds[:, :, None] == used[None, None, ...]).long()
snake_case__ : List[Any] = match.argmax(-1 )
snake_case__ : List[str] = match.sum(2 ) < 1
if self.unknown_index == "random":
snake_case__ : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
snake_case__ : Optional[Any] = self.unknown_index
return new.reshape(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
snake_case__ : int = inds.reshape(ishape[0] , -1 )
snake_case__ : Optional[int] = self.used.to(__SCREAMING_SNAKE_CASE )
if self.re_embed > self.used.shape[0]: # extra token
snake_case__ : List[Any] = 0 # simply set to zero
snake_case__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __SCREAMING_SNAKE_CASE )
return back.reshape(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
# reshape z -> (batch, height, width, channel) and flatten
snake_case__ : Any = z.permute(0 , 2 , 3 , 1 ).contiguous()
snake_case__ : Optional[Any] = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
snake_case__ : Dict = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 )
snake_case__ : Union[str, Any] = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape )
snake_case__ : List[str] = None
snake_case__ : Union[str, Any] = None
# compute loss for embedding
if not self.legacy:
snake_case__ : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
snake_case__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
snake_case__ : Any = z + (z_q - z).detach()
# reshape back to match original input shape
snake_case__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
snake_case__ : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
snake_case__ : str = self.remap_to_used(__SCREAMING_SNAKE_CASE )
snake_case__ : str = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
snake_case__ : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
snake_case__ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
snake_case__ : Optional[int] = self.unmap_to_all(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
snake_case__ : int = self.embedding(__SCREAMING_SNAKE_CASE )
if shape is not None:
snake_case__ : str = z_q.view(__SCREAMING_SNAKE_CASE )
# reshape back to match original input shape
snake_case__ : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ):
snake_case__ : Tuple = parameters
snake_case__ , snake_case__ : Any = torch.chunk(__SCREAMING_SNAKE_CASE , 2 , dim=1 )
snake_case__ : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 )
snake_case__ : Optional[int] = deterministic
snake_case__ : Optional[int] = torch.exp(0.5 * self.logvar )
snake_case__ : Any = torch.exp(self.logvar )
if self.deterministic:
snake_case__ : List[str] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None ):
# make sure sample is on the same device as the parameters and has same dtype
snake_case__ : Dict = randn_tensor(
self.mean.shape , generator=__SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype )
snake_case__ : Optional[int] = self.mean + self.std * sample
return x
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None ):
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=[1, 2, 3] ):
if self.deterministic:
return torch.Tensor([0.0] )
snake_case__ : Any = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
return self.mean
| 38 | 1 |
'''simple docstring'''
from __future__ import annotations
A_ : str = "Muhammad Umer Farooq"
A_ : Optional[Any] = "MIT"
A_ : int = "1.0.0"
A_ : int = "Muhammad Umer Farooq"
A_ : int = "[email protected]"
A_ : Dict = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
super().__init__()
snake_case__ : list[str] = []
snake_case__ : List[Any] = domain
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE )
self.urls.append(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
return parse.urlparse(__magic_name__ ).netloc
def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]:
'''simple docstring'''
snake_case__ : List[str] = get_domain_name(__magic_name__ )
# Initialize the parser
snake_case__ : Optional[Any] = Parser(__magic_name__ )
try:
# Open URL
snake_case__ : Any = requests.get(__magic_name__ )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
snake_case__ : List[str] = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
snake_case__ : Tuple = requests.get(__magic_name__ )
# Get the valid email.
snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(__magic_name__ )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(__magic_name__ )
if __name__ == "__main__":
A_ : str = emails_from_url("https://github.com")
print(F'{len(emails)} emails found:')
print("\n".join(sorted(emails)))
| 38 |
'''simple docstring'''
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ):
snake_case__ : str = parent
snake_case__ : Union[str, Any] = batch_size
snake_case__ : Union[str, Any] = image_size
snake_case__ : Optional[int] = patch_size
snake_case__ : List[str] = num_channels
snake_case__ : Any = is_training
snake_case__ : int = use_labels
snake_case__ : str = hidden_size
snake_case__ : Tuple = num_hidden_layers
snake_case__ : str = backbone_out_indices
snake_case__ : List[Any] = num_attention_heads
snake_case__ : Dict = intermediate_size
snake_case__ : Optional[Any] = hidden_act
snake_case__ : str = hidden_dropout_prob
snake_case__ : int = attention_probs_dropout_prob
snake_case__ : Dict = initializer_range
snake_case__ : Optional[int] = num_labels
snake_case__ : str = backbone_featmap_shape
snake_case__ : List[Any] = scope
snake_case__ : Optional[Any] = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
snake_case__ : List[Any] = (image_size // patch_size) ** 2
snake_case__ : Union[str, Any] = num_patches + 1
def __UpperCamelCase ( self ):
snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : str = None
if self.use_labels:
snake_case__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
snake_case__ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self ):
snake_case__ : Any = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = self.num_labels
snake_case__ : str = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = self.num_labels
snake_case__ : Dict = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs
snake_case__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
lowerCamelCase__ = (
{
'''depth-estimation''': DPTForDepthEstimation,
'''feature-extraction''': DPTModel,
'''image-segmentation''': DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = DPTModelTester(self )
snake_case__ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __UpperCamelCase ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case__ : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : List[str] = [*signature.parameters.keys()]
snake_case__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : int = True
if model_class in get_values(__SCREAMING_SNAKE_CASE ):
continue
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.train()
snake_case__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def __UpperCamelCase ( self ):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : Union[str, Any] = False
snake_case__ : str = True
if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing:
continue
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.gradient_checkpointing_enable()
model.train()
snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : str = _config_zero_init(__SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
snake_case__ : Any = model_class(config=__SCREAMING_SNAKE_CASE )
# Skip the check for the backbone
snake_case__ : str = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
snake_case__ : Optional[int] = [f"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def __UpperCamelCase ( self ):
pass
@slow
def __UpperCamelCase ( self ):
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
snake_case__ : List[str] = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
# We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type
snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : Dict = """add"""
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
snake_case__ : List[str] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( ) -> Dict:
'''simple docstring'''
snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Dict = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
snake_case__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = prepare_img()
snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = outputs.predicted_depth
# verify the predicted depth
snake_case__ : Any = torch.Size((1, 3_8_4, 3_8_4) )
self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = torch.tensor(
[[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 38 | 1 |
'''simple docstring'''
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def UpperCamelCase__ ( __magic_name__ : str = "laptop" ) -> DataFrame:
'''simple docstring'''
snake_case__ : Union[str, Any] = f"https://www.amazon.in/laptop/s?k={product}"
snake_case__ : List[str] = {
"""User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""",
"""Accept-Language""": """en-US, en;q=0.5""",
}
snake_case__ : int = BeautifulSoup(requests.get(__magic_name__ , headers=__magic_name__ ).text )
# Initialize a Pandas dataframe with the column titles
snake_case__ : Optional[Any] = DataFrame(
columns=[
"""Product Title""",
"""Product Link""",
"""Current Price of the product""",
"""Product Rating""",
"""MRP of the product""",
"""Discount""",
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
"""div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ):
try:
snake_case__ : Optional[int] = item.ha.text
snake_case__ : Any = """https://www.amazon.in/""" + item.ha.a["""href"""]
snake_case__ : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text
try:
snake_case__ : Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text
except AttributeError:
snake_case__ : Optional[int] = """Not available"""
try:
snake_case__ : Tuple = (
"""₹"""
+ item.find(
"""span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1]
)
except AttributeError:
snake_case__ : Optional[Any] = """"""
try:
snake_case__ : str = float(
(
(
float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) )
- float(product_price.strip("""₹""" ).replace(""",""" , """""" ) )
)
/ float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) )
)
* 1_00 )
except ValueError:
snake_case__ : List[Any] = float("""nan""" )
except AttributeError:
pass
snake_case__ : str = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
snake_case__ : List[Any] = """ """
snake_case__ : Union[str, Any] = """ """
data_frame.index += 1
return data_frame
if __name__ == "__main__":
A_ : int = "headphones"
get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
| 38 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Dict:
'''simple docstring'''
snake_case__ : int = botoa.client("""iam""" )
snake_case__ : Union[str, Any] = {
"""Version""": """2012-10-17""",
"""Statement""": [
{"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) )
snake_case__ : Dict = {
"""Version""": """2012-10-17""",
"""Statement""": [
{
"""Effect""": """Allow""",
"""Action""": [
"""sagemaker:*""",
"""ecr:GetDownloadUrlForLayer""",
"""ecr:BatchGetImage""",
"""ecr:BatchCheckLayerAvailability""",
"""ecr:GetAuthorizationToken""",
"""cloudwatch:PutMetricData""",
"""cloudwatch:GetMetricData""",
"""cloudwatch:GetMetricStatistics""",
"""cloudwatch:ListMetrics""",
"""logs:CreateLogGroup""",
"""logs:CreateLogStream""",
"""logs:DescribeLogStreams""",
"""logs:PutLogEvents""",
"""logs:GetLogEvents""",
"""s3:CreateBucket""",
"""s3:ListBucket""",
"""s3:GetBucketLocation""",
"""s3:GetObject""",
"""s3:PutObject""",
],
"""Resource""": """*""",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=__magic_name__ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , )
except iam_client.exceptions.EntityAlreadyExistsException:
print(f"role {role_name} already exists. Using existing one" )
def UpperCamelCase__ ( __magic_name__ : Any ) -> Tuple:
'''simple docstring'''
snake_case__ : List[str] = botoa.client("""iam""" )
return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"]
def UpperCamelCase__ ( ) -> Tuple:
'''simple docstring'''
snake_case__ : Union[str, Any] = _ask_options(
"""How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , )
snake_case__ : List[Any] = None
if credentials_configuration == 0:
snake_case__ : Dict = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" )
snake_case__ : List[str] = aws_profile
else:
print(
"""Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"""
"""`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" )
snake_case__ : List[str] = _ask_field("""AWS Access Key ID: """ )
snake_case__ : int = aws_access_key_id
snake_case__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ )
snake_case__ : List[str] = aws_secret_access_key
snake_case__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" )
snake_case__ : Optional[int] = aws_region
snake_case__ : int = _ask_options(
"""Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , )
if role_management == 0:
snake_case__ : Optional[Any] = _ask_field("""Enter your IAM role name: """ )
else:
snake_case__ : Optional[int] = """accelerate_sagemaker_execution_role"""
print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" )
_create_iam_role_for_sagemaker(__magic_name__ )
snake_case__ : Dict = _ask_field(
"""Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Any = None
if is_custom_docker_image:
snake_case__ : str = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() )
snake_case__ : Tuple = _ask_field(
"""Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : List[Any] = None
if is_sagemaker_inputs_enabled:
snake_case__ : str = _ask_field(
"""Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , )
snake_case__ : Optional[int] = _ask_field(
"""Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Optional[Any] = None
if is_sagemaker_metrics_enabled:
snake_case__ : List[Any] = _ask_field(
"""Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , )
snake_case__ : Tuple = _ask_options(
"""What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , )
snake_case__ : Any = {}
snake_case__ : List[Any] = _ask_field(
"""Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
if use_dynamo:
snake_case__ : str = """dynamo_"""
snake_case__ : Tuple = _ask_options(
"""Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , )
snake_case__ : List[str] = _ask_field(
"""Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
if use_custom_options:
snake_case__ : str = _ask_options(
"""Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , )
snake_case__ : Union[str, Any] = _ask_field(
"""Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : str = _ask_field(
"""Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Dict = """Which EC2 instance type you want to use for your training?"""
if distributed_type != SageMakerDistributedType.NO:
snake_case__ : List[str] = _ask_options(
__magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
snake_case__ : Optional[int] = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" )
snake_case__ : Dict = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
snake_case__ : Optional[Any] = _ask_field(
"""How many machines do you want use? [1]: """ , __magic_name__ , default=1 , )
snake_case__ : Union[str, Any] = _ask_options(
"""Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , )
if use_dynamo and mixed_precision == "no":
print(
"""Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" )
return SageMakerConfig(
image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
| 38 | 1 |
'''simple docstring'''
import argparse
import os
import re
A_ : Optional[int] = "src/diffusers"
# Pattern that looks at the indentation in a line.
A_ : Optional[int] = re.compile(R"^(\s*)\S")
# Pattern that matches `"key":" and puts `key` in group 0.
A_ : str = re.compile(R"^\s*\"([^\"]+)\":")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
A_ : Optional[int] = re.compile(R"^\s*_import_structure\[\"([^\"]+)\"\]")
# Pattern that matches `"key",` and puts `key` in group 0.
A_ : str = re.compile(R"^\s*\"([^\"]+)\",\s*$")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
A_ : List[Any] = re.compile(R"\[([^\]]+)\]")
def UpperCamelCase__ ( __magic_name__ : str ) -> List[str]:
'''simple docstring'''
snake_case__ : Dict = _re_indent.search(__magic_name__ )
return "" if search is None else search.groups()[0]
def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : List[Any]="" , __magic_name__ : Optional[Any]=None , __magic_name__ : List[str]=None ) -> List[str]:
'''simple docstring'''
snake_case__ : List[str] = 0
snake_case__ : List[Any] = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(__magic_name__ ):
index += 1
snake_case__ : Dict = ["""\n""".join(lines[:index] )]
else:
snake_case__ : Tuple = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
snake_case__ : Tuple = [lines[index]]
index += 1
while index < len(__magic_name__ ) and (end_prompt is None or not lines[index].startswith(__magic_name__ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(__magic_name__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(__magic_name__ ) )
if index < len(__magic_name__ ) - 1:
snake_case__ : List[str] = [lines[index + 1]]
index += 1
else:
snake_case__ : Union[str, Any] = []
else:
blocks.append("""\n""".join(__magic_name__ ) )
snake_case__ : List[Any] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(__magic_name__ ) > 0:
blocks.append("""\n""".join(__magic_name__ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(__magic_name__ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def UpperCamelCase__ ( __magic_name__ : int ) -> int:
'''simple docstring'''
def _inner(__magic_name__ : List[Any] ):
return key(__magic_name__ ).lower().replace("""_""" , """""" )
return _inner
def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : Optional[int]=None ) -> Optional[Any]:
'''simple docstring'''
def noop(__magic_name__ : Union[str, Any] ):
return x
if key is None:
snake_case__ : Optional[int] = noop
# Constants are all uppercase, they go first.
snake_case__ : Tuple = [obj for obj in objects if key(__magic_name__ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
snake_case__ : Any = [obj for obj in objects if key(__magic_name__ )[0].isupper() and not key(__magic_name__ ).isupper()]
# Functions begin with a lowercase, they go last.
snake_case__ : str = [obj for obj in objects if not key(__magic_name__ )[0].isupper()]
snake_case__ : Dict = ignore_underscore(__magic_name__ )
return sorted(__magic_name__ , key=__magic_name__ ) + sorted(__magic_name__ , key=__magic_name__ ) + sorted(__magic_name__ , key=__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
def _replace(__magic_name__ : Tuple ):
snake_case__ : Union[str, Any] = match.groups()[0]
if "," not in imports:
return f"[{imports}]"
snake_case__ : Any = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
snake_case__ : Optional[int] = keys[:-1]
return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(__magic_name__ )] ) + "]"
snake_case__ : Any = import_statement.split("""\n""" )
if len(__magic_name__ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
snake_case__ : List[str] = 2 if lines[1].strip() == """[""" else 1
snake_case__ : Union[str, Any] = [(i, _re_strip_line.search(__magic_name__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
snake_case__ : List[Any] = sort_objects(__magic_name__ , key=lambda __magic_name__ : x[1] )
snake_case__ : Any = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(__magic_name__ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
snake_case__ : Dict = _re_bracket_content.sub(_replace , lines[1] )
else:
snake_case__ : int = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
snake_case__ : Any = keys[:-1]
snake_case__ : Tuple = get_indent(lines[1] ) + """, """.join([f"\"{k}\"" for k in sort_objects(__magic_name__ )] )
return "\n".join(__magic_name__ )
else:
# Finally we have to deal with imports fitting on one line
snake_case__ : List[Any] = _re_bracket_content.sub(_replace , __magic_name__ )
return import_statement
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Optional[int]=True ) -> Optional[int]:
'''simple docstring'''
with open(__magic_name__ , """r""" ) as f:
snake_case__ : List[str] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
snake_case__ : Any = split_code_in_indented_blocks(
__magic_name__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(__magic_name__ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
snake_case__ : int = main_blocks[block_idx]
snake_case__ : Optional[Any] = block.split("""\n""" )
# Get to the start of the imports.
snake_case__ : Union[str, Any] = 0
while line_idx < len(__magic_name__ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
snake_case__ : Dict = len(__magic_name__ )
else:
line_idx += 1
if line_idx >= len(__magic_name__ ):
continue
# Ignore beginning and last line: they don't contain anything.
snake_case__ : Any = """\n""".join(block_lines[line_idx:-1] )
snake_case__ : Optional[int] = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
snake_case__ : int = split_code_in_indented_blocks(__magic_name__ , indent_level=__magic_name__ )
# We have two categories of import key: list or _import_structure[key].append/extend
snake_case__ : Any = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
snake_case__ : Any = [(pattern.search(__magic_name__ ).groups()[0] if pattern.search(__magic_name__ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
snake_case__ : Optional[int] = [(i, key) for i, key in enumerate(__magic_name__ ) if key is not None]
snake_case__ : Any = [x[0] for x in sorted(__magic_name__ , key=lambda __magic_name__ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
snake_case__ : Dict = 0
snake_case__ : List[str] = []
for i in range(len(__magic_name__ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
snake_case__ : Union[str, Any] = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(__magic_name__ )
count += 1
# And we put our main block back together with its first and last line.
snake_case__ : List[Any] = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(__magic_name__ ):
if check_only:
return True
else:
print(f"Overwriting {file}." )
with open(__magic_name__ , """w""" ) as f:
f.write("""\n""".join(__magic_name__ ) )
def UpperCamelCase__ ( __magic_name__ : int=True ) -> Optional[Any]:
'''simple docstring'''
snake_case__ : Dict = []
for root, _, files in os.walk(__magic_name__ ):
if "__init__.py" in files:
snake_case__ : List[Any] = sort_imports(os.path.join(__magic_name__ , """__init__.py""" ) , check_only=__magic_name__ )
if result:
snake_case__ : Optional[Any] = [os.path.join(__magic_name__ , """__init__.py""" )]
if len(__magic_name__ ) > 0:
raise ValueError(f"Would overwrite {len(__magic_name__ )} files, run `make style`." )
if __name__ == "__main__":
A_ : Tuple = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
A_ : Union[str, Any] = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 38 |
'''simple docstring'''
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def UpperCamelCase__ ( __magic_name__ : str = "laptop" ) -> DataFrame:
'''simple docstring'''
snake_case__ : Union[str, Any] = f"https://www.amazon.in/laptop/s?k={product}"
snake_case__ : List[str] = {
"""User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""",
"""Accept-Language""": """en-US, en;q=0.5""",
}
snake_case__ : int = BeautifulSoup(requests.get(__magic_name__ , headers=__magic_name__ ).text )
# Initialize a Pandas dataframe with the column titles
snake_case__ : Optional[Any] = DataFrame(
columns=[
"""Product Title""",
"""Product Link""",
"""Current Price of the product""",
"""Product Rating""",
"""MRP of the product""",
"""Discount""",
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
"""div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ):
try:
snake_case__ : Optional[int] = item.ha.text
snake_case__ : Any = """https://www.amazon.in/""" + item.ha.a["""href"""]
snake_case__ : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text
try:
snake_case__ : Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text
except AttributeError:
snake_case__ : Optional[int] = """Not available"""
try:
snake_case__ : Tuple = (
"""₹"""
+ item.find(
"""span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1]
)
except AttributeError:
snake_case__ : Optional[Any] = """"""
try:
snake_case__ : str = float(
(
(
float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) )
- float(product_price.strip("""₹""" ).replace(""",""" , """""" ) )
)
/ float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) )
)
* 1_00 )
except ValueError:
snake_case__ : List[Any] = float("""nan""" )
except AttributeError:
pass
snake_case__ : str = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
snake_case__ : List[Any] = """ """
snake_case__ : Union[str, Any] = """ """
data_frame.index += 1
return data_frame
if __name__ == "__main__":
A_ : int = "headphones"
get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
| 38 | 1 |
'''simple docstring'''
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
A_ : Optional[int] = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n"
A_ : List[Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n"
A_ : Optional[int] = R"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n"
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __snake_case ( datasets.Metric ):
'''simple docstring'''
def __UpperCamelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = 0.0
for i, j in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
n_correct += 1.0 if math_equivalence.is_equiv(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else 0.0
snake_case__ : Optional[Any] = n_correct / len(__SCREAMING_SNAKE_CASE )
return {
"accuracy": accuracy,
}
| 38 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = LongformerTokenizer
lowerCamelCase__ = True
lowerCamelCase__ = LongformerTokenizerFast
lowerCamelCase__ = True
def __UpperCamelCase ( self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
snake_case__ : Union[str, Any] = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
snake_case__ : Optional[int] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
snake_case__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
snake_case__ : Any = {"""unk_token""": """<unk>"""}
snake_case__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
snake_case__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) )
def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ):
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = """lower newer"""
snake_case__ : Dict = """lower newer"""
return input_text, output_text
def __UpperCamelCase ( self ):
snake_case__ : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
snake_case__ : Tuple = """lower newer"""
snake_case__ : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
snake_case__ : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True)
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokens + [tokenizer.unk_token]
snake_case__ : List[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] )
self.assertListEqual(
tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , )
@slow
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" )
snake_case__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = tokenizer.encode(
"""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer.encode(
"""sequence builders""" , """multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.get_tokenizer()
snake_case__ : int = """Encode this sequence."""
snake_case__ : Union[str, Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]]
# Testing encoder arguments
snake_case__ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({"""bos_token""": """<s>"""} )
snake_case__ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Testing spaces after special tokens
snake_case__ : List[str] = """<mask>"""
tokenizer.add_special_tokens(
{"""mask_token""": AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space
snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
snake_case__ : str = """Encode <mask> sequence"""
snake_case__ : Tuple = """Encode <mask>sequence"""
snake_case__ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = encoded.index(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE )
snake_case__ : str = encoded.index(__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = """A, <mask> AllenNLP sentence."""
snake_case__ : str = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
snake_case__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
snake_case__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
__SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
__SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
def __UpperCamelCase ( self ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
snake_case__ : Any = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
snake_case__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE )
self.assertEqual(post_processor_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE )
self.assertEqual(post_processor_state["""trim_offsets"""] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
snake_case__ : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name`
snake_case__ : Any = f"{text_of_1_token} {text_of_1_token}"
snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Optional[Any] = f" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Any = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
| 38 | 1 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} )
lowerCamelCase__ = field(
default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} )
lowerCamelCase__ = field(
default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} )
lowerCamelCase__ = field(
default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} )
lowerCamelCase__ = field(default=2 , metadata={'''help''': '''Batch size for training.'''} )
lowerCamelCase__ = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} )
lowerCamelCase__ = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} )
lowerCamelCase__ = field(
default=10_000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} )
lowerCamelCase__ = field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} )
lowerCamelCase__ = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} )
lowerCamelCase__ = field(
default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} )
lowerCamelCase__ = field(
default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} )
lowerCamelCase__ = field(default=50_000 , metadata={'''help''': '''Maximum number of training steps.'''} )
lowerCamelCase__ = field(
default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} )
lowerCamelCase__ = field(default=1_024 , metadata={'''help''': '''Sequence lengths used for training.'''} )
lowerCamelCase__ = field(default=1 , metadata={'''help''': '''Training seed.'''} )
lowerCamelCase__ = field(
default=1_024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} )
lowerCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''If True the data is pretokenized.'''} )
@dataclass
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} )
lowerCamelCase__ = field(
default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} )
lowerCamelCase__ = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} )
lowerCamelCase__ = field(
default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} )
lowerCamelCase__ = field(default=1_024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} )
lowerCamelCase__ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} )
@dataclass
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} )
lowerCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Number of workers used for code evaluation.'''} )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} )
lowerCamelCase__ = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} )
lowerCamelCase__ = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} )
lowerCamelCase__ = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} )
lowerCamelCase__ = field(default=0.9_5 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} )
lowerCamelCase__ = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} )
lowerCamelCase__ = field(
default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} )
lowerCamelCase__ = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} )
lowerCamelCase__ = field(
default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} )
lowerCamelCase__ = field(
default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} )
lowerCamelCase__ = field(
default=-1 , metadata={
'''help''': (
'''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive'''
''' number corresponds to which GPU device id to run on.'''
)
} , )
@dataclass
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.'''
} , )
lowerCamelCase__ = field(
default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} )
lowerCamelCase__ = field(
default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} )
lowerCamelCase__ = field(
default=100_000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} )
lowerCamelCase__ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} )
lowerCamelCase__ = field(
default=1_000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} )
lowerCamelCase__ = field(
default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} )
lowerCamelCase__ = field(
default=0.2_5 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} )
lowerCamelCase__ = field(
default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} )
lowerCamelCase__ = field(
default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} )
lowerCamelCase__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} )
lowerCamelCase__ = field(
default=0.8_5 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} )
@dataclass
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = field(
default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} )
lowerCamelCase__ = field(
default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} )
lowerCamelCase__ = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} )
lowerCamelCase__ = field(default=200_000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} )
lowerCamelCase__ = field(
default=32_768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} )
lowerCamelCase__ = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} )
lowerCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
@dataclass
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} )
lowerCamelCase__ = field(
default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} )
lowerCamelCase__ = field(
default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} )
lowerCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Number of workers used for code evaluation.'''} )
@dataclass
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = field(
default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} )
lowerCamelCase__ = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} )
lowerCamelCase__ = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} )
lowerCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
| 38 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A_ : int = logging.get_logger(__name__)
A_ : Any = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''resnet'''
lowerCamelCase__ = ['''basic''', '''bottleneck''']
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="bottleneck" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
snake_case__ : List[Any] = num_channels
snake_case__ : str = embedding_size
snake_case__ : List[Any] = hidden_sizes
snake_case__ : Dict = depths
snake_case__ : List[Any] = layer_type
snake_case__ : int = hidden_act
snake_case__ : Union[str, Any] = downsample_in_first_stage
snake_case__ : Dict = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )]
snake_case__ , snake_case__ : Any = get_aligned_output_features_output_indices(
out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def __UpperCamelCase ( self ):
return 1e-3
| 38 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@property
def __UpperCamelCase ( self ):
torch.manual_seed(0 )
snake_case__ : Dict = UNetaDModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , )
return model
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.dummy_uncond_unet
snake_case__ : int = PNDMScheduler()
snake_case__ : int = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pndm.to(__SCREAMING_SNAKE_CASE )
pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = torch.manual_seed(0 )
snake_case__ : Union[str, Any] = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2_0 , output_type="""numpy""" ).images
snake_case__ : Tuple = torch.manual_seed(0 )
snake_case__ : Union[str, Any] = pndm(generator=__SCREAMING_SNAKE_CASE , num_inference_steps=2_0 , output_type="""numpy""" , return_dict=__SCREAMING_SNAKE_CASE )[0]
snake_case__ : Dict = image[0, -3:, -3:, -1]
snake_case__ : List[str] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
snake_case__ : Dict = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Tuple = """google/ddpm-cifar10-32"""
snake_case__ : Dict = UNetaDModel.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : str = PNDMScheduler()
snake_case__ : Optional[int] = PNDMPipeline(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
pndm.to(__SCREAMING_SNAKE_CASE )
pndm.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = torch.manual_seed(0 )
snake_case__ : str = pndm(generator=__SCREAMING_SNAKE_CASE , output_type="""numpy""" ).images
snake_case__ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 3_2, 3_2, 3)
snake_case__ : Optional[Any] = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 38 |
'''simple docstring'''
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 38 | 1 |
'''simple docstring'''
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : List[str] = inspect.getfile(accelerate.test_utils )
snake_case__ : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] )
snake_case__ : List[str] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] )
snake_case__ : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] )
@require_multi_gpu
def __UpperCamelCase ( self ):
print(f"Found {torch.cuda.device_count()} devices." )
snake_case__ : List[Any] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=os.environ.copy() )
@require_multi_gpu
def __UpperCamelCase ( self ):
print(f"Found {torch.cuda.device_count()} devices." )
snake_case__ : Union[str, Any] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path]
print(f"Command: {cmd}" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=os.environ.copy() )
@require_multi_gpu
def __UpperCamelCase ( self ):
snake_case__ : Tuple = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=os.environ.copy() )
@require_multi_gpu
def __UpperCamelCase ( self ):
print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" )
snake_case__ : Optional[Any] = ["""torchrun""", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ):
execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=os.environ.copy() )
if __name__ == "__main__":
A_ : Union[str, Any] = Accelerator()
A_ : List[Any] = (accelerator.state.process_index + 2, 10)
A_ : Tuple = torch.randint(0, 10, shape).to(accelerator.device)
A_ : List[Any] = ""
A_ : Any = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
A_ : Any = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
A_ : Optional[Any] = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 38 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self ):
snake_case__ : str = []
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_init_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_train_begin""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_train_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_epoch_begin""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_epoch_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_step_begin""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_step_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_evaluate""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_predict""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_save""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_log""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_prediction_step""" )
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Tuple = tempfile.mkdtemp()
def __UpperCamelCase ( self ):
shutil.rmtree(self.output_dir )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ):
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
snake_case__ : List[Any] = RegressionDataset(length=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = RegressionDataset(length=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = RegressionModelConfig(a=__SCREAMING_SNAKE_CASE , b=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = RegressionPreTrainedModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = TrainingArguments(self.output_dir , disable_tqdm=__SCREAMING_SNAKE_CASE , report_to=[] , **__SCREAMING_SNAKE_CASE )
return Trainer(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , callbacks=__SCREAMING_SNAKE_CASE , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) )
# Order doesn't matter
snake_case__ : Tuple = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ )
snake_case__ : List[str] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ )
for cba, cba in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(__SCREAMING_SNAKE_CASE , cba.__class__ )
elif not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(cba.__class__ , __SCREAMING_SNAKE_CASE )
else:
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Tuple = ["""on_init_end""", """on_train_begin"""]
snake_case__ : Union[str, Any] = 0
snake_case__ : Dict = len(trainer.get_eval_dataloader() )
snake_case__ : Any = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs ):
expected_events.append("""on_epoch_begin""" )
for _ in range(__SCREAMING_SNAKE_CASE ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""" )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""" )
expected_events.append("""on_epoch_end""" )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def __UpperCamelCase ( self ):
snake_case__ : Any = self.get_trainer()
snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
# Callbacks passed at init are added to the default callbacks
snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(__SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
snake_case__ : Optional[Any] = self.get_trainer(disable_tqdm=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
snake_case__ : int = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.remove(__SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = self.get_trainer()
snake_case__ : List[str] = trainer.pop_callback(__SCREAMING_SNAKE_CASE )
self.assertEqual(cb.__class__ , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
trainer.add_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
# We can also add, pop, or remove by instance
snake_case__ : List[Any] = self.get_trainer()
snake_case__ : List[str] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.remove(__SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = self.get_trainer()
snake_case__ : Any = trainer.callback_handler.callbacks[0]
snake_case__ : Optional[Any] = trainer.pop_callback(__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
trainer.add_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
snake_case__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
# Independent log/save/eval
snake_case__ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
snake_case__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
snake_case__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" )
trainer.train()
snake_case__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" )
trainer.train()
snake_case__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
# A bit of everything
snake_case__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
snake_case__ : Tuple = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock:
snake_case__ : List[str] = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(__SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
| 38 | 1 |
'''simple docstring'''
from __future__ import annotations
import requests
A_ : Optional[int] = set(
"approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split()
)
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : int = 1 , __magic_name__ : str = "new" , __magic_name__ : list | None = None ) -> dict:
'''simple docstring'''
snake_case__ : Optional[Any] = wanted_data or []
if invalid_search_terms := ", ".join(sorted(set(__magic_name__ ) - valid_terms ) ):
snake_case__ : Dict = f"Invalid search term: {invalid_search_terms}"
raise ValueError(__magic_name__ )
snake_case__ : Tuple = requests.get(
f"https://reddit.com/r/{subreddit}/{age}.json?limit={limit}" , headers={"""User-agent""": """A random string"""} , )
if response.status_code == 4_29:
raise requests.HTTPError
snake_case__ : Optional[int] = response.json()
if not wanted_data:
return {id_: data["data"]["children"][id_] for id_ in range(__magic_name__ )}
snake_case__ : Optional[Any] = {}
for id_ in range(__magic_name__ ):
snake_case__ : List[str] = {
item: data["""data"""]["""children"""][id_]["""data"""][item] for item in wanted_data
}
return data_dict
if __name__ == "__main__":
# If you get Error 429, that means you are rate limited.Try after some time
print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
| 38 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ):
snake_case__ : Any = size if size is not None else {"""height""": 1_8, """width""": 1_8}
snake_case__ : List[Any] = parent
snake_case__ : int = batch_size
snake_case__ : List[Any] = num_channels
snake_case__ : str = image_size
snake_case__ : Union[str, Any] = min_resolution
snake_case__ : List[Any] = max_resolution
snake_case__ : Tuple = do_resize
snake_case__ : int = size
snake_case__ : Tuple = do_normalize
snake_case__ : Dict = image_mean
snake_case__ : Union[str, Any] = image_std
def __UpperCamelCase ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = DPTImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ):
snake_case__ : str = DPTImageProcessingTester(self )
@property
def __UpperCamelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) )
def __UpperCamelCase ( self ):
snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} )
snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 38 | 1 |
'''simple docstring'''
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : list[str] ) -> str:
'''simple docstring'''
snake_case__ : List[Any] = """"""
for word_or_phrase in separated:
if not isinstance(__magic_name__ , __magic_name__ ):
raise Exception("""join() accepts only strings to be joined""" )
joined += word_or_phrase + separator
return joined.strip(__magic_name__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 38 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Dict = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """embed_dim""" ) )
self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_heads""" ) )
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1_6, 4_8, 9_6] , __SCREAMING_SNAKE_CASE=[1, 3, 6] , __SCREAMING_SNAKE_CASE=[1, 2, 1_0] , __SCREAMING_SNAKE_CASE=[7, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2] , __SCREAMING_SNAKE_CASE=[2, 1, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 2] , __SCREAMING_SNAKE_CASE=[False, False, True] , __SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , ):
snake_case__ : List[str] = parent
snake_case__ : Tuple = batch_size
snake_case__ : Union[str, Any] = image_size
snake_case__ : List[Any] = patch_sizes
snake_case__ : Optional[int] = patch_stride
snake_case__ : Optional[Any] = patch_padding
snake_case__ : Any = is_training
snake_case__ : int = use_labels
snake_case__ : Dict = num_labels
snake_case__ : Optional[Any] = num_channels
snake_case__ : Optional[Any] = embed_dim
snake_case__ : Optional[int] = num_heads
snake_case__ : Optional[int] = stride_kv
snake_case__ : int = depth
snake_case__ : Optional[Any] = cls_token
snake_case__ : List[Any] = attention_drop_rate
snake_case__ : Union[str, Any] = initializer_range
snake_case__ : List[Any] = layer_norm_eps
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : List[Any] = None
if self.use_labels:
# create a random int32 tensor of given shape
snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_labels )
snake_case__ : List[str] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self ):
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : int = TFCvtModel(config=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = (self.image_size, self.image_size)
snake_case__ , snake_case__ : str = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
snake_case__ : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
snake_case__ : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = self.num_labels
snake_case__ : str = TFCvtForImageClassification(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs
snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
lowerCamelCase__ = (
{'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = TFCvtModelTester(self )
snake_case__ : Any = TFCvtConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __UpperCamelCase ( self ):
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason="""Cvt does not output attentions""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip(reason="""Cvt does not use inputs_embeds""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip(reason="""Cvt does not support input and output embeddings""" )
def __UpperCamelCase ( self ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
def __UpperCamelCase ( self ):
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
@slow
def __UpperCamelCase ( self ):
super().test_keras_fit()
@unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" )
def __UpperCamelCase ( self ):
snake_case__ : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" )
tf.keras.mixed_precision.set_global_policy(__SCREAMING_SNAKE_CASE )
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy("""float32""" )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : Optional[Any] = [*signature.parameters.keys()]
snake_case__ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
snake_case__ : Optional[int] = outputs.hidden_states
snake_case__ : Tuple = len(self.model_tester.depth )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : List[Any] = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case__ : List[str] = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def __UpperCamelCase ( self ):
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ : str = TFCvtModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( ) -> str:
'''simple docstring'''
snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCamelCase ( self ):
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
snake_case__ : Union[str, Any] = self.default_image_processor
snake_case__ : int = prepare_img()
snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""tf""" )
# forward pass
snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE )
# verify the logits
snake_case__ : str = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
snake_case__ : int = tf.constant([0.9285, 0.9015, -0.3150] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 38 | 1 |
'''simple docstring'''
def UpperCamelCase__ ( ) -> list[list[int]]:
'''simple docstring'''
return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )]
A_ : Any = generate_large_matrix()
A_ : str = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def UpperCamelCase__ ( __magic_name__ : list[list[int]] ) -> None:
'''simple docstring'''
assert all(row == sorted(__magic_name__ , reverse=__magic_name__ ) for row in grid )
assert all(list(__magic_name__ ) == sorted(__magic_name__ , reverse=__magic_name__ ) for col in zip(*__magic_name__ ) )
def UpperCamelCase__ ( __magic_name__ : list[int] ) -> int:
'''simple docstring'''
snake_case__ : Dict = 0
snake_case__ : Tuple = len(__magic_name__ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
snake_case__ : Optional[Any] = (left + right) // 2
snake_case__ : List[Any] = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
snake_case__ : str = mid + 1
else:
snake_case__ : str = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : list[list[int]] ) -> int:
'''simple docstring'''
snake_case__ : Dict = 0
snake_case__ : Any = len(grid[0] )
for i in range(len(__magic_name__ ) ):
snake_case__ : int = find_negative_index(grid[i][:bound] )
total += bound
return (len(__magic_name__ ) * len(grid[0] )) - total
def UpperCamelCase__ ( __magic_name__ : list[list[int]] ) -> int:
'''simple docstring'''
return len([number for row in grid for number in row if number < 0] )
def UpperCamelCase__ ( __magic_name__ : list[list[int]] ) -> int:
'''simple docstring'''
snake_case__ : List[str] = 0
for row in grid:
for i, number in enumerate(__magic_name__ ):
if number < 0:
total += len(__magic_name__ ) - i
break
return total
def UpperCamelCase__ ( ) -> None:
'''simple docstring'''
from timeit import timeit
print("""Running benchmarks""" )
snake_case__ : Tuple = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
snake_case__ : Union[str, Any] = timeit(f"{func}(grid=grid)" , setup=__magic_name__ , number=5_00 )
print(f"{func}() took {time:0.4f} seconds" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 38 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
snake_case__ : int = [[1, 2, 4], [1, 2, 3, 4]]
snake_case__ : Any = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __UpperCamelCase ( self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
snake_case__ : Union[str, Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here
def __UpperCamelCase ( self ):
snake_case__ : List[str] = [[1, 2, 3], [1, 2, 4]]
snake_case__ : Optional[int] = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
snake_case__ , snake_case__ , snake_case__ : Any = dc.update(1 )
snake_case__ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : Tuple = dc.update(2 )
snake_case__ : Tuple = stepped is True and completed is False and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(3 )
snake_case__ : List[str] = stepped is True and completed is True and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
snake_case__ : int = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
snake_case__ , snake_case__ , snake_case__ : str = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : str = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 38 | 1 |
'''simple docstring'''
def UpperCamelCase__ ( __magic_name__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
'''simple docstring'''
snake_case__ : Tuple = set()
# Replace all the whitespace in our sentence
snake_case__ : List[Any] = input_str.replace(""" """ , """""" )
for alpha in input_str:
if "a" <= alpha.lower() <= "z":
frequency.add(alpha.lower() )
return len(__magic_name__ ) == 26
def UpperCamelCase__ ( __magic_name__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
'''simple docstring'''
snake_case__ : Optional[Any] = [False] * 26
for char in input_str:
if char.islower():
snake_case__ : int = True
elif char.isupper():
snake_case__ : Optional[Any] = True
return all(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : str = "The quick brown fox jumps over the lazy dog" , ) -> bool:
'''simple docstring'''
return len({char for char in input_str.lower() if char.isalpha()} ) == 26
def UpperCamelCase__ ( ) -> None:
'''simple docstring'''
from timeit import timeit
snake_case__ : Optional[Any] = """from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest"""
print(timeit("""is_pangram()""" , setup=__magic_name__ ) )
print(timeit("""is_pangram_faster()""" , setup=__magic_name__ ) )
print(timeit("""is_pangram_fastest()""" , setup=__magic_name__ ) )
# 5.348480500048026, 2.6477354579837993, 1.8470395830227062
# 5.036091582966037, 2.644472333951853, 1.8869528750656173
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 38 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Optional[int] = logging.get_logger(__name__)
A_ : Tuple = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''segformer'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , __SCREAMING_SNAKE_CASE=[3_2, 6_4, 1_6_0, 2_5_6] , __SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , __SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=2_5_5 , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __SCREAMING_SNAKE_CASE , )
snake_case__ : Dict = num_channels
snake_case__ : Optional[Any] = num_encoder_blocks
snake_case__ : Any = depths
snake_case__ : Optional[int] = sr_ratios
snake_case__ : Tuple = hidden_sizes
snake_case__ : List[str] = patch_sizes
snake_case__ : str = strides
snake_case__ : Optional[int] = mlp_ratios
snake_case__ : Optional[Any] = num_attention_heads
snake_case__ : Dict = hidden_act
snake_case__ : Optional[int] = hidden_dropout_prob
snake_case__ : List[str] = attention_probs_dropout_prob
snake_case__ : List[Any] = classifier_dropout_prob
snake_case__ : int = initializer_range
snake_case__ : List[str] = drop_path_rate
snake_case__ : int = layer_norm_eps
snake_case__ : List[Any] = decoder_hidden_size
snake_case__ : List[Any] = kwargs.get("""reshape_last_stage""" , __SCREAMING_SNAKE_CASE )
snake_case__ : Dict = semantic_loss_ignore_index
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def __UpperCamelCase ( self ):
return 1e-4
@property
def __UpperCamelCase ( self ):
return 1_2
| 38 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = ViTImageProcessor if is_vision_available() else None
@property
def __UpperCamelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = (3, 3_2, 1_2_8)
snake_case__ : List[Any] = tempfile.mkdtemp()
# fmt: off
snake_case__ : str = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
snake_case__ : List[str] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" )
snake_case__ : Optional[int] = {
"""do_normalize""": False,
"""do_resize""": True,
"""image_processor_type""": """ViTImageProcessor""",
"""resample""": 3,
"""size""": {"""height""": 3_2, """width""": 1_2_8},
}
snake_case__ : str = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ):
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ):
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
shutil.rmtree(self.tmpdirname )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )
snake_case__ : List[str] = Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) )
return image_input
def __UpperCamelCase ( self ):
snake_case__ : List[str] = self.get_tokenizer()
snake_case__ : Union[str, Any] = self.get_image_processor()
snake_case__ : Optional[int] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
snake_case__ : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __SCREAMING_SNAKE_CASE )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : int = self.get_tokenizer()
snake_case__ : Union[str, Any] = self.get_image_processor()
snake_case__ : Optional[int] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
processor.save_pretrained(self.tmpdirname )
snake_case__ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
snake_case__ : List[Any] = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 )
snake_case__ : Optional[int] = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , __SCREAMING_SNAKE_CASE )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.get_image_processor()
snake_case__ : Tuple = self.get_tokenizer()
snake_case__ : Optional[Any] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = self.prepare_image_inputs()
snake_case__ : Tuple = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" )
snake_case__ : Optional[int] = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __UpperCamelCase ( self ):
snake_case__ : Dict = self.get_image_processor()
snake_case__ : Union[str, Any] = self.get_tokenizer()
snake_case__ : int = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = """test"""
snake_case__ : Optional[Any] = processor(text=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = tokenizer(__SCREAMING_SNAKE_CASE )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.get_image_processor()
snake_case__ : List[Any] = self.get_tokenizer()
snake_case__ : Any = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case__ : int = """test"""
snake_case__ : Any = self.prepare_image_inputs()
snake_case__ : Union[str, Any] = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] )
# test if it raises when no input is passed
with pytest.raises(__SCREAMING_SNAKE_CASE ):
processor()
def __UpperCamelCase ( self ):
snake_case__ : List[str] = self.get_image_processor()
snake_case__ : Optional[Any] = self.get_tokenizer()
snake_case__ : List[str] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case__ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
snake_case__ : Any = processor.char_decode(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = [seq.replace(""" """ , """""" ) for seq in decoded_tok]
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : List[str] = self.get_image_processor()
snake_case__ : str = self.get_tokenizer()
snake_case__ : Optional[int] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case__ : int = None
snake_case__ : Optional[int] = self.prepare_image_inputs()
snake_case__ : List[Any] = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.get_image_processor()
snake_case__ : List[Any] = self.get_tokenizer()
snake_case__ : Optional[Any] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case__ : str = torch.randn(1 , 2_7 , 3_8 )
snake_case__ : Dict = torch.randn(1 , 2_7 , 5_0_2_5_7 )
snake_case__ : Union[str, Any] = torch.randn(1 , 2_7 , 3_0_5_2_2 )
snake_case__ : List[str] = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
| 38 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : str = None
if token is not None:
snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"
snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json()
snake_case__ : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(__magic_name__ ):
snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]:
'''simple docstring'''
snake_case__ : Optional[Any] = None
if token is not None:
snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"
snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json()
snake_case__ : Dict = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(__magic_name__ ):
snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict:
'''simple docstring'''
snake_case__ : Optional[Any] = None
if token is not None:
snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ )
snake_case__ : Any = result.headers["""Location"""]
snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ )
snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" )
with open(__magic_name__ , """wb""" ) as fp:
fp.write(response.content )
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Any = []
snake_case__ : Union[str, Any] = []
snake_case__ : Any = None
with zipfile.ZipFile(__magic_name__ ) as z:
for filename in z.namelist():
if not os.path.isdir(__magic_name__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(__magic_name__ ) as f:
for line in f:
snake_case__ : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
snake_case__ : str = line[: line.index(""": """ )]
snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
snake_case__ : Dict = line[len("""FAILED """ ) :]
failed_tests.append(__magic_name__ )
elif filename == "job_name.txt":
snake_case__ : Optional[Any] = line
if len(__magic_name__ ) != len(__magic_name__ ):
raise ValueError(
f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` "
f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"
""" problem.""" )
snake_case__ : Optional[Any] = None
if job_name and job_links:
snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ )
# A list with elements of the form (line of error, error, failed test)
snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )]
return result
def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : str = []
snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) )
return errors
def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]:
'''simple docstring'''
snake_case__ : Any = Counter()
counter.update([x[1] for x in logs] )
snake_case__ : Dict = counter.most_common()
snake_case__ : Any = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) )
return r
def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]:
'''simple docstring'''
snake_case__ : str = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
snake_case__ : Tuple = test.split("""/""" )[2]
else:
snake_case__ : Any = None
return test
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]:
'''simple docstring'''
snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs]
snake_case__ : List[Any] = [x for x in logs if x[2] is not None]
snake_case__ : Any = {x[2] for x in logs}
snake_case__ : Optional[Any] = {}
for test in tests:
snake_case__ : str = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
snake_case__ : Optional[int] = counter.most_common()
snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
snake_case__ : int = sum(error_counts.values() )
if n_errors > 0:
snake_case__ : str = {"""count""": n_errors, """errors""": error_counts}
snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) )
return r
def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Optional[Any] = """| no. | error | status |"""
snake_case__ : int = """|-:|:-|:-|"""
snake_case__ : int = [header, sep]
for error in reduced_by_error:
snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""]
snake_case__ : Dict = f"| {count} | {error[:1_00]} | |"
lines.append(__magic_name__ )
return "\n".join(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]:
'''simple docstring'''
snake_case__ : List[Any] = """| model | no. of errors | major error | count |"""
snake_case__ : Optional[int] = """|-:|-:|-:|-:|"""
snake_case__ : Dict = [header, sep]
for model in reduced_by_model:
snake_case__ : Tuple = reduced_by_model[model]["""count"""]
snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0]
snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |"
lines.append(__magic_name__ )
return "\n".join(__magic_name__ )
if __name__ == "__main__":
A_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
A_ : int = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token)
A_ : Optional[Any] = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
A_ : int = k.find(" / ")
A_ : List[Any] = k[index + len(" / ") :]
A_ : List[str] = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
A_ : str = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
A_ : List[str] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
A_ : Any = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
A_ : Any = reduce_by_error(errors)
A_ : Union[str, Any] = reduce_by_model(errors)
A_ : Any = make_github_table(reduced_by_error)
A_ : Optional[Any] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 38 | 1 |
'''simple docstring'''
import copy
import inspect
import unittest
from transformers import AutoBackbone
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import require_timm, require_torch, torch_device
from transformers.utils.import_utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
if is_torch_available():
import torch
from transformers import TimmBackbone, TimmBackboneConfig
from ...test_pipeline_mixin import PipelineTesterMixin
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="resnet50" , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , ):
snake_case__ : List[str] = parent
snake_case__ : List[Any] = out_indices if out_indices is not None else [4]
snake_case__ : Any = stage_names
snake_case__ : Union[str, Any] = out_features
snake_case__ : List[str] = backbone
snake_case__ : Any = batch_size
snake_case__ : Union[str, Any] = image_size
snake_case__ : Any = num_channels
snake_case__ : Union[str, Any] = use_pretrained_backbone
snake_case__ : Any = is_training
def __UpperCamelCase ( self ):
snake_case__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : Any = self.get_config()
return config, pixel_values
def __UpperCamelCase ( self ):
return TimmBackboneConfig(
image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[str] = TimmBackbone(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 1_4, 1_4) , )
def __UpperCamelCase ( self ):
snake_case__ : Any = self.prepare_config_and_inputs()
snake_case__ , snake_case__ : List[str] = config_and_inputs
snake_case__ : List[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
@require_timm
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TimmBackbone,) if is_torch_available() else ()
lowerCamelCase__ = {'''feature-extraction''': TimmBackbone} if is_torch_available() else {}
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def __UpperCamelCase ( self ):
snake_case__ : Tuple = TimmBackboneModelTester(self )
snake_case__ : int = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = """resnet18"""
snake_case__ : Optional[int] = """microsoft/resnet-18"""
snake_case__ : List[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , use_timm_backbone=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) )
self.assertEqual(len(timm_model.stage_names ) , len(transformers_model.stage_names ) )
self.assertEqual(timm_model.channels , transformers_model.channels )
# Out indices are set to the last layer by default. For timm models, we don't know
# the number of layers in advance, so we set it to (-1,), whereas for transformers
# models, we set it to [len(stage_names) - 1] (kept for backward compatibility).
self.assertEqual(timm_model.out_indices , (-1,) )
self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names ) - 1] )
snake_case__ : int = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , use_timm_backbone=__SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] )
snake_case__ : Optional[Any] = AutoBackbone.from_pretrained(__SCREAMING_SNAKE_CASE , out_indices=[1, 2, 3] )
self.assertEqual(timm_model.out_indices , transformers_model.out_indices )
self.assertEqual(len(timm_model.out_features ) , len(transformers_model.out_features ) )
self.assertEqual(timm_model.channels , transformers_model.channels )
@unittest.skip("""TimmBackbone doesn't support feed forward chunking""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""TimmBackbone initialization is managed on the timm side""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""TimmBackbone models doesn't have inputs_embeds""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""model weights aren't tied in TimmBackbone.""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""model weights aren't tied in TimmBackbone.""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""TimmBackbone doesn't support output_attentions.""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""Safetensors is not supported by timm.""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : Tuple = [*signature.parameters.keys()]
snake_case__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : str = True
snake_case__ : List[str] = self.has_attentions
# no need to test all models as different heads yield the same functionality
snake_case__ : Optional[int] = self.all_model_classes[0]
snake_case__ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : int = model(**__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = outputs[0][-1]
# Encoder-/Decoder-only models
snake_case__ : int = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
snake_case__ : Optional[Any] = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(hidden_states.grad )
if self.has_attentions:
self.assertIsNotNone(attentions.grad )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Optional[int] = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : List[Any] = model(**__SCREAMING_SNAKE_CASE )
self.assertEqual(len(result.feature_maps ) , len(config.out_indices ) )
self.assertEqual(len(model.channels ) , len(config.out_indices ) )
# Check output of last stage is taken if out_features=None, out_indices=None
snake_case__ : Any = copy.deepcopy(__SCREAMING_SNAKE_CASE )
snake_case__ : str = None
snake_case__ : List[Any] = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE )
self.assertEqual(len(result.feature_maps ) , 1 )
self.assertEqual(len(model.channels ) , 1 )
# Check backbone can be initialized with fresh weights
snake_case__ : Union[str, Any] = copy.deepcopy(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = False
snake_case__ : List[str] = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Union[str, Any] = model(**__SCREAMING_SNAKE_CASE )
| 38 |
'''simple docstring'''
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
A_ : Tuple = get_logger(__name__)
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = '''dummy_data'''
lowerCamelCase__ = '''datasets'''
lowerCamelCase__ = False
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ):
snake_case__ : List[Any] = 0
snake_case__ : Union[str, Any] = dataset_name
snake_case__ : Optional[int] = cache_dir
snake_case__ : Union[str, Any] = use_local_dummy_data
snake_case__ : int = config
# download_callbacks take a single url as input
snake_case__ : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
snake_case__ : Union[str, Any] = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
snake_case__ : Union[str, Any] = str(__SCREAMING_SNAKE_CASE )
# to be downloaded
snake_case__ : List[str] = None
snake_case__ : List[str] = None
@property
def __UpperCamelCase ( self ):
if self._dummy_file is None:
snake_case__ : List[str] = self.download_dummy_data()
return self._dummy_file
@property
def __UpperCamelCase ( self ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("""dummy""" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("""dummy""" , self.version_name )
@property
def __UpperCamelCase ( self ):
return os.path.join(self.dummy_data_folder , """dummy_data.zip""" )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
snake_case__ : Optional[int] = cached_path(
__SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE )
return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name )
@property
def __UpperCamelCase ( self ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def __UpperCamelCase ( self ):
if self._bucket_url is None:
snake_case__ : List[str] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) )
return self._bucket_url
@property
def __UpperCamelCase ( self ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
snake_case__ : List[Any] = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
snake_case__ : List[Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ):
return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ):
return self.download_and_extract(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return self.download_and_extract(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
return path
def __UpperCamelCase ( self ):
return {}
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : int = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for single_url in single_urls:
download_callback(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : List[str] = single_urls
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Tuple = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls]
else:
snake_case__ : List[Any] = single_urls
snake_case__ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) )
snake_case__ : Optional[int] = value
# make sure that values are unique
if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
snake_case__ : List[Any] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Dict = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
snake_case__ : Tuple = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __SCREAMING_SNAKE_CASE ) ) for url in data_url )
snake_case__ : List[Any] = all(
url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
snake_case__ : List[str] = [data_url[0]] * len(__SCREAMING_SNAKE_CASE )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
snake_case__ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) )
dummy_data_list.append(__SCREAMING_SNAKE_CASE )
return dummy_data_list
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for download_callback in self.download_callbacks:
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
snake_case__ : Any = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) )
if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
def _iter_archive_members(__SCREAMING_SNAKE_CASE ):
# this preserves the order of the members inside the ZIP archive
snake_case__ : List[str] = Path(self.dummy_file ).parent
snake_case__ : Dict = path.relative_to(__SCREAMING_SNAKE_CASE )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
snake_case__ : Optional[int] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = Path(__SCREAMING_SNAKE_CASE )
snake_case__ : int = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob("""*""" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ):
yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open("""rb""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[int] = [paths]
for path in paths:
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ):
if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ):
continue
dirnames.sort()
for filename in sorted(__SCREAMING_SNAKE_CASE ):
if filename.startswith((""".""", """__""") ):
continue
yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 38 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : List[Any] = logging.get_logger(__name__)
A_ : Union[str, Any] = {
"microsoft/swinv2-tiny-patch4-window8-256": (
"https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json"
),
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''swinv2'''
lowerCamelCase__ = {
'''num_attention_heads''': '''num_heads''',
'''num_hidden_layers''': '''num_layers''',
}
def __init__( self , __SCREAMING_SNAKE_CASE=2_2_4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=9_6 , __SCREAMING_SNAKE_CASE=[2, 2, 6, 2] , __SCREAMING_SNAKE_CASE=[3, 6, 1_2, 2_4] , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=4.0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-5 , __SCREAMING_SNAKE_CASE=3_2 , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = image_size
snake_case__ : Any = patch_size
snake_case__ : str = num_channels
snake_case__ : Tuple = embed_dim
snake_case__ : Optional[int] = depths
snake_case__ : List[Any] = len(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = num_heads
snake_case__ : int = window_size
snake_case__ : List[Any] = mlp_ratio
snake_case__ : Dict = qkv_bias
snake_case__ : Any = hidden_dropout_prob
snake_case__ : List[Any] = attention_probs_dropout_prob
snake_case__ : Any = drop_path_rate
snake_case__ : str = hidden_act
snake_case__ : Dict = use_absolute_embeddings
snake_case__ : Any = layer_norm_eps
snake_case__ : Dict = initializer_range
snake_case__ : Optional[int] = encoder_stride
# we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
snake_case__ : Any = int(embed_dim * 2 ** (len(__SCREAMING_SNAKE_CASE ) - 1) )
snake_case__ : Tuple = (0, 0, 0, 0)
| 38 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = IFImgaImgSuperResolutionPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''}
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} )
lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __UpperCamelCase ( self ):
return self._get_superresolution_dummy_components()
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ):
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
snake_case__ : List[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : Tuple = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __UpperCamelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def __UpperCamelCase ( self ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def __UpperCamelCase ( self ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __UpperCamelCase ( self ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __UpperCamelCase ( self ):
self._test_save_load_local()
def __UpperCamelCase ( self ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 38 | 1 |
'''simple docstring'''
from torch import nn
def UpperCamelCase__ ( __magic_name__ : Dict ) -> Optional[int]:
'''simple docstring'''
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f"Unsupported activation function: {act_fn}" )
| 38 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
A_ : Dict = [
"EAGER",
"AOT_EAGER",
"INDUCTOR",
"NVFUSER",
"AOT_NVFUSER",
"AOT_CUDAGRAPHS",
"OFI",
"FX2TRT",
"ONNXRT",
"IPEX",
]
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None ) -> Dict:
'''simple docstring'''
snake_case__ : Optional[int] = True
while ask_again:
snake_case__ : Optional[Any] = input(__magic_name__ )
try:
if default is not None and len(__magic_name__ ) == 0:
return default
return convert_value(__magic_name__ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Any=[] , __magic_name__ : Optional[int]=None , __magic_name__ : int=0 ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Union[str, Any] = BulletMenu(__magic_name__ , __magic_name__ )
snake_case__ : Optional[Any] = menu.run(default_choice=__magic_name__ )
return convert_value(__magic_name__ ) if convert_value is not None else result
def UpperCamelCase__ ( __magic_name__ : Any ) -> int:
'''simple docstring'''
snake_case__ : Tuple = int(__magic_name__ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple:
'''simple docstring'''
snake_case__ : List[Any] = int(__magic_name__ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]:
'''simple docstring'''
snake_case__ : Union[str, Any] = int(__magic_name__ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Optional[Any] = int(__magic_name__ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
snake_case__ : Optional[Any] = int(__magic_name__ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase__ ( __magic_name__ : Dict ) -> Tuple:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class __snake_case ( argparse.RawDescriptionHelpFormatter ):
'''simple docstring'''
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : str = usage.replace("""<command> [<args>] """ , """""" )
return usage
| 38 | 1 |
'''simple docstring'''
# Algorithm for the pigeonhole sorting
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> str:
'''simple docstring'''
snake_case__ : Union[str, Any] = min(__magic_name__ ) # min() finds the minimum value
snake_case__ : int = max(__magic_name__ ) # max() finds the maximum value
snake_case__ : Any = max_val - min_val + 1 # size is difference of max and min values plus one
# list of pigeonholes of size equal to the variable size
snake_case__ : List[str] = [0] * size
# Populate the pigeonholes.
for x in a:
assert isinstance(__magic_name__ , __magic_name__ ), "integers only please"
holes[x - min_val] += 1
# Putting the elements back into the array in an order.
snake_case__ : Any = 0
for count in range(__magic_name__ ):
while holes[count] > 0:
holes[count] -= 1
snake_case__ : Union[str, Any] = count + min_val
i += 1
def UpperCamelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Dict = [8, 3, 2, 7, 4, 6, 8]
pigeonhole_sort(__magic_name__ )
print("""Sorted order is:""" , """ """.join(__magic_name__ ) )
if __name__ == "__main__":
main()
| 38 |
'''simple docstring'''
from __future__ import annotations
def UpperCamelCase__ ( __magic_name__ : list ) -> float:
'''simple docstring'''
if not nums:
raise ValueError("""List is empty""" )
return sum(__magic_name__ ) / len(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 38 | 1 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=1 / 2_5_5 , __SCREAMING_SNAKE_CASE=True , ):
# by setting size["longest_edge"] > max_resolution we're effectively not testing this :p
snake_case__ : Optional[int] = size if size is not None else {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3}
snake_case__ : str = parent
snake_case__ : str = batch_size
snake_case__ : Tuple = num_channels
snake_case__ : List[Any] = min_resolution
snake_case__ : Union[str, Any] = max_resolution
snake_case__ : Tuple = do_resize
snake_case__ : List[Any] = size
snake_case__ : str = do_normalize
snake_case__ : Optional[int] = image_mean
snake_case__ : int = image_std
snake_case__ : Dict = do_rescale
snake_case__ : str = rescale_factor
snake_case__ : Optional[int] = do_pad
def __UpperCamelCase ( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ):
if not batched:
snake_case__ : str = image_inputs[0]
if isinstance(__SCREAMING_SNAKE_CASE , Image.Image ):
snake_case__ , snake_case__ : List[Any] = image.size
else:
snake_case__ , snake_case__ : Any = image.shape[1], image.shape[2]
if w < h:
snake_case__ : Tuple = int(self.size["""shortest_edge"""] * h / w )
snake_case__ : Optional[Any] = self.size["""shortest_edge"""]
elif w > h:
snake_case__ : str = self.size["""shortest_edge"""]
snake_case__ : Optional[int] = int(self.size["""shortest_edge"""] * w / h )
else:
snake_case__ : Tuple = self.size["""shortest_edge"""]
snake_case__ : Union[str, Any] = self.size["""shortest_edge"""]
else:
snake_case__ : Dict = []
for image in image_inputs:
snake_case__ , snake_case__ : Union[str, Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
snake_case__ : List[str] = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[0] )[0]
snake_case__ : List[str] = max(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = DetaImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ):
snake_case__ : List[str] = DetaImageProcessingTester(self )
@property
def __UpperCamelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_rescale""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_pad""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) )
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8, """longest_edge""": 1_3_3_3} )
self.assertEqual(image_processor.do_pad , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
snake_case__ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
snake_case__ , snake_case__ : List[Any] = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ , snake_case__ : List[str] = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
snake_case__ , snake_case__ : int = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
snake_case__ , snake_case__ : Dict = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
snake_case__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
snake_case__ , snake_case__ : Union[str, Any] = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
snake_case__ : str = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
snake_case__ , snake_case__ : str = self.image_processor_tester.get_expected_values(__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def __UpperCamelCase ( self ):
# prepare image and target
snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
snake_case__ : str = json.loads(f.read() )
snake_case__ : Any = {"""image_id""": 3_9_7_6_9, """annotations""": target}
# encode them
snake_case__ : Optional[Any] = DetaImageProcessor()
snake_case__ : Optional[Any] = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
# verify pixel values
snake_case__ : List[Any] = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["""pixel_values"""].shape , __SCREAMING_SNAKE_CASE )
snake_case__ : str = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
snake_case__ : Tuple = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __SCREAMING_SNAKE_CASE ) )
# verify boxes
snake_case__ : Tuple = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __SCREAMING_SNAKE_CASE )
snake_case__ : Any = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
snake_case__ : List[str] = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __SCREAMING_SNAKE_CASE ) )
# verify is_crowd
snake_case__ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __SCREAMING_SNAKE_CASE ) )
# verify class_labels
snake_case__ : Optional[int] = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __SCREAMING_SNAKE_CASE ) )
# verify orig_size
snake_case__ : Tuple = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __SCREAMING_SNAKE_CASE ) )
# verify size
snake_case__ : Union[str, Any] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __SCREAMING_SNAKE_CASE ) )
@slow
def __UpperCamelCase ( self ):
# prepare image, target and masks_path
snake_case__ : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
snake_case__ : Optional[Any] = json.loads(f.read() )
snake_case__ : Dict = {"""file_name""": """000000039769.png""", """image_id""": 3_9_7_6_9, """segments_info""": target}
snake_case__ : Optional[int] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
snake_case__ : Union[str, Any] = DetaImageProcessor(format="""coco_panoptic""" )
snake_case__ : Optional[int] = image_processing(images=__SCREAMING_SNAKE_CASE , annotations=__SCREAMING_SNAKE_CASE , masks_path=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
# verify pixel values
snake_case__ : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] )
self.assertEqual(encoding["""pixel_values"""].shape , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
# verify area
snake_case__ : str = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __SCREAMING_SNAKE_CASE ) )
# verify boxes
snake_case__ : List[Any] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __SCREAMING_SNAKE_CASE )
snake_case__ : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __SCREAMING_SNAKE_CASE , atol=1e-3 ) )
# verify image_id
snake_case__ : Union[str, Any] = torch.tensor([3_9_7_6_9] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __SCREAMING_SNAKE_CASE ) )
# verify is_crowd
snake_case__ : int = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __SCREAMING_SNAKE_CASE ) )
# verify class_labels
snake_case__ : Union[str, Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __SCREAMING_SNAKE_CASE ) )
# verify masks
snake_case__ : Any = 8_2_2_8_7_3
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __SCREAMING_SNAKE_CASE )
# verify orig_size
snake_case__ : Dict = torch.tensor([4_8_0, 6_4_0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __SCREAMING_SNAKE_CASE ) )
# verify size
snake_case__ : Optional[int] = torch.tensor([8_0_0, 1_0_6_6] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __SCREAMING_SNAKE_CASE ) )
| 38 |
'''simple docstring'''
from __future__ import annotations
A_ : str = "Muhammad Umer Farooq"
A_ : Optional[Any] = "MIT"
A_ : int = "1.0.0"
A_ : int = "Muhammad Umer Farooq"
A_ : int = "[email protected]"
A_ : Dict = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
super().__init__()
snake_case__ : list[str] = []
snake_case__ : List[Any] = domain
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE )
self.urls.append(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
return parse.urlparse(__magic_name__ ).netloc
def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]:
'''simple docstring'''
snake_case__ : List[str] = get_domain_name(__magic_name__ )
# Initialize the parser
snake_case__ : Optional[Any] = Parser(__magic_name__ )
try:
# Open URL
snake_case__ : Any = requests.get(__magic_name__ )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
snake_case__ : List[str] = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
snake_case__ : Tuple = requests.get(__magic_name__ )
# Get the valid email.
snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(__magic_name__ )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(__magic_name__ )
if __name__ == "__main__":
A_ : str = emails_from_url("https://github.com")
print(F'{len(emails)} emails found:')
print("\n".join(sorted(emails)))
| 38 | 1 |
'''simple docstring'''
def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : int ) -> int:
'''simple docstring'''
return int(input_a == input_a == 0 )
def UpperCamelCase__ ( ) -> None:
'''simple docstring'''
print("""Truth Table of NOR Gate:""" )
print("""| Input 1 | Input 2 | Output |""" )
print(f"| 0 | 0 | {nor_gate(0 , 0 )} |" )
print(f"| 0 | 1 | {nor_gate(0 , 1 )} |" )
print(f"| 1 | 0 | {nor_gate(1 , 0 )} |" )
print(f"| 1 | 1 | {nor_gate(1 , 1 )} |" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 38 |
'''simple docstring'''
def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Tuple:
'''simple docstring'''
if not head:
return True
# split the list to two parts
snake_case__ , snake_case__ : Dict = head.next, head
while fast and fast.next:
snake_case__ : Any = fast.next.next
snake_case__ : int = slow.next
snake_case__ : Dict = slow.next
snake_case__ : List[str] = None # Don't forget here! But forget still works!
# reverse the second part
snake_case__ : Tuple = None
while second:
snake_case__ : Tuple = second.next
snake_case__ : Any = node
snake_case__ : str = second
snake_case__ : Optional[Any] = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
snake_case__ : List[Any] = node.next
snake_case__ : int = head.next
return True
def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]:
'''simple docstring'''
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
snake_case__ : List[Any] = head
while fast and fast.next:
snake_case__ , snake_case__ : Any = fast.next.next, slow.next
# 2. Push the second half into the stack
snake_case__ : Tuple = [slow.val]
while slow.next:
snake_case__ : Optional[Any] = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
snake_case__ : str = cur.next
return True
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
if not head or not head.next:
return True
snake_case__ : int = {}
snake_case__ : Union[str, Any] = 0
while head:
if head.val in d:
d[head.val].append(__magic_name__ )
else:
snake_case__ : Tuple = [pos]
snake_case__ : Optional[Any] = head.next
pos += 1
snake_case__ : int = pos - 1
snake_case__ : str = 0
for v in d.values():
if len(__magic_name__ ) % 2 != 0:
middle += 1
else:
snake_case__ : List[str] = 0
for i in range(0 , len(__magic_name__ ) ):
if v[i] + v[len(__magic_name__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 38 | 1 |
'''simple docstring'''
def UpperCamelCase__ ( __magic_name__ : int = 10 ) -> str:
'''simple docstring'''
if not isinstance(__magic_name__ , __magic_name__ ) or n < 0:
raise ValueError("""Invalid input""" )
snake_case__ : List[Any] = 10**n
snake_case__ : Tuple = 2_84_33 * (pow(2 , 7_83_04_57 , __magic_name__ )) + 1
return str(number % modulus )
if __name__ == "__main__":
from doctest import testmod
testmod()
print(F'{solution(10) = }')
| 38 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
A_ : str = 250004
A_ : str = 250020
@require_sentencepiece
@require_tokenizers
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MBartTokenizer
lowerCamelCase__ = MBartTokenizerFast
lowerCamelCase__ = True
lowerCamelCase__ = True
def __UpperCamelCase ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
def __UpperCamelCase ( self ):
snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
snake_case__ : int = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def __UpperCamelCase ( self ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
snake_case__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = tempfile.mkdtemp()
snake_case__ : int = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
snake_case__ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
snake_case__ : Tuple = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=True
snake_case__ : Any = tempfile.mkdtemp()
snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
snake_case__ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
snake_case__ : List[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=False
snake_case__ : Dict = tempfile.mkdtemp()
snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
snake_case__ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
@require_torch
@require_sentencepiece
@require_tokenizers
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = '''facebook/mbart-large-en-ro'''
lowerCamelCase__ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
lowerCamelCase__ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
lowerCamelCase__ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE]
@classmethod
def __UpperCamelCase ( cls ):
snake_case__ : MBartTokenizer = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
snake_case__ : Any = 1
return cls
def __UpperCamelCase ( self ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 )
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids )
snake_case__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2]
snake_case__ : List[Any] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Dict = ["""this is gunna be a long sentence """ * 2_0]
assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = 1_0
snake_case__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = tempfile.mkdtemp()
snake_case__ : Dict = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE )
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
snake_case__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
snake_case__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertEqual((2, 1_4) , batch.input_ids.shape )
self.assertEqual((2, 1_4) , batch.attention_mask.shape )
snake_case__ : Tuple = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" )
snake_case__ : Optional[int] = self.tokenizer(
text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=1_0 , return_tensors="""pt""" )
snake_case__ : str = targets["""input_ids"""]
snake_case__ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 )
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , {
# A, test, EOS, en_XX
"""input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 2_5_0_0_0_1,
} , )
| 38 | 1 |
'''simple docstring'''
from math import sqrt
def UpperCamelCase__ ( __magic_name__ : int ) -> int:
'''simple docstring'''
snake_case__ : Dict = 0
for i in range(1 , int(sqrt(__magic_name__ ) + 1 ) ):
if n % i == 0 and i != sqrt(__magic_name__ ):
total += i + n // i
elif i == sqrt(__magic_name__ ):
total += i
return total - n
def UpperCamelCase__ ( __magic_name__ : int = 1_00_00 ) -> int:
'''simple docstring'''
snake_case__ : Dict = sum(
i
for i in range(1 , __magic_name__ )
if sum_of_divisors(sum_of_divisors(__magic_name__ ) ) == i and sum_of_divisors(__magic_name__ ) != i )
return total
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 38 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A_ : int = logging.get_logger(__name__)
A_ : Dict = {
"google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json",
}
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''bit'''
lowerCamelCase__ = ['''preactivation''', '''bottleneck''']
lowerCamelCase__ = ['''SAME''', '''VALID''']
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
snake_case__ : Tuple = global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported" )
snake_case__ : List[str] = num_channels
snake_case__ : Tuple = embedding_size
snake_case__ : str = hidden_sizes
snake_case__ : Optional[Any] = depths
snake_case__ : List[Any] = layer_type
snake_case__ : Dict = hidden_act
snake_case__ : Union[str, Any] = global_padding
snake_case__ : List[str] = num_groups
snake_case__ : str = drop_path_rate
snake_case__ : List[Any] = embedding_dynamic_padding
snake_case__ : List[str] = output_stride
snake_case__ : Dict = width_factor
snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )]
snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices(
out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
| 38 | 1 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
A_ : Optional[int] = 16
A_ : Optional[Any] = 32
def UpperCamelCase__ ( __magic_name__ : Accelerator , __magic_name__ : int = 16 ) -> int:
'''simple docstring'''
snake_case__ : List[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" )
snake_case__ : Optional[Any] = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__magic_name__ : List[Any] ):
# max_length=None => use the model max length (it's actually the default)
snake_case__ : Dict = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__magic_name__ , max_length=__magic_name__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
snake_case__ : Dict = datasets.map(
__magic_name__ , batched=__magic_name__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
snake_case__ : Union[str, Any] = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__magic_name__ : str ):
# On TPU it's best to pad everything to the same length or training will be very slow.
snake_case__ : Union[str, Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
snake_case__ : Dict = 16
elif accelerator.mixed_precision != "no":
snake_case__ : Union[str, Any] = 8
else:
snake_case__ : Optional[int] = None
return tokenizer.pad(
__magic_name__ , padding="""longest""" , max_length=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_tensors="""pt""" , )
# Instantiate dataloaders.
snake_case__ : str = DataLoader(
tokenized_datasets["""train"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
snake_case__ : str = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__magic_name__ , collate_fn=__magic_name__ , batch_size=__magic_name__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
A_ : Tuple = mocked_dataloaders # noqa: F811
def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : Any ) -> Union[str, Any]:
'''simple docstring'''
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __magic_name__ ) == "1":
snake_case__ : Optional[Any] = 2
# Initialize accelerator
snake_case__ : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
snake_case__ : Any = config["""lr"""]
snake_case__ : List[str] = int(config["""num_epochs"""] )
snake_case__ : int = int(config["""seed"""] )
snake_case__ : Any = int(config["""batch_size"""] )
snake_case__ : Dict = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
snake_case__ : Optional[int] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
snake_case__ : Tuple = batch_size // MAX_GPU_BATCH_SIZE
snake_case__ : Optional[Any] = MAX_GPU_BATCH_SIZE
set_seed(__magic_name__ )
snake_case__ , snake_case__ : List[Any] = get_dataloaders(__magic_name__ , __magic_name__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
snake_case__ : str = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__magic_name__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
snake_case__ : List[Any] = model.to(accelerator.device )
# Instantiate optimizer
snake_case__ : List[str] = AdamW(params=model.parameters() , lr=__magic_name__ )
# Instantiate scheduler
snake_case__ : Optional[int] = get_linear_schedule_with_warmup(
optimizer=__magic_name__ , num_warmup_steps=1_00 , num_training_steps=(len(__magic_name__ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = accelerator.prepare(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )
# Now we train the model
for epoch in range(__magic_name__ ):
model.train()
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
snake_case__ : Union[str, Any] = model(**__magic_name__ )
snake_case__ : str = outputs.loss
snake_case__ : List[Any] = loss / gradient_accumulation_steps
accelerator.backward(__magic_name__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
snake_case__ : Tuple = 0
for step, batch in enumerate(__magic_name__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
snake_case__ : Optional[int] = model(**__magic_name__ )
snake_case__ : Tuple = outputs.logits.argmax(dim=-1 )
snake_case__ , snake_case__ : int = accelerator.gather((predictions, batch["""labels"""]) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(__magic_name__ ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
snake_case__ : Dict = predictions[: len(eval_dataloader.dataset ) - samples_seen]
snake_case__ : int = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=__magic_name__ , references=__magic_name__ , )
snake_case__ : Tuple = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}:" , __magic_name__ )
def UpperCamelCase__ ( ) -> str:
'''simple docstring'''
snake_case__ : str = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__magic_name__ , default=__magic_name__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
snake_case__ : Optional[Any] = parser.parse_args()
snake_case__ : Any = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__magic_name__ , __magic_name__ )
if __name__ == "__main__":
main()
| 38 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import (
BitConfig,
ViTHybridConfig,
ViTHybridForImageClassification,
ViTHybridImageProcessor,
ViTHybridModel,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
A_ : Optional[int] = logging.get_logger(__name__)
def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=False ) -> Tuple:
'''simple docstring'''
snake_case__ : int = []
# fmt: off
# stem:
rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") )
rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") )
rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") )
# backbone
rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") )
rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") )
rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") )
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") )
# transformer encoder
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
# fmt: on
return rename_keys
def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple=False ) -> str:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
snake_case__ : int = """"""
else:
snake_case__ : Dict = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case__ : int = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
snake_case__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
snake_case__ : Optional[int] = in_proj_weight[
: config.hidden_size, :
]
snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size]
snake_case__ : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case__ : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :]
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
snake_case__ : str = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__magic_name__ , __magic_name__ )
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : List[str] = dct.pop(__magic_name__ )
snake_case__ : Dict = val
def UpperCamelCase__ ( ) -> str:
'''simple docstring'''
snake_case__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case__ : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> Optional[int]:
'''simple docstring'''
snake_case__ : int = BitConfig(
global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=__magic_name__ , )
snake_case__ : Optional[int] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=3_84 , num_labels=10_00 )
snake_case__ : Union[str, Any] = False
# load original model from timm
snake_case__ : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case__ : Optional[int] = timm_model.state_dict()
if base_model:
remove_classification_head_(__magic_name__ )
snake_case__ : int = create_rename_keys(__magic_name__ , __magic_name__ )
for src, dest in rename_keys:
rename_key(__magic_name__ , __magic_name__ , __magic_name__ )
read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ )
snake_case__ : str = """huggingface/label-files"""
snake_case__ : Union[str, Any] = """imagenet-1k-id2label.json"""
snake_case__ : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) )
snake_case__ : List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case__ : int = idalabel
snake_case__ : str = {v: k for k, v in idalabel.items()}
# load HuggingFace model
if vit_name[-5:] == "in21k":
snake_case__ : str = ViTHybridModel(__magic_name__ ).eval()
else:
snake_case__ : Union[str, Any] = ViTHybridForImageClassification(__magic_name__ ).eval()
model.load_state_dict(__magic_name__ )
# create image processor
snake_case__ : Optional[Any] = create_transform(**resolve_data_config({} , model=__magic_name__ ) )
snake_case__ : Union[str, Any] = transform.transforms
snake_case__ : Tuple = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
snake_case__ : Any = ViTHybridImageProcessor(
do_resize=__magic_name__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
snake_case__ : Any = prepare_img()
snake_case__ : int = transform(__magic_name__ ).unsqueeze(0 )
snake_case__ : List[str] = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(__magic_name__ , __magic_name__ )
# verify logits
with torch.no_grad():
snake_case__ : Optional[Any] = model(__magic_name__ )
snake_case__ : Union[str, Any] = outputs.logits
print("""Predicted class:""" , logits.argmax(-1 ).item() )
if base_model:
snake_case__ : Dict = timm_model.forward_features(__magic_name__ )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1E-3 )
else:
snake_case__ : int = timm_model(__magic_name__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(f"Saving processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(__magic_name__ )
if push_to_hub:
print(f"Pushing model and processor to the hub {vit_name}" )
model.push_to_hub(f"ybelkada/{vit_name}" )
processor.push_to_hub(f"ybelkada/{vit_name}" )
if __name__ == "__main__":
A_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--vit_name",
default="vit_base_r50_s16_384",
type=str,
help="Name of the hybrid ViT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub."
)
A_ : Union[str, Any] = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 38 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
A_ : Union[str, Any] = logging.get_logger(__name__)
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
warnings.warn(
"""The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use DonutImageProcessor instead.""" , __SCREAMING_SNAKE_CASE , )
super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 38 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = 42
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE=True , ):
super().__init__()
snake_case__ : str = layers_per_block
snake_case__ : int = torch.nn.Convad(
__SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : List[Any] = None
snake_case__ : List[Any] = nn.ModuleList([] )
# down
snake_case__ : Union[str, Any] = block_out_channels[0]
for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = output_channel
snake_case__ : Union[str, Any] = block_out_channels[i]
snake_case__ : int = i == len(__SCREAMING_SNAKE_CASE ) - 1
snake_case__ : str = get_down_block(
__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
self.down_blocks.append(__SCREAMING_SNAKE_CASE )
# mid
snake_case__ : Optional[Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
# out
snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 )
snake_case__ : Tuple = nn.SiLU()
snake_case__ : str = 2 * out_channels if double_z else out_channels
snake_case__ : int = nn.Convad(block_out_channels[-1] , __SCREAMING_SNAKE_CASE , 3 , padding=1 )
snake_case__ : Union[str, Any] = False
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = x
snake_case__ : int = self.conv_in(__SCREAMING_SNAKE_CASE )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
# middle
snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
else:
for down_block in self.down_blocks:
snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# middle
snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE )
else:
# down
for down_block in self.down_blocks:
snake_case__ : List[str] = down_block(__SCREAMING_SNAKE_CASE )
# middle
snake_case__ : str = self.mid_block(__SCREAMING_SNAKE_CASE )
# post-process
snake_case__ : Any = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = self.conv_act(__SCREAMING_SNAKE_CASE )
snake_case__ : str = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE="group" , ):
super().__init__()
snake_case__ : Any = layers_per_block
snake_case__ : Optional[Any] = nn.Convad(
__SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : Union[str, Any] = None
snake_case__ : Dict = nn.ModuleList([] )
snake_case__ : Optional[int] = in_channels if norm_type == """spatial""" else None
# mid
snake_case__ : Tuple = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
# up
snake_case__ : List[Any] = list(reversed(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Optional[Any] = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = output_channel
snake_case__ : Optional[Any] = reversed_block_out_channels[i]
snake_case__ : List[str] = i == len(__SCREAMING_SNAKE_CASE ) - 1
snake_case__ : int = get_up_block(
__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , resnet_time_scale_shift=__SCREAMING_SNAKE_CASE , )
self.up_blocks.append(__SCREAMING_SNAKE_CASE )
snake_case__ : int = output_channel
# out
if norm_type == "spatial":
snake_case__ : List[Any] = SpatialNorm(block_out_channels[0] , __SCREAMING_SNAKE_CASE )
else:
snake_case__ : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 )
snake_case__ : Tuple = nn.SiLU()
snake_case__ : Union[str, Any] = nn.Convad(block_out_channels[0] , __SCREAMING_SNAKE_CASE , 3 , padding=1 )
snake_case__ : int = False
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
snake_case__ : Union[str, Any] = z
snake_case__ : Any = self.conv_in(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
snake_case__ : int = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
snake_case__ : int = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : List[str] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
else:
# middle
snake_case__ : Dict = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
# middle
snake_case__ : List[Any] = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : Dict = up_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# post-process
if latent_embeds is None:
snake_case__ : Optional[Any] = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : str = self.conv_norm_out(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.conv_act(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="random" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ):
super().__init__()
snake_case__ : int = n_e
snake_case__ : Optional[int] = vq_embed_dim
snake_case__ : int = beta
snake_case__ : Optional[int] = legacy
snake_case__ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
snake_case__ : List[str] = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
snake_case__ : Optional[Any] = self.used.shape[0]
snake_case__ : List[str] = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
snake_case__ : Dict = self.re_embed
snake_case__ : List[str] = self.re_embed + 1
print(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices." )
else:
snake_case__ : Union[str, Any] = n_e
snake_case__ : str = sane_index_shape
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
snake_case__ : Dict = inds.reshape(ishape[0] , -1 )
snake_case__ : Any = self.used.to(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = (inds[:, :, None] == used[None, None, ...]).long()
snake_case__ : List[Any] = match.argmax(-1 )
snake_case__ : List[str] = match.sum(2 ) < 1
if self.unknown_index == "random":
snake_case__ : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
snake_case__ : Optional[Any] = self.unknown_index
return new.reshape(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
snake_case__ : int = inds.reshape(ishape[0] , -1 )
snake_case__ : Optional[int] = self.used.to(__SCREAMING_SNAKE_CASE )
if self.re_embed > self.used.shape[0]: # extra token
snake_case__ : List[Any] = 0 # simply set to zero
snake_case__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __SCREAMING_SNAKE_CASE )
return back.reshape(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
# reshape z -> (batch, height, width, channel) and flatten
snake_case__ : Any = z.permute(0 , 2 , 3 , 1 ).contiguous()
snake_case__ : Optional[Any] = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
snake_case__ : Dict = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 )
snake_case__ : Union[str, Any] = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape )
snake_case__ : List[str] = None
snake_case__ : Union[str, Any] = None
# compute loss for embedding
if not self.legacy:
snake_case__ : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
snake_case__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
snake_case__ : Any = z + (z_q - z).detach()
# reshape back to match original input shape
snake_case__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
snake_case__ : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
snake_case__ : str = self.remap_to_used(__SCREAMING_SNAKE_CASE )
snake_case__ : str = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
snake_case__ : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
snake_case__ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
snake_case__ : Optional[int] = self.unmap_to_all(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
snake_case__ : int = self.embedding(__SCREAMING_SNAKE_CASE )
if shape is not None:
snake_case__ : str = z_q.view(__SCREAMING_SNAKE_CASE )
# reshape back to match original input shape
snake_case__ : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ):
snake_case__ : Tuple = parameters
snake_case__ , snake_case__ : Any = torch.chunk(__SCREAMING_SNAKE_CASE , 2 , dim=1 )
snake_case__ : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 )
snake_case__ : Optional[int] = deterministic
snake_case__ : Optional[int] = torch.exp(0.5 * self.logvar )
snake_case__ : Any = torch.exp(self.logvar )
if self.deterministic:
snake_case__ : List[str] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None ):
# make sure sample is on the same device as the parameters and has same dtype
snake_case__ : Dict = randn_tensor(
self.mean.shape , generator=__SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype )
snake_case__ : Optional[int] = self.mean + self.std * sample
return x
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None ):
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=[1, 2, 3] ):
if self.deterministic:
return torch.Tensor([0.0] )
snake_case__ : Any = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
return self.mean
| 38 | 1 |
'''simple docstring'''
import random
def UpperCamelCase__ ( __magic_name__ : int ) -> bool:
'''simple docstring'''
snake_case__ : List[str] = num - 1
snake_case__ : List[Any] = 0
while s % 2 == 0:
snake_case__ : Optional[Any] = s // 2
t += 1
for _ in range(5 ):
snake_case__ : Any = random.randrange(2 , num - 1 )
snake_case__ : Optional[Any] = pow(__magic_name__ , __magic_name__ , __magic_name__ )
if v != 1:
snake_case__ : int = 0
while v != (num - 1):
if i == t - 1:
return False
else:
snake_case__ : int = i + 1
snake_case__ : str = (v**2) % num
return True
def UpperCamelCase__ ( __magic_name__ : int ) -> bool:
'''simple docstring'''
if num < 2:
return False
snake_case__ : Dict = [
2,
3,
5,
7,
11,
13,
17,
19,
23,
29,
31,
37,
41,
43,
47,
53,
59,
61,
67,
71,
73,
79,
83,
89,
97,
1_01,
1_03,
1_07,
1_09,
1_13,
1_27,
1_31,
1_37,
1_39,
1_49,
1_51,
1_57,
1_63,
1_67,
1_73,
1_79,
1_81,
1_91,
1_93,
1_97,
1_99,
2_11,
2_23,
2_27,
2_29,
2_33,
2_39,
2_41,
2_51,
2_57,
2_63,
2_69,
2_71,
2_77,
2_81,
2_83,
2_93,
3_07,
3_11,
3_13,
3_17,
3_31,
3_37,
3_47,
3_49,
3_53,
3_59,
3_67,
3_73,
3_79,
3_83,
3_89,
3_97,
4_01,
4_09,
4_19,
4_21,
4_31,
4_33,
4_39,
4_43,
4_49,
4_57,
4_61,
4_63,
4_67,
4_79,
4_87,
4_91,
4_99,
5_03,
5_09,
5_21,
5_23,
5_41,
5_47,
5_57,
5_63,
5_69,
5_71,
5_77,
5_87,
5_93,
5_99,
6_01,
6_07,
6_13,
6_17,
6_19,
6_31,
6_41,
6_43,
6_47,
6_53,
6_59,
6_61,
6_73,
6_77,
6_83,
6_91,
7_01,
7_09,
7_19,
7_27,
7_33,
7_39,
7_43,
7_51,
7_57,
7_61,
7_69,
7_73,
7_87,
7_97,
8_09,
8_11,
8_21,
8_23,
8_27,
8_29,
8_39,
8_53,
8_57,
8_59,
8_63,
8_77,
8_81,
8_83,
8_87,
9_07,
9_11,
9_19,
9_29,
9_37,
9_41,
9_47,
9_53,
9_67,
9_71,
9_77,
9_83,
9_91,
9_97,
]
if num in low_primes:
return True
for prime in low_primes:
if (num % prime) == 0:
return False
return rabin_miller(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : int = 10_24 ) -> int:
'''simple docstring'''
while True:
snake_case__ : Optional[Any] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) )
if is_prime_low_num(__magic_name__ ):
return num
if __name__ == "__main__":
A_ : Dict = generate_large_prime()
print(("Prime number:", num))
print(("is_prime_low_num:", is_prime_low_num(num)))
| 38 |
'''simple docstring'''
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ):
snake_case__ : str = parent
snake_case__ : Union[str, Any] = batch_size
snake_case__ : Union[str, Any] = image_size
snake_case__ : Optional[int] = patch_size
snake_case__ : List[str] = num_channels
snake_case__ : Any = is_training
snake_case__ : int = use_labels
snake_case__ : str = hidden_size
snake_case__ : Tuple = num_hidden_layers
snake_case__ : str = backbone_out_indices
snake_case__ : List[Any] = num_attention_heads
snake_case__ : Dict = intermediate_size
snake_case__ : Optional[Any] = hidden_act
snake_case__ : str = hidden_dropout_prob
snake_case__ : int = attention_probs_dropout_prob
snake_case__ : Dict = initializer_range
snake_case__ : Optional[int] = num_labels
snake_case__ : str = backbone_featmap_shape
snake_case__ : List[Any] = scope
snake_case__ : Optional[Any] = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
snake_case__ : List[Any] = (image_size // patch_size) ** 2
snake_case__ : Union[str, Any] = num_patches + 1
def __UpperCamelCase ( self ):
snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : str = None
if self.use_labels:
snake_case__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
snake_case__ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self ):
snake_case__ : Any = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = self.num_labels
snake_case__ : str = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = self.num_labels
snake_case__ : Dict = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs
snake_case__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
lowerCamelCase__ = (
{
'''depth-estimation''': DPTForDepthEstimation,
'''feature-extraction''': DPTModel,
'''image-segmentation''': DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = DPTModelTester(self )
snake_case__ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __UpperCamelCase ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case__ : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : List[str] = [*signature.parameters.keys()]
snake_case__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : int = True
if model_class in get_values(__SCREAMING_SNAKE_CASE ):
continue
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.train()
snake_case__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def __UpperCamelCase ( self ):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : Union[str, Any] = False
snake_case__ : str = True
if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing:
continue
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.gradient_checkpointing_enable()
model.train()
snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : str = _config_zero_init(__SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
snake_case__ : Any = model_class(config=__SCREAMING_SNAKE_CASE )
# Skip the check for the backbone
snake_case__ : str = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
snake_case__ : Optional[int] = [f"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def __UpperCamelCase ( self ):
pass
@slow
def __UpperCamelCase ( self ):
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
snake_case__ : List[str] = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
# We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type
snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : Dict = """add"""
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
snake_case__ : List[str] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( ) -> Dict:
'''simple docstring'''
snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Dict = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
snake_case__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = prepare_img()
snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = outputs.predicted_depth
# verify the predicted depth
snake_case__ : Any = torch.Size((1, 3_8_4, 3_8_4) )
self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = torch.tensor(
[[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 38 | 1 |
'''simple docstring'''
import unittest
from parameterized import parameterized
from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
GPTNeoXModel,
)
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=9_9 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ):
snake_case__ : List[str] = parent
snake_case__ : Tuple = batch_size
snake_case__ : str = seq_length
snake_case__ : Optional[Any] = is_training
snake_case__ : str = use_input_mask
snake_case__ : List[str] = use_token_type_ids
snake_case__ : Optional[Any] = use_labels
snake_case__ : Any = vocab_size
snake_case__ : List[Any] = hidden_size
snake_case__ : List[Any] = num_hidden_layers
snake_case__ : Optional[int] = num_attention_heads
snake_case__ : Tuple = intermediate_size
snake_case__ : Dict = hidden_act
snake_case__ : Optional[Any] = hidden_dropout_prob
snake_case__ : int = attention_probs_dropout_prob
snake_case__ : Tuple = max_position_embeddings
snake_case__ : Union[str, Any] = type_vocab_size
snake_case__ : List[str] = type_sequence_label_size
snake_case__ : Any = initializer_range
snake_case__ : str = num_labels
snake_case__ : Optional[int] = num_choices
snake_case__ : int = scope
snake_case__ : Tuple = vocab_size - 1
def __UpperCamelCase ( self ):
snake_case__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ : str = None
if self.use_input_mask:
snake_case__ : str = random_attention_mask([self.batch_size, self.seq_length] )
snake_case__ : Any = None
if self.use_labels:
snake_case__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case__ : List[str] = self.get_config()
return config, input_ids, input_mask, token_labels
def __UpperCamelCase ( self ):
return GPTNeoXConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = self.prepare_config_and_inputs()
snake_case__ : Dict = True
return config, input_ids, input_mask, token_labels
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[str] = GPTNeoXModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )
snake_case__ : str = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = True
snake_case__ : Tuple = GPTNeoXModel(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = GPTNeoXForCausalLM(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = self.num_labels
snake_case__ : Any = GPTNeoXForQuestionAnswering(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : int = self.num_labels
snake_case__ : str = GPTNeoXForSequenceClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[int] = self.num_labels
snake_case__ : Union[str, Any] = GPTNeoXForTokenClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = True
snake_case__ : List[str] = GPTNeoXForCausalLM(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
# first forward pass
snake_case__ : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
snake_case__ : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ : Dict = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
snake_case__ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case__ : List[str] = torch.cat([input_mask, next_mask] , dim=-1 )
snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = output_from_no_past["""hidden_states"""][0]
snake_case__ : Union[str, Any] = model(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )["""hidden_states"""][0]
# select random slice
snake_case__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case__ : str = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case__ : Dict = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __UpperCamelCase ( self ):
snake_case__ : str = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs
snake_case__ : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(
GPTNeoXModel,
GPTNeoXForCausalLM,
GPTNeoXForQuestionAnswering,
GPTNeoXForSequenceClassification,
GPTNeoXForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase__ = (GPTNeoXForCausalLM,) if is_torch_available() else ()
lowerCamelCase__ = (
{
'''feature-extraction''': GPTNeoXModel,
'''question-answering''': GPTNeoXForQuestionAnswering,
'''text-classification''': GPTNeoXForSequenceClassification,
'''text-generation''': GPTNeoXForCausalLM,
'''token-classification''': GPTNeoXForTokenClassification,
'''zero-shot''': GPTNeoXForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def __UpperCamelCase ( self ):
snake_case__ : Dict = GPTNeoXModelTester(self )
snake_case__ : Optional[int] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=6_4 , num_attention_heads=8 )
def __UpperCamelCase ( self ):
self.config_tester.run_common_tests()
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
# This regression test was failing with PyTorch < 1.3
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder()
snake_case__ : Any = None
self.model_tester.create_and_check_model_as_decoder(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past_large_inputs(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_causal_lm(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE )
@unittest.skip(reason="""Feed forward chunking is not implemented""" )
def __UpperCamelCase ( self ):
pass
@parameterized.expand([("""linear""",), ("""dynamic""",)] )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : Union[str, Any] = ids_tensor([1, 1_0] , config.vocab_size )
snake_case__ : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
snake_case__ : Dict = GPTNeoXModel(__SCREAMING_SNAKE_CASE )
original_model.to(__SCREAMING_SNAKE_CASE )
original_model.eval()
snake_case__ : int = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state
snake_case__ : str = original_model(__SCREAMING_SNAKE_CASE ).last_hidden_state
set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights
snake_case__ : Dict = {"""type""": scaling_type, """factor""": 10.0}
snake_case__ : Optional[Any] = GPTNeoXModel(__SCREAMING_SNAKE_CASE )
scaled_model.to(__SCREAMING_SNAKE_CASE )
scaled_model.eval()
snake_case__ : Any = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state
snake_case__ : Optional[int] = scaled_model(__SCREAMING_SNAKE_CASE ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5 ) )
else:
self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-5 ) )
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCamelCase ( self ):
snake_case__ : Any = AutoTokenizer.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
for checkpointing in [True, False]:
snake_case__ : Tuple = GPTNeoXForCausalLM.from_pretrained("""EleutherAI/pythia-410m-deduped""" )
if checkpointing:
model.gradient_checkpointing_enable()
else:
model.gradient_checkpointing_disable()
model.to(__SCREAMING_SNAKE_CASE )
snake_case__ : str = tokenizer("""My favorite food is""" , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE )
# The hub repo. is updated on 2023-04-04, resulting in poor outputs.
# See: https://github.com/huggingface/transformers/pull/24193
snake_case__ : str = """My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI'm not sure"""
snake_case__ : Union[str, Any] = model.generate(**__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , max_new_tokens=2_0 )
snake_case__ : Optional[int] = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE )[0]
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 38 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Dict:
'''simple docstring'''
snake_case__ : int = botoa.client("""iam""" )
snake_case__ : Union[str, Any] = {
"""Version""": """2012-10-17""",
"""Statement""": [
{"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) )
snake_case__ : Dict = {
"""Version""": """2012-10-17""",
"""Statement""": [
{
"""Effect""": """Allow""",
"""Action""": [
"""sagemaker:*""",
"""ecr:GetDownloadUrlForLayer""",
"""ecr:BatchGetImage""",
"""ecr:BatchCheckLayerAvailability""",
"""ecr:GetAuthorizationToken""",
"""cloudwatch:PutMetricData""",
"""cloudwatch:GetMetricData""",
"""cloudwatch:GetMetricStatistics""",
"""cloudwatch:ListMetrics""",
"""logs:CreateLogGroup""",
"""logs:CreateLogStream""",
"""logs:DescribeLogStreams""",
"""logs:PutLogEvents""",
"""logs:GetLogEvents""",
"""s3:CreateBucket""",
"""s3:ListBucket""",
"""s3:GetBucketLocation""",
"""s3:GetObject""",
"""s3:PutObject""",
],
"""Resource""": """*""",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=__magic_name__ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , )
except iam_client.exceptions.EntityAlreadyExistsException:
print(f"role {role_name} already exists. Using existing one" )
def UpperCamelCase__ ( __magic_name__ : Any ) -> Tuple:
'''simple docstring'''
snake_case__ : List[str] = botoa.client("""iam""" )
return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"]
def UpperCamelCase__ ( ) -> Tuple:
'''simple docstring'''
snake_case__ : Union[str, Any] = _ask_options(
"""How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , )
snake_case__ : List[Any] = None
if credentials_configuration == 0:
snake_case__ : Dict = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" )
snake_case__ : List[str] = aws_profile
else:
print(
"""Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"""
"""`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" )
snake_case__ : List[str] = _ask_field("""AWS Access Key ID: """ )
snake_case__ : int = aws_access_key_id
snake_case__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ )
snake_case__ : List[str] = aws_secret_access_key
snake_case__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" )
snake_case__ : Optional[int] = aws_region
snake_case__ : int = _ask_options(
"""Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , )
if role_management == 0:
snake_case__ : Optional[Any] = _ask_field("""Enter your IAM role name: """ )
else:
snake_case__ : Optional[int] = """accelerate_sagemaker_execution_role"""
print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" )
_create_iam_role_for_sagemaker(__magic_name__ )
snake_case__ : Dict = _ask_field(
"""Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Any = None
if is_custom_docker_image:
snake_case__ : str = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() )
snake_case__ : Tuple = _ask_field(
"""Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : List[Any] = None
if is_sagemaker_inputs_enabled:
snake_case__ : str = _ask_field(
"""Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , )
snake_case__ : Optional[int] = _ask_field(
"""Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Optional[Any] = None
if is_sagemaker_metrics_enabled:
snake_case__ : List[Any] = _ask_field(
"""Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , )
snake_case__ : Tuple = _ask_options(
"""What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , )
snake_case__ : Any = {}
snake_case__ : List[Any] = _ask_field(
"""Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
if use_dynamo:
snake_case__ : str = """dynamo_"""
snake_case__ : Tuple = _ask_options(
"""Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , )
snake_case__ : List[str] = _ask_field(
"""Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
if use_custom_options:
snake_case__ : str = _ask_options(
"""Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , )
snake_case__ : Union[str, Any] = _ask_field(
"""Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : str = _ask_field(
"""Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Dict = """Which EC2 instance type you want to use for your training?"""
if distributed_type != SageMakerDistributedType.NO:
snake_case__ : List[str] = _ask_options(
__magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
snake_case__ : Optional[int] = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" )
snake_case__ : Dict = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
snake_case__ : Optional[Any] = _ask_field(
"""How many machines do you want use? [1]: """ , __magic_name__ , default=1 , )
snake_case__ : Union[str, Any] = _ask_options(
"""Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , )
if use_dynamo and mixed_precision == "no":
print(
"""Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" )
return SageMakerConfig(
image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
| 38 | 1 |
'''simple docstring'''
import json
import os
import tempfile
from unittest.mock import patch
import torch
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
def UpperCamelCase__ ( ) -> Any:
'''simple docstring'''
snake_case__ : Any = torch.nn.Linear(2 , 4 )
snake_case__ : Union[str, Any] = torch.optim.AdamW(model.parameters() , lr=1.0 )
snake_case__ : Union[str, Any] = torch.optim.lr_scheduler.OneCycleLR(__magic_name__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 )
snake_case__ : str = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) )
snake_case__ : Any = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) )
return model, optimizer, scheduler, train_dl, valid_dl
def UpperCamelCase__ ( __magic_name__ : str ) -> Dict:
'''simple docstring'''
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]:
'''simple docstring'''
snake_case__ : int = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict()
model.load_state_dict(__magic_name__ )
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@require_cuda
def __UpperCamelCase ( self ):
snake_case__ : Any = Accelerator()
assert PartialState._shared_state["_cpu"] is False
assert PartialState._shared_state["device"].type == "cuda"
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
snake_case__ : int = Accelerator(cpu=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = Accelerator()
snake_case__ : Optional[int] = GradientState()
assert state.num_steps == 1
snake_case__ : Optional[int] = 4
assert state.num_steps == 4
assert state.sync_gradients is True
snake_case__ : int = False
assert state.sync_gradients is False
GradientState._reset_state()
def __UpperCamelCase ( self ):
snake_case__ : Any = Accelerator()
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = create_components()
(
(
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) ,
) : str = accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertTrue(prepared_model in accelerator._models )
self.assertTrue(prepared_optimizer in accelerator._optimizers )
self.assertTrue(prepared_scheduler in accelerator._schedulers )
self.assertTrue(prepared_train_dl in accelerator._dataloaders )
self.assertTrue(prepared_valid_dl in accelerator._dataloaders )
def __UpperCamelCase ( self ):
snake_case__ : str = Accelerator()
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = create_components()
accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
accelerator.free_memory()
self.assertTrue(len(accelerator._models ) == 0 )
self.assertTrue(len(accelerator._optimizers ) == 0 )
self.assertTrue(len(accelerator._schedulers ) == 0 )
self.assertTrue(len(accelerator._dataloaders ) == 0 )
def __UpperCamelCase ( self ):
PartialState._reset_state()
# Mock torch.cuda.set_device to avoid an exception as the device doesn't exist
def noop(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
pass
with patch("""torch.cuda.set_device""" , __SCREAMING_SNAKE_CASE ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ):
snake_case__ : Optional[int] = Accelerator()
self.assertEqual(str(accelerator.state.device ) , """cuda:64""" )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = Accelerator()
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = create_components()
accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = get_signature(__SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(__SCREAMING_SNAKE_CASE )
# make sure random weights don't match
load_random_weights(__SCREAMING_SNAKE_CASE )
self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) > 1e-3 )
# make sure loaded weights match
accelerator.load_state(__SCREAMING_SNAKE_CASE )
self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) < 1e-3 )
def __UpperCamelCase ( self ):
snake_case__ : Dict = Accelerator()
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = create_components()
accelerator.prepare(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = get_signature(__SCREAMING_SNAKE_CASE )
# saving hook
def save_config(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = {"""class_name""": models[0].__class__.__name__}
with open(os.path.join(__SCREAMING_SNAKE_CASE , """data.json""" ) , """w""" ) as f:
json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# loading hook
def load_config(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
with open(os.path.join(__SCREAMING_SNAKE_CASE , """data.json""" ) , """r""" ) as f:
snake_case__ : Tuple = json.load(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = config["""class_name"""]
snake_case__ : Any = accelerator.register_save_state_pre_hook(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = accelerator.register_load_state_pre_hook(__SCREAMING_SNAKE_CASE )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(__SCREAMING_SNAKE_CASE )
# make sure random weights don't match with hooks
load_random_weights(__SCREAMING_SNAKE_CASE )
self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) > 1e-3 )
# random class name to verify correct one is loaded
snake_case__ : Optional[Any] = """random"""
# make sure loaded weights match with hooks
accelerator.load_state(__SCREAMING_SNAKE_CASE )
self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) < 1e-3 )
# mode.class_name is loaded from config
self.assertTrue(model.class_name == model.__class__.__name__ )
# remove hooks
save_hook.remove()
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(__SCREAMING_SNAKE_CASE )
# make sure random weights don't match with hooks removed
load_random_weights(__SCREAMING_SNAKE_CASE )
self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) > 1e-3 )
# random class name to verify correct one is loaded
snake_case__ : Dict = """random"""
# make sure loaded weights match with hooks removed
accelerator.load_state(__SCREAMING_SNAKE_CASE )
self.assertTrue(abs(model_signature - get_signature(__SCREAMING_SNAKE_CASE ) ) < 1e-3 )
# mode.class_name is NOT loaded from config
self.assertTrue(model.class_name != model.__class__.__name__ )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = Accelerator()
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = create_components()
snake_case__ : Dict = None
# This should work
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = accelerator.prepare(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertTrue(dummy_obj is None )
def __UpperCamelCase ( self ):
snake_case__ : Dict = Accelerator()
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = create_components()
snake_case__ : int = [1, 2, 3]
# This should work
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = accelerator.prepare(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertEqual(
getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , )
self.assertEqual(
getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(__SCREAMING_SNAKE_CASE , """_is_accelerate_prepared""" , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , )
@slow
@require_bnb
def __UpperCamelCase ( self ):
from transformers import AutoModelForCausalLM
snake_case__ : List[Any] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , load_in_abit=__SCREAMING_SNAKE_CASE , device_map={"""""": 0} , )
snake_case__ : str = Accelerator()
# This should work
snake_case__ : List[Any] = accelerator.prepare(__SCREAMING_SNAKE_CASE )
@slow
@require_bnb
def __UpperCamelCase ( self ):
from transformers import AutoModelForCausalLM
snake_case__ : List[str] = Accelerator()
with init_empty_weights():
snake_case__ : Any = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , )
model.tie_weights()
snake_case__ : Optional[int] = infer_auto_device_map(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = """cpu"""
snake_case__ : Optional[int] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , device_map=__SCREAMING_SNAKE_CASE , load_in_abit=__SCREAMING_SNAKE_CASE , llm_inta_enable_fpaa_cpu_offload=__SCREAMING_SNAKE_CASE )
# This should not work and get value error
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
snake_case__ : str = accelerator.prepare(__SCREAMING_SNAKE_CASE )
@slow
@require_bnb
@require_multi_gpu
def __UpperCamelCase ( self ):
from transformers import AutoModelForCausalLM
snake_case__ : Any = {"""distributed_type""": DistributedType.MULTI_GPU}
with init_empty_weights():
snake_case__ : List[str] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , )
model.tie_weights()
snake_case__ : Tuple = infer_auto_device_map(__SCREAMING_SNAKE_CASE )
snake_case__ : str = 1
snake_case__ : Any = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , load_in_abit=__SCREAMING_SNAKE_CASE , device_map=__SCREAMING_SNAKE_CASE , )
snake_case__ : List[str] = Accelerator()
# This should not work and get value error
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
snake_case__ : Union[str, Any] = accelerator.prepare(__SCREAMING_SNAKE_CASE )
PartialState._reset_state()
@slow
@require_bnb
@require_multi_gpu
def __UpperCamelCase ( self ):
from transformers import AutoModelForCausalLM
with init_empty_weights():
snake_case__ : Tuple = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , )
snake_case__ : Optional[Any] = infer_auto_device_map(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = 1
snake_case__ : List[str] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , load_in_abit=__SCREAMING_SNAKE_CASE , device_map=__SCREAMING_SNAKE_CASE , )
snake_case__ : Tuple = Accelerator()
# This should work
snake_case__ : Any = accelerator.prepare(__SCREAMING_SNAKE_CASE )
@require_cuda
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = torch.nn.Linear(1_0 , 1_0 )
snake_case__ : Tuple = torch.optim.SGD(model.parameters() , lr=0.01 )
snake_case__ : Union[str, Any] = Accelerator(cpu=__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = accelerator.prepare(__SCREAMING_SNAKE_CASE )
| 38 |
'''simple docstring'''
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def UpperCamelCase__ ( __magic_name__ : str = "laptop" ) -> DataFrame:
'''simple docstring'''
snake_case__ : Union[str, Any] = f"https://www.amazon.in/laptop/s?k={product}"
snake_case__ : List[str] = {
"""User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""",
"""Accept-Language""": """en-US, en;q=0.5""",
}
snake_case__ : int = BeautifulSoup(requests.get(__magic_name__ , headers=__magic_name__ ).text )
# Initialize a Pandas dataframe with the column titles
snake_case__ : Optional[Any] = DataFrame(
columns=[
"""Product Title""",
"""Product Link""",
"""Current Price of the product""",
"""Product Rating""",
"""MRP of the product""",
"""Discount""",
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
"""div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ):
try:
snake_case__ : Optional[int] = item.ha.text
snake_case__ : Any = """https://www.amazon.in/""" + item.ha.a["""href"""]
snake_case__ : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text
try:
snake_case__ : Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text
except AttributeError:
snake_case__ : Optional[int] = """Not available"""
try:
snake_case__ : Tuple = (
"""₹"""
+ item.find(
"""span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1]
)
except AttributeError:
snake_case__ : Optional[Any] = """"""
try:
snake_case__ : str = float(
(
(
float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) )
- float(product_price.strip("""₹""" ).replace(""",""" , """""" ) )
)
/ float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) )
)
* 1_00 )
except ValueError:
snake_case__ : List[Any] = float("""nan""" )
except AttributeError:
pass
snake_case__ : str = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
snake_case__ : List[Any] = """ """
snake_case__ : Union[str, Any] = """ """
data_frame.index += 1
return data_frame
if __name__ == "__main__":
A_ : int = "headphones"
get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
| 38 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ : Optional[Any] = {
"configuration_xmod": [
"XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XmodConfig",
"XmodOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : str = [
"XMOD_PRETRAINED_MODEL_ARCHIVE_LIST",
"XmodForCausalLM",
"XmodForMaskedLM",
"XmodForMultipleChoice",
"XmodForQuestionAnswering",
"XmodForSequenceClassification",
"XmodForTokenClassification",
"XmodModel",
"XmodPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
A_ : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 38 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = LongformerTokenizer
lowerCamelCase__ = True
lowerCamelCase__ = LongformerTokenizerFast
lowerCamelCase__ = True
def __UpperCamelCase ( self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
snake_case__ : Union[str, Any] = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
snake_case__ : Optional[int] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
snake_case__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
snake_case__ : Any = {"""unk_token""": """<unk>"""}
snake_case__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
snake_case__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) )
def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ):
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = """lower newer"""
snake_case__ : Dict = """lower newer"""
return input_text, output_text
def __UpperCamelCase ( self ):
snake_case__ : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
snake_case__ : Tuple = """lower newer"""
snake_case__ : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
snake_case__ : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True)
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokens + [tokenizer.unk_token]
snake_case__ : List[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] )
self.assertListEqual(
tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , )
@slow
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" )
snake_case__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = tokenizer.encode(
"""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer.encode(
"""sequence builders""" , """multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.get_tokenizer()
snake_case__ : int = """Encode this sequence."""
snake_case__ : Union[str, Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]]
# Testing encoder arguments
snake_case__ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({"""bos_token""": """<s>"""} )
snake_case__ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Testing spaces after special tokens
snake_case__ : List[str] = """<mask>"""
tokenizer.add_special_tokens(
{"""mask_token""": AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space
snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
snake_case__ : str = """Encode <mask> sequence"""
snake_case__ : Tuple = """Encode <mask>sequence"""
snake_case__ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = encoded.index(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE )
snake_case__ : str = encoded.index(__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = """A, <mask> AllenNLP sentence."""
snake_case__ : str = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
snake_case__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
snake_case__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
__SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
__SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
def __UpperCamelCase ( self ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
snake_case__ : Any = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
snake_case__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE )
self.assertEqual(post_processor_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE )
self.assertEqual(post_processor_state["""trim_offsets"""] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
snake_case__ : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name`
snake_case__ : Any = f"{text_of_1_token} {text_of_1_token}"
snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Optional[Any] = f" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Any = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
| 38 | 1 |
'''simple docstring'''
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True)
os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True)
def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple:
'''simple docstring'''
if hor == 1_28:
snake_case__ : Dict = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
snake_case__ : List[str] = (32, 1_28, 2_56)
snake_case__ : Tuple = ("""UpResnetBlock1D""", """UpResnetBlock1D""")
elif hor == 32:
snake_case__ : Dict = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
snake_case__ : Any = (32, 64, 1_28, 2_56)
snake_case__ : str = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""")
snake_case__ : Any = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" )
snake_case__ : List[str] = model.state_dict()
snake_case__ : Optional[Any] = {
"""down_block_types""": down_block_types,
"""block_out_channels""": block_out_channels,
"""up_block_types""": up_block_types,
"""layers_per_block""": 1,
"""use_timestep_embedding""": True,
"""out_block_type""": """OutConv1DBlock""",
"""norm_num_groups""": 8,
"""downsample_each_block""": False,
"""in_channels""": 14,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""sample_size""": 6_55_36,
"""mid_block_type""": """MidResTemporalBlock1D""",
"""act_fn""": """mish""",
}
snake_case__ : Any = UNetaDModel(**__magic_name__ )
print(f"length of state dict: {len(state_dict.keys() )}" )
print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
snake_case__ : Union[str, Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
snake_case__ : Any = state_dict.pop(__magic_name__ )
hf_value_function.load_state_dict(__magic_name__ )
torch.save(hf_value_function.state_dict() , f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" )
with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json" , """w""" ) as f:
json.dump(__magic_name__ , __magic_name__ )
def UpperCamelCase__ ( ) -> Optional[Any]:
'''simple docstring'''
snake_case__ : Tuple = {
"""in_channels""": 14,
"""down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""),
"""up_block_types""": (),
"""out_block_type""": """ValueFunction""",
"""mid_block_type""": """ValueFunctionMidBlock1D""",
"""block_out_channels""": (32, 64, 1_28, 2_56),
"""layers_per_block""": 1,
"""downsample_each_block""": True,
"""sample_size""": 6_55_36,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""use_timestep_embedding""": True,
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""norm_num_groups""": 8,
"""act_fn""": """mish""",
}
snake_case__ : Tuple = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" )
snake_case__ : Optional[Any] = model
snake_case__ : List[str] = UNetaDModel(**__magic_name__ )
print(f"length of state dict: {len(state_dict.keys() )}" )
print(f"length of value function dict: {len(hf_value_function.state_dict().keys() )}" )
snake_case__ : Union[str, Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
snake_case__ : List[str] = state_dict.pop(__magic_name__ )
hf_value_function.load_state_dict(__magic_name__ )
torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" )
with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f:
json.dump(__magic_name__ , __magic_name__ )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 38 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A_ : int = logging.get_logger(__name__)
A_ : Any = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''resnet'''
lowerCamelCase__ = ['''basic''', '''bottleneck''']
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="bottleneck" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
snake_case__ : List[Any] = num_channels
snake_case__ : str = embedding_size
snake_case__ : List[Any] = hidden_sizes
snake_case__ : Dict = depths
snake_case__ : List[Any] = layer_type
snake_case__ : int = hidden_act
snake_case__ : Union[str, Any] = downsample_in_first_stage
snake_case__ : Dict = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )]
snake_case__ , snake_case__ : Any = get_aligned_output_features_output_indices(
out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def __UpperCamelCase ( self ):
return 1e-3
| 38 | 1 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Dict:
'''simple docstring'''
snake_case__ : int = botoa.client("""iam""" )
snake_case__ : Union[str, Any] = {
"""Version""": """2012-10-17""",
"""Statement""": [
{"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) )
snake_case__ : Dict = {
"""Version""": """2012-10-17""",
"""Statement""": [
{
"""Effect""": """Allow""",
"""Action""": [
"""sagemaker:*""",
"""ecr:GetDownloadUrlForLayer""",
"""ecr:BatchGetImage""",
"""ecr:BatchCheckLayerAvailability""",
"""ecr:GetAuthorizationToken""",
"""cloudwatch:PutMetricData""",
"""cloudwatch:GetMetricData""",
"""cloudwatch:GetMetricStatistics""",
"""cloudwatch:ListMetrics""",
"""logs:CreateLogGroup""",
"""logs:CreateLogStream""",
"""logs:DescribeLogStreams""",
"""logs:PutLogEvents""",
"""logs:GetLogEvents""",
"""s3:CreateBucket""",
"""s3:ListBucket""",
"""s3:GetBucketLocation""",
"""s3:GetObject""",
"""s3:PutObject""",
],
"""Resource""": """*""",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=__magic_name__ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , )
except iam_client.exceptions.EntityAlreadyExistsException:
print(f"role {role_name} already exists. Using existing one" )
def UpperCamelCase__ ( __magic_name__ : Any ) -> Tuple:
'''simple docstring'''
snake_case__ : List[str] = botoa.client("""iam""" )
return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"]
def UpperCamelCase__ ( ) -> Tuple:
'''simple docstring'''
snake_case__ : Union[str, Any] = _ask_options(
"""How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , )
snake_case__ : List[Any] = None
if credentials_configuration == 0:
snake_case__ : Dict = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" )
snake_case__ : List[str] = aws_profile
else:
print(
"""Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"""
"""`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" )
snake_case__ : List[str] = _ask_field("""AWS Access Key ID: """ )
snake_case__ : int = aws_access_key_id
snake_case__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ )
snake_case__ : List[str] = aws_secret_access_key
snake_case__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" )
snake_case__ : Optional[int] = aws_region
snake_case__ : int = _ask_options(
"""Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , )
if role_management == 0:
snake_case__ : Optional[Any] = _ask_field("""Enter your IAM role name: """ )
else:
snake_case__ : Optional[int] = """accelerate_sagemaker_execution_role"""
print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" )
_create_iam_role_for_sagemaker(__magic_name__ )
snake_case__ : Dict = _ask_field(
"""Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Any = None
if is_custom_docker_image:
snake_case__ : str = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() )
snake_case__ : Tuple = _ask_field(
"""Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : List[Any] = None
if is_sagemaker_inputs_enabled:
snake_case__ : str = _ask_field(
"""Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , )
snake_case__ : Optional[int] = _ask_field(
"""Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Optional[Any] = None
if is_sagemaker_metrics_enabled:
snake_case__ : List[Any] = _ask_field(
"""Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , )
snake_case__ : Tuple = _ask_options(
"""What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , )
snake_case__ : Any = {}
snake_case__ : List[Any] = _ask_field(
"""Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
if use_dynamo:
snake_case__ : str = """dynamo_"""
snake_case__ : Tuple = _ask_options(
"""Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , )
snake_case__ : List[str] = _ask_field(
"""Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
if use_custom_options:
snake_case__ : str = _ask_options(
"""Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , )
snake_case__ : Union[str, Any] = _ask_field(
"""Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : str = _ask_field(
"""Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Dict = """Which EC2 instance type you want to use for your training?"""
if distributed_type != SageMakerDistributedType.NO:
snake_case__ : List[str] = _ask_options(
__magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
snake_case__ : Optional[int] = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" )
snake_case__ : Dict = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
snake_case__ : Optional[Any] = _ask_field(
"""How many machines do you want use? [1]: """ , __magic_name__ , default=1 , )
snake_case__ : Union[str, Any] = _ask_options(
"""Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , )
if use_dynamo and mixed_precision == "no":
print(
"""Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" )
return SageMakerConfig(
image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
| 38 |
'''simple docstring'''
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 38 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A_ : Optional[Any] = {
"configuration_vision_encoder_decoder": ["VisionEncoderDecoderConfig", "VisionEncoderDecoderOnnxConfig"]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Optional[Any] = ["VisionEncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : int = ["TFVisionEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = ["FlaxVisionEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
A_ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 38 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self ):
snake_case__ : str = []
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_init_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_train_begin""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_train_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_epoch_begin""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_epoch_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_step_begin""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_step_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_evaluate""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_predict""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_save""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_log""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_prediction_step""" )
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Tuple = tempfile.mkdtemp()
def __UpperCamelCase ( self ):
shutil.rmtree(self.output_dir )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ):
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
snake_case__ : List[Any] = RegressionDataset(length=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = RegressionDataset(length=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = RegressionModelConfig(a=__SCREAMING_SNAKE_CASE , b=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = RegressionPreTrainedModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = TrainingArguments(self.output_dir , disable_tqdm=__SCREAMING_SNAKE_CASE , report_to=[] , **__SCREAMING_SNAKE_CASE )
return Trainer(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , callbacks=__SCREAMING_SNAKE_CASE , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) )
# Order doesn't matter
snake_case__ : Tuple = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ )
snake_case__ : List[str] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ )
for cba, cba in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(__SCREAMING_SNAKE_CASE , cba.__class__ )
elif not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(cba.__class__ , __SCREAMING_SNAKE_CASE )
else:
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Tuple = ["""on_init_end""", """on_train_begin"""]
snake_case__ : Union[str, Any] = 0
snake_case__ : Dict = len(trainer.get_eval_dataloader() )
snake_case__ : Any = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs ):
expected_events.append("""on_epoch_begin""" )
for _ in range(__SCREAMING_SNAKE_CASE ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""" )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""" )
expected_events.append("""on_epoch_end""" )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def __UpperCamelCase ( self ):
snake_case__ : Any = self.get_trainer()
snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
# Callbacks passed at init are added to the default callbacks
snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(__SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
snake_case__ : Optional[Any] = self.get_trainer(disable_tqdm=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
snake_case__ : int = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.remove(__SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = self.get_trainer()
snake_case__ : List[str] = trainer.pop_callback(__SCREAMING_SNAKE_CASE )
self.assertEqual(cb.__class__ , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
trainer.add_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
# We can also add, pop, or remove by instance
snake_case__ : List[Any] = self.get_trainer()
snake_case__ : List[str] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.remove(__SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = self.get_trainer()
snake_case__ : Any = trainer.callback_handler.callbacks[0]
snake_case__ : Optional[Any] = trainer.pop_callback(__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
trainer.add_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
snake_case__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
# Independent log/save/eval
snake_case__ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
snake_case__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
snake_case__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" )
trainer.train()
snake_case__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" )
trainer.train()
snake_case__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
# A bit of everything
snake_case__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
snake_case__ : Tuple = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock:
snake_case__ : List[str] = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(__SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
| 38 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ : List[str] = {
"configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"],
"tokenization_lxmert": ["LxmertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Optional[int] = ["LxmertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : int = [
"LxmertEncoder",
"LxmertForPreTraining",
"LxmertForQuestionAnswering",
"LxmertModel",
"LxmertPreTrainedModel",
"LxmertVisualFeatureEncoder",
"LxmertXLayer",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = [
"TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFLxmertForPreTraining",
"TFLxmertMainLayer",
"TFLxmertModel",
"TFLxmertPreTrainedModel",
"TFLxmertVisualFeatureEncoder",
]
if TYPE_CHECKING:
from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig
from .tokenization_lxmert import LxmertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_lxmert_fast import LxmertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lxmert import (
LxmertEncoder,
LxmertForPreTraining,
LxmertForQuestionAnswering,
LxmertModel,
LxmertPreTrainedModel,
LxmertVisualFeatureEncoder,
LxmertXLayer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_lxmert import (
TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLxmertForPreTraining,
TFLxmertMainLayer,
TFLxmertModel,
TFLxmertPreTrainedModel,
TFLxmertVisualFeatureEncoder,
)
else:
import sys
A_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 38 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ):
snake_case__ : Any = size if size is not None else {"""height""": 1_8, """width""": 1_8}
snake_case__ : List[Any] = parent
snake_case__ : int = batch_size
snake_case__ : List[Any] = num_channels
snake_case__ : str = image_size
snake_case__ : Union[str, Any] = min_resolution
snake_case__ : List[Any] = max_resolution
snake_case__ : Tuple = do_resize
snake_case__ : int = size
snake_case__ : Tuple = do_normalize
snake_case__ : Dict = image_mean
snake_case__ : Union[str, Any] = image_std
def __UpperCamelCase ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = DPTImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ):
snake_case__ : str = DPTImageProcessingTester(self )
@property
def __UpperCamelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) )
def __UpperCamelCase ( self ):
snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} )
snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 38 | 1 |
'''simple docstring'''
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class __snake_case :
'''simple docstring'''
@staticmethod
def __UpperCamelCase ( *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
pass
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
A_ : str = (
"https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png"
)
@is_pipeline_test
@require_torch
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[str] = pipeline(
"""document-question-answering""" , model=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = INVOICE_URL
snake_case__ : Tuple = list(zip(*apply_tesseract(load_image(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """""" ) ) )
snake_case__ : Dict = """What is the placebo?"""
snake_case__ : Dict = [
{
"""image""": load_image(__SCREAMING_SNAKE_CASE ),
"""question""": question,
},
{
"""image""": image,
"""question""": question,
},
{
"""image""": image,
"""question""": question,
"""word_boxes""": word_boxes,
},
]
return dqa_pipeline, examples
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[int] = dqa_pipeline(__SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(
__SCREAMING_SNAKE_CASE , [
[
{"""score""": ANY(__SCREAMING_SNAKE_CASE ), """answer""": ANY(__SCREAMING_SNAKE_CASE ), """start""": ANY(__SCREAMING_SNAKE_CASE ), """end""": ANY(__SCREAMING_SNAKE_CASE )},
{"""score""": ANY(__SCREAMING_SNAKE_CASE ), """answer""": ANY(__SCREAMING_SNAKE_CASE ), """start""": ANY(__SCREAMING_SNAKE_CASE ), """end""": ANY(__SCREAMING_SNAKE_CASE )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" )
snake_case__ : Any = INVOICE_URL
snake_case__ : int = """How many cats are there?"""
snake_case__ : str = [
{"""score""": 0.0001, """answer""": """oy 2312/2019""", """start""": 3_8, """end""": 3_9},
{"""score""": 0.0001, """answer""": """oy 2312/2019 DUE""", """start""": 3_8, """end""": 4_0},
]
snake_case__ : Tuple = dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , __SCREAMING_SNAKE_CASE )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
snake_case__ : Tuple = """./tests/fixtures/tests_samples/COCO/000000039769.png"""
snake_case__ : Tuple = dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(__SCREAMING_SNAKE_CASE , [] )
# We can optionnally pass directly the words and bounding boxes
snake_case__ : Tuple = """./tests/fixtures/tests_samples/COCO/000000039769.png"""
snake_case__ : Optional[int] = []
snake_case__ : Optional[int] = []
snake_case__ : Any = dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , words=__SCREAMING_SNAKE_CASE , boxes=__SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(__SCREAMING_SNAKE_CASE , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def __UpperCamelCase ( self ):
snake_case__ : Dict = pipeline(
"""document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , )
snake_case__ : int = INVOICE_URL
snake_case__ : Tuple = """What is the invoice number?"""
snake_case__ : str = dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.9944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
{"""score""": 0.0009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
] , )
snake_case__ : int = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.9944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
{"""score""": 0.0009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
] , )
snake_case__ : List[Any] = dqa_pipeline(
[{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{"""score""": 0.9944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
{"""score""": 0.0009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def __UpperCamelCase ( self ):
snake_case__ : int = pipeline(
"""document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=5_0 , )
snake_case__ : Any = INVOICE_URL
snake_case__ : Tuple = """What is the invoice number?"""
snake_case__ : Union[str, Any] = dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.9974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3},
{"""score""": 0.9948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
] , )
snake_case__ : Dict = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.9974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3},
{"""score""": 0.9948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
] , )
snake_case__ : List[str] = dqa_pipeline(
[{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{"""score""": 0.9974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3},
{"""score""": 0.9948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = AutoTokenizer.from_pretrained(
"""impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = pipeline(
"""document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=__SCREAMING_SNAKE_CASE , revision="""3dc6de3""" , )
snake_case__ : str = INVOICE_URL
snake_case__ : Optional[int] = """What is the invoice number?"""
snake_case__ : int = dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.4251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
{"""score""": 0.0819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3},
] , )
snake_case__ : str = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.4251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
{"""score""": 0.0819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3},
] , )
snake_case__ : List[str] = dqa_pipeline(
[{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{"""score""": 0.4251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
{"""score""": 0.0819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3},
]
]
* 2 , )
snake_case__ : Any = list(zip(*apply_tesseract(load_image(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """""" ) ) )
# This model should also work if `image` is set to None
snake_case__ : Optional[int] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.4251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
{"""score""": 0.0819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained(
"""impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = pipeline(
"""document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=__SCREAMING_SNAKE_CASE , revision="""3dc6de3""" , max_seq_len=5_0 , )
snake_case__ : str = INVOICE_URL
snake_case__ : Optional[Any] = """What is the invoice number?"""
snake_case__ : List[str] = dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.9999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
{"""score""": 0.9998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
] , )
snake_case__ : Dict = dqa_pipeline(
[{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{"""score""": 0.9999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
{"""score""": 0.9998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
]
]
* 2 , )
snake_case__ : Any = list(zip(*apply_tesseract(load_image(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , """""" ) ) )
# This model should also work if `image` is set to None
snake_case__ : Optional[Any] = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [
{"""score""": 0.9999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
{"""score""": 0.9998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6},
] , )
@slow
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = pipeline(
"""document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , )
snake_case__ : Dict = INVOICE_URL
snake_case__ : Dict = """What is the invoice number?"""
snake_case__ : Tuple = dqa_pipeline(image=__SCREAMING_SNAKE_CASE , question=__SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(nested_simplify(__SCREAMING_SNAKE_CASE , decimals=4 ) , [{"""answer""": """us-001"""}] )
@require_tf
@unittest.skip("""Document question answering not implemented in TF""" )
def __UpperCamelCase ( self ):
pass
| 38 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Dict = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """embed_dim""" ) )
self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_heads""" ) )
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1_6, 4_8, 9_6] , __SCREAMING_SNAKE_CASE=[1, 3, 6] , __SCREAMING_SNAKE_CASE=[1, 2, 1_0] , __SCREAMING_SNAKE_CASE=[7, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2] , __SCREAMING_SNAKE_CASE=[2, 1, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 2] , __SCREAMING_SNAKE_CASE=[False, False, True] , __SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , ):
snake_case__ : List[str] = parent
snake_case__ : Tuple = batch_size
snake_case__ : Union[str, Any] = image_size
snake_case__ : List[Any] = patch_sizes
snake_case__ : Optional[int] = patch_stride
snake_case__ : Optional[Any] = patch_padding
snake_case__ : Any = is_training
snake_case__ : int = use_labels
snake_case__ : Dict = num_labels
snake_case__ : Optional[Any] = num_channels
snake_case__ : Optional[Any] = embed_dim
snake_case__ : Optional[int] = num_heads
snake_case__ : Optional[int] = stride_kv
snake_case__ : int = depth
snake_case__ : Optional[Any] = cls_token
snake_case__ : List[Any] = attention_drop_rate
snake_case__ : Union[str, Any] = initializer_range
snake_case__ : List[Any] = layer_norm_eps
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : List[Any] = None
if self.use_labels:
# create a random int32 tensor of given shape
snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_labels )
snake_case__ : List[str] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self ):
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : int = TFCvtModel(config=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = (self.image_size, self.image_size)
snake_case__ , snake_case__ : str = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
snake_case__ : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
snake_case__ : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = self.num_labels
snake_case__ : str = TFCvtForImageClassification(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs
snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
lowerCamelCase__ = (
{'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = TFCvtModelTester(self )
snake_case__ : Any = TFCvtConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __UpperCamelCase ( self ):
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason="""Cvt does not output attentions""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip(reason="""Cvt does not use inputs_embeds""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip(reason="""Cvt does not support input and output embeddings""" )
def __UpperCamelCase ( self ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
def __UpperCamelCase ( self ):
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
@slow
def __UpperCamelCase ( self ):
super().test_keras_fit()
@unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" )
def __UpperCamelCase ( self ):
snake_case__ : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" )
tf.keras.mixed_precision.set_global_policy(__SCREAMING_SNAKE_CASE )
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy("""float32""" )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : Optional[Any] = [*signature.parameters.keys()]
snake_case__ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
snake_case__ : Optional[int] = outputs.hidden_states
snake_case__ : Tuple = len(self.model_tester.depth )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : List[Any] = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case__ : List[str] = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def __UpperCamelCase ( self ):
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ : str = TFCvtModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( ) -> str:
'''simple docstring'''
snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCamelCase ( self ):
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
snake_case__ : Union[str, Any] = self.default_image_processor
snake_case__ : int = prepare_img()
snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""tf""" )
# forward pass
snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE )
# verify the logits
snake_case__ : str = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
snake_case__ : int = tf.constant([0.9285, 0.9015, -0.3150] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 38 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
A_ : Optional[int] = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def UpperCamelCase__ ( __magic_name__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
'''simple docstring'''
snake_case__ : List[str] = BeautifulSoup(requests.get(url + location ).content , """html.parser""" )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ):
snake_case__ : Any = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip()
snake_case__ : List[Any] = job.find("""span""" , {"""class""": """company"""} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(F'Job {i:>2} is {job[0]} at {job[1]}')
| 38 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
snake_case__ : int = [[1, 2, 4], [1, 2, 3, 4]]
snake_case__ : Any = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __UpperCamelCase ( self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
snake_case__ : Union[str, Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here
def __UpperCamelCase ( self ):
snake_case__ : List[str] = [[1, 2, 3], [1, 2, 4]]
snake_case__ : Optional[int] = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
snake_case__ , snake_case__ , snake_case__ : Any = dc.update(1 )
snake_case__ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : Tuple = dc.update(2 )
snake_case__ : Tuple = stepped is True and completed is False and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(3 )
snake_case__ : List[str] = stepped is True and completed is True and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
snake_case__ : int = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
snake_case__ , snake_case__ , snake_case__ : str = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : str = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 38 | 1 |
'''simple docstring'''
import os
from math import logaa
def UpperCamelCase__ ( __magic_name__ : str = "base_exp.txt" ) -> int:
'''simple docstring'''
snake_case__ : float = 0
snake_case__ : Union[str, Any] = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) ):
snake_case__ , snake_case__ : Tuple = list(map(__magic_name__ , line.split(""",""" ) ) )
if x * logaa(__magic_name__ ) > largest:
snake_case__ : Optional[Any] = x * logaa(__magic_name__ )
snake_case__ : int = i + 1
return result
if __name__ == "__main__":
print(solution())
| 38 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Optional[int] = logging.get_logger(__name__)
A_ : Tuple = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''segformer'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , __SCREAMING_SNAKE_CASE=[3_2, 6_4, 1_6_0, 2_5_6] , __SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , __SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=2_5_5 , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __SCREAMING_SNAKE_CASE , )
snake_case__ : Dict = num_channels
snake_case__ : Optional[Any] = num_encoder_blocks
snake_case__ : Any = depths
snake_case__ : Optional[int] = sr_ratios
snake_case__ : Tuple = hidden_sizes
snake_case__ : List[str] = patch_sizes
snake_case__ : str = strides
snake_case__ : Optional[int] = mlp_ratios
snake_case__ : Optional[Any] = num_attention_heads
snake_case__ : Dict = hidden_act
snake_case__ : Optional[int] = hidden_dropout_prob
snake_case__ : List[str] = attention_probs_dropout_prob
snake_case__ : List[Any] = classifier_dropout_prob
snake_case__ : int = initializer_range
snake_case__ : List[str] = drop_path_rate
snake_case__ : int = layer_norm_eps
snake_case__ : List[Any] = decoder_hidden_size
snake_case__ : List[Any] = kwargs.get("""reshape_last_stage""" , __SCREAMING_SNAKE_CASE )
snake_case__ : Dict = semantic_loss_ignore_index
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def __UpperCamelCase ( self ):
return 1e-4
@property
def __UpperCamelCase ( self ):
return 1_2
| 38 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A_ : Tuple = logging.get_logger(__name__)
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : int ) -> int:
'''simple docstring'''
snake_case__ : List[Any] = b.T
snake_case__ : Union[str, Any] = np.sum(np.square(__magic_name__ ) , axis=1 )
snake_case__ : List[Any] = np.sum(np.square(__magic_name__ ) , axis=0 )
snake_case__ : Dict = np.matmul(__magic_name__ , __magic_name__ )
snake_case__ : List[str] = aa[:, None] - 2 * ab + ba[None, :]
return d
def UpperCamelCase__ ( __magic_name__ : Union[str, Any] , __magic_name__ : Any ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : List[str] = x.reshape(-1 , 3 )
snake_case__ : Optional[int] = squared_euclidean_distance(__magic_name__ , __magic_name__ )
return np.argmin(__magic_name__ , axis=1 )
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''pixel_values''']
def __init__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
snake_case__ : int = size if size is not None else {"""height""": 2_5_6, """width""": 2_5_6}
snake_case__ : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = np.array(__SCREAMING_SNAKE_CASE ) if clusters is not None else None
snake_case__ : Tuple = do_resize
snake_case__ : int = size
snake_case__ : int = resample
snake_case__ : List[Any] = do_normalize
snake_case__ : Any = do_color_quantize
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ):
snake_case__ : Any = get_size_dict(__SCREAMING_SNAKE_CASE )
if "height" not in size or "width" not in size:
raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" )
return resize(
__SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , ):
snake_case__ : Any = rescale(image=__SCREAMING_SNAKE_CASE , scale=1 / 127.5 , data_format=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = image - 1
return image
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ):
snake_case__ : str = do_resize if do_resize is not None else self.do_resize
snake_case__ : List[str] = size if size is not None else self.size
snake_case__ : int = get_size_dict(__SCREAMING_SNAKE_CASE )
snake_case__ : str = resample if resample is not None else self.resample
snake_case__ : str = do_normalize if do_normalize is not None else self.do_normalize
snake_case__ : Optional[Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
snake_case__ : Any = clusters if clusters is not None else self.clusters
snake_case__ : List[Any] = np.array(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = make_list_of_images(__SCREAMING_SNAKE_CASE )
if not valid_images(__SCREAMING_SNAKE_CASE ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_color_quantize and clusters is None:
raise ValueError("""Clusters must be specified if do_color_quantize is True.""" )
# All transformations expect numpy arrays.
snake_case__ : Union[str, Any] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images]
if do_resize:
snake_case__ : Union[str, Any] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images]
if do_normalize:
snake_case__ : List[Any] = [self.normalize(image=__SCREAMING_SNAKE_CASE ) for image in images]
if do_color_quantize:
snake_case__ : int = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , ChannelDimension.LAST ) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
snake_case__ : Optional[Any] = np.array(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = color_quantize(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).reshape(images.shape[:-1] )
# flatten to (batch_size, height*width)
snake_case__ : List[Any] = images.shape[0]
snake_case__ : List[str] = images.reshape(__SCREAMING_SNAKE_CASE , -1 )
# We need to convert back to a list of images to keep consistent behaviour across processors.
snake_case__ : Optional[int] = list(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : Dict = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images]
snake_case__ : Optional[int] = {"""input_ids""": images}
return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
| 38 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : str = None
if token is not None:
snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"
snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json()
snake_case__ : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(__magic_name__ ):
snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]:
'''simple docstring'''
snake_case__ : Optional[Any] = None
if token is not None:
snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"
snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json()
snake_case__ : Dict = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(__magic_name__ ):
snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict:
'''simple docstring'''
snake_case__ : Optional[Any] = None
if token is not None:
snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ )
snake_case__ : Any = result.headers["""Location"""]
snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ )
snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" )
with open(__magic_name__ , """wb""" ) as fp:
fp.write(response.content )
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Any = []
snake_case__ : Union[str, Any] = []
snake_case__ : Any = None
with zipfile.ZipFile(__magic_name__ ) as z:
for filename in z.namelist():
if not os.path.isdir(__magic_name__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(__magic_name__ ) as f:
for line in f:
snake_case__ : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
snake_case__ : str = line[: line.index(""": """ )]
snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
snake_case__ : Dict = line[len("""FAILED """ ) :]
failed_tests.append(__magic_name__ )
elif filename == "job_name.txt":
snake_case__ : Optional[Any] = line
if len(__magic_name__ ) != len(__magic_name__ ):
raise ValueError(
f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` "
f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"
""" problem.""" )
snake_case__ : Optional[Any] = None
if job_name and job_links:
snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ )
# A list with elements of the form (line of error, error, failed test)
snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )]
return result
def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : str = []
snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) )
return errors
def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]:
'''simple docstring'''
snake_case__ : Any = Counter()
counter.update([x[1] for x in logs] )
snake_case__ : Dict = counter.most_common()
snake_case__ : Any = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) )
return r
def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]:
'''simple docstring'''
snake_case__ : str = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
snake_case__ : Tuple = test.split("""/""" )[2]
else:
snake_case__ : Any = None
return test
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]:
'''simple docstring'''
snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs]
snake_case__ : List[Any] = [x for x in logs if x[2] is not None]
snake_case__ : Any = {x[2] for x in logs}
snake_case__ : Optional[Any] = {}
for test in tests:
snake_case__ : str = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
snake_case__ : Optional[int] = counter.most_common()
snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
snake_case__ : int = sum(error_counts.values() )
if n_errors > 0:
snake_case__ : str = {"""count""": n_errors, """errors""": error_counts}
snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) )
return r
def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Optional[Any] = """| no. | error | status |"""
snake_case__ : int = """|-:|:-|:-|"""
snake_case__ : int = [header, sep]
for error in reduced_by_error:
snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""]
snake_case__ : Dict = f"| {count} | {error[:1_00]} | |"
lines.append(__magic_name__ )
return "\n".join(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]:
'''simple docstring'''
snake_case__ : List[Any] = """| model | no. of errors | major error | count |"""
snake_case__ : Optional[int] = """|-:|-:|-:|-:|"""
snake_case__ : Dict = [header, sep]
for model in reduced_by_model:
snake_case__ : Tuple = reduced_by_model[model]["""count"""]
snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0]
snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |"
lines.append(__magic_name__ )
return "\n".join(__magic_name__ )
if __name__ == "__main__":
A_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
A_ : int = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token)
A_ : Optional[Any] = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
A_ : int = k.find(" / ")
A_ : List[Any] = k[index + len(" / ") :]
A_ : List[str] = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
A_ : str = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
A_ : List[str] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
A_ : Any = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
A_ : Any = reduce_by_error(errors)
A_ : Union[str, Any] = reduce_by_model(errors)
A_ : Any = make_github_table(reduced_by_error)
A_ : Optional[Any] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 38 | 1 |
'''simple docstring'''
from abc import ABC, abstractmethod
from typing import Optional, Union
from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit
from ..utils.typing import NestedDataStructureLike, PathLike
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ):
snake_case__ : str = path_or_paths
snake_case__ : Any = split if split or isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else """train"""
snake_case__ : int = features
snake_case__ : Optional[Any] = cache_dir
snake_case__ : List[str] = keep_in_memory
snake_case__ : Optional[Any] = streaming
snake_case__ : Optional[int] = num_proc
snake_case__ : List[str] = kwargs
@abstractmethod
def __UpperCamelCase ( self ):
pass
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ):
snake_case__ : str = features
snake_case__ : Tuple = cache_dir
snake_case__ : List[Any] = keep_in_memory
snake_case__ : Optional[int] = streaming
snake_case__ : str = num_proc
snake_case__ : Tuple = kwargs
@abstractmethod
def __UpperCamelCase ( self ):
pass
| 38 |
'''simple docstring'''
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
A_ : Tuple = get_logger(__name__)
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = '''dummy_data'''
lowerCamelCase__ = '''datasets'''
lowerCamelCase__ = False
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ):
snake_case__ : List[Any] = 0
snake_case__ : Union[str, Any] = dataset_name
snake_case__ : Optional[int] = cache_dir
snake_case__ : Union[str, Any] = use_local_dummy_data
snake_case__ : int = config
# download_callbacks take a single url as input
snake_case__ : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
snake_case__ : Union[str, Any] = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
snake_case__ : Union[str, Any] = str(__SCREAMING_SNAKE_CASE )
# to be downloaded
snake_case__ : List[str] = None
snake_case__ : List[str] = None
@property
def __UpperCamelCase ( self ):
if self._dummy_file is None:
snake_case__ : List[str] = self.download_dummy_data()
return self._dummy_file
@property
def __UpperCamelCase ( self ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("""dummy""" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("""dummy""" , self.version_name )
@property
def __UpperCamelCase ( self ):
return os.path.join(self.dummy_data_folder , """dummy_data.zip""" )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
snake_case__ : Optional[int] = cached_path(
__SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE )
return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name )
@property
def __UpperCamelCase ( self ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def __UpperCamelCase ( self ):
if self._bucket_url is None:
snake_case__ : List[str] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) )
return self._bucket_url
@property
def __UpperCamelCase ( self ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
snake_case__ : List[Any] = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
snake_case__ : List[Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ):
return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ):
return self.download_and_extract(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return self.download_and_extract(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
return path
def __UpperCamelCase ( self ):
return {}
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : int = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for single_url in single_urls:
download_callback(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : List[str] = single_urls
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Tuple = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls]
else:
snake_case__ : List[Any] = single_urls
snake_case__ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) )
snake_case__ : Optional[int] = value
# make sure that values are unique
if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
snake_case__ : List[Any] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Dict = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
snake_case__ : Tuple = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __SCREAMING_SNAKE_CASE ) ) for url in data_url )
snake_case__ : List[Any] = all(
url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
snake_case__ : List[str] = [data_url[0]] * len(__SCREAMING_SNAKE_CASE )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
snake_case__ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) )
dummy_data_list.append(__SCREAMING_SNAKE_CASE )
return dummy_data_list
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for download_callback in self.download_callbacks:
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
snake_case__ : Any = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) )
if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
def _iter_archive_members(__SCREAMING_SNAKE_CASE ):
# this preserves the order of the members inside the ZIP archive
snake_case__ : List[str] = Path(self.dummy_file ).parent
snake_case__ : Dict = path.relative_to(__SCREAMING_SNAKE_CASE )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
snake_case__ : Optional[int] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = Path(__SCREAMING_SNAKE_CASE )
snake_case__ : int = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob("""*""" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ):
yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open("""rb""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[int] = [paths]
for path in paths:
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ):
if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ):
continue
dirnames.sort()
for filename in sorted(__SCREAMING_SNAKE_CASE ):
if filename.startswith((""".""", """__""") ):
continue
yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 38 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A_ : Dict = logging.get_logger(__name__)
A_ : List[str] = {
"weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json",
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''roc_bert'''
def __init__( self , __SCREAMING_SNAKE_CASE=3_0_5_2_2 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=3_0_7_2 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=9_1_0 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2_4_8_5_8 , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ):
snake_case__ : List[str] = vocab_size
snake_case__ : Optional[Any] = max_position_embeddings
snake_case__ : Optional[int] = hidden_size
snake_case__ : Dict = num_hidden_layers
snake_case__ : Optional[int] = num_attention_heads
snake_case__ : str = intermediate_size
snake_case__ : List[str] = hidden_act
snake_case__ : Optional[Any] = hidden_dropout_prob
snake_case__ : int = attention_probs_dropout_prob
snake_case__ : Optional[int] = initializer_range
snake_case__ : Any = type_vocab_size
snake_case__ : Dict = layer_norm_eps
snake_case__ : Optional[Any] = use_cache
snake_case__ : List[Any] = enable_pronunciation
snake_case__ : Tuple = enable_shape
snake_case__ : List[str] = pronunciation_embed_dim
snake_case__ : List[str] = pronunciation_vocab_size
snake_case__ : int = shape_embed_dim
snake_case__ : Dict = shape_vocab_size
snake_case__ : int = concat_input
snake_case__ : Optional[int] = position_embedding_type
snake_case__ : int = classifier_dropout
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
| 38 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = IFImgaImgSuperResolutionPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''}
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} )
lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __UpperCamelCase ( self ):
return self._get_superresolution_dummy_components()
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ):
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
snake_case__ : List[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : Tuple = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __UpperCamelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def __UpperCamelCase ( self ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def __UpperCamelCase ( self ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __UpperCamelCase ( self ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __UpperCamelCase ( self ):
self._test_save_load_local()
def __UpperCamelCase ( self ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 38 | 1 |
'''simple docstring'''
import os
import unittest
from huggingface_hub.utils import are_progress_bars_disabled
import transformers.models.bart.tokenization_bart
from transformers import logging
from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context
from transformers.utils.logging import disable_progress_bar, enable_progress_bar
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = logging.get_logger()
# the current default level is logging.WARNING
snake_case__ : Union[str, Any] = logging.get_verbosity()
logging.set_verbosity_error()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_warning()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_info()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
logging.set_verbosity_debug()
self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() )
# restore to the original level
logging.set_verbosity(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = logging.get_verbosity()
snake_case__ : Optional[int] = logging.get_logger("""transformers.models.bart.tokenization_bart""" )
snake_case__ : str = """Testing 1, 2, 3"""
# should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`)
if level_origin <= logging.WARNING:
with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl:
logger.warning(__SCREAMING_SNAKE_CASE )
self.assertEqual(cl.out , msg + """\n""" )
# this is setting the level for all of `transformers.*` loggers
logging.set_verbosity_error()
# should not be able to log warnings
with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl:
logger.warning(__SCREAMING_SNAKE_CASE )
self.assertEqual(cl.out , """""" )
# should be able to log warnings again
logging.set_verbosity_warning()
with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl:
logger.warning(__SCREAMING_SNAKE_CASE )
self.assertEqual(cl.out , msg + """\n""" )
# restore to the original level
logging.set_verbosity(__SCREAMING_SNAKE_CASE )
@mockenv(TRANSFORMERS_VERBOSITY="""error""" )
def __UpperCamelCase ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
# this action activates the env var
snake_case__ : List[Any] = logging.get_logger("""transformers.models.bart.tokenization_bart""" )
snake_case__ : Any = os.getenv("""TRANSFORMERS_VERBOSITY""" , __SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = logging.log_levels[env_level_str]
snake_case__ : str = logging.get_verbosity()
self.assertEqual(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , f"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" , )
# restore to the original level
snake_case__ : Union[str, Any] = """"""
transformers.utils.logging._reset_library_root_logger()
@mockenv(TRANSFORMERS_VERBOSITY="""super-error""" )
def __UpperCamelCase ( self ):
# reset for the env var to take effect, next time some logger call is made
transformers.utils.logging._reset_library_root_logger()
snake_case__ : Tuple = logging.logging.getLogger()
with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl:
# this action activates the env var
logging.get_logger("""transformers.models.bart.tokenization_bart""" )
self.assertIn("""Unknown option TRANSFORMERS_VERBOSITY=super-error""" , cl.out )
# no need to restore as nothing was changed
def __UpperCamelCase ( self ):
# testing `logger.warning_advice()`
transformers.utils.logging._reset_library_root_logger()
snake_case__ : str = logging.get_logger("""transformers.models.bart.tokenization_bart""" )
snake_case__ : Dict = """Testing 1, 2, 3"""
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""1""" ):
# nothing should be logged as env var disables this method
with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl:
logger.warning_advice(__SCREAMING_SNAKE_CASE )
self.assertEqual(cl.out , """""" )
with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS="""""" ):
# should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset
with CaptureLogger(__SCREAMING_SNAKE_CASE ) as cl:
logger.warning_advice(__SCREAMING_SNAKE_CASE )
self.assertEqual(cl.out , msg + """\n""" )
def UpperCamelCase__ ( ) -> str:
'''simple docstring'''
disable_progress_bar()
assert are_progress_bars_disabled()
enable_progress_bar()
assert not are_progress_bars_disabled()
| 38 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
A_ : Dict = [
"EAGER",
"AOT_EAGER",
"INDUCTOR",
"NVFUSER",
"AOT_NVFUSER",
"AOT_CUDAGRAPHS",
"OFI",
"FX2TRT",
"ONNXRT",
"IPEX",
]
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None ) -> Dict:
'''simple docstring'''
snake_case__ : Optional[int] = True
while ask_again:
snake_case__ : Optional[Any] = input(__magic_name__ )
try:
if default is not None and len(__magic_name__ ) == 0:
return default
return convert_value(__magic_name__ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Any=[] , __magic_name__ : Optional[int]=None , __magic_name__ : int=0 ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Union[str, Any] = BulletMenu(__magic_name__ , __magic_name__ )
snake_case__ : Optional[Any] = menu.run(default_choice=__magic_name__ )
return convert_value(__magic_name__ ) if convert_value is not None else result
def UpperCamelCase__ ( __magic_name__ : Any ) -> int:
'''simple docstring'''
snake_case__ : Tuple = int(__magic_name__ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple:
'''simple docstring'''
snake_case__ : List[Any] = int(__magic_name__ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]:
'''simple docstring'''
snake_case__ : Union[str, Any] = int(__magic_name__ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Optional[Any] = int(__magic_name__ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
snake_case__ : Optional[Any] = int(__magic_name__ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase__ ( __magic_name__ : Dict ) -> Tuple:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class __snake_case ( argparse.RawDescriptionHelpFormatter ):
'''simple docstring'''
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : str = usage.replace("""<command> [<args>] """ , """""" )
return usage
| 38 | 1 |
'''simple docstring'''
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
# we need a list not a string, so do something to change the type
snake_case__ : int = arr.split(""",""" )
def __UpperCamelCase ( self ):
snake_case__ : str = [int(self.array[0] )] * len(self.array )
snake_case__ : Optional[int] = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
snake_case__ : Union[str, Any] = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
snake_case__ : str = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
A_ : Dict = input("please input some numbers:")
A_ : Dict = SubArray(whole_array)
A_ : Dict = array.solve_sub_array()
print(("the results is:", re))
| 38 |
'''simple docstring'''
from __future__ import annotations
def UpperCamelCase__ ( __magic_name__ : list ) -> float:
'''simple docstring'''
if not nums:
raise ValueError("""List is empty""" )
return sum(__magic_name__ ) / len(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 38 | 1 |
'''simple docstring'''
import math
def UpperCamelCase__ ( __magic_name__ : float , __magic_name__ : float ) -> float:
'''simple docstring'''
return math.pow(__magic_name__ , 2 ) - a
def UpperCamelCase__ ( __magic_name__ : float ) -> float:
'''simple docstring'''
return 2 * x
def UpperCamelCase__ ( __magic_name__ : float ) -> float:
'''simple docstring'''
snake_case__ : Optional[int] = 2.0
while start <= a:
snake_case__ : Any = math.pow(__magic_name__ , 2 )
return start
def UpperCamelCase__ ( __magic_name__ : float , __magic_name__ : int = 99_99 , __magic_name__ : float = 0.00_0000_0000_0001 ) -> float:
'''simple docstring'''
if a < 0:
raise ValueError("""math domain error""" )
snake_case__ : Tuple = get_initial_point(__magic_name__ )
for _ in range(__magic_name__ ):
snake_case__ : Union[str, Any] = value
snake_case__ : int = value - fx(__magic_name__ , __magic_name__ ) / fx_derivative(__magic_name__ )
if abs(prev_value - value ) < tolerance:
return value
return value
if __name__ == "__main__":
from doctest import testmod
testmod()
| 38 |
'''simple docstring'''
from __future__ import annotations
A_ : str = "Muhammad Umer Farooq"
A_ : Optional[Any] = "MIT"
A_ : int = "1.0.0"
A_ : int = "Muhammad Umer Farooq"
A_ : int = "[email protected]"
A_ : Dict = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
super().__init__()
snake_case__ : list[str] = []
snake_case__ : List[Any] = domain
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE )
self.urls.append(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
return parse.urlparse(__magic_name__ ).netloc
def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]:
'''simple docstring'''
snake_case__ : List[str] = get_domain_name(__magic_name__ )
# Initialize the parser
snake_case__ : Optional[Any] = Parser(__magic_name__ )
try:
# Open URL
snake_case__ : Any = requests.get(__magic_name__ )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
snake_case__ : List[str] = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
snake_case__ : Tuple = requests.get(__magic_name__ )
# Get the valid email.
snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(__magic_name__ )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(__magic_name__ )
if __name__ == "__main__":
A_ : str = emails_from_url("https://github.com")
print(F'{len(emails)} emails found:')
print("\n".join(sorted(emails)))
| 38 | 1 |
'''simple docstring'''
from __future__ import annotations
def UpperCamelCase__ ( __magic_name__ : int ) -> list[int]:
'''simple docstring'''
snake_case__ : Optional[Any] = [True] * limit
snake_case__ : Dict = False
snake_case__ : Optional[Any] = False
snake_case__ : Any = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
snake_case__ : Tuple = i * 2
while index < limit:
snake_case__ : Any = False
snake_case__ : int = index + i
snake_case__ : Tuple = [2]
for i in range(3 , __magic_name__ , 2 ):
if is_prime[i]:
primes.append(__magic_name__ )
return primes
def UpperCamelCase__ ( __magic_name__ : int = 1_00_00_00 ) -> int:
'''simple docstring'''
snake_case__ : Union[str, Any] = prime_sieve(__magic_name__ )
snake_case__ : Tuple = 0
snake_case__ : int = 0
for i in range(len(__magic_name__ ) ):
for j in range(i + length , len(__magic_name__ ) ):
snake_case__ : Any = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
snake_case__ : Optional[Any] = j - i
snake_case__ : List[Any] = sol
return largest
if __name__ == "__main__":
print(F'{solution() = }')
| 38 |
'''simple docstring'''
def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Tuple:
'''simple docstring'''
if not head:
return True
# split the list to two parts
snake_case__ , snake_case__ : Dict = head.next, head
while fast and fast.next:
snake_case__ : Any = fast.next.next
snake_case__ : int = slow.next
snake_case__ : Dict = slow.next
snake_case__ : List[str] = None # Don't forget here! But forget still works!
# reverse the second part
snake_case__ : Tuple = None
while second:
snake_case__ : Tuple = second.next
snake_case__ : Any = node
snake_case__ : str = second
snake_case__ : Optional[Any] = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
snake_case__ : List[Any] = node.next
snake_case__ : int = head.next
return True
def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]:
'''simple docstring'''
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
snake_case__ : List[Any] = head
while fast and fast.next:
snake_case__ , snake_case__ : Any = fast.next.next, slow.next
# 2. Push the second half into the stack
snake_case__ : Tuple = [slow.val]
while slow.next:
snake_case__ : Optional[Any] = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
snake_case__ : str = cur.next
return True
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
if not head or not head.next:
return True
snake_case__ : int = {}
snake_case__ : Union[str, Any] = 0
while head:
if head.val in d:
d[head.val].append(__magic_name__ )
else:
snake_case__ : Tuple = [pos]
snake_case__ : Optional[Any] = head.next
pos += 1
snake_case__ : int = pos - 1
snake_case__ : str = 0
for v in d.values():
if len(__magic_name__ ) % 2 != 0:
middle += 1
else:
snake_case__ : List[str] = 0
for i in range(0 , len(__magic_name__ ) ):
if v[i] + v[len(__magic_name__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 38 | 1 |
'''simple docstring'''
import functools
from typing import Any
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : list[str] ) -> bool:
'''simple docstring'''
if not isinstance(__magic_name__ , __magic_name__ ) or len(__magic_name__ ) == 0:
raise ValueError("""the string should be not empty string""" )
if not isinstance(__magic_name__ , __magic_name__ ) or not all(
isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) > 0 for item in words ):
raise ValueError("""the words should be a list of non-empty strings""" )
# Build trie
snake_case__ : dict[str, Any] = {}
snake_case__ : Optional[Any] = """WORD_KEEPER"""
for word in words:
snake_case__ : Any = trie
for c in word:
if c not in trie_node:
snake_case__ : Dict = {}
snake_case__ : Union[str, Any] = trie_node[c]
snake_case__ : Union[str, Any] = True
snake_case__ : List[Any] = len(__magic_name__ )
# Dynamic programming method
@functools.cache
def is_breakable(__magic_name__ : int ) -> bool:
if index == len_string:
return True
snake_case__ : Optional[Any] = trie
for i in range(__magic_name__ , __magic_name__ ):
snake_case__ : Tuple = trie_node.get(string[i] , __magic_name__ )
if trie_node is None:
return False
if trie_node.get(__magic_name__ , __magic_name__ ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 38 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
A_ : str = 250004
A_ : str = 250020
@require_sentencepiece
@require_tokenizers
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MBartTokenizer
lowerCamelCase__ = MBartTokenizerFast
lowerCamelCase__ = True
lowerCamelCase__ = True
def __UpperCamelCase ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
def __UpperCamelCase ( self ):
snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
snake_case__ : int = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def __UpperCamelCase ( self ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
snake_case__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = tempfile.mkdtemp()
snake_case__ : int = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
snake_case__ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
snake_case__ : Tuple = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=True
snake_case__ : Any = tempfile.mkdtemp()
snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
snake_case__ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
snake_case__ : List[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=False
snake_case__ : Dict = tempfile.mkdtemp()
snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
snake_case__ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
@require_torch
@require_sentencepiece
@require_tokenizers
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = '''facebook/mbart-large-en-ro'''
lowerCamelCase__ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
lowerCamelCase__ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
lowerCamelCase__ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE]
@classmethod
def __UpperCamelCase ( cls ):
snake_case__ : MBartTokenizer = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
snake_case__ : Any = 1
return cls
def __UpperCamelCase ( self ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 )
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids )
snake_case__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2]
snake_case__ : List[Any] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Dict = ["""this is gunna be a long sentence """ * 2_0]
assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = 1_0
snake_case__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = tempfile.mkdtemp()
snake_case__ : Dict = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE )
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
snake_case__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
snake_case__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertEqual((2, 1_4) , batch.input_ids.shape )
self.assertEqual((2, 1_4) , batch.attention_mask.shape )
snake_case__ : Tuple = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" )
snake_case__ : Optional[int] = self.tokenizer(
text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=1_0 , return_tensors="""pt""" )
snake_case__ : str = targets["""input_ids"""]
snake_case__ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 )
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , {
# A, test, EOS, en_XX
"""input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 2_5_0_0_0_1,
} , )
| 38 | 1 |
'''simple docstring'''
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
A_ : Optional[int] = logging.getLogger(__name__)
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''token-classification'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
if type(__SCREAMING_SNAKE_CASE ) == dict:
snake_case__ : Optional[Any] = Namespace(**__SCREAMING_SNAKE_CASE )
snake_case__ : int = import_module("""tasks""" )
try:
snake_case__ : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , hparams.task_type )
snake_case__ : TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" )
snake_case__ : Optional[int] = self.token_classification_task.get_labels(hparams.labels )
snake_case__ : Optional[int] = CrossEntropyLoss().ignore_index
super().__init__(__SCREAMING_SNAKE_CASE , len(self.labels ) , self.mode )
def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ):
return self.model(**__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : int = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type != "distilbert":
snake_case__ : Any = (
batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None
) # XLM and RoBERTa don"t use token_type_ids
snake_case__ : Any = self(**__SCREAMING_SNAKE_CASE )
snake_case__ : int = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.hparams
for mode in ["train", "dev", "test"]:
snake_case__ : str = self._feature_file(__SCREAMING_SNAKE_CASE )
if os.path.exists(__SCREAMING_SNAKE_CASE ) and not args.overwrite_cache:
logger.info("""Loading features from cached file %s""" , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = torch.load(__SCREAMING_SNAKE_CASE )
else:
logger.info("""Creating features from dataset file at %s""" , args.data_dir )
snake_case__ : Optional[int] = self.token_classification_task.read_examples_from_file(args.data_dir , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = self.token_classification_task.convert_examples_to_features(
__SCREAMING_SNAKE_CASE , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__SCREAMING_SNAKE_CASE , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("""Saving features into cached file %s""" , __SCREAMING_SNAKE_CASE )
torch.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ):
snake_case__ : Optional[int] = self._feature_file(__SCREAMING_SNAKE_CASE )
logger.info("""Loading features from cached file %s""" , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = torch.load(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
snake_case__ : int = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
snake_case__ : List[str] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
snake_case__ : Optional[Any] = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
snake_case__ : Optional[Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , batch_size=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""Compute validation""" ""
snake_case__ : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type != "distilbert":
snake_case__ : Tuple = (
batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None
) # XLM and RoBERTa don"t use token_type_ids
snake_case__ : str = self(**__SCREAMING_SNAKE_CASE )
snake_case__ , snake_case__ : Optional[Any] = outputs[:2]
snake_case__ : Union[str, Any] = logits.detach().cpu().numpy()
snake_case__ : Optional[int] = inputs["""labels"""].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = torch.stack([x["""val_loss"""] for x in outputs] ).mean()
snake_case__ : Tuple = np.concatenate([x["""pred"""] for x in outputs] , axis=0 )
snake_case__ : List[Any] = np.argmax(__SCREAMING_SNAKE_CASE , axis=2 )
snake_case__ : Optional[int] = np.concatenate([x["""target"""] for x in outputs] , axis=0 )
snake_case__ : List[str] = dict(enumerate(self.labels ) )
snake_case__ : Any = [[] for _ in range(out_label_ids.shape[0] )]
snake_case__ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
snake_case__ : int = {
"""val_loss""": val_loss_mean,
"""accuracy_score""": accuracy_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),
"""precision""": precision_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),
"""recall""": recall_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),
"""f1""": fa_score(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ),
}
snake_case__ : Any = dict(results.items() )
snake_case__ : Dict = results
return ret, preds_list, out_label_list
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
# when stable
snake_case__ , snake_case__ , snake_case__ : Any = self._eval_end(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = ret["""log"""]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
# updating to test_epoch_end instead of deprecated test_end
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = self._eval_end(__SCREAMING_SNAKE_CASE )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
snake_case__ : Dict = ret["""log"""]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# Add NER specific options
BaseTransformer.add_model_specific_args(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
parser.add_argument(
"""--task_type""" , default="""NER""" , type=__SCREAMING_SNAKE_CASE , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" )
parser.add_argument(
"""--max_seq_length""" , default=1_2_8 , type=__SCREAMING_SNAKE_CASE , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--labels""" , default="""""" , type=__SCREAMING_SNAKE_CASE , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , )
parser.add_argument(
"""--gpus""" , default=0 , type=__SCREAMING_SNAKE_CASE , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
return parser
if __name__ == "__main__":
A_ : Dict = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
A_ : int = NERTransformer.add_model_specific_args(parser, os.getcwd())
A_ : List[Any] = parser.parse_args()
A_ : Union[str, Any] = NERTransformer(args)
A_ : str = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
A_ : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True))
A_ : List[str] = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
| 38 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A_ : int = logging.get_logger(__name__)
A_ : Dict = {
"google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json",
}
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''bit'''
lowerCamelCase__ = ['''preactivation''', '''bottleneck''']
lowerCamelCase__ = ['''SAME''', '''VALID''']
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
snake_case__ : Tuple = global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported" )
snake_case__ : List[str] = num_channels
snake_case__ : Tuple = embedding_size
snake_case__ : str = hidden_sizes
snake_case__ : Optional[Any] = depths
snake_case__ : List[Any] = layer_type
snake_case__ : Dict = hidden_act
snake_case__ : Union[str, Any] = global_padding
snake_case__ : List[str] = num_groups
snake_case__ : str = drop_path_rate
snake_case__ : List[Any] = embedding_dynamic_padding
snake_case__ : List[str] = output_stride
snake_case__ : Dict = width_factor
snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )]
snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices(
out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
| 38 | 1 |
'''simple docstring'''
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = XLMProphetNetTokenizer
lowerCamelCase__ = False
lowerCamelCase__ = True
def __UpperCamelCase ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
snake_case__ : List[str] = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = """[PAD]"""
snake_case__ : Dict = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : int = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """[PAD]""" )
self.assertEqual(vocab_keys[1] , """[CLS]""" )
self.assertEqual(vocab_keys[-1] , """j""" )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 1_0_1_2 )
def __UpperCamelCase ( self ):
self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
snake_case__ : Tuple = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4]
] , )
snake_case__ : Optional[Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""[UNK]""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""[UNK]""",
""".""",
] , )
@cached_property
def __UpperCamelCase ( self ):
return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" )
@slow
def __UpperCamelCase ( self ):
snake_case__ : Dict = """Hello World!"""
snake_case__ : str = [3_5_3_8_9, 6_6_7_2, 4_9, 2]
self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) )
@slow
def __UpperCamelCase ( self ):
# fmt: off
snake_case__ : List[Any] = {"""input_ids""": [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__SCREAMING_SNAKE_CASE , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
| 38 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import (
BitConfig,
ViTHybridConfig,
ViTHybridForImageClassification,
ViTHybridImageProcessor,
ViTHybridModel,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
A_ : Optional[int] = logging.get_logger(__name__)
def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=False ) -> Tuple:
'''simple docstring'''
snake_case__ : int = []
# fmt: off
# stem:
rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") )
rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") )
rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") )
# backbone
rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") )
rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") )
rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") )
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") )
# transformer encoder
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
# fmt: on
return rename_keys
def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple=False ) -> str:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
snake_case__ : int = """"""
else:
snake_case__ : Dict = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case__ : int = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
snake_case__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
snake_case__ : Optional[int] = in_proj_weight[
: config.hidden_size, :
]
snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size]
snake_case__ : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case__ : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :]
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
snake_case__ : str = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__magic_name__ , __magic_name__ )
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : List[str] = dct.pop(__magic_name__ )
snake_case__ : Dict = val
def UpperCamelCase__ ( ) -> str:
'''simple docstring'''
snake_case__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case__ : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> Optional[int]:
'''simple docstring'''
snake_case__ : int = BitConfig(
global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=__magic_name__ , )
snake_case__ : Optional[int] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=3_84 , num_labels=10_00 )
snake_case__ : Union[str, Any] = False
# load original model from timm
snake_case__ : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case__ : Optional[int] = timm_model.state_dict()
if base_model:
remove_classification_head_(__magic_name__ )
snake_case__ : int = create_rename_keys(__magic_name__ , __magic_name__ )
for src, dest in rename_keys:
rename_key(__magic_name__ , __magic_name__ , __magic_name__ )
read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ )
snake_case__ : str = """huggingface/label-files"""
snake_case__ : Union[str, Any] = """imagenet-1k-id2label.json"""
snake_case__ : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) )
snake_case__ : List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case__ : int = idalabel
snake_case__ : str = {v: k for k, v in idalabel.items()}
# load HuggingFace model
if vit_name[-5:] == "in21k":
snake_case__ : str = ViTHybridModel(__magic_name__ ).eval()
else:
snake_case__ : Union[str, Any] = ViTHybridForImageClassification(__magic_name__ ).eval()
model.load_state_dict(__magic_name__ )
# create image processor
snake_case__ : Optional[Any] = create_transform(**resolve_data_config({} , model=__magic_name__ ) )
snake_case__ : Union[str, Any] = transform.transforms
snake_case__ : Tuple = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
snake_case__ : Any = ViTHybridImageProcessor(
do_resize=__magic_name__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
snake_case__ : Any = prepare_img()
snake_case__ : int = transform(__magic_name__ ).unsqueeze(0 )
snake_case__ : List[str] = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(__magic_name__ , __magic_name__ )
# verify logits
with torch.no_grad():
snake_case__ : Optional[Any] = model(__magic_name__ )
snake_case__ : Union[str, Any] = outputs.logits
print("""Predicted class:""" , logits.argmax(-1 ).item() )
if base_model:
snake_case__ : Dict = timm_model.forward_features(__magic_name__ )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1E-3 )
else:
snake_case__ : int = timm_model(__magic_name__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(f"Saving processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(__magic_name__ )
if push_to_hub:
print(f"Pushing model and processor to the hub {vit_name}" )
model.push_to_hub(f"ybelkada/{vit_name}" )
processor.push_to_hub(f"ybelkada/{vit_name}" )
if __name__ == "__main__":
A_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--vit_name",
default="vit_base_r50_s16_384",
type=str,
help="Name of the hybrid ViT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub."
)
A_ : Union[str, Any] = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 38 | 1 |
'''simple docstring'''
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class __snake_case ( unittest.TestCase , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : int = load_tool("""text-to-speech""" )
self.tool.setup()
def __UpperCamelCase ( self ):
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
snake_case__ : List[Any] = self.tool("""hey""" )
snake_case__ : List[str] = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
def __UpperCamelCase ( self ):
# SpeechT5 isn't deterministic
torch.manual_seed(0 )
snake_case__ : Tuple = self.tool("""hey""" )
snake_case__ : Tuple = result.to_raw()
self.assertTrue(
torch.allclose(
resulting_tensor[:3] , torch.tensor([-0.000_5966_6688_3211_5829, -0.000_3657_6401_9079_5064, -0.0001_3439_5027_9988_3485] ) , ) )
| 38 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = 42
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE=True , ):
super().__init__()
snake_case__ : str = layers_per_block
snake_case__ : int = torch.nn.Convad(
__SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : List[Any] = None
snake_case__ : List[Any] = nn.ModuleList([] )
# down
snake_case__ : Union[str, Any] = block_out_channels[0]
for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = output_channel
snake_case__ : Union[str, Any] = block_out_channels[i]
snake_case__ : int = i == len(__SCREAMING_SNAKE_CASE ) - 1
snake_case__ : str = get_down_block(
__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
self.down_blocks.append(__SCREAMING_SNAKE_CASE )
# mid
snake_case__ : Optional[Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
# out
snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 )
snake_case__ : Tuple = nn.SiLU()
snake_case__ : str = 2 * out_channels if double_z else out_channels
snake_case__ : int = nn.Convad(block_out_channels[-1] , __SCREAMING_SNAKE_CASE , 3 , padding=1 )
snake_case__ : Union[str, Any] = False
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = x
snake_case__ : int = self.conv_in(__SCREAMING_SNAKE_CASE )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
# middle
snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
else:
for down_block in self.down_blocks:
snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# middle
snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE )
else:
# down
for down_block in self.down_blocks:
snake_case__ : List[str] = down_block(__SCREAMING_SNAKE_CASE )
# middle
snake_case__ : str = self.mid_block(__SCREAMING_SNAKE_CASE )
# post-process
snake_case__ : Any = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = self.conv_act(__SCREAMING_SNAKE_CASE )
snake_case__ : str = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE="group" , ):
super().__init__()
snake_case__ : Any = layers_per_block
snake_case__ : Optional[Any] = nn.Convad(
__SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : Union[str, Any] = None
snake_case__ : Dict = nn.ModuleList([] )
snake_case__ : Optional[int] = in_channels if norm_type == """spatial""" else None
# mid
snake_case__ : Tuple = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
# up
snake_case__ : List[Any] = list(reversed(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Optional[Any] = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = output_channel
snake_case__ : Optional[Any] = reversed_block_out_channels[i]
snake_case__ : List[str] = i == len(__SCREAMING_SNAKE_CASE ) - 1
snake_case__ : int = get_up_block(
__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , resnet_time_scale_shift=__SCREAMING_SNAKE_CASE , )
self.up_blocks.append(__SCREAMING_SNAKE_CASE )
snake_case__ : int = output_channel
# out
if norm_type == "spatial":
snake_case__ : List[Any] = SpatialNorm(block_out_channels[0] , __SCREAMING_SNAKE_CASE )
else:
snake_case__ : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 )
snake_case__ : Tuple = nn.SiLU()
snake_case__ : Union[str, Any] = nn.Convad(block_out_channels[0] , __SCREAMING_SNAKE_CASE , 3 , padding=1 )
snake_case__ : int = False
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
snake_case__ : Union[str, Any] = z
snake_case__ : Any = self.conv_in(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
snake_case__ : int = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
snake_case__ : int = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : List[str] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
else:
# middle
snake_case__ : Dict = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
# middle
snake_case__ : List[Any] = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : Dict = up_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# post-process
if latent_embeds is None:
snake_case__ : Optional[Any] = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : str = self.conv_norm_out(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.conv_act(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="random" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ):
super().__init__()
snake_case__ : int = n_e
snake_case__ : Optional[int] = vq_embed_dim
snake_case__ : int = beta
snake_case__ : Optional[int] = legacy
snake_case__ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
snake_case__ : List[str] = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
snake_case__ : Optional[Any] = self.used.shape[0]
snake_case__ : List[str] = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
snake_case__ : Dict = self.re_embed
snake_case__ : List[str] = self.re_embed + 1
print(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices." )
else:
snake_case__ : Union[str, Any] = n_e
snake_case__ : str = sane_index_shape
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
snake_case__ : Dict = inds.reshape(ishape[0] , -1 )
snake_case__ : Any = self.used.to(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = (inds[:, :, None] == used[None, None, ...]).long()
snake_case__ : List[Any] = match.argmax(-1 )
snake_case__ : List[str] = match.sum(2 ) < 1
if self.unknown_index == "random":
snake_case__ : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
snake_case__ : Optional[Any] = self.unknown_index
return new.reshape(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
snake_case__ : int = inds.reshape(ishape[0] , -1 )
snake_case__ : Optional[int] = self.used.to(__SCREAMING_SNAKE_CASE )
if self.re_embed > self.used.shape[0]: # extra token
snake_case__ : List[Any] = 0 # simply set to zero
snake_case__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __SCREAMING_SNAKE_CASE )
return back.reshape(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
# reshape z -> (batch, height, width, channel) and flatten
snake_case__ : Any = z.permute(0 , 2 , 3 , 1 ).contiguous()
snake_case__ : Optional[Any] = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
snake_case__ : Dict = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 )
snake_case__ : Union[str, Any] = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape )
snake_case__ : List[str] = None
snake_case__ : Union[str, Any] = None
# compute loss for embedding
if not self.legacy:
snake_case__ : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
snake_case__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
snake_case__ : Any = z + (z_q - z).detach()
# reshape back to match original input shape
snake_case__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
snake_case__ : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
snake_case__ : str = self.remap_to_used(__SCREAMING_SNAKE_CASE )
snake_case__ : str = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
snake_case__ : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
snake_case__ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
snake_case__ : Optional[int] = self.unmap_to_all(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
snake_case__ : int = self.embedding(__SCREAMING_SNAKE_CASE )
if shape is not None:
snake_case__ : str = z_q.view(__SCREAMING_SNAKE_CASE )
# reshape back to match original input shape
snake_case__ : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ):
snake_case__ : Tuple = parameters
snake_case__ , snake_case__ : Any = torch.chunk(__SCREAMING_SNAKE_CASE , 2 , dim=1 )
snake_case__ : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 )
snake_case__ : Optional[int] = deterministic
snake_case__ : Optional[int] = torch.exp(0.5 * self.logvar )
snake_case__ : Any = torch.exp(self.logvar )
if self.deterministic:
snake_case__ : List[str] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None ):
# make sure sample is on the same device as the parameters and has same dtype
snake_case__ : Dict = randn_tensor(
self.mean.shape , generator=__SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype )
snake_case__ : Optional[int] = self.mean + self.std * sample
return x
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None ):
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=[1, 2, 3] ):
if self.deterministic:
return torch.Tensor([0.0] )
snake_case__ : Any = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
return self.mean
| 38 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ : List[str] = {
"configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"],
"tokenization_convbert": ["ConvBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : List[str] = ["ConvBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = [
"CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvBertForMaskedLM",
"ConvBertForMultipleChoice",
"ConvBertForQuestionAnswering",
"ConvBertForSequenceClassification",
"ConvBertForTokenClassification",
"ConvBertLayer",
"ConvBertModel",
"ConvBertPreTrainedModel",
"load_tf_weights_in_convbert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = [
"TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFConvBertForMaskedLM",
"TFConvBertForMultipleChoice",
"TFConvBertForQuestionAnswering",
"TFConvBertForSequenceClassification",
"TFConvBertForTokenClassification",
"TFConvBertLayer",
"TFConvBertModel",
"TFConvBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
A_ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 38 |
'''simple docstring'''
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ):
snake_case__ : str = parent
snake_case__ : Union[str, Any] = batch_size
snake_case__ : Union[str, Any] = image_size
snake_case__ : Optional[int] = patch_size
snake_case__ : List[str] = num_channels
snake_case__ : Any = is_training
snake_case__ : int = use_labels
snake_case__ : str = hidden_size
snake_case__ : Tuple = num_hidden_layers
snake_case__ : str = backbone_out_indices
snake_case__ : List[Any] = num_attention_heads
snake_case__ : Dict = intermediate_size
snake_case__ : Optional[Any] = hidden_act
snake_case__ : str = hidden_dropout_prob
snake_case__ : int = attention_probs_dropout_prob
snake_case__ : Dict = initializer_range
snake_case__ : Optional[int] = num_labels
snake_case__ : str = backbone_featmap_shape
snake_case__ : List[Any] = scope
snake_case__ : Optional[Any] = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
snake_case__ : List[Any] = (image_size // patch_size) ** 2
snake_case__ : Union[str, Any] = num_patches + 1
def __UpperCamelCase ( self ):
snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : str = None
if self.use_labels:
snake_case__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
snake_case__ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self ):
snake_case__ : Any = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = self.num_labels
snake_case__ : str = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = self.num_labels
snake_case__ : Dict = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs
snake_case__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
lowerCamelCase__ = (
{
'''depth-estimation''': DPTForDepthEstimation,
'''feature-extraction''': DPTModel,
'''image-segmentation''': DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = DPTModelTester(self )
snake_case__ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __UpperCamelCase ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case__ : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : List[str] = [*signature.parameters.keys()]
snake_case__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : int = True
if model_class in get_values(__SCREAMING_SNAKE_CASE ):
continue
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.train()
snake_case__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def __UpperCamelCase ( self ):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : Union[str, Any] = False
snake_case__ : str = True
if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing:
continue
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.gradient_checkpointing_enable()
model.train()
snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : str = _config_zero_init(__SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
snake_case__ : Any = model_class(config=__SCREAMING_SNAKE_CASE )
# Skip the check for the backbone
snake_case__ : str = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
snake_case__ : Optional[int] = [f"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def __UpperCamelCase ( self ):
pass
@slow
def __UpperCamelCase ( self ):
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
snake_case__ : List[str] = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
# We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type
snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : Dict = """add"""
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
snake_case__ : List[str] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( ) -> Dict:
'''simple docstring'''
snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Dict = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
snake_case__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = prepare_img()
snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = outputs.predicted_depth
# verify the predicted depth
snake_case__ : Any = torch.Size((1, 3_8_4, 3_8_4) )
self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = torch.tensor(
[[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 38 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = 42
lowerCamelCase__ = 42
lowerCamelCase__ = None
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = 2
@register_to_config
def __init__( self , __SCREAMING_SNAKE_CASE = 0.02 , __SCREAMING_SNAKE_CASE = 1_0_0 , __SCREAMING_SNAKE_CASE = 1.007 , __SCREAMING_SNAKE_CASE = 8_0 , __SCREAMING_SNAKE_CASE = 0.05 , __SCREAMING_SNAKE_CASE = 5_0 , ):
# standard deviation of the initial noise distribution
snake_case__ : int = sigma_max
# setable values
snake_case__ : int = None
snake_case__ : np.IntTensor = None
snake_case__ : torch.FloatTensor = None # sigma(t_i)
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
return sample
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
snake_case__ : Tuple = num_inference_steps
snake_case__ : List[Any] = np.arange(0 , self.num_inference_steps )[::-1].copy()
snake_case__ : Any = torch.from_numpy(__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
snake_case__ : List[Any] = torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.floataa , device=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ):
if self.config.s_min <= sigma <= self.config.s_max:
snake_case__ : Any = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
snake_case__ : Union[str, Any] = 0
# sample eps ~ N(0, S_noise^2 * I)
snake_case__ : Optional[int] = self.config.s_noise * randn_tensor(sample.shape , generator=__SCREAMING_SNAKE_CASE ).to(sample.device )
snake_case__ : List[Any] = sigma + gamma * sigma
snake_case__ : Optional[int] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , ):
snake_case__ : Union[str, Any] = sample_hat + sigma_hat * model_output
snake_case__ : List[Any] = (sample_hat - pred_original_sample) / sigma_hat
snake_case__ : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=__SCREAMING_SNAKE_CASE , derivative=__SCREAMING_SNAKE_CASE , pred_original_sample=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , ):
snake_case__ : List[str] = sample_prev + sigma_prev * model_output
snake_case__ : Tuple = (sample_prev - pred_original_sample) / sigma_prev
snake_case__ : List[str] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=__SCREAMING_SNAKE_CASE , derivative=__SCREAMING_SNAKE_CASE , pred_original_sample=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
raise NotImplementedError()
| 38 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Dict:
'''simple docstring'''
snake_case__ : int = botoa.client("""iam""" )
snake_case__ : Union[str, Any] = {
"""Version""": """2012-10-17""",
"""Statement""": [
{"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) )
snake_case__ : Dict = {
"""Version""": """2012-10-17""",
"""Statement""": [
{
"""Effect""": """Allow""",
"""Action""": [
"""sagemaker:*""",
"""ecr:GetDownloadUrlForLayer""",
"""ecr:BatchGetImage""",
"""ecr:BatchCheckLayerAvailability""",
"""ecr:GetAuthorizationToken""",
"""cloudwatch:PutMetricData""",
"""cloudwatch:GetMetricData""",
"""cloudwatch:GetMetricStatistics""",
"""cloudwatch:ListMetrics""",
"""logs:CreateLogGroup""",
"""logs:CreateLogStream""",
"""logs:DescribeLogStreams""",
"""logs:PutLogEvents""",
"""logs:GetLogEvents""",
"""s3:CreateBucket""",
"""s3:ListBucket""",
"""s3:GetBucketLocation""",
"""s3:GetObject""",
"""s3:PutObject""",
],
"""Resource""": """*""",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=__magic_name__ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , )
except iam_client.exceptions.EntityAlreadyExistsException:
print(f"role {role_name} already exists. Using existing one" )
def UpperCamelCase__ ( __magic_name__ : Any ) -> Tuple:
'''simple docstring'''
snake_case__ : List[str] = botoa.client("""iam""" )
return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"]
def UpperCamelCase__ ( ) -> Tuple:
'''simple docstring'''
snake_case__ : Union[str, Any] = _ask_options(
"""How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , )
snake_case__ : List[Any] = None
if credentials_configuration == 0:
snake_case__ : Dict = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" )
snake_case__ : List[str] = aws_profile
else:
print(
"""Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"""
"""`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" )
snake_case__ : List[str] = _ask_field("""AWS Access Key ID: """ )
snake_case__ : int = aws_access_key_id
snake_case__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ )
snake_case__ : List[str] = aws_secret_access_key
snake_case__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" )
snake_case__ : Optional[int] = aws_region
snake_case__ : int = _ask_options(
"""Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , )
if role_management == 0:
snake_case__ : Optional[Any] = _ask_field("""Enter your IAM role name: """ )
else:
snake_case__ : Optional[int] = """accelerate_sagemaker_execution_role"""
print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" )
_create_iam_role_for_sagemaker(__magic_name__ )
snake_case__ : Dict = _ask_field(
"""Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Any = None
if is_custom_docker_image:
snake_case__ : str = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() )
snake_case__ : Tuple = _ask_field(
"""Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : List[Any] = None
if is_sagemaker_inputs_enabled:
snake_case__ : str = _ask_field(
"""Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , )
snake_case__ : Optional[int] = _ask_field(
"""Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Optional[Any] = None
if is_sagemaker_metrics_enabled:
snake_case__ : List[Any] = _ask_field(
"""Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , )
snake_case__ : Tuple = _ask_options(
"""What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , )
snake_case__ : Any = {}
snake_case__ : List[Any] = _ask_field(
"""Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
if use_dynamo:
snake_case__ : str = """dynamo_"""
snake_case__ : Tuple = _ask_options(
"""Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , )
snake_case__ : List[str] = _ask_field(
"""Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
if use_custom_options:
snake_case__ : str = _ask_options(
"""Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , )
snake_case__ : Union[str, Any] = _ask_field(
"""Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : str = _ask_field(
"""Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Dict = """Which EC2 instance type you want to use for your training?"""
if distributed_type != SageMakerDistributedType.NO:
snake_case__ : List[str] = _ask_options(
__magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
snake_case__ : Optional[int] = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" )
snake_case__ : Dict = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
snake_case__ : Optional[Any] = _ask_field(
"""How many machines do you want use? [1]: """ , __magic_name__ , default=1 , )
snake_case__ : Union[str, Any] = _ask_options(
"""Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , )
if use_dynamo and mixed_precision == "no":
print(
"""Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" )
return SageMakerConfig(
image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
| 38 | 1 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
def UpperCamelCase__ ( *__magic_name__ : Dict , **__magic_name__ : int ) -> Optional[int]:
'''simple docstring'''
requires_backends(__magic_name__ , ["""torch"""] )
def UpperCamelCase__ ( *__magic_name__ : Union[str, Any] , **__magic_name__ : Dict ) -> Optional[Any]:
'''simple docstring'''
requires_backends(__magic_name__ , ["""torch"""] )
def UpperCamelCase__ ( *__magic_name__ : Dict , **__magic_name__ : str ) -> str:
'''simple docstring'''
requires_backends(__magic_name__ , ["""torch"""] )
def UpperCamelCase__ ( *__magic_name__ : Union[str, Any] , **__magic_name__ : Any ) -> Optional[Any]:
'''simple docstring'''
requires_backends(__magic_name__ , ["""torch"""] )
def UpperCamelCase__ ( *__magic_name__ : int , **__magic_name__ : Union[str, Any] ) -> Any:
'''simple docstring'''
requires_backends(__magic_name__ , ["""torch"""] )
def UpperCamelCase__ ( *__magic_name__ : Optional[Any] , **__magic_name__ : Dict ) -> List[str]:
'''simple docstring'''
requires_backends(__magic_name__ , ["""torch"""] )
def UpperCamelCase__ ( *__magic_name__ : Tuple , **__magic_name__ : str ) -> Dict:
'''simple docstring'''
requires_backends(__magic_name__ , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
class __snake_case ( metaclass=__SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = ['''torch''']
def __init__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(self , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
@classmethod
def __UpperCamelCase ( cls , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
requires_backends(cls , ["""torch"""] )
| 38 |
'''simple docstring'''
from itertools import zip_longest
import requests
from bsa import BeautifulSoup
from pandas import DataFrame
def UpperCamelCase__ ( __magic_name__ : str = "laptop" ) -> DataFrame:
'''simple docstring'''
snake_case__ : Union[str, Any] = f"https://www.amazon.in/laptop/s?k={product}"
snake_case__ : List[str] = {
"""User-Agent""": """Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36
(KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36""",
"""Accept-Language""": """en-US, en;q=0.5""",
}
snake_case__ : int = BeautifulSoup(requests.get(__magic_name__ , headers=__magic_name__ ).text )
# Initialize a Pandas dataframe with the column titles
snake_case__ : Optional[Any] = DataFrame(
columns=[
"""Product Title""",
"""Product Link""",
"""Current Price of the product""",
"""Product Rating""",
"""MRP of the product""",
"""Discount""",
] )
# Loop through each entry and store them in the dataframe
for item, _ in zip_longest(
soup.find_all(
"""div""" , attrs={"""class""": """s-result-item""", """data-component-type""": """s-search-result"""} , ) , soup.find_all("""div""" , attrs={"""class""": """a-row a-size-base a-color-base"""} ) , ):
try:
snake_case__ : Optional[int] = item.ha.text
snake_case__ : Any = """https://www.amazon.in/""" + item.ha.a["""href"""]
snake_case__ : List[str] = item.find("""span""" , attrs={"""class""": """a-offscreen"""} ).text
try:
snake_case__ : Dict = item.find("""span""" , attrs={"""class""": """a-icon-alt"""} ).text
except AttributeError:
snake_case__ : Optional[int] = """Not available"""
try:
snake_case__ : Tuple = (
"""₹"""
+ item.find(
"""span""" , attrs={"""class""": """a-price a-text-price"""} ).text.split("""₹""" )[1]
)
except AttributeError:
snake_case__ : Optional[Any] = """"""
try:
snake_case__ : str = float(
(
(
float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) )
- float(product_price.strip("""₹""" ).replace(""",""" , """""" ) )
)
/ float(product_mrp.strip("""₹""" ).replace(""",""" , """""" ) )
)
* 1_00 )
except ValueError:
snake_case__ : List[Any] = float("""nan""" )
except AttributeError:
pass
snake_case__ : str = [
product_title,
product_link,
product_price,
product_rating,
product_mrp,
discount,
]
snake_case__ : List[Any] = """ """
snake_case__ : Union[str, Any] = """ """
data_frame.index += 1
return data_frame
if __name__ == "__main__":
A_ : int = "headphones"
get_amazon_product_data(product).to_csv(F'Amazon Product Data for {product}.csv')
| 38 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFXLMRobertaModel
@require_tf
@require_sentencepiece
@require_tokenizers
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCamelCase ( self ):
snake_case__ : Dict = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" )
snake_case__ : Union[str, Any] = {
"""input_ids""": tf.convert_to_tensor([[0, 2_6_4_6, 1_0_2_6_9, 8_3, 9_9_9_4_2, 2]] , dtype=tf.intaa ), # "My dog is cute"
"""attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ),
}
snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE )["""last_hidden_state"""]
snake_case__ : Optional[Any] = tf.TensorShape((1, 6, 7_6_8) )
self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE )
# compare the actual values for a slice.
snake_case__ : str = tf.convert_to_tensor(
[
[
[0.068_1762, 0.1089_4451, 0.0677_2504],
[-0.0642_3668, 0.0236_6615, 0.0432_9344],
[-0.0605_7295, 0.0997_4135, -0.0007_0584],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
| 38 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = LongformerTokenizer
lowerCamelCase__ = True
lowerCamelCase__ = LongformerTokenizerFast
lowerCamelCase__ = True
def __UpperCamelCase ( self ):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
snake_case__ : Union[str, Any] = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
snake_case__ : Optional[int] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) )
snake_case__ : int = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
snake_case__ : Any = {"""unk_token""": """<unk>"""}
snake_case__ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
snake_case__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) )
def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ):
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ):
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = """lower newer"""
snake_case__ : Dict = """lower newer"""
return input_text, output_text
def __UpperCamelCase ( self ):
snake_case__ : int = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
snake_case__ : Tuple = """lower newer"""
snake_case__ : Optional[Any] = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
snake_case__ : Tuple = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) # , add_prefix_space=True)
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokens + [tokenizer.unk_token]
snake_case__ : List[Any] = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] )
self.assertListEqual(
tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=__SCREAMING_SNAKE_CASE ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , )
@slow
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.tokenizer_class.from_pretrained("""allenai/longformer-base-4096""" )
snake_case__ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = tokenizer.encode(
"""sequence builders""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer.encode(
"""sequence builders""" , """multi-sequence build""" , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.get_tokenizer()
snake_case__ : int = """Encode this sequence."""
snake_case__ : Union[str, Any] = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]]
# Testing encoder arguments
snake_case__ : Optional[int] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({"""bos_token""": """<s>"""} )
snake_case__ : List[str] = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : str = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Testing spaces after special tokens
snake_case__ : List[str] = """<mask>"""
tokenizer.add_special_tokens(
{"""mask_token""": AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE )} ) # mask token has a left space
snake_case__ : Dict = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
snake_case__ : str = """Encode <mask> sequence"""
snake_case__ : Tuple = """Encode <mask>sequence"""
snake_case__ : Union[str, Any] = tokenizer.encode(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = encoded.index(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokenizer.encode(__SCREAMING_SNAKE_CASE )
snake_case__ : str = encoded.index(__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = """A, <mask> AllenNLP sentence."""
snake_case__ : str = tokenizer_r.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = tokenizer_p.encode_plus(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_token_type_ids=__SCREAMING_SNAKE_CASE )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
snake_case__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
snake_case__ : Dict = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
__SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
__SCREAMING_SNAKE_CASE , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
def __UpperCamelCase ( self ):
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
snake_case__ : Any = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
snake_case__ : List[str] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE )
self.assertEqual(post_processor_state["""add_prefix_space"""] , __SCREAMING_SNAKE_CASE )
self.assertEqual(post_processor_state["""trim_offsets"""] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
snake_case__ : Union[str, Any] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name`
snake_case__ : Any = f"{text_of_1_token} {text_of_1_token}"
snake_case__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ) + 1, len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : str = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(__SCREAMING_SNAKE_CASE ), len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Optional[Any] = f" {text}"
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
snake_case__ : Dict = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ) + 1, 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : Any = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
snake_case__ : List[Any] = self.rust_tokenizer_class.from_pretrained(
__SCREAMING_SNAKE_CASE , use_fast=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , trim_offsets=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = tokenizer_r(__SCREAMING_SNAKE_CASE , return_offsets_mapping=__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(__SCREAMING_SNAKE_CASE )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(__SCREAMING_SNAKE_CASE ), 1 + len(__SCREAMING_SNAKE_CASE ) + 1 + len(__SCREAMING_SNAKE_CASE )) , )
| 38 | 1 |
'''simple docstring'''
import pytest
from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs
@pytest.mark.parametrize(
"""kwargs, expected""" , [
({"""num_shards""": 0, """max_num_jobs""": 1}, []),
({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]),
({"""num_shards""": 10, """max_num_jobs""": 10}, [range(__magic_name__ , i + 1 ) for i in range(10 )]),
({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]),
({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]),
({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]),
] , )
def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
snake_case__ : List[str] = _distribute_shards(**__magic_name__ )
assert out == expected
@pytest.mark.parametrize(
"""gen_kwargs, max_num_jobs, expected""" , [
({"""foo""": 0}, 10, [{"""foo""": 0}]),
({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]),
({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]),
({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]),
({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]),
] , )
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Optional[int] , __magic_name__ : List[Any] ) -> int:
'''simple docstring'''
snake_case__ : Dict = _split_gen_kwargs(__magic_name__ , __magic_name__ )
assert out == expected
@pytest.mark.parametrize(
"""gen_kwargs, expected""" , [
({"""foo""": 0}, 1),
({"""shards""": [0]}, 1),
({"""shards""": [0, 1, 2, 3]}, 4),
({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4),
({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4),
({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError),
] , )
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Tuple ) -> List[str]:
'''simple docstring'''
if expected is RuntimeError:
with pytest.raises(__magic_name__ ):
_number_of_shards_in_gen_kwargs(__magic_name__ )
else:
snake_case__ : Any = _number_of_shards_in_gen_kwargs(__magic_name__ )
assert out == expected
| 38 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A_ : int = logging.get_logger(__name__)
A_ : Any = {
"microsoft/resnet-50": "https://huggingface.co/microsoft/resnet-50/blob/main/config.json",
}
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''resnet'''
lowerCamelCase__ = ['''basic''', '''bottleneck''']
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="bottleneck" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
snake_case__ : List[Any] = num_channels
snake_case__ : str = embedding_size
snake_case__ : List[Any] = hidden_sizes
snake_case__ : Dict = depths
snake_case__ : List[Any] = layer_type
snake_case__ : int = hidden_act
snake_case__ : Union[str, Any] = downsample_in_first_stage
snake_case__ : Dict = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )]
snake_case__ , snake_case__ : Any = get_aligned_output_features_output_indices(
out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def __UpperCamelCase ( self ):
return 1e-3
| 38 | 1 |
'''simple docstring'''
from __future__ import annotations
A_ : Tuple = {
"A": ["B", "C", "E"],
"B": ["A", "D", "E"],
"C": ["A", "F", "G"],
"D": ["B"],
"E": ["A", "B", "D"],
"F": ["C"],
"G": ["C"],
}
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Tuple = graph
# mapping node to its parent in resulting breadth first tree
snake_case__ : dict[str, str | None] = {}
snake_case__ : Dict = source_vertex
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = {self.source_vertex}
snake_case__ : int = None
snake_case__ : Any = [self.source_vertex] # first in first out queue
while queue:
snake_case__ : List[Any] = queue.pop(0 )
for adjacent_vertex in self.graph[vertex]:
if adjacent_vertex not in visited:
visited.add(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = vertex
queue.append(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
if target_vertex == self.source_vertex:
return self.source_vertex
snake_case__ : Union[str, Any] = self.parent.get(__SCREAMING_SNAKE_CASE )
if target_vertex_parent is None:
snake_case__ : Optional[Any] = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(__SCREAMING_SNAKE_CASE )
return self.shortest_path(__SCREAMING_SNAKE_CASE ) + f"->{target_vertex}"
if __name__ == "__main__":
A_ : Optional[int] = Graph(graph, "G")
g.breath_first_search()
print(g.shortest_path("D"))
print(g.shortest_path("G"))
print(g.shortest_path("Foo"))
| 38 |
'''simple docstring'''
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
"pipelines_utils",
"0.22.0",
"Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.",
standard_warn=False,
stacklevel=3,
)
| 38 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
snake_case__ : int = [[1, 2, 4], [1, 2, 3, 4]]
snake_case__ : Any = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __UpperCamelCase ( self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
snake_case__ : Union[str, Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here
def __UpperCamelCase ( self ):
snake_case__ : List[str] = [[1, 2, 3], [1, 2, 4]]
snake_case__ : Optional[int] = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
snake_case__ , snake_case__ , snake_case__ : Any = dc.update(1 )
snake_case__ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : Tuple = dc.update(2 )
snake_case__ : Tuple = stepped is True and completed is False and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(3 )
snake_case__ : List[str] = stepped is True and completed is True and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
snake_case__ : int = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
snake_case__ , snake_case__ , snake_case__ : str = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : str = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 38 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from unittest.mock import patch
from transformers import (
DefaultFlowCallback,
IntervalStrategy,
PrinterCallback,
ProgressCallback,
Trainer,
TrainerCallback,
TrainingArguments,
is_torch_available,
)
from transformers.testing_utils import require_torch
if is_torch_available():
from transformers.trainer import DEFAULT_CALLBACKS
from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self ):
snake_case__ : str = []
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_init_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_train_begin""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_train_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_epoch_begin""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_epoch_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_step_begin""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_step_end""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_evaluate""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_predict""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_save""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_log""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
self.events.append("""on_prediction_step""" )
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Tuple = tempfile.mkdtemp()
def __UpperCamelCase ( self ):
shutil.rmtree(self.output_dir )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE ):
# disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure
# its set to False since the tests later on depend on its value.
snake_case__ : List[Any] = RegressionDataset(length=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = RegressionDataset(length=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = RegressionModelConfig(a=__SCREAMING_SNAKE_CASE , b=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = RegressionPreTrainedModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = TrainingArguments(self.output_dir , disable_tqdm=__SCREAMING_SNAKE_CASE , report_to=[] , **__SCREAMING_SNAKE_CASE )
return Trainer(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , train_dataset=__SCREAMING_SNAKE_CASE , eval_dataset=__SCREAMING_SNAKE_CASE , callbacks=__SCREAMING_SNAKE_CASE , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) )
# Order doesn't matter
snake_case__ : Tuple = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ )
snake_case__ : List[str] = sorted(__SCREAMING_SNAKE_CASE , key=lambda __SCREAMING_SNAKE_CASE : cb.__name__ if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else cb.__class__.__name__ )
for cba, cba in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(__SCREAMING_SNAKE_CASE , cba.__class__ )
elif not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
self.assertEqual(cba.__class__ , __SCREAMING_SNAKE_CASE )
else:
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Tuple = ["""on_init_end""", """on_train_begin"""]
snake_case__ : Union[str, Any] = 0
snake_case__ : Dict = len(trainer.get_eval_dataloader() )
snake_case__ : Any = ["""on_prediction_step"""] * len(trainer.get_eval_dataloader() ) + ["""on_log""", """on_evaluate"""]
for _ in range(trainer.state.num_train_epochs ):
expected_events.append("""on_epoch_begin""" )
for _ in range(__SCREAMING_SNAKE_CASE ):
step += 1
expected_events += ["on_step_begin", "on_step_end"]
if step % trainer.args.logging_steps == 0:
expected_events.append("""on_log""" )
if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0:
expected_events += evaluation_events.copy()
if step % trainer.args.save_steps == 0:
expected_events.append("""on_save""" )
expected_events.append("""on_epoch_end""" )
if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH:
expected_events += evaluation_events.copy()
expected_events += ["on_log", "on_train_end"]
return expected_events
def __UpperCamelCase ( self ):
snake_case__ : Any = self.get_trainer()
snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
# Callbacks passed at init are added to the default callbacks
snake_case__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] )
expected_callbacks.append(__SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
# TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback
snake_case__ : Optional[Any] = self.get_trainer(disable_tqdm=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = DEFAULT_CALLBACKS.copy() + [PrinterCallback]
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback]
snake_case__ : int = self.get_trainer()
# We can add, pop, or remove by class name
trainer.remove_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.remove(__SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = self.get_trainer()
snake_case__ : List[str] = trainer.pop_callback(__SCREAMING_SNAKE_CASE )
self.assertEqual(cb.__class__ , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
trainer.add_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
# We can also add, pop, or remove by instance
snake_case__ : List[Any] = self.get_trainer()
snake_case__ : List[str] = trainer.callback_handler.callbacks[0]
trainer.remove_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.remove(__SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = self.get_trainer()
snake_case__ : Any = trainer.callback_handler.callbacks[0]
snake_case__ : Optional[Any] = trainer.pop_callback(__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
trainer.add_callback(__SCREAMING_SNAKE_CASE )
expected_callbacks.insert(0 , __SCREAMING_SNAKE_CASE )
self.check_callbacks_equality(trainer.callback_handler.callbacks , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
import warnings
# XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested
warnings.simplefilter(action="""ignore""" , category=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] )
trainer.train()
snake_case__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
# Independent log/save/eval
snake_case__ : Dict = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 )
trainer.train()
snake_case__ : int = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Any = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 )
trainer.train()
snake_case__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="""steps""" )
trainer.train()
snake_case__ : str = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Tuple = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="""epoch""" )
trainer.train()
snake_case__ : Any = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
# A bit of everything
snake_case__ : Dict = self.get_trainer(
callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy="""steps""" , )
trainer.train()
snake_case__ : Tuple = trainer.callback_handler.callbacks[-2].events
self.assertEqual(__SCREAMING_SNAKE_CASE , self.get_expected_events(__SCREAMING_SNAKE_CASE ) )
# warning should be emitted for duplicated callbacks
with patch("""transformers.trainer_callback.logger.warning""" ) as warn_mock:
snake_case__ : List[str] = self.get_trainer(
callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , )
assert str(__SCREAMING_SNAKE_CASE ) in warn_mock.call_args[0][0]
| 38 | 1 |
'''simple docstring'''
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .tokenization_wavaveca import WavaVecaCTCTokenizer
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''Wav2Vec2FeatureExtractor'''
lowerCamelCase__ = '''AutoTokenizer'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = self.feature_extractor
snake_case__ : Optional[Any] = False
@classmethod
def __UpperCamelCase ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
try:
return super().from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
except OSError:
warnings.warn(
f"Loading a tokenizer inside {cls.__name__} from a config that does not"
""" include a `tokenizer_class` attribute is deprecated and will be """
"""removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`"""
""" attribute to either your `config.json` or `tokenizer_config.json` """
"""file to suppress this warning: """ , __SCREAMING_SNAKE_CASE , )
snake_case__ : List[str] = WavaVecaFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = WavaVecaCTCTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
return cls(feature_extractor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE )
def __call__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if "raw_speech" in kwargs:
warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" )
snake_case__ : Optional[Any] = kwargs.pop("""raw_speech""" )
else:
snake_case__ : Union[str, Any] = kwargs.pop("""audio""" , __SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = kwargs.pop("""sampling_rate""" , __SCREAMING_SNAKE_CASE )
snake_case__ : Dict = kwargs.pop("""text""" , __SCREAMING_SNAKE_CASE )
if len(__SCREAMING_SNAKE_CASE ) > 0:
snake_case__ : Optional[Any] = args[0]
snake_case__ : Dict = args[1:]
if audio is None and text is None:
raise ValueError("""You need to specify either an `audio` or `text` input to process.""" )
if audio is not None:
snake_case__ : Optional[int] = self.feature_extractor(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if text is not None:
snake_case__ : Any = self.tokenizer(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if text is None:
return inputs
elif audio is None:
return encodings
else:
snake_case__ : List[Any] = encodings["""input_ids"""]
return inputs
def __UpperCamelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor.pad(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Any = kwargs.pop("""input_features""" , __SCREAMING_SNAKE_CASE )
snake_case__ : str = kwargs.pop("""labels""" , __SCREAMING_SNAKE_CASE )
if len(__SCREAMING_SNAKE_CASE ) > 0:
snake_case__ : Dict = args[0]
snake_case__ : int = args[1:]
if input_features is not None:
snake_case__ : Any = self.feature_extractor.pad(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if labels is not None:
snake_case__ : List[Any] = self.tokenizer.pad(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
if labels is None:
return input_features
elif input_features is None:
return labels
else:
snake_case__ : Tuple = labels["""input_ids"""]
return input_features
def __UpperCamelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@contextmanager
def __UpperCamelCase ( self ):
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your audio inputs, or in a separate call.""" )
snake_case__ : List[str] = True
snake_case__ : Any = self.tokenizer
yield
snake_case__ : str = self.feature_extractor
snake_case__ : str = False
| 38 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ):
snake_case__ : Any = size if size is not None else {"""height""": 1_8, """width""": 1_8}
snake_case__ : List[Any] = parent
snake_case__ : int = batch_size
snake_case__ : List[Any] = num_channels
snake_case__ : str = image_size
snake_case__ : Union[str, Any] = min_resolution
snake_case__ : List[Any] = max_resolution
snake_case__ : Tuple = do_resize
snake_case__ : int = size
snake_case__ : Tuple = do_normalize
snake_case__ : Dict = image_mean
snake_case__ : Union[str, Any] = image_std
def __UpperCamelCase ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = DPTImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ):
snake_case__ : str = DPTImageProcessingTester(self )
@property
def __UpperCamelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) )
def __UpperCamelCase ( self ):
snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} )
snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 38 | 1 |
'''simple docstring'''
A_ : Tuple = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
A_ : int = [{"type": "code", "content": INSTALL_CONTENT}]
A_ : Optional[int] = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 38 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Dict = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """embed_dim""" ) )
self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_heads""" ) )
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1_6, 4_8, 9_6] , __SCREAMING_SNAKE_CASE=[1, 3, 6] , __SCREAMING_SNAKE_CASE=[1, 2, 1_0] , __SCREAMING_SNAKE_CASE=[7, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2] , __SCREAMING_SNAKE_CASE=[2, 1, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 2] , __SCREAMING_SNAKE_CASE=[False, False, True] , __SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , ):
snake_case__ : List[str] = parent
snake_case__ : Tuple = batch_size
snake_case__ : Union[str, Any] = image_size
snake_case__ : List[Any] = patch_sizes
snake_case__ : Optional[int] = patch_stride
snake_case__ : Optional[Any] = patch_padding
snake_case__ : Any = is_training
snake_case__ : int = use_labels
snake_case__ : Dict = num_labels
snake_case__ : Optional[Any] = num_channels
snake_case__ : Optional[Any] = embed_dim
snake_case__ : Optional[int] = num_heads
snake_case__ : Optional[int] = stride_kv
snake_case__ : int = depth
snake_case__ : Optional[Any] = cls_token
snake_case__ : List[Any] = attention_drop_rate
snake_case__ : Union[str, Any] = initializer_range
snake_case__ : List[Any] = layer_norm_eps
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : List[Any] = None
if self.use_labels:
# create a random int32 tensor of given shape
snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_labels )
snake_case__ : List[str] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self ):
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : int = TFCvtModel(config=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = (self.image_size, self.image_size)
snake_case__ , snake_case__ : str = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
snake_case__ : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
snake_case__ : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = self.num_labels
snake_case__ : str = TFCvtForImageClassification(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs
snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
lowerCamelCase__ = (
{'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = TFCvtModelTester(self )
snake_case__ : Any = TFCvtConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __UpperCamelCase ( self ):
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason="""Cvt does not output attentions""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip(reason="""Cvt does not use inputs_embeds""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip(reason="""Cvt does not support input and output embeddings""" )
def __UpperCamelCase ( self ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
def __UpperCamelCase ( self ):
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
@slow
def __UpperCamelCase ( self ):
super().test_keras_fit()
@unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" )
def __UpperCamelCase ( self ):
snake_case__ : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" )
tf.keras.mixed_precision.set_global_policy(__SCREAMING_SNAKE_CASE )
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy("""float32""" )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : Optional[Any] = [*signature.parameters.keys()]
snake_case__ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
snake_case__ : Optional[int] = outputs.hidden_states
snake_case__ : Tuple = len(self.model_tester.depth )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : List[Any] = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case__ : List[str] = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def __UpperCamelCase ( self ):
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ : str = TFCvtModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( ) -> str:
'''simple docstring'''
snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCamelCase ( self ):
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
snake_case__ : Union[str, Any] = self.default_image_processor
snake_case__ : int = prepare_img()
snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""tf""" )
# forward pass
snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE )
# verify the logits
snake_case__ : str = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
snake_case__ : int = tf.constant([0.9285, 0.9015, -0.3150] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 38 | 1 |
'''simple docstring'''
import unittest
from transformers import BertGenerationConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import BertGenerationDecoder, BertGenerationEncoder
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=9_9 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_0 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ):
snake_case__ : List[str] = parent
snake_case__ : str = batch_size
snake_case__ : Dict = seq_length
snake_case__ : int = is_training
snake_case__ : Optional[Any] = use_input_mask
snake_case__ : Tuple = vocab_size
snake_case__ : Tuple = hidden_size
snake_case__ : List[str] = num_hidden_layers
snake_case__ : List[str] = num_attention_heads
snake_case__ : List[str] = intermediate_size
snake_case__ : Optional[Any] = hidden_act
snake_case__ : Union[str, Any] = hidden_dropout_prob
snake_case__ : Dict = attention_probs_dropout_prob
snake_case__ : Optional[int] = max_position_embeddings
snake_case__ : List[Any] = initializer_range
snake_case__ : str = use_labels
snake_case__ : Tuple = scope
def __UpperCamelCase ( self ):
snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ : int = None
if self.use_input_mask:
snake_case__ : str = random_attention_mask([self.batch_size, self.seq_length] )
if self.use_labels:
snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case__ : Any = self.get_config()
return config, input_ids, input_mask, token_labels
def __UpperCamelCase ( self ):
return BertGenerationConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def __UpperCamelCase ( self ):
(
(
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) ,
) : List[str] = self.prepare_config_and_inputs()
snake_case__ : str = True
snake_case__ : Tuple = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
token_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ):
snake_case__ : Union[str, Any] = BertGenerationEncoder(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ):
snake_case__ : str = True
snake_case__ : List[Any] = BertGenerationEncoder(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Dict = model(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , )
snake_case__ : List[Any] = model(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ):
snake_case__ : List[Any] = True
snake_case__ : Optional[int] = True
snake_case__ : int = BertGenerationDecoder(config=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ).eval()
# first forward pass
snake_case__ : int = model(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE , )
snake_case__ : List[Any] = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
snake_case__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size )
snake_case__ : int = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
snake_case__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case__ : Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 )
snake_case__ : Any = model(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )["""hidden_states"""][0]
snake_case__ : List[str] = model(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , encoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , output_hidden_states=__SCREAMING_SNAKE_CASE , )["""hidden_states"""][0]
# select random slice
snake_case__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case__ : Any = output_from_no_past[:, -3:, random_slice_idx].detach()
snake_case__ : int = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , ):
snake_case__ : List[str] = BertGenerationDecoder(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Dict = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ , snake_case__ , snake_case__ : int = self.prepare_config_and_inputs()
snake_case__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else ()
lowerCamelCase__ = (BertGenerationDecoder,) if is_torch_available() else ()
lowerCamelCase__ = (
{'''feature-extraction''': BertGenerationEncoder, '''text-generation''': BertGenerationDecoder}
if is_torch_available()
else {}
)
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = BertGenerationEncoderTester(self )
snake_case__ : List[str] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __UpperCamelCase ( self ):
self.config_tester.run_common_tests()
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
snake_case__ : List[Any] = """bert"""
self.model_tester.create_and_check_model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
# This regression test was failing with PyTorch < 1.3
(
(
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) , (
snake_case__
) ,
) : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder()
snake_case__ : Tuple = None
self.model_tester.create_and_check_model_as_decoder(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )
def __UpperCamelCase ( self ):
snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_for_causal_lm(*__SCREAMING_SNAKE_CASE )
@slow
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" )
snake_case__ : List[Any] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] )
with torch.no_grad():
snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE )[0]
snake_case__ : str = torch.Size([1, 8, 1_0_2_4] )
self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = torch.tensor(
[[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" )
snake_case__ : Tuple = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] )
with torch.no_grad():
snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE )[0]
snake_case__ : List[Any] = torch.Size([1, 8, 5_0_3_5_8] )
self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = torch.tensor(
[[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 38 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
# For consistency across different places the DisjunctiveConstraint is called,
# dc.token_ids is a list of integers. It is also initialized only by integers.
snake_case__ : int = [[1, 2, 4], [1, 2, 3, 4]]
snake_case__ : Any = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
self.assertTrue(isinstance(dc.token_ids , __SCREAMING_SNAKE_CASE ) )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __UpperCamelCase ( self ):
# We can't have constraints that are complete subsets of another. This leads to a preverse
# interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint?
# It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially
# fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm
# will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it).
snake_case__ : Union[str, Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
DisjunctiveConstraint(__SCREAMING_SNAKE_CASE ) # fails here
def __UpperCamelCase ( self ):
snake_case__ : List[str] = [[1, 2, 3], [1, 2, 4]]
snake_case__ : Optional[int] = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
snake_case__ , snake_case__ , snake_case__ : Any = dc.update(1 )
snake_case__ : Any = stepped is True and completed is False and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : Tuple = dc.update(2 )
snake_case__ : Tuple = stepped is True and completed is False and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(3 )
snake_case__ : List[str] = stepped is True and completed is True and reset is False
self.assertTrue(__SCREAMING_SNAKE_CASE )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
snake_case__ : int = DisjunctiveConstraint(__SCREAMING_SNAKE_CASE )
snake_case__ , snake_case__ , snake_case__ : str = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : str = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
snake_case__ , snake_case__ , snake_case__ : List[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
snake_case__ , snake_case__ , snake_case__ : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 38 | 1 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from math import floor
import numpy as np
from transformers import CvtConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFCvtForImageClassification, TFCvtModel
from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Dict = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """embed_dim""" ) )
self.parent.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """num_heads""" ) )
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1_6, 4_8, 9_6] , __SCREAMING_SNAKE_CASE=[1, 3, 6] , __SCREAMING_SNAKE_CASE=[1, 2, 1_0] , __SCREAMING_SNAKE_CASE=[7, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2] , __SCREAMING_SNAKE_CASE=[2, 1, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 2] , __SCREAMING_SNAKE_CASE=[False, False, True] , __SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , ):
snake_case__ : List[str] = parent
snake_case__ : Tuple = batch_size
snake_case__ : Union[str, Any] = image_size
snake_case__ : List[Any] = patch_sizes
snake_case__ : Optional[int] = patch_stride
snake_case__ : Optional[Any] = patch_padding
snake_case__ : Any = is_training
snake_case__ : int = use_labels
snake_case__ : Dict = num_labels
snake_case__ : Optional[Any] = num_channels
snake_case__ : Optional[Any] = embed_dim
snake_case__ : Optional[int] = num_heads
snake_case__ : Optional[int] = stride_kv
snake_case__ : int = depth
snake_case__ : Optional[Any] = cls_token
snake_case__ : List[Any] = attention_drop_rate
snake_case__ : Union[str, Any] = initializer_range
snake_case__ : List[Any] = layer_norm_eps
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : List[Any] = None
if self.use_labels:
# create a random int32 tensor of given shape
snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_labels )
snake_case__ : List[str] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self ):
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : int = TFCvtModel(config=__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = model(__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = (self.image_size, self.image_size)
snake_case__ , snake_case__ : str = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
snake_case__ : Any = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
snake_case__ : Optional[int] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = self.num_labels
snake_case__ : str = TFCvtForImageClassification(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , training=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs
snake_case__ : Union[str, Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_tf
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else ()
lowerCamelCase__ = (
{'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification}
if is_tf_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = TFCvtModelTester(self )
snake_case__ : Any = TFCvtConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __UpperCamelCase ( self ):
self.config_tester.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
@unittest.skip(reason="""Cvt does not output attentions""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip(reason="""Cvt does not use inputs_embeds""" )
def __UpperCamelCase ( self ):
pass
@unittest.skip(reason="""Cvt does not support input and output embeddings""" )
def __UpperCamelCase ( self ):
pass
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
def __UpperCamelCase ( self ):
super().test_dataset_conversion()
@unittest.skipIf(
not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , )
@slow
def __UpperCamelCase ( self ):
super().test_keras_fit()
@unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" )
def __UpperCamelCase ( self ):
snake_case__ : List[str] = tf.keras.mixed_precision.Policy("""mixed_float16""" )
tf.keras.mixed_precision.set_global_policy(__SCREAMING_SNAKE_CASE )
super().test_keras_fit()
tf.keras.mixed_precision.set_global_policy("""float32""" )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : str = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : Optional[Any] = [*signature.parameters.keys()]
snake_case__ : Tuple = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = model(**self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
snake_case__ : Optional[int] = outputs.hidden_states
snake_case__ : Tuple = len(self.model_tester.depth )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : List[Any] = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case__ : List[str] = True
check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
@slow
def __UpperCamelCase ( self ):
for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case__ : str = TFCvtModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( ) -> str:
'''simple docstring'''
snake_case__ : Union[str, Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_tf
@require_vision
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCamelCase ( self ):
return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
snake_case__ : Union[str, Any] = self.default_image_processor
snake_case__ : int = prepare_img()
snake_case__ : Dict = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""tf""" )
# forward pass
snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE )
# verify the logits
snake_case__ : str = tf.TensorShape((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
snake_case__ : int = tf.constant([0.9285, 0.9015, -0.3150] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 38 |
'''simple docstring'''
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Optional[int] = logging.get_logger(__name__)
A_ : Tuple = {
"nvidia/segformer-b0-finetuned-ade-512-512": (
"https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json"
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''segformer'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[2, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[8, 4, 2, 1] , __SCREAMING_SNAKE_CASE=[3_2, 6_4, 1_6_0, 2_5_6] , __SCREAMING_SNAKE_CASE=[7, 3, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2, 2] , __SCREAMING_SNAKE_CASE=[1, 2, 5, 8] , __SCREAMING_SNAKE_CASE=[4, 4, 4, 4] , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1e-6 , __SCREAMING_SNAKE_CASE=2_5_6 , __SCREAMING_SNAKE_CASE=2_5_5 , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __SCREAMING_SNAKE_CASE , )
snake_case__ : Dict = num_channels
snake_case__ : Optional[Any] = num_encoder_blocks
snake_case__ : Any = depths
snake_case__ : Optional[int] = sr_ratios
snake_case__ : Tuple = hidden_sizes
snake_case__ : List[str] = patch_sizes
snake_case__ : str = strides
snake_case__ : Optional[int] = mlp_ratios
snake_case__ : Optional[Any] = num_attention_heads
snake_case__ : Dict = hidden_act
snake_case__ : Optional[int] = hidden_dropout_prob
snake_case__ : List[str] = attention_probs_dropout_prob
snake_case__ : List[Any] = classifier_dropout_prob
snake_case__ : int = initializer_range
snake_case__ : List[str] = drop_path_rate
snake_case__ : int = layer_norm_eps
snake_case__ : List[Any] = decoder_hidden_size
snake_case__ : List[Any] = kwargs.get("""reshape_last_stage""" , __SCREAMING_SNAKE_CASE )
snake_case__ : Dict = semantic_loss_ignore_index
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = version.parse('''1.11''' )
@property
def __UpperCamelCase ( self ):
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def __UpperCamelCase ( self ):
return 1e-4
@property
def __UpperCamelCase ( self ):
return 1_2
| 38 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ):
snake_case__ : Any = size if size is not None else {"""height""": 1_8, """width""": 1_8}
snake_case__ : List[Any] = parent
snake_case__ : int = batch_size
snake_case__ : List[Any] = num_channels
snake_case__ : str = image_size
snake_case__ : Union[str, Any] = min_resolution
snake_case__ : List[Any] = max_resolution
snake_case__ : Tuple = do_resize
snake_case__ : int = size
snake_case__ : Tuple = do_normalize
snake_case__ : Dict = image_mean
snake_case__ : Union[str, Any] = image_std
def __UpperCamelCase ( self ):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = DPTImageProcessor if is_vision_available() else None
def __UpperCamelCase ( self ):
snake_case__ : str = DPTImageProcessingTester(self )
@property
def __UpperCamelCase ( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) )
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) )
def __UpperCamelCase ( self ):
snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} )
snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray )
# Test not batched input
snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __UpperCamelCase ( self ):
# Initialize image_processing
snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 38 |
'''simple docstring'''
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : List[Any]=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : str = None
if token is not None:
snake_case__ : str = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : List[Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"
snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ ).json()
snake_case__ : str = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(__magic_name__ ):
snake_case__ : Tuple = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any]=None ) -> List[str]:
'''simple docstring'''
snake_case__ : Optional[Any] = None
if token is not None:
snake_case__ : Any = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : Dict = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"
snake_case__ : Union[str, Any] = requests.get(__magic_name__ , headers=__magic_name__ ).json()
snake_case__ : Dict = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
snake_case__ : List[Any] = math.ceil((result["""total_count"""] - 1_00) / 1_00 )
for i in range(__magic_name__ ):
snake_case__ : Dict = requests.get(url + f"&page={i + 2}" , headers=__magic_name__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Dict ) -> Dict:
'''simple docstring'''
snake_case__ : Optional[Any] = None
if token is not None:
snake_case__ : Dict = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
snake_case__ : str = requests.get(__magic_name__ , headers=__magic_name__ , allow_redirects=__magic_name__ )
snake_case__ : Any = result.headers["""Location"""]
snake_case__ : Tuple = requests.get(__magic_name__ , allow_redirects=__magic_name__ )
snake_case__ : int = os.path.join(__magic_name__ , f"{artifact_name}.zip" )
with open(__magic_name__ , """wb""" ) as fp:
fp.write(response.content )
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : str=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Any = []
snake_case__ : Union[str, Any] = []
snake_case__ : Any = None
with zipfile.ZipFile(__magic_name__ ) as z:
for filename in z.namelist():
if not os.path.isdir(__magic_name__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(__magic_name__ ) as f:
for line in f:
snake_case__ : Any = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
snake_case__ : str = line[: line.index(""": """ )]
snake_case__ : Optional[int] = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
snake_case__ : Dict = line[len("""FAILED """ ) :]
failed_tests.append(__magic_name__ )
elif filename == "job_name.txt":
snake_case__ : Optional[Any] = line
if len(__magic_name__ ) != len(__magic_name__ ):
raise ValueError(
f"`errors` and `failed_tests` should have the same number of elements. Got {len(__magic_name__ )} for `errors` "
f"and {len(__magic_name__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"
""" problem.""" )
snake_case__ : Optional[Any] = None
if job_name and job_links:
snake_case__ : Optional[Any] = job_links.get(__magic_name__ , __magic_name__ )
# A list with elements of the form (line of error, error, failed test)
snake_case__ : List[Any] = [x + [y] + [job_link] for x, y in zip(__magic_name__ , __magic_name__ )]
return result
def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : Union[str, Any]=None ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : str = []
snake_case__ : Dict = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(__magic_name__ , job_links=__magic_name__ ) )
return errors
def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=None ) -> List[Any]:
'''simple docstring'''
snake_case__ : Any = Counter()
counter.update([x[1] for x in logs] )
snake_case__ : Dict = counter.most_common()
snake_case__ : Any = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
snake_case__ : int = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) )
return r
def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> List[Any]:
'''simple docstring'''
snake_case__ : str = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
snake_case__ : Tuple = test.split("""/""" )[2]
else:
snake_case__ : Any = None
return test
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Union[str, Any]=None ) -> List[str]:
'''simple docstring'''
snake_case__ : List[str] = [(x[0], x[1], get_model(x[2] )) for x in logs]
snake_case__ : List[Any] = [x for x in logs if x[2] is not None]
snake_case__ : Any = {x[2] for x in logs}
snake_case__ : Optional[Any] = {}
for test in tests:
snake_case__ : str = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
snake_case__ : Optional[int] = counter.most_common()
snake_case__ : Optional[int] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
snake_case__ : int = sum(error_counts.values() )
if n_errors > 0:
snake_case__ : str = {"""count""": n_errors, """errors""": error_counts}
snake_case__ : Union[str, Any] = dict(sorted(r.items() , key=lambda __magic_name__ : item[1]["count"] , reverse=__magic_name__ ) )
return r
def UpperCamelCase__ ( __magic_name__ : int ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Optional[Any] = """| no. | error | status |"""
snake_case__ : int = """|-:|:-|:-|"""
snake_case__ : int = [header, sep]
for error in reduced_by_error:
snake_case__ : Union[str, Any] = reduced_by_error[error]["""count"""]
snake_case__ : Dict = f"| {count} | {error[:1_00]} | |"
lines.append(__magic_name__ )
return "\n".join(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : Dict ) -> List[Any]:
'''simple docstring'''
snake_case__ : List[Any] = """| model | no. of errors | major error | count |"""
snake_case__ : Optional[int] = """|-:|-:|-:|-:|"""
snake_case__ : Dict = [header, sep]
for model in reduced_by_model:
snake_case__ : Tuple = reduced_by_model[model]["""count"""]
snake_case__ , snake_case__ : Tuple = list(reduced_by_model[model]["""errors"""].items() )[0]
snake_case__ : Optional[int] = f"| {model} | {count} | {error[:60]} | {_count} |"
lines.append(__magic_name__ )
return "\n".join(__magic_name__ )
if __name__ == "__main__":
A_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
A_ : int = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
A_ : Optional[int] = get_job_links(args.workflow_run_id, token=args.token)
A_ : Optional[Any] = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
A_ : int = k.find(" / ")
A_ : List[Any] = k[index + len(" / ") :]
A_ : List[str] = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
A_ : int = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
A_ : str = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
A_ : List[str] = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
A_ : Any = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
A_ : Any = reduce_by_error(errors)
A_ : Union[str, Any] = reduce_by_model(errors)
A_ : Any = make_github_table(reduced_by_error)
A_ : Optional[Any] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 38 | 1 |
'''simple docstring'''
import math
def UpperCamelCase__ ( __magic_name__ : int ) -> int:
'''simple docstring'''
if not isinstance(__magic_name__ , __magic_name__ ):
snake_case__ : Union[str, Any] = f"Input value of [number={number}] must be an integer"
raise TypeError(__magic_name__ )
if number < 1:
snake_case__ : Optional[int] = f"Input value of [number={number}] must be > 0"
raise ValueError(__magic_name__ )
elif number == 1:
return 3
elif number == 2:
return 5
else:
snake_case__ : Optional[int] = int(math.log(number // 3 , 2 ) ) + 2
snake_case__ : str = [3, 5]
snake_case__ : List[Any] = 2
snake_case__ : Optional[Any] = 3
for block in range(1 , __magic_name__ ):
for _ in range(__magic_name__ ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(11):
A_ : Optional[int] = 0
try:
A_ : Dict = proth(number)
except ValueError:
print(F'ValueError: there is no {number}th Proth number')
continue
print(F'The {number}th Proth number: {value}')
| 38 |
'''simple docstring'''
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
A_ : Tuple = get_logger(__name__)
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = '''dummy_data'''
lowerCamelCase__ = '''datasets'''
lowerCamelCase__ = False
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , ):
snake_case__ : List[Any] = 0
snake_case__ : Union[str, Any] = dataset_name
snake_case__ : Optional[int] = cache_dir
snake_case__ : Union[str, Any] = use_local_dummy_data
snake_case__ : int = config
# download_callbacks take a single url as input
snake_case__ : List[Callable] = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
snake_case__ : Union[str, Any] = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
snake_case__ : Union[str, Any] = str(__SCREAMING_SNAKE_CASE )
# to be downloaded
snake_case__ : List[str] = None
snake_case__ : List[str] = None
@property
def __UpperCamelCase ( self ):
if self._dummy_file is None:
snake_case__ : List[str] = self.download_dummy_data()
return self._dummy_file
@property
def __UpperCamelCase ( self ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("""dummy""" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("""dummy""" , self.version_name )
@property
def __UpperCamelCase ( self ):
return os.path.join(self.dummy_data_folder , """dummy_data.zip""" )
def __UpperCamelCase ( self ):
snake_case__ : Optional[Any] = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
snake_case__ : Optional[int] = cached_path(
__SCREAMING_SNAKE_CASE , cache_dir=self.cache_dir , extract_compressed_file=__SCREAMING_SNAKE_CASE , force_extract=__SCREAMING_SNAKE_CASE )
return os.path.join(__SCREAMING_SNAKE_CASE , self.dummy_file_name )
@property
def __UpperCamelCase ( self ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def __UpperCamelCase ( self ):
if self._bucket_url is None:
snake_case__ : List[str] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) )
return self._bucket_url
@property
def __UpperCamelCase ( self ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
snake_case__ : List[Any] = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
snake_case__ : List[Any] = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return self.create_dummy_data_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ):
return self.create_dummy_data_list(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
return self.create_dummy_data_single(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ):
return self.download_and_extract(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return self.download_and_extract(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ):
return path
def __UpperCamelCase ( self ):
return {}
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : int = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for single_url in single_urls:
download_callback(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : List[str] = single_urls
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Tuple = [os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) ) for x in single_urls]
else:
snake_case__ : List[Any] = single_urls
snake_case__ : Tuple = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(Path(__SCREAMING_SNAKE_CASE ).name ) )
snake_case__ : Optional[int] = value
# make sure that values are unique
if all(isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
snake_case__ : List[Any] = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Dict = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
snake_case__ : Tuple = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __SCREAMING_SNAKE_CASE ) ) for url in data_url )
snake_case__ : List[Any] = all(
url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
snake_case__ : List[str] = [data_url[0]] * len(__SCREAMING_SNAKE_CASE )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
snake_case__ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) )
dummy_data_list.append(__SCREAMING_SNAKE_CASE )
return dummy_data_list
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
for download_callback in self.download_callbacks:
download_callback(__SCREAMING_SNAKE_CASE )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
snake_case__ : Any = os.path.join(__SCREAMING_SNAKE_CASE , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) )
if os.path.exists(__SCREAMING_SNAKE_CASE ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
def _iter_archive_members(__SCREAMING_SNAKE_CASE ):
# this preserves the order of the members inside the ZIP archive
snake_case__ : List[str] = Path(self.dummy_file ).parent
snake_case__ : Dict = path.relative_to(__SCREAMING_SNAKE_CASE )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
snake_case__ : Optional[int] = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = Path(__SCREAMING_SNAKE_CASE )
snake_case__ : int = _iter_archive_members(__SCREAMING_SNAKE_CASE ) if self.use_local_dummy_data else path.rglob("""*""" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ):
yield file_path.relative_to(__SCREAMING_SNAKE_CASE ).as_posix(), file_path.open("""rb""" )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[int] = [paths]
for path in paths:
if os.path.isfile(__SCREAMING_SNAKE_CASE ):
if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__SCREAMING_SNAKE_CASE ):
if os.path.basename(__SCREAMING_SNAKE_CASE ).startswith((""".""", """__""") ):
continue
dirnames.sort()
for filename in sorted(__SCREAMING_SNAKE_CASE ):
if filename.startswith((""".""", """__""") ):
continue
yield os.path.join(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 38 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = 42
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE=True , ):
super().__init__()
snake_case__ : str = layers_per_block
snake_case__ : int = torch.nn.Convad(
__SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : List[Any] = None
snake_case__ : List[Any] = nn.ModuleList([] )
# down
snake_case__ : Union[str, Any] = block_out_channels[0]
for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = output_channel
snake_case__ : Union[str, Any] = block_out_channels[i]
snake_case__ : int = i == len(__SCREAMING_SNAKE_CASE ) - 1
snake_case__ : str = get_down_block(
__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
self.down_blocks.append(__SCREAMING_SNAKE_CASE )
# mid
snake_case__ : Optional[Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
# out
snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 )
snake_case__ : Tuple = nn.SiLU()
snake_case__ : str = 2 * out_channels if double_z else out_channels
snake_case__ : int = nn.Convad(block_out_channels[-1] , __SCREAMING_SNAKE_CASE , 3 , padding=1 )
snake_case__ : Union[str, Any] = False
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = x
snake_case__ : int = self.conv_in(__SCREAMING_SNAKE_CASE )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
# middle
snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
else:
for down_block in self.down_blocks:
snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# middle
snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE )
else:
# down
for down_block in self.down_blocks:
snake_case__ : List[str] = down_block(__SCREAMING_SNAKE_CASE )
# middle
snake_case__ : str = self.mid_block(__SCREAMING_SNAKE_CASE )
# post-process
snake_case__ : Any = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = self.conv_act(__SCREAMING_SNAKE_CASE )
snake_case__ : str = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE="group" , ):
super().__init__()
snake_case__ : Any = layers_per_block
snake_case__ : Optional[Any] = nn.Convad(
__SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : Union[str, Any] = None
snake_case__ : Dict = nn.ModuleList([] )
snake_case__ : Optional[int] = in_channels if norm_type == """spatial""" else None
# mid
snake_case__ : Tuple = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
# up
snake_case__ : List[Any] = list(reversed(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Optional[Any] = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = output_channel
snake_case__ : Optional[Any] = reversed_block_out_channels[i]
snake_case__ : List[str] = i == len(__SCREAMING_SNAKE_CASE ) - 1
snake_case__ : int = get_up_block(
__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , resnet_time_scale_shift=__SCREAMING_SNAKE_CASE , )
self.up_blocks.append(__SCREAMING_SNAKE_CASE )
snake_case__ : int = output_channel
# out
if norm_type == "spatial":
snake_case__ : List[Any] = SpatialNorm(block_out_channels[0] , __SCREAMING_SNAKE_CASE )
else:
snake_case__ : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 )
snake_case__ : Tuple = nn.SiLU()
snake_case__ : Union[str, Any] = nn.Convad(block_out_channels[0] , __SCREAMING_SNAKE_CASE , 3 , padding=1 )
snake_case__ : int = False
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
snake_case__ : Union[str, Any] = z
snake_case__ : Any = self.conv_in(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
snake_case__ : int = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
snake_case__ : int = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : List[str] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
else:
# middle
snake_case__ : Dict = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
# middle
snake_case__ : List[Any] = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : Dict = up_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# post-process
if latent_embeds is None:
snake_case__ : Optional[Any] = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : str = self.conv_norm_out(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.conv_act(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="random" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ):
super().__init__()
snake_case__ : int = n_e
snake_case__ : Optional[int] = vq_embed_dim
snake_case__ : int = beta
snake_case__ : Optional[int] = legacy
snake_case__ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
snake_case__ : List[str] = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
snake_case__ : Optional[Any] = self.used.shape[0]
snake_case__ : List[str] = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
snake_case__ : Dict = self.re_embed
snake_case__ : List[str] = self.re_embed + 1
print(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices." )
else:
snake_case__ : Union[str, Any] = n_e
snake_case__ : str = sane_index_shape
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
snake_case__ : Dict = inds.reshape(ishape[0] , -1 )
snake_case__ : Any = self.used.to(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = (inds[:, :, None] == used[None, None, ...]).long()
snake_case__ : List[Any] = match.argmax(-1 )
snake_case__ : List[str] = match.sum(2 ) < 1
if self.unknown_index == "random":
snake_case__ : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
snake_case__ : Optional[Any] = self.unknown_index
return new.reshape(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
snake_case__ : int = inds.reshape(ishape[0] , -1 )
snake_case__ : Optional[int] = self.used.to(__SCREAMING_SNAKE_CASE )
if self.re_embed > self.used.shape[0]: # extra token
snake_case__ : List[Any] = 0 # simply set to zero
snake_case__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __SCREAMING_SNAKE_CASE )
return back.reshape(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
# reshape z -> (batch, height, width, channel) and flatten
snake_case__ : Any = z.permute(0 , 2 , 3 , 1 ).contiguous()
snake_case__ : Optional[Any] = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
snake_case__ : Dict = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 )
snake_case__ : Union[str, Any] = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape )
snake_case__ : List[str] = None
snake_case__ : Union[str, Any] = None
# compute loss for embedding
if not self.legacy:
snake_case__ : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
snake_case__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
snake_case__ : Any = z + (z_q - z).detach()
# reshape back to match original input shape
snake_case__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
snake_case__ : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
snake_case__ : str = self.remap_to_used(__SCREAMING_SNAKE_CASE )
snake_case__ : str = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
snake_case__ : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
snake_case__ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
snake_case__ : Optional[int] = self.unmap_to_all(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
snake_case__ : int = self.embedding(__SCREAMING_SNAKE_CASE )
if shape is not None:
snake_case__ : str = z_q.view(__SCREAMING_SNAKE_CASE )
# reshape back to match original input shape
snake_case__ : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ):
snake_case__ : Tuple = parameters
snake_case__ , snake_case__ : Any = torch.chunk(__SCREAMING_SNAKE_CASE , 2 , dim=1 )
snake_case__ : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 )
snake_case__ : Optional[int] = deterministic
snake_case__ : Optional[int] = torch.exp(0.5 * self.logvar )
snake_case__ : Any = torch.exp(self.logvar )
if self.deterministic:
snake_case__ : List[str] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None ):
# make sure sample is on the same device as the parameters and has same dtype
snake_case__ : Dict = randn_tensor(
self.mean.shape , generator=__SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype )
snake_case__ : Optional[int] = self.mean + self.std * sample
return x
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None ):
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=[1, 2, 3] ):
if self.deterministic:
return torch.Tensor([0.0] )
snake_case__ : Any = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
return self.mean
| 38 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = IFImgaImgSuperResolutionPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''}
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} )
lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __UpperCamelCase ( self ):
return self._get_superresolution_dummy_components()
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ):
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
snake_case__ : List[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : Tuple = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __UpperCamelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def __UpperCamelCase ( self ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def __UpperCamelCase ( self ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __UpperCamelCase ( self ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __UpperCamelCase ( self ):
self._test_save_load_local()
def __UpperCamelCase ( self ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 38 | 1 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
A_ : Tuple = logging.get_logger(__name__)
# TODO: upload to AWS
A_ : Tuple = {
"yjernite/retribert-base-uncased": (
"https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json"
),
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''retribert'''
def __init__( self , __SCREAMING_SNAKE_CASE=3_0_5_2_2 , __SCREAMING_SNAKE_CASE=7_6_8 , __SCREAMING_SNAKE_CASE=8 , __SCREAMING_SNAKE_CASE=1_2 , __SCREAMING_SNAKE_CASE=3_0_7_2 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=1_2_8 , __SCREAMING_SNAKE_CASE=0 , **__SCREAMING_SNAKE_CASE , ):
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : str = vocab_size
snake_case__ : str = hidden_size
snake_case__ : int = num_hidden_layers
snake_case__ : List[Any] = num_attention_heads
snake_case__ : List[Any] = hidden_act
snake_case__ : Optional[Any] = intermediate_size
snake_case__ : Union[str, Any] = hidden_dropout_prob
snake_case__ : List[str] = attention_probs_dropout_prob
snake_case__ : Tuple = max_position_embeddings
snake_case__ : Optional[int] = type_vocab_size
snake_case__ : str = initializer_range
snake_case__ : Any = layer_norm_eps
snake_case__ : Dict = share_encoders
snake_case__ : str = projection_dim
| 38 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
A_ : Dict = [
"EAGER",
"AOT_EAGER",
"INDUCTOR",
"NVFUSER",
"AOT_NVFUSER",
"AOT_CUDAGRAPHS",
"OFI",
"FX2TRT",
"ONNXRT",
"IPEX",
]
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : List[Any]=None , __magic_name__ : List[str]=None , __magic_name__ : List[str]=None ) -> Dict:
'''simple docstring'''
snake_case__ : Optional[int] = True
while ask_again:
snake_case__ : Optional[Any] = input(__magic_name__ )
try:
if default is not None and len(__magic_name__ ) == 0:
return default
return convert_value(__magic_name__ ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Any=[] , __magic_name__ : Optional[int]=None , __magic_name__ : int=0 ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Union[str, Any] = BulletMenu(__magic_name__ , __magic_name__ )
snake_case__ : Optional[Any] = menu.run(default_choice=__magic_name__ )
return convert_value(__magic_name__ ) if convert_value is not None else result
def UpperCamelCase__ ( __magic_name__ : Any ) -> int:
'''simple docstring'''
snake_case__ : Tuple = int(__magic_name__ )
return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] )
def UpperCamelCase__ ( __magic_name__ : str ) -> Tuple:
'''simple docstring'''
snake_case__ : List[Any] = int(__magic_name__ )
return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] )
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> List[Any]:
'''simple docstring'''
snake_case__ : Union[str, Any] = int(__magic_name__ )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def UpperCamelCase__ ( __magic_name__ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : Optional[Any] = int(__magic_name__ )
return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] )
def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[Any]:
'''simple docstring'''
snake_case__ : Optional[Any] = int(__magic_name__ )
return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] )
def UpperCamelCase__ ( __magic_name__ : Dict ) -> Tuple:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class __snake_case ( argparse.RawDescriptionHelpFormatter ):
'''simple docstring'''
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : str = super()._format_usage(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : str = usage.replace("""<command> [<args>] """ , """""" )
return usage
| 38 | 1 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A_ : Tuple = logging.get_logger(__name__)
A_ : List[str] = {
"facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json",
"facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json",
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''xlm-roberta-xl'''
def __init__( self , __SCREAMING_SNAKE_CASE=2_5_0_8_8_0 , __SCREAMING_SNAKE_CASE=2_5_6_0 , __SCREAMING_SNAKE_CASE=3_6 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_0_2_4_0 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_4 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-0_5 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=0 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE="absolute" , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = vocab_size
snake_case__ : List[str] = hidden_size
snake_case__ : Dict = num_hidden_layers
snake_case__ : Dict = num_attention_heads
snake_case__ : Optional[int] = hidden_act
snake_case__ : Dict = intermediate_size
snake_case__ : str = hidden_dropout_prob
snake_case__ : str = attention_probs_dropout_prob
snake_case__ : Any = max_position_embeddings
snake_case__ : List[str] = type_vocab_size
snake_case__ : List[Any] = initializer_range
snake_case__ : Dict = layer_norm_eps
snake_case__ : Union[str, Any] = position_embedding_type
snake_case__ : Tuple = use_cache
snake_case__ : int = classifier_dropout
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def __UpperCamelCase ( self ):
if self.task == "multiple-choice":
snake_case__ : Tuple = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
snake_case__ : str = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 38 |
'''simple docstring'''
from __future__ import annotations
def UpperCamelCase__ ( __magic_name__ : list ) -> float:
'''simple docstring'''
if not nums:
raise ValueError("""List is empty""" )
return sum(__magic_name__ ) / len(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 38 | 1 |
'''simple docstring'''
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : str ) -> bool:
'''simple docstring'''
snake_case__ : Any = len(__magic_name__ )
snake_case__ : int = len(__magic_name__ )
snake_case__ : List[Any] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
snake_case__ : Any = True
for i in range(__magic_name__ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
snake_case__ : Tuple = True
if a[i].islower():
snake_case__ : Dict = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 38 |
'''simple docstring'''
from __future__ import annotations
A_ : str = "Muhammad Umer Farooq"
A_ : Optional[Any] = "MIT"
A_ : int = "1.0.0"
A_ : int = "Muhammad Umer Farooq"
A_ : int = "[email protected]"
A_ : Dict = "Alpha"
import re
from html.parser import HTMLParser
from urllib import parse
import requests
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
super().__init__()
snake_case__ : list[str] = []
snake_case__ : List[Any] = domain
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# Only parse the 'anchor' tag.
if tag == "a":
# Check the list of defined attributes.
for name, value in attrs:
# If href is defined, and not empty nor # print it.
if name == "href" and value != "#" and value != "":
# If not already in urls.
if value not in self.urls:
snake_case__ : str = parse.urljoin(self.domain , __SCREAMING_SNAKE_CASE )
self.urls.append(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
return ".".join(get_sub_domain_name(__magic_name__ ).split(""".""" )[-2:] )
def UpperCamelCase__ ( __magic_name__ : str ) -> str:
'''simple docstring'''
return parse.urlparse(__magic_name__ ).netloc
def UpperCamelCase__ ( __magic_name__ : str = "https://github.com" ) -> list[str]:
'''simple docstring'''
snake_case__ : List[str] = get_domain_name(__magic_name__ )
# Initialize the parser
snake_case__ : Optional[Any] = Parser(__magic_name__ )
try:
# Open URL
snake_case__ : Any = requests.get(__magic_name__ )
# pass the raw HTML to the parser to get links
parser.feed(r.text )
# Get links and loop through
snake_case__ : List[str] = set()
for link in parser.urls:
# open URL.
# read = requests.get(link)
try:
snake_case__ : Tuple = requests.get(__magic_name__ )
# Get the valid email.
snake_case__ : List[str] = re.findall("""[a-zA-Z0-9]+@""" + domain , read.text )
# If not in list then append it.
for email in emails:
valid_emails.add(__magic_name__ )
except ValueError:
pass
except ValueError:
raise SystemExit(1 )
# Finally return a sorted list of email addresses with no duplicates.
return sorted(__magic_name__ )
if __name__ == "__main__":
A_ : str = emails_from_url("https://github.com")
print(F'{len(emails)} emails found:')
print("\n".join(sorted(emails)))
| 38 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = IFImgaImgSuperResolutionPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''}
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} )
lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __UpperCamelCase ( self ):
return self._get_superresolution_dummy_components()
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ):
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
snake_case__ : List[Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : Tuple = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : int = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""image""": image,
"""original_image""": original_image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __UpperCamelCase ( self ):
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def __UpperCamelCase ( self ):
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def __UpperCamelCase ( self ):
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __UpperCamelCase ( self ):
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __UpperCamelCase ( self ):
self._test_save_load_local()
def __UpperCamelCase ( self ):
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 38 |
'''simple docstring'''
def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Tuple:
'''simple docstring'''
if not head:
return True
# split the list to two parts
snake_case__ , snake_case__ : Dict = head.next, head
while fast and fast.next:
snake_case__ : Any = fast.next.next
snake_case__ : int = slow.next
snake_case__ : Dict = slow.next
snake_case__ : List[str] = None # Don't forget here! But forget still works!
# reverse the second part
snake_case__ : Tuple = None
while second:
snake_case__ : Tuple = second.next
snake_case__ : Any = node
snake_case__ : str = second
snake_case__ : Optional[Any] = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
snake_case__ : List[Any] = node.next
snake_case__ : int = head.next
return True
def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[Any]:
'''simple docstring'''
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
snake_case__ : List[Any] = head
while fast and fast.next:
snake_case__ , snake_case__ : Any = fast.next.next, slow.next
# 2. Push the second half into the stack
snake_case__ : Tuple = [slow.val]
while slow.next:
snake_case__ : Optional[Any] = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
snake_case__ : str = cur.next
return True
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Tuple:
'''simple docstring'''
if not head or not head.next:
return True
snake_case__ : int = {}
snake_case__ : Union[str, Any] = 0
while head:
if head.val in d:
d[head.val].append(__magic_name__ )
else:
snake_case__ : Tuple = [pos]
snake_case__ : Optional[Any] = head.next
pos += 1
snake_case__ : int = pos - 1
snake_case__ : str = 0
for v in d.values():
if len(__magic_name__ ) % 2 != 0:
middle += 1
else:
snake_case__ : List[str] = 0
for i in range(0 , len(__magic_name__ ) ):
if v[i] + v[len(__magic_name__ ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 38 | 1 |
'''simple docstring'''
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(".")
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> str:
'''simple docstring'''
snake_case__ : List[str] = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"""`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """
f"{test_file} instead." )
snake_case__ : Tuple = components[-1]
if not test_fn.endswith("""py""" ):
raise ValueError(f"`test_file` should be a python file. Got {test_fn} instead." )
if not test_fn.startswith("""test_modeling_""" ):
raise ValueError(
f"`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead." )
snake_case__ : Optional[Any] = components[:-1] + [test_fn.replace(""".py""" , """""" )]
snake_case__ : List[str] = """.""".join(__magic_name__ )
return test_module_path
def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> Dict:
'''simple docstring'''
snake_case__ : str = get_module_path(__magic_name__ )
snake_case__ : Optional[Any] = importlib.import_module(__magic_name__ )
return test_module
def UpperCamelCase__ ( __magic_name__ : str ) -> Optional[Any]:
'''simple docstring'''
snake_case__ : Any = []
snake_case__ : Any = get_test_module(__magic_name__ )
for attr in dir(__magic_name__ ):
if attr.endswith("""ModelTester""" ):
tester_classes.append(getattr(__magic_name__ , __magic_name__ ) )
# sort with class names
return sorted(__magic_name__ , key=lambda __magic_name__ : x.__name__ )
def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Union[str, Any] = []
snake_case__ : Union[str, Any] = get_test_module(__magic_name__ )
for attr in dir(__magic_name__ ):
snake_case__ : List[str] = getattr(__magic_name__ , __magic_name__ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
snake_case__ : Any = getattr(__magic_name__ , """all_model_classes""" , [] )
if len(__magic_name__ ) > 0:
test_classes.append(__magic_name__ )
# sort with class names
return sorted(__magic_name__ , key=lambda __magic_name__ : x.__name__ )
def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> List[str]:
'''simple docstring'''
snake_case__ : Optional[Any] = get_test_classes(__magic_name__ )
snake_case__ : Union[str, Any] = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(__magic_name__ , key=lambda __magic_name__ : x.__name__ )
def UpperCamelCase__ ( __magic_name__ : str ) -> Optional[Any]:
'''simple docstring'''
snake_case__ : Optional[int] = test_class()
if hasattr(__magic_name__ , """setUp""" ):
test.setUp()
snake_case__ : List[Any] = None
if hasattr(__magic_name__ , """model_tester""" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
snake_case__ : Optional[Any] = test.model_tester.__class__
return model_tester
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : int ) -> Dict:
'''simple docstring'''
snake_case__ : List[str] = get_test_classes(__magic_name__ )
snake_case__ : str = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(__magic_name__ )
# sort with class names
return sorted(__magic_name__ , key=lambda __magic_name__ : x.__name__ )
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Dict ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Tuple = get_test_classes_for_model(__magic_name__ , __magic_name__ )
snake_case__ : List[Any] = []
for test_class in test_classes:
snake_case__ : List[str] = get_model_tester_from_test_class(__magic_name__ )
if tester_class is not None:
tester_classes.append(__magic_name__ )
# sort with class names
return sorted(__magic_name__ , key=lambda __magic_name__ : x.__name__ )
def UpperCamelCase__ ( __magic_name__ : Tuple ) -> Optional[int]:
'''simple docstring'''
snake_case__ : List[Any] = get_test_classes(__magic_name__ )
snake_case__ : Union[str, Any] = {test_class: get_model_tester_from_test_class(__magic_name__ ) for test_class in test_classes}
return test_tester_mapping
def UpperCamelCase__ ( __magic_name__ : Tuple ) -> str:
'''simple docstring'''
snake_case__ : Any = get_model_classes(__magic_name__ )
snake_case__ : str = {
model_class: get_test_classes_for_model(__magic_name__ , __magic_name__ ) for model_class in model_classes
}
return model_test_mapping
def UpperCamelCase__ ( __magic_name__ : Dict ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : int = get_model_classes(__magic_name__ )
snake_case__ : Union[str, Any] = {
model_class: get_tester_classes_for_model(__magic_name__ , __magic_name__ ) for model_class in model_classes
}
return model_to_tester_mapping
def UpperCamelCase__ ( __magic_name__ : Tuple ) -> Any:
'''simple docstring'''
if isinstance(__magic_name__ , __magic_name__ ):
return o
elif isinstance(__magic_name__ , __magic_name__ ):
return o.__name__
elif isinstance(__magic_name__ , (list, tuple) ):
return [to_json(__magic_name__ ) for x in o]
elif isinstance(__magic_name__ , __magic_name__ ):
return {to_json(__magic_name__ ): to_json(__magic_name__ ) for k, v in o.items()}
else:
return o
| 38 |
'''simple docstring'''
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
A_ : Union[str, Any] = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
A_ : str = 250004
A_ : str = 250020
@require_sentencepiece
@require_tokenizers
class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MBartTokenizer
lowerCamelCase__ = MBartTokenizerFast
lowerCamelCase__ = True
lowerCamelCase__ = True
def __UpperCamelCase ( self ):
super().setUp()
# We have a SentencePiece fixture for testing
snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
tokenizer.save_pretrained(self.tmpdirname )
def __UpperCamelCase ( self ):
snake_case__ : Tuple = MBartTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE )
snake_case__ : int = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , )
snake_case__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
snake_case__ : Optional[int] = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
value + tokenizer.fairseq_offset
for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
snake_case__ : Union[str, Any] = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE )
self.assertListEqual(
__SCREAMING_SNAKE_CASE , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def __UpperCamelCase ( self ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
snake_case__ : Optional[int] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
snake_case__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = tempfile.mkdtemp()
snake_case__ : int = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
snake_case__ : List[str] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
snake_case__ : Tuple = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=True
snake_case__ : Any = tempfile.mkdtemp()
snake_case__ : Optional[int] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
snake_case__ : int = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it save with the same files
self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Checks everything loads correctly in the same way
snake_case__ : List[Any] = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
# Save tokenizer rust, legacy_format=False
snake_case__ : Dict = tempfile.mkdtemp()
snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
snake_case__ : Dict = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
shutil.rmtree(__SCREAMING_SNAKE_CASE )
@require_torch
@require_sentencepiece
@require_tokenizers
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = '''facebook/mbart-large-en-ro'''
lowerCamelCase__ = [
''' UN Chief Says There Is No Military Solution in Syria''',
''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''',
]
lowerCamelCase__ = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
'''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei'''
''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'''
''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''',
]
lowerCamelCase__ = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE]
@classmethod
def __UpperCamelCase ( cls ):
snake_case__ : MBartTokenizer = MBartTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" )
snake_case__ : Any = 1
return cls
def __UpperCamelCase ( self ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 2_5_0_0_0_1 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 2_5_0_0_0_4 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 2_5_0_0_2_0 )
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids )
snake_case__ : List[str] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2]
snake_case__ : List[Any] = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Dict = ["""this is gunna be a long sentence """ * 2_0]
assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = 1_0
snake_case__ : int = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0]
self.assertEqual(ids[-2] , 2 )
self.assertEqual(ids[-1] , __SCREAMING_SNAKE_CASE )
self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [2_5_0_0_2_6, 2_5_0_0_0_1] )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = tempfile.mkdtemp()
snake_case__ : Dict = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = MBartTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE )
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" )
snake_case__ : int = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE]
assert batch.decoder_input_ids[1][0].tolist() == RO_CODE
assert batch.decoder_input_ids[1][-1] == 2
assert batch.labels[1][-2:].tolist() == [2, RO_CODE]
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , )
snake_case__ : List[str] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id )
self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertEqual((2, 1_4) , batch.input_ids.shape )
self.assertEqual((2, 1_4) , batch.attention_mask.shape )
snake_case__ : Tuple = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE )
self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] )
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" )
snake_case__ : Optional[int] = self.tokenizer(
text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=1_0 , return_tensors="""pt""" )
snake_case__ : str = targets["""input_ids"""]
snake_case__ : Optional[Any] = shift_tokens_right(__SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 )
@require_torch
def __UpperCamelCase ( self ):
snake_case__ : Tuple = self.tokenizer._build_translation_inputs(
"""A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" )
self.assertEqual(
nested_simplify(__SCREAMING_SNAKE_CASE ) , {
# A, test, EOS, en_XX
"""input_ids""": [[6_2, 3_0_3_4, 2, 2_5_0_0_0_4]],
"""attention_mask""": [[1, 1, 1, 1]],
# ar_AR
"""forced_bos_token_id""": 2_5_0_0_0_1,
} , )
| 38 | 1 |
'''simple docstring'''
from __future__ import annotations
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = order
# a_{0} ... a_{k}
snake_case__ : Union[str, Any] = [1.0] + [0.0] * order
# b_{0} ... b_{k}
snake_case__ : Tuple = [1.0] + [0.0] * order
# x[n-1] ... x[n-k]
snake_case__ : Union[str, Any] = [0.0] * self.order
# y[n-1] ... y[n-k]
snake_case__ : int = [0.0] * self.order
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
if len(__SCREAMING_SNAKE_CASE ) < self.order:
snake_case__ : Dict = [1.0, *a_coeffs]
if len(__SCREAMING_SNAKE_CASE ) != self.order + 1:
snake_case__ : List[Any] = (
f"Expected a_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(__SCREAMING_SNAKE_CASE )}"
)
raise ValueError(__SCREAMING_SNAKE_CASE )
if len(__SCREAMING_SNAKE_CASE ) != self.order + 1:
snake_case__ : Optional[Any] = (
f"Expected b_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(__SCREAMING_SNAKE_CASE )}"
)
raise ValueError(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = a_coeffs
snake_case__ : List[Any] = b_coeffs
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Union[str, Any] = 0.0
# Start at index 1 and do index 0 at the end.
for i in range(1 , self.order + 1 ):
result += (
self.b_coeffs[i] * self.input_history[i - 1]
- self.a_coeffs[i] * self.output_history[i - 1]
)
snake_case__ : Any = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0]
snake_case__ : Optional[Any] = self.input_history[:-1]
snake_case__ : Dict = self.output_history[:-1]
snake_case__ : Dict = sample
snake_case__ : List[str] = result
return result
| 38 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A_ : int = logging.get_logger(__name__)
A_ : Dict = {
"google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json",
}
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''bit'''
lowerCamelCase__ = ['''preactivation''', '''bottleneck''']
lowerCamelCase__ = ['''SAME''', '''VALID''']
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
if global_padding is not None:
if global_padding.upper() in self.supported_padding:
snake_case__ : Tuple = global_padding.upper()
else:
raise ValueError(f"Padding strategy {global_padding} not supported" )
snake_case__ : List[str] = num_channels
snake_case__ : Tuple = embedding_size
snake_case__ : str = hidden_sizes
snake_case__ : Optional[Any] = depths
snake_case__ : List[Any] = layer_type
snake_case__ : Dict = hidden_act
snake_case__ : Union[str, Any] = global_padding
snake_case__ : List[str] = num_groups
snake_case__ : str = drop_path_rate
snake_case__ : List[Any] = embedding_dynamic_padding
snake_case__ : List[str] = output_stride
snake_case__ : Dict = width_factor
snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )]
snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices(
out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
| 38 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A_ : Dict = logging.get_logger(__name__)
A_ : Optional[Any] = {
"facebook/convnextv2-tiny-1k-224": "https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json",
}
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = '''convnextv2'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1e-1_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=2_2_4 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ):
super().__init__(**__SCREAMING_SNAKE_CASE )
snake_case__ : Union[str, Any] = num_channels
snake_case__ : str = patch_size
snake_case__ : List[Any] = num_stages
snake_case__ : Optional[Any] = [9_6, 1_9_2, 3_8_4, 7_6_8] if hidden_sizes is None else hidden_sizes
snake_case__ : Dict = [3, 3, 9, 3] if depths is None else depths
snake_case__ : List[str] = hidden_act
snake_case__ : str = initializer_range
snake_case__ : Tuple = layer_norm_eps
snake_case__ : int = drop_path_rate
snake_case__ : Dict = image_size
snake_case__ : Optional[int] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(self.depths ) + 1 )]
snake_case__ , snake_case__ : Optional[int] = get_aligned_output_features_output_indices(
out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
| 38 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import (
BitConfig,
ViTHybridConfig,
ViTHybridForImageClassification,
ViTHybridImageProcessor,
ViTHybridModel,
)
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
A_ : Optional[int] = logging.get_logger(__name__)
def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : str=False ) -> Tuple:
'''simple docstring'''
snake_case__ : int = []
# fmt: off
# stem:
rename_keys.append(("""cls_token""", """vit.embeddings.cls_token""") )
rename_keys.append(("""pos_embed""", """vit.embeddings.position_embeddings""") )
rename_keys.append(("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias""") )
# backbone
rename_keys.append(("""patch_embed.backbone.stem.conv.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight""") )
rename_keys.append(("""patch_embed.backbone.stem.norm.weight""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight""") )
rename_keys.append(("""patch_embed.backbone.stem.norm.bias""", """vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias""") )
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") )
rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") )
# transformer encoder
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") )
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") )
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") )
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") )
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") )
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") )
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") )
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "vit" from all keys that start with "vit"
snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification head
rename_keys.extend(
[
("""norm.weight""", """vit.layernorm.weight"""),
("""norm.bias""", """vit.layernorm.bias"""),
("""head.weight""", """classifier.weight"""),
("""head.bias""", """classifier.bias"""),
] )
# fmt: on
return rename_keys
def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Tuple=False ) -> str:
'''simple docstring'''
for i in range(config.num_hidden_layers ):
if base_model:
snake_case__ : int = """"""
else:
snake_case__ : Dict = """vit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
snake_case__ : int = state_dict.pop(f"blocks.{i}.attn.qkv.weight" )
snake_case__ : Union[str, Any] = state_dict.pop(f"blocks.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
snake_case__ : Optional[int] = in_proj_weight[
: config.hidden_size, :
]
snake_case__ : Optional[Any] = in_proj_bias[: config.hidden_size]
snake_case__ : List[Any] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
snake_case__ : List[Any] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
snake_case__ : List[Any] = in_proj_weight[
-config.hidden_size :, :
]
snake_case__ : Optional[int] = in_proj_bias[-config.hidden_size :]
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> List[str]:
'''simple docstring'''
snake_case__ : str = ["""head.weight""", """head.bias"""]
for k in ignore_keys:
state_dict.pop(__magic_name__ , __magic_name__ )
def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : str ) -> Union[str, Any]:
'''simple docstring'''
snake_case__ : List[str] = dct.pop(__magic_name__ )
snake_case__ : Dict = val
def UpperCamelCase__ ( ) -> str:
'''simple docstring'''
snake_case__ : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
snake_case__ : Optional[int] = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw )
return im
@torch.no_grad()
def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : int=False ) -> Optional[int]:
'''simple docstring'''
snake_case__ : int = BitConfig(
global_padding="""same""" , layer_type="""bottleneck""" , depths=(3, 4, 9) , out_features=["""stage3"""] , embedding_dynamic_padding=__magic_name__ , )
snake_case__ : Optional[int] = ViTHybridConfig(backbone_config=__magic_name__ , image_size=3_84 , num_labels=10_00 )
snake_case__ : Union[str, Any] = False
# load original model from timm
snake_case__ : List[Any] = timm.create_model(__magic_name__ , pretrained=__magic_name__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
snake_case__ : Optional[int] = timm_model.state_dict()
if base_model:
remove_classification_head_(__magic_name__ )
snake_case__ : int = create_rename_keys(__magic_name__ , __magic_name__ )
for src, dest in rename_keys:
rename_key(__magic_name__ , __magic_name__ , __magic_name__ )
read_in_q_k_v(__magic_name__ , __magic_name__ , __magic_name__ )
snake_case__ : str = """huggingface/label-files"""
snake_case__ : Union[str, Any] = """imagenet-1k-id2label.json"""
snake_case__ : Dict = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) )
snake_case__ : List[Any] = {int(__magic_name__ ): v for k, v in idalabel.items()}
snake_case__ : int = idalabel
snake_case__ : str = {v: k for k, v in idalabel.items()}
# load HuggingFace model
if vit_name[-5:] == "in21k":
snake_case__ : str = ViTHybridModel(__magic_name__ ).eval()
else:
snake_case__ : Union[str, Any] = ViTHybridForImageClassification(__magic_name__ ).eval()
model.load_state_dict(__magic_name__ )
# create image processor
snake_case__ : Optional[Any] = create_transform(**resolve_data_config({} , model=__magic_name__ ) )
snake_case__ : Union[str, Any] = transform.transforms
snake_case__ : Tuple = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
snake_case__ : Any = ViTHybridImageProcessor(
do_resize=__magic_name__ , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__magic_name__ , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__magic_name__ , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
snake_case__ : Any = prepare_img()
snake_case__ : int = transform(__magic_name__ ).unsqueeze(0 )
snake_case__ : List[str] = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(__magic_name__ , __magic_name__ )
# verify logits
with torch.no_grad():
snake_case__ : Optional[Any] = model(__magic_name__ )
snake_case__ : Union[str, Any] = outputs.logits
print("""Predicted class:""" , logits.argmax(-1 ).item() )
if base_model:
snake_case__ : Dict = timm_model.forward_features(__magic_name__ )
assert timm_pooled_output.shape == outputs.pooler_output.shape
assert torch.allclose(__magic_name__ , outputs.pooler_output , atol=1E-3 )
else:
snake_case__ : int = timm_model(__magic_name__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__magic_name__ , outputs.logits , atol=1E-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ )
print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(__magic_name__ )
print(f"Saving processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(__magic_name__ )
if push_to_hub:
print(f"Pushing model and processor to the hub {vit_name}" )
model.push_to_hub(f"ybelkada/{vit_name}" )
processor.push_to_hub(f"ybelkada/{vit_name}" )
if __name__ == "__main__":
A_ : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--vit_name",
default="vit_base_r50_s16_384",
type=str,
help="Name of the hybrid ViT timm model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub."
)
A_ : Union[str, Any] = parser.parse_args()
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 38 | 1 |
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
A_ : Tuple = logging.getLogger(__name__)
@dataclass
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = field(
default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} )
lowerCamelCase__ = field(
default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , )
lowerCamelCase__ = field(
default=1_024 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'''help''': (
'''Whether to pad all samples to `max_seq_length`. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch.'''
)
} , )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of prediction examples to this '''
'''value if set.'''
)
} , )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''A csv or a json file containing the training data.'''} )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''A csv or a json file containing the validation data.'''} )
lowerCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''A csv or a json file containing the test data.'''} )
def __UpperCamelCase ( self ):
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("""Need either a GLUE task, a training/validation file or a dataset name.""" )
else:
snake_case__ : str = self.train_file.split(""".""" )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
snake_case__ : List[str] = self.validation_file.split(""".""" )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __snake_case :
'''simple docstring'''
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
lowerCamelCase__ = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
lowerCamelCase__ = field(
default=__SCREAMING_SNAKE_CASE , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
def UpperCamelCase__ ( ) -> int:
'''simple docstring'''
snake_case__ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
snake_case__ , snake_case__ , snake_case__ : Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
snake_case__ , snake_case__ , snake_case__ : Optional[Any] = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
snake_case__ : str = training_args.get_process_log_level()
logger.setLevel(__magic_name__ )
datasets.utils.logging.set_verbosity(__magic_name__ )
transformers.utils.logging.set_verbosity(__magic_name__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(f"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
snake_case__ : Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
snake_case__ : Dict = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
snake_case__ : Tuple = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
snake_case__ : List[str] = {"""train""": data_args.train_file, """validation""": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
snake_case__ : int = data_args.train_file.split(""".""" )[-1]
snake_case__ : int = data_args.test_file.split(""".""" )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
snake_case__ : List[str] = data_args.test_file
else:
raise ValueError("""Need either a GLUE task or a test file for `do_predict`.""" )
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}" )
if data_args.train_file.endswith(""".csv""" ):
# Loading a dataset from local csv files
snake_case__ : int = load_dataset("""csv""" , data_files=__magic_name__ , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
snake_case__ : Tuple = load_dataset("""json""" , data_files=__magic_name__ , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
snake_case__ : Dict = raw_datasets["""train"""].features["""label"""].names
snake_case__ : Optional[Any] = len(__magic_name__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
snake_case__ : int = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
snake_case__ : Dict = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=__magic_name__ , )
snake_case__ : Tuple = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
snake_case__ : Dict = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
snake_case__ : Dict = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
snake_case__ : Union[str, Any] = {"""Refused""": 0, """Entailed""": 1}
snake_case__ : List[str] = {0: """Refused""", 1: """Entailed"""}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
snake_case__ : int = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(__magic_name__ : Union[str, Any] ):
# Tokenize the texts
def _convert_table_text_to_pandas(__magic_name__ : int ):
snake_case__ : List[Any] = [_table_row.split("""#""" ) for _table_row in _table_text.strip("""\n""" ).split("""\n""" )]
snake_case__ : Optional[Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
snake_case__ : Optional[int] = examples["""statement"""]
snake_case__ : Dict = list(map(_convert_table_text_to_pandas , examples["""table_text"""] ) )
snake_case__ : Optional[Any] = tokenizer(__magic_name__ , __magic_name__ , padding=__magic_name__ , max_length=__magic_name__ , truncation=__magic_name__ )
snake_case__ : Tuple = examples["""label"""]
return result
with training_args.main_process_first(desc="""dataset map pre-processing""" ):
snake_case__ : List[str] = raw_datasets.map(
__magic_name__ , batched=__magic_name__ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on dataset""" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("""--do_train requires a train dataset""" )
snake_case__ : Optional[int] = raw_datasets["""train"""]
if data_args.max_train_samples is not None:
snake_case__ : List[Any] = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("""--do_eval requires a validation dataset""" )
snake_case__ : int = raw_datasets["""validation"""]
if data_args.max_eval_samples is not None:
snake_case__ : Any = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("""--do_predict requires a test dataset""" )
snake_case__ : List[Any] = raw_datasets["""test"""]
if data_args.max_predict_samples is not None:
snake_case__ : Dict = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(__magic_name__ ) ) , 3 ):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}." )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__magic_name__ : EvalPrediction ):
snake_case__ : Union[str, Any] = p.predictions[0] if isinstance(p.predictions , __magic_name__ ) else p.predictions
snake_case__ : Union[str, Any] = np.argmax(__magic_name__ , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
snake_case__ : Union[str, Any] = default_data_collator
elif training_args.fpaa:
snake_case__ : Optional[int] = DataCollatorWithPadding(__magic_name__ , pad_to_multiple_of=8 )
else:
snake_case__ : str = None
# Initialize our Trainer
snake_case__ : str = Trainer(
model=__magic_name__ , args=__magic_name__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__magic_name__ , tokenizer=__magic_name__ , data_collator=__magic_name__ , )
# Training
if training_args.do_train:
snake_case__ : Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
snake_case__ : Tuple = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
snake_case__ : Optional[int] = last_checkpoint
snake_case__ : Any = trainer.train(resume_from_checkpoint=__magic_name__ )
snake_case__ : str = train_result.metrics
snake_case__ : Dict = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__magic_name__ )
)
snake_case__ : Any = min(__magic_name__ , len(__magic_name__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , __magic_name__ )
trainer.save_metrics("""train""" , __magic_name__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
snake_case__ : Optional[Any] = trainer.evaluate(eval_dataset=__magic_name__ )
snake_case__ : Union[str, Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__magic_name__ )
snake_case__ : List[str] = min(__magic_name__ , len(__magic_name__ ) )
trainer.log_metrics("""eval""" , __magic_name__ )
trainer.save_metrics("""eval""" , __magic_name__ )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
snake_case__ : Dict = predict_dataset.remove_columns("""label""" )
snake_case__ : str = trainer.predict(__magic_name__ , metric_key_prefix="""predict""" ).predictions
snake_case__ : str = np.argmax(__magic_name__ , axis=1 )
snake_case__ : Tuple = os.path.join(training_args.output_dir , """predict_results_tabfact.txt""" )
if trainer.is_world_process_zero():
with open(__magic_name__ , """w""" ) as writer:
logger.info("""***** Predict Results *****""" )
writer.write("""index\tprediction\n""" )
for index, item in enumerate(__magic_name__ ):
snake_case__ : List[str] = label_list[item]
writer.write(f"{index}\t{item}\n" )
snake_case__ : Union[str, Any] = {"""finetuned_from""": model_args.model_name_or_path, """tasks""": """text-classification"""}
if training_args.push_to_hub:
trainer.push_to_hub(**__magic_name__ )
else:
trainer.create_model_card(**__magic_name__ )
def UpperCamelCase__ ( __magic_name__ : str ) -> List[str]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 38 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = 42
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("DownEncoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE=True , ):
super().__init__()
snake_case__ : str = layers_per_block
snake_case__ : int = torch.nn.Convad(
__SCREAMING_SNAKE_CASE , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : List[Any] = None
snake_case__ : List[Any] = nn.ModuleList([] )
# down
snake_case__ : Union[str, Any] = block_out_channels[0]
for i, down_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = output_channel
snake_case__ : Union[str, Any] = block_out_channels[i]
snake_case__ : int = i == len(__SCREAMING_SNAKE_CASE ) - 1
snake_case__ : str = get_down_block(
__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
self.down_blocks.append(__SCREAMING_SNAKE_CASE )
# mid
snake_case__ : Optional[Any] = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
# out
snake_case__ : Tuple = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 )
snake_case__ : Tuple = nn.SiLU()
snake_case__ : str = 2 * out_channels if double_z else out_channels
snake_case__ : int = nn.Convad(block_out_channels[-1] , __SCREAMING_SNAKE_CASE , 3 , padding=1 )
snake_case__ : Union[str, Any] = False
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = x
snake_case__ : int = self.conv_in(__SCREAMING_SNAKE_CASE )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
# middle
snake_case__ : List[Any] = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
else:
for down_block in self.down_blocks:
snake_case__ : Dict = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE )
# middle
snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE )
else:
# down
for down_block in self.down_blocks:
snake_case__ : List[str] = down_block(__SCREAMING_SNAKE_CASE )
# middle
snake_case__ : str = self.mid_block(__SCREAMING_SNAKE_CASE )
# post-process
snake_case__ : Any = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = self.conv_act(__SCREAMING_SNAKE_CASE )
snake_case__ : str = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=("UpDecoderBlock2D",) , __SCREAMING_SNAKE_CASE=(6_4,) , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE="silu" , __SCREAMING_SNAKE_CASE="group" , ):
super().__init__()
snake_case__ : Any = layers_per_block
snake_case__ : Optional[Any] = nn.Convad(
__SCREAMING_SNAKE_CASE , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
snake_case__ : Union[str, Any] = None
snake_case__ : Dict = nn.ModuleList([] )
snake_case__ : Optional[int] = in_channels if norm_type == """spatial""" else None
# mid
snake_case__ : Tuple = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , )
# up
snake_case__ : List[Any] = list(reversed(__SCREAMING_SNAKE_CASE ) )
snake_case__ : Optional[Any] = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = output_channel
snake_case__ : Optional[Any] = reversed_block_out_channels[i]
snake_case__ : List[str] = i == len(__SCREAMING_SNAKE_CASE ) - 1
snake_case__ : int = get_up_block(
__SCREAMING_SNAKE_CASE , num_layers=self.layers_per_block + 1 , in_channels=__SCREAMING_SNAKE_CASE , out_channels=__SCREAMING_SNAKE_CASE , prev_output_channel=__SCREAMING_SNAKE_CASE , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__SCREAMING_SNAKE_CASE , resnet_groups=__SCREAMING_SNAKE_CASE , attention_head_dim=__SCREAMING_SNAKE_CASE , temb_channels=__SCREAMING_SNAKE_CASE , resnet_time_scale_shift=__SCREAMING_SNAKE_CASE , )
self.up_blocks.append(__SCREAMING_SNAKE_CASE )
snake_case__ : int = output_channel
# out
if norm_type == "spatial":
snake_case__ : List[Any] = SpatialNorm(block_out_channels[0] , __SCREAMING_SNAKE_CASE )
else:
snake_case__ : Any = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__SCREAMING_SNAKE_CASE , eps=1e-6 )
snake_case__ : Tuple = nn.SiLU()
snake_case__ : Union[str, Any] = nn.Convad(block_out_channels[0] , __SCREAMING_SNAKE_CASE , 3 , padding=1 )
snake_case__ : int = False
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ):
snake_case__ : Union[str, Any] = z
snake_case__ : Any = self.conv_in(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__SCREAMING_SNAKE_CASE ):
def custom_forward(*__SCREAMING_SNAKE_CASE ):
return module(*__SCREAMING_SNAKE_CASE )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
snake_case__ : int = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
snake_case__ : int = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : List[str] = torch.utils.checkpoint.checkpoint(
create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , use_reentrant=__SCREAMING_SNAKE_CASE )
else:
# middle
snake_case__ : Dict = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : str = torch.utils.checkpoint.checkpoint(create_custom_forward(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
# middle
snake_case__ : List[Any] = self.mid_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = sample.to(__SCREAMING_SNAKE_CASE )
# up
for up_block in self.up_blocks:
snake_case__ : Dict = up_block(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# post-process
if latent_embeds is None:
snake_case__ : Optional[Any] = self.conv_norm_out(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : str = self.conv_norm_out(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
snake_case__ : Any = self.conv_act(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = self.conv_out(__SCREAMING_SNAKE_CASE )
return sample
class __snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="random" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True ):
super().__init__()
snake_case__ : int = n_e
snake_case__ : Optional[int] = vq_embed_dim
snake_case__ : int = beta
snake_case__ : Optional[int] = legacy
snake_case__ : Dict = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
snake_case__ : List[str] = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
snake_case__ : Optional[Any] = self.used.shape[0]
snake_case__ : List[str] = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
snake_case__ : Dict = self.re_embed
snake_case__ : List[str] = self.re_embed + 1
print(
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices." )
else:
snake_case__ : Union[str, Any] = n_e
snake_case__ : str = sane_index_shape
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
snake_case__ : Dict = inds.reshape(ishape[0] , -1 )
snake_case__ : Any = self.used.to(__SCREAMING_SNAKE_CASE )
snake_case__ : Dict = (inds[:, :, None] == used[None, None, ...]).long()
snake_case__ : List[Any] = match.argmax(-1 )
snake_case__ : List[str] = match.sum(2 ) < 1
if self.unknown_index == "random":
snake_case__ : List[str] = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
snake_case__ : Optional[Any] = self.unknown_index
return new.reshape(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
snake_case__ : List[Any] = inds.shape
assert len(__SCREAMING_SNAKE_CASE ) > 1
snake_case__ : int = inds.reshape(ishape[0] , -1 )
snake_case__ : Optional[int] = self.used.to(__SCREAMING_SNAKE_CASE )
if self.re_embed > self.used.shape[0]: # extra token
snake_case__ : List[Any] = 0 # simply set to zero
snake_case__ : Union[str, Any] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __SCREAMING_SNAKE_CASE )
return back.reshape(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ):
# reshape z -> (batch, height, width, channel) and flatten
snake_case__ : Any = z.permute(0 , 2 , 3 , 1 ).contiguous()
snake_case__ : Optional[Any] = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
snake_case__ : Dict = torch.argmin(torch.cdist(__SCREAMING_SNAKE_CASE , self.embedding.weight ) , dim=1 )
snake_case__ : Union[str, Any] = self.embedding(__SCREAMING_SNAKE_CASE ).view(z.shape )
snake_case__ : List[str] = None
snake_case__ : Union[str, Any] = None
# compute loss for embedding
if not self.legacy:
snake_case__ : Tuple = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
snake_case__ : List[Any] = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
snake_case__ : Any = z + (z_q - z).detach()
# reshape back to match original input shape
snake_case__ : Union[str, Any] = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
snake_case__ : List[Any] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
snake_case__ : str = self.remap_to_used(__SCREAMING_SNAKE_CASE )
snake_case__ : str = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
snake_case__ : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
snake_case__ : List[Any] = indices.reshape(shape[0] , -1 ) # add batch axis
snake_case__ : Optional[int] = self.unmap_to_all(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
snake_case__ : int = self.embedding(__SCREAMING_SNAKE_CASE )
if shape is not None:
snake_case__ : str = z_q.view(__SCREAMING_SNAKE_CASE )
# reshape back to match original input shape
snake_case__ : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ):
snake_case__ : Tuple = parameters
snake_case__ , snake_case__ : Any = torch.chunk(__SCREAMING_SNAKE_CASE , 2 , dim=1 )
snake_case__ : Union[str, Any] = torch.clamp(self.logvar , -30.0 , 20.0 )
snake_case__ : Optional[int] = deterministic
snake_case__ : Optional[int] = torch.exp(0.5 * self.logvar )
snake_case__ : Any = torch.exp(self.logvar )
if self.deterministic:
snake_case__ : List[str] = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE = None ):
# make sure sample is on the same device as the parameters and has same dtype
snake_case__ : Dict = randn_tensor(
self.mean.shape , generator=__SCREAMING_SNAKE_CASE , device=self.parameters.device , dtype=self.parameters.dtype )
snake_case__ : Optional[int] = self.mean + self.std * sample
return x
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None ):
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=[1, 2, 3] ):
if self.deterministic:
return torch.Tensor([0.0] )
snake_case__ : Any = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
return self.mean
| 38 | 1 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
A_ : Tuple = 8
def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Optional[int]=BITS ) -> List[Any]:
'''simple docstring'''
snake_case__ : List[str] = x.device
snake_case__ : Union[str, Any] = (x * 2_55).int().clamp(0 , 2_55 )
snake_case__ : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__magic_name__ )
snake_case__ : Union[str, Any] = rearrange(__magic_name__ , """d -> d 1 1""" )
snake_case__ : Any = rearrange(__magic_name__ , """b c h w -> b c 1 h w""" )
snake_case__ : List[str] = ((x & mask) != 0).float()
snake_case__ : Optional[int] = rearrange(__magic_name__ , """b c d h w -> b (c d) h w""" )
snake_case__ : Any = bits * 2 - 1
return bits
def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : int=BITS ) -> Optional[int]:
'''simple docstring'''
snake_case__ : Optional[int] = x.device
snake_case__ : str = (x > 0).int()
snake_case__ : Union[str, Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=__magic_name__ , dtype=torch.intaa )
snake_case__ : int = rearrange(__magic_name__ , """d -> d 1 1""" )
snake_case__ : Tuple = rearrange(__magic_name__ , """b (c d) h w -> b c d h w""" , d=8 )
snake_case__ : List[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 2_55).clamp(0.0 , 1.0 )
def UpperCamelCase__ ( self : Dict , __magic_name__ : torch.FloatTensor , __magic_name__ : int , __magic_name__ : torch.FloatTensor , __magic_name__ : float = 0.0 , __magic_name__ : bool = True , __magic_name__ : str=None , __magic_name__ : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]:
'''simple docstring'''
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
snake_case__ : List[Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
snake_case__ : Union[str, Any] = self.alphas_cumprod[timestep]
snake_case__ : Tuple = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
snake_case__ : List[str] = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
snake_case__ : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
snake_case__ : Dict = self.bit_scale
if self.config.clip_sample:
snake_case__ : Any = torch.clamp(__magic_name__ , -scale , __magic_name__ )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
snake_case__ : Any = self._get_variance(__magic_name__ , __magic_name__ )
snake_case__ : Optional[Any] = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
snake_case__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
snake_case__ : str = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
snake_case__ : List[str] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
snake_case__ : str = model_output.device if torch.is_tensor(__magic_name__ ) else """cpu"""
snake_case__ : Union[str, Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=__magic_name__ ).to(__magic_name__ )
snake_case__ : int = self._get_variance(__magic_name__ , __magic_name__ ) ** 0.5 * eta * noise
snake_case__ : List[Any] = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=__magic_name__ , pred_original_sample=__magic_name__ )
def UpperCamelCase__ ( self : str , __magic_name__ : torch.FloatTensor , __magic_name__ : int , __magic_name__ : torch.FloatTensor , __magic_name__ : Any="epsilon" , __magic_name__ : List[str]=None , __magic_name__ : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]:
'''simple docstring'''
snake_case__ : List[str] = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
snake_case__ , snake_case__ : List[str] = torch.split(__magic_name__ , sample.shape[1] , dim=1 )
else:
snake_case__ : Dict = None
# 1. compute alphas, betas
snake_case__ : List[Any] = self.alphas_cumprod[t]
snake_case__ : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one
snake_case__ : Union[str, Any] = 1 - alpha_prod_t
snake_case__ : List[Any] = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
snake_case__ : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
snake_case__ : Tuple = model_output
else:
raise ValueError(f"Unsupported prediction_type {prediction_type}." )
# 3. Clip "predicted x_0"
snake_case__ : int = self.bit_scale
if self.config.clip_sample:
snake_case__ : List[str] = torch.clamp(__magic_name__ , -scale , __magic_name__ )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
snake_case__ : int = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
snake_case__ : Dict = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
snake_case__ : List[str] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
snake_case__ : Tuple = 0
if t > 0:
snake_case__ : Optional[int] = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=__magic_name__ ).to(model_output.device )
snake_case__ : Tuple = (self._get_variance(__magic_name__ , predicted_variance=__magic_name__ ) ** 0.5) * noise
snake_case__ : Optional[Any] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=__magic_name__ , pred_original_sample=__magic_name__ )
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 1.0 , ):
super().__init__()
snake_case__ : List[str] = bit_scale
snake_case__ : Optional[int] = (
ddim_bit_scheduler_step if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE )
@torch.no_grad()
def __call__( self , __SCREAMING_SNAKE_CASE = 2_5_6 , __SCREAMING_SNAKE_CASE = 2_5_6 , __SCREAMING_SNAKE_CASE = 5_0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , **__SCREAMING_SNAKE_CASE , ):
snake_case__ : Tuple = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=__SCREAMING_SNAKE_CASE , )
snake_case__ : Dict = decimal_to_bits(__SCREAMING_SNAKE_CASE ) * self.bit_scale
snake_case__ : Tuple = latents.to(self.device )
self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
snake_case__ : str = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample
# compute the previous noisy sample x_t -> x_t-1
snake_case__ : List[Any] = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample
snake_case__ : int = bits_to_decimal(__SCREAMING_SNAKE_CASE )
if output_type == "pil":
snake_case__ : Any = self.numpy_to_pil(__SCREAMING_SNAKE_CASE )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
| 38 |
'''simple docstring'''
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __snake_case :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[1, 3_8_4, 2_4, 2_4] , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , ):
snake_case__ : str = parent
snake_case__ : Union[str, Any] = batch_size
snake_case__ : Union[str, Any] = image_size
snake_case__ : Optional[int] = patch_size
snake_case__ : List[str] = num_channels
snake_case__ : Any = is_training
snake_case__ : int = use_labels
snake_case__ : str = hidden_size
snake_case__ : Tuple = num_hidden_layers
snake_case__ : str = backbone_out_indices
snake_case__ : List[Any] = num_attention_heads
snake_case__ : Dict = intermediate_size
snake_case__ : Optional[Any] = hidden_act
snake_case__ : str = hidden_dropout_prob
snake_case__ : int = attention_probs_dropout_prob
snake_case__ : Dict = initializer_range
snake_case__ : Optional[int] = num_labels
snake_case__ : str = backbone_featmap_shape
snake_case__ : List[Any] = scope
snake_case__ : Optional[Any] = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
snake_case__ : List[Any] = (image_size // patch_size) ** 2
snake_case__ : Union[str, Any] = num_patches + 1
def __UpperCamelCase ( self ):
snake_case__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
snake_case__ : str = None
if self.use_labels:
snake_case__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
snake_case__ : Union[str, Any] = self.get_config()
return config, pixel_values, labels
def __UpperCamelCase ( self ):
snake_case__ : Any = {
"""global_padding""": """same""",
"""layer_type""": """bottleneck""",
"""depths""": [3, 4, 9],
"""out_features""": ["""stage1""", """stage2""", """stage3"""],
"""embedding_dynamic_padding""": True,
"""hidden_sizes""": [9_6, 1_9_2, 3_8_4, 7_6_8],
"""num_groups""": 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Dict = DPTModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Optional[Any] = self.num_labels
snake_case__ : str = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : Optional[Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
snake_case__ : Any = self.num_labels
snake_case__ : Dict = DPTForSemanticSegmentation(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
snake_case__ : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __UpperCamelCase ( self ):
snake_case__ : Union[str, Any] = self.prepare_config_and_inputs()
snake_case__ , snake_case__ , snake_case__ : Any = config_and_inputs
snake_case__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
lowerCamelCase__ = (
{
'''depth-estimation''': DPTForDepthEstimation,
'''feature-extraction''': DPTModel,
'''image-segmentation''': DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = DPTModelTester(self )
snake_case__ : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __UpperCamelCase ( self ):
self.config_tester.run_common_tests()
@unittest.skip(reason="""DPT does not use inputs_embeds""" )
def __UpperCamelCase ( self ):
pass
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : Tuple = model_class(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
snake_case__ : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) )
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case__ : str = model_class(__SCREAMING_SNAKE_CASE )
snake_case__ : str = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case__ : List[str] = [*signature.parameters.keys()]
snake_case__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
snake_case__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : int = True
if model_class in get_values(__SCREAMING_SNAKE_CASE ):
continue
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.train()
snake_case__ : Optional[Any] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def __UpperCamelCase ( self ):
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : Union[str, Any] = False
snake_case__ : str = True
if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing:
continue
snake_case__ : Any = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.gradient_checkpointing_enable()
model.train()
snake_case__ : List[str] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
snake_case__ : Any = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def __UpperCamelCase ( self ):
snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : str = _config_zero_init(__SCREAMING_SNAKE_CASE )
for model_class in self.all_model_classes:
snake_case__ : Any = model_class(config=__SCREAMING_SNAKE_CASE )
# Skip the check for the backbone
snake_case__ : str = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
snake_case__ : Optional[int] = [f"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def __UpperCamelCase ( self ):
pass
@slow
def __UpperCamelCase ( self ):
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
snake_case__ : List[str] = DPTModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self ):
# We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type
snake_case__ , snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case__ : Dict = """add"""
with self.assertRaises(__SCREAMING_SNAKE_CASE ):
snake_case__ : List[str] = DPTForDepthEstimation(__SCREAMING_SNAKE_CASE )
def UpperCamelCase__ ( ) -> Dict:
'''simple docstring'''
snake_case__ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
@slow
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
snake_case__ : Dict = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" )
snake_case__ : Union[str, Any] = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = prepare_img()
snake_case__ : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
snake_case__ : Dict = model(**__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = outputs.predicted_depth
# verify the predicted depth
snake_case__ : Any = torch.Size((1, 3_8_4, 3_8_4) )
self.assertEqual(predicted_depth.shape , __SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = torch.tensor(
[[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_0_0 , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 38 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = CycleDiffusionPipeline
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {
'''negative_prompt''',
'''height''',
'''width''',
'''negative_prompt_embeds''',
}
lowerCamelCase__ = PipelineTesterMixin.required_optional_params - {'''latents'''}
lowerCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} )
lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS
lowerCamelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS
def __UpperCamelCase ( self ):
torch.manual_seed(0 )
snake_case__ : Tuple = UNetaDConditionModel(
block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , )
snake_case__ : List[str] = DDIMScheduler(
beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1_0_0_0 , clip_sample=__SCREAMING_SNAKE_CASE , set_alpha_to_one=__SCREAMING_SNAKE_CASE , )
torch.manual_seed(0 )
snake_case__ : List[Any] = AutoencoderKL(
block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0 )
snake_case__ : Any = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , )
snake_case__ : Any = CLIPTextModel(__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
snake_case__ : List[Any] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0 ):
snake_case__ : List[str] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = image / 2 + 0.5
if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
snake_case__ : Union[str, Any] = torch.manual_seed(__SCREAMING_SNAKE_CASE )
else:
snake_case__ : int = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = {
"""prompt""": """An astronaut riding an elephant""",
"""source_prompt""": """An astronaut riding a horse""",
"""image""": image,
"""generator""": generator,
"""num_inference_steps""": 2,
"""eta""": 0.1,
"""strength""": 0.8,
"""guidance_scale""": 3,
"""source_guidance_scale""": 1,
"""output_type""": """numpy""",
}
return inputs
def __UpperCamelCase ( self ):
snake_case__ : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator
snake_case__ : Union[str, Any] = self.get_dummy_components()
snake_case__ : int = CycleDiffusionPipeline(**__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
snake_case__ : List[str] = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE )
snake_case__ : Any = pipe(**__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = output.images
snake_case__ : Dict = images[0, -3:, -3:, -1]
assert images.shape == (1, 3_2, 3_2, 3)
snake_case__ : Optional[int] = np.array([0.4459, 0.4943, 0.4544, 0.6643, 0.5474, 0.4327, 0.5701, 0.5959, 0.5179] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def __UpperCamelCase ( self ):
snake_case__ : str = self.get_dummy_components()
for name, module in components.items():
if hasattr(__SCREAMING_SNAKE_CASE , """half""" ):
snake_case__ : Dict = module.half()
snake_case__ : Any = CycleDiffusionPipeline(**__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
snake_case__ : Tuple = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[int] = pipe(**__SCREAMING_SNAKE_CASE )
snake_case__ : int = output.images
snake_case__ : Dict = images[0, -3:, -3:, -1]
assert images.shape == (1, 3_2, 3_2, 3)
snake_case__ : Tuple = np.array([0.3506, 0.4543, 0.446, 0.4575, 0.5195, 0.4155, 0.5273, 0.518, 0.4116] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
@skip_mps
def __UpperCamelCase ( self ):
return super().test_save_load_local()
@unittest.skip("""non-deterministic pipeline""" )
def __UpperCamelCase ( self ):
return super().test_inference_batch_single_identical()
@skip_mps
def __UpperCamelCase ( self ):
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def __UpperCamelCase ( self ):
return super().test_save_load_optional_components()
@skip_mps
def __UpperCamelCase ( self ):
return super().test_attention_slicing_forward_pass()
@slow
@require_torch_gpu
class __snake_case ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCamelCase ( self ):
snake_case__ : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/cycle-diffusion/black_colored_car.png""" )
snake_case__ : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" )
snake_case__ : Dict = init_image.resize((5_1_2, 5_1_2) )
snake_case__ : Tuple = """CompVis/stable-diffusion-v1-4"""
snake_case__ : Any = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder="""scheduler""" )
snake_case__ : Optional[Any] = CycleDiffusionPipeline.from_pretrained(
__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , revision="""fp16""" )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
pipe.enable_attention_slicing()
snake_case__ : Optional[int] = """A black colored car"""
snake_case__ : int = """A blue colored car"""
snake_case__ : Optional[Any] = torch.manual_seed(0 )
snake_case__ : Any = pipe(
prompt=__SCREAMING_SNAKE_CASE , source_prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , )
snake_case__ : List[Any] = output.images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(image - expected_image ).max() < 5e-1
def __UpperCamelCase ( self ):
snake_case__ : Optional[int] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/cycle-diffusion/black_colored_car.png""" )
snake_case__ : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" )
snake_case__ : Any = init_image.resize((5_1_2, 5_1_2) )
snake_case__ : List[str] = """CompVis/stable-diffusion-v1-4"""
snake_case__ : Dict = DDIMScheduler.from_pretrained(__SCREAMING_SNAKE_CASE , subfolder="""scheduler""" )
snake_case__ : Dict = CycleDiffusionPipeline.from_pretrained(__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE , safety_checker=__SCREAMING_SNAKE_CASE )
pipe.to(__SCREAMING_SNAKE_CASE )
pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE )
pipe.enable_attention_slicing()
snake_case__ : Tuple = """A black colored car"""
snake_case__ : List[str] = """A blue colored car"""
snake_case__ : Tuple = torch.manual_seed(0 )
snake_case__ : List[str] = pipe(
prompt=__SCREAMING_SNAKE_CASE , source_prompt=__SCREAMING_SNAKE_CASE , image=__SCREAMING_SNAKE_CASE , num_inference_steps=1_0_0 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__SCREAMING_SNAKE_CASE , output_type="""np""" , )
snake_case__ : int = output.images
assert np.abs(image - expected_image ).max() < 2e-2
| 38 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES
from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType
from ...utils.imports import is_botoa_available
from .config_args import SageMakerConfig
from .config_utils import (
DYNAMO_BACKENDS,
_ask_field,
_ask_options,
_convert_dynamo_backend,
_convert_mixed_precision,
_convert_sagemaker_distributed_mode,
_convert_yes_no_to_bool,
)
if is_botoa_available():
import botoa # noqa: F401
def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> Dict:
'''simple docstring'''
snake_case__ : int = botoa.client("""iam""" )
snake_case__ : Union[str, Any] = {
"""Version""": """2012-10-17""",
"""Statement""": [
{"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""}
],
}
try:
# create the role, associated with the chosen trust policy
iam_client.create_role(
RoleName=__magic_name__ , AssumeRolePolicyDocument=json.dumps(__magic_name__ , indent=2 ) )
snake_case__ : Dict = {
"""Version""": """2012-10-17""",
"""Statement""": [
{
"""Effect""": """Allow""",
"""Action""": [
"""sagemaker:*""",
"""ecr:GetDownloadUrlForLayer""",
"""ecr:BatchGetImage""",
"""ecr:BatchCheckLayerAvailability""",
"""ecr:GetAuthorizationToken""",
"""cloudwatch:PutMetricData""",
"""cloudwatch:GetMetricData""",
"""cloudwatch:GetMetricStatistics""",
"""cloudwatch:ListMetrics""",
"""logs:CreateLogGroup""",
"""logs:CreateLogStream""",
"""logs:DescribeLogStreams""",
"""logs:PutLogEvents""",
"""logs:GetLogEvents""",
"""s3:CreateBucket""",
"""s3:ListBucket""",
"""s3:GetBucketLocation""",
"""s3:GetObject""",
"""s3:PutObject""",
],
"""Resource""": """*""",
}
],
}
# attach policy to role
iam_client.put_role_policy(
RoleName=__magic_name__ , PolicyName=f"{role_name}_policy_permission" , PolicyDocument=json.dumps(__magic_name__ , indent=2 ) , )
except iam_client.exceptions.EntityAlreadyExistsException:
print(f"role {role_name} already exists. Using existing one" )
def UpperCamelCase__ ( __magic_name__ : Any ) -> Tuple:
'''simple docstring'''
snake_case__ : List[str] = botoa.client("""iam""" )
return iam_client.get_role(RoleName=__magic_name__ )["Role"]["Arn"]
def UpperCamelCase__ ( ) -> Tuple:
'''simple docstring'''
snake_case__ : Union[str, Any] = _ask_options(
"""How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , __magic_name__ , )
snake_case__ : List[Any] = None
if credentials_configuration == 0:
snake_case__ : Dict = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" )
snake_case__ : List[str] = aws_profile
else:
print(
"""Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,"""
"""`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" )
snake_case__ : List[str] = _ask_field("""AWS Access Key ID: """ )
snake_case__ : int = aws_access_key_id
snake_case__ : Optional[Any] = _ask_field("""AWS Secret Access Key: """ )
snake_case__ : List[str] = aws_secret_access_key
snake_case__ : Tuple = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" )
snake_case__ : Optional[int] = aws_region
snake_case__ : int = _ask_options(
"""Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , __magic_name__ , )
if role_management == 0:
snake_case__ : Optional[Any] = _ask_field("""Enter your IAM role name: """ )
else:
snake_case__ : Optional[int] = """accelerate_sagemaker_execution_role"""
print(f"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" )
_create_iam_role_for_sagemaker(__magic_name__ )
snake_case__ : Dict = _ask_field(
"""Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Any = None
if is_custom_docker_image:
snake_case__ : str = _ask_field("""Enter your Docker image: """ , lambda __magic_name__ : str(__magic_name__ ).lower() )
snake_case__ : Tuple = _ask_field(
"""Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : List[Any] = None
if is_sagemaker_inputs_enabled:
snake_case__ : str = _ask_field(
"""Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , )
snake_case__ : Optional[int] = _ask_field(
"""Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Optional[Any] = None
if is_sagemaker_metrics_enabled:
snake_case__ : List[Any] = _ask_field(
"""Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda __magic_name__ : str(__magic_name__ ).lower() , )
snake_case__ : Tuple = _ask_options(
"""What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , )
snake_case__ : Any = {}
snake_case__ : List[Any] = _ask_field(
"""Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
if use_dynamo:
snake_case__ : str = """dynamo_"""
snake_case__ : Tuple = _ask_options(
"""Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , )
snake_case__ : List[str] = _ask_field(
"""Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
if use_custom_options:
snake_case__ : str = _ask_options(
"""Which mode do you want to use?""" , __magic_name__ , lambda __magic_name__ : TORCH_DYNAMO_MODES[int(__magic_name__ )] , default="""default""" , )
snake_case__ : Union[str, Any] = _ask_field(
"""Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : str = _ask_field(
"""Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=__magic_name__ , error_message="""Please enter yes or no.""" , )
snake_case__ : Dict = """Which EC2 instance type you want to use for your training?"""
if distributed_type != SageMakerDistributedType.NO:
snake_case__ : List[str] = _ask_options(
__magic_name__ , __magic_name__ , lambda __magic_name__ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(__magic_name__ )] )
else:
eca_instance_query += "? [ml.p3.2xlarge]:"
snake_case__ : Optional[int] = _ask_field(__magic_name__ , lambda __magic_name__ : str(__magic_name__ ).lower() , default="""ml.p3.2xlarge""" )
snake_case__ : Dict = 1
if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL):
snake_case__ : Optional[Any] = _ask_field(
"""How many machines do you want use? [1]: """ , __magic_name__ , default=1 , )
snake_case__ : Union[str, Any] = _ask_options(
"""Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , )
if use_dynamo and mixed_precision == "no":
print(
"""Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" )
return SageMakerConfig(
image_uri=__magic_name__ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=__magic_name__ , use_cpu=__magic_name__ , dynamo_config=__magic_name__ , eca_instance_type=__magic_name__ , profile=__magic_name__ , region=__magic_name__ , iam_role_name=__magic_name__ , mixed_precision=__magic_name__ , num_machines=__magic_name__ , sagemaker_inputs_file=__magic_name__ , sagemaker_metrics_file=__magic_name__ , )
| 38 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.