code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from torch import nn
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f'''Unsupported activation function: {act_fn}''' ) | 6 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "encoder-decoder"
lowerCamelCase_ = True
def __init__( self :Optional[int] , **__A :str ) -> int:
"""simple docstring"""
super().__init__(**__A )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" )
SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" )
SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = True
@classmethod
def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig:
"""simple docstring"""
logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A )
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE__ = self.encoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.decoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.__class__.model_type
return output | 6 | 1 |
import math
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list , UpperCamelCase__: int ):
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = int(math.floor(math.sqrt(UpperCamelCase__ ) ) )
SCREAMING_SNAKE_CASE__ = 0
while arr[min(UpperCamelCase__ , UpperCamelCase__ ) - 1] < x:
SCREAMING_SNAKE_CASE__ = step
step += int(math.floor(math.sqrt(UpperCamelCase__ ) ) )
if prev >= n:
return -1
while arr[prev] < x:
SCREAMING_SNAKE_CASE__ = prev + 1
if prev == min(UpperCamelCase__ , UpperCamelCase__ ):
return -1
if arr[prev] == x:
return prev
return -1
if __name__ == "__main__":
_lowerCamelCase = input('Enter numbers separated by a comma:\n').strip()
_lowerCamelCase = [int(item) for item in user_input.split(',')]
_lowerCamelCase = int(input('Enter the number to be searched:\n'))
_lowerCamelCase = jump_search(arr, x)
if res == -1:
print('Number not found!')
else:
print(F'''Number {x} is at index {res}''') | 6 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase__ )
class UpperCamelCase_ ( UpperCamelCase__ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowerCamelCase_ = Features({"text": Value("string" )} )
lowerCamelCase_ = Features({"labels": ClassLabel} )
lowerCamelCase_ = "text"
lowerCamelCase_ = "labels"
def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]:
"""simple docstring"""
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self )
SCREAMING_SNAKE_CASE__ = self.label_schema.copy()
SCREAMING_SNAKE_CASE__ = features[self.label_column]
SCREAMING_SNAKE_CASE__ = label_schema
return task_template
@property
def _snake_case ( self :str ) -> Dict[str, str]:
"""simple docstring"""
return {
self.text_column: "text",
self.label_column: "labels",
} | 6 | 1 |
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
_lowerCamelCase = TypeVar('T')
class UpperCamelCase_ ( Generic[T] ):
def __init__( self :Optional[int] , __A :T ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = data
SCREAMING_SNAKE_CASE__ = None
def __str__( self :Any ) -> str:
"""simple docstring"""
return f'''{self.data}'''
class UpperCamelCase_ ( Generic[T] ):
def __init__( self :List[Any] ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
def __iter__( self :Any ) -> Iterator[T]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.top
while node:
yield node.data
SCREAMING_SNAKE_CASE__ = node.next
def __str__( self :Dict ) -> str:
"""simple docstring"""
return "->".join([str(__A ) for item in self] )
def __len__( self :List[Any] ) -> int:
"""simple docstring"""
return len(tuple(iter(self ) ) )
def _snake_case ( self :List[Any] ) -> bool:
"""simple docstring"""
return self.top is None
def _snake_case ( self :Tuple , __A :T ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = Node(__A )
if not self.is_empty():
SCREAMING_SNAKE_CASE__ = self.top
SCREAMING_SNAKE_CASE__ = node
def _snake_case ( self :Dict ) -> T:
"""simple docstring"""
if self.is_empty():
raise IndexError("""pop from empty stack""" )
assert isinstance(self.top , __A )
SCREAMING_SNAKE_CASE__ = self.top
SCREAMING_SNAKE_CASE__ = self.top.next
return pop_node.data
def _snake_case ( self :Union[str, Any] ) -> T:
"""simple docstring"""
if self.is_empty():
raise IndexError("""peek from empty stack""" )
assert self.top is not None
return self.top.data
def _snake_case ( self :List[Any] ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
if __name__ == "__main__":
from doctest import testmod
testmod() | 6 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = model.config
SCREAMING_SNAKE_CASE__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
SCREAMING_SNAKE_CASE__ = MBartConfig(
is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , )
return encoder_config, decoder_config
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
if "encoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
SCREAMING_SNAKE_CASE__ = """encoder.""" + name
if "attn.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias"""
return name
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ):
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ )
if "qkv" in key:
SCREAMING_SNAKE_CASE__ = key.split(""".""" )
SCREAMING_SNAKE_CASE__ = int(key_split[3] )
SCREAMING_SNAKE_CASE__ = int(key_split[5] )
SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
SCREAMING_SNAKE_CASE__ = val[:dim, :]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE__ = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE__ = val[:dim]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2]
SCREAMING_SNAKE_CASE__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
SCREAMING_SNAKE_CASE__ = val
return orig_state_dict
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ):
# load original model
SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval()
# load HuggingFace model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
model.eval()
SCREAMING_SNAKE_CASE__ = original_model.state_dict()
SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ )
model.load_state_dict(UpperCamelCase__ )
# verify results on scanned document
SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" )
SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
SCREAMING_SNAKE_CASE__ = """When is the coffee break?"""
SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
SCREAMING_SNAKE_CASE__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
SCREAMING_SNAKE_CASE__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
SCREAMING_SNAKE_CASE__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[
"""input_ids"""
]
SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ )
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
# verify encoder hidden states
SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 )
# verify decoder hidden states
SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
_lowerCamelCase = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 6 | 1 |
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int | str] ):
create_state_space_tree(UpperCamelCase__ , [] , 0 , [0 for i in range(len(UpperCamelCase__ ) )] )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int | str] , UpperCamelCase__: list[int | str] , UpperCamelCase__: int , UpperCamelCase__: list[int] , ):
if index == len(UpperCamelCase__ ):
print(UpperCamelCase__ )
return
for i in range(len(UpperCamelCase__ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
SCREAMING_SNAKE_CASE__ = True
create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 , UpperCamelCase__ )
current_sequence.pop()
SCREAMING_SNAKE_CASE__ = False
_lowerCamelCase = [3, 1, 2, 4]
generate_all_permutations(sequence)
_lowerCamelCase = ["A", "B", "C"]
generate_all_permutations(sequence_a) | 6 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_dpmpp_2m""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 6 | 1 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ):
try:
SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = 2
while i * i <= n:
while n % i == 0:
SCREAMING_SNAKE_CASE__ = i
n //= i
i += 1
if n > 1:
SCREAMING_SNAKE_CASE__ = n
return int(UpperCamelCase__ )
if __name__ == "__main__":
print(F'''{solution() = }''') | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ):
try:
SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = 2
while i * i <= n:
while n % i == 0:
SCREAMING_SNAKE_CASE__ = i
n //= i
i += 1
if n > 1:
SCREAMING_SNAKE_CASE__ = n
return int(UpperCamelCase__ )
if __name__ == "__main__":
print(F'''{solution() = }''') | 6 | 1 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :int ) -> str:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = 3
SCREAMING_SNAKE_CASE__ = (32, 32)
SCREAMING_SNAKE_CASE__ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__A )
return image
@property
def _snake_case ( self :str ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
return model
@property
def _snake_case ( self :List[Any] ) -> int:
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
return model
@property
def _snake_case ( self :Union[str, Any] ) -> str:
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(__A )
@property
def _snake_case ( self :Any ) -> Dict:
"""simple docstring"""
def extract(*__A :Tuple , **__A :str ):
class UpperCamelCase_ :
def __init__( self :Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = torch.ones([0] )
def _snake_case ( self :Dict , __A :Tuple ) -> Any:
"""simple docstring"""
self.pixel_values.to(__A )
return self
return Out()
return extract
def _snake_case ( self :Optional[int] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """cpu""" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE__ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=__A , set_alpha_to_one=__A , )
SCREAMING_SNAKE_CASE__ = self.dummy_vae
SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline(
unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__A , )[0]
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :int ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """cpu""" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE__ = PNDMScheduler(skip_prk_steps=__A )
SCREAMING_SNAKE_CASE__ = self.dummy_vae
SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline(
unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__A , )[0]
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :Tuple ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained(
"""hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__A )
assert isinstance(__A , __A )
assert isinstance(pipe.scheduler , __A )
assert pipe.safety_checker is None
SCREAMING_SNAKE_CASE__ = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__A )
SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained(__A )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
SCREAMING_SNAKE_CASE__ = pipe("""example prompt""" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" )
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.dummy_cond_unet
SCREAMING_SNAKE_CASE__ = PNDMScheduler(skip_prk_steps=__A )
SCREAMING_SNAKE_CASE__ = self.dummy_vae
SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
# put models in fp16
SCREAMING_SNAKE_CASE__ = unet.half()
SCREAMING_SNAKE_CASE__ = vae.half()
SCREAMING_SNAKE_CASE__ = bert.half()
# make sure here that pndm scheduler skips prk
SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline(
unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :int ) -> Optional[int]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__A )
SCREAMING_SNAKE_CASE__ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
SCREAMING_SNAKE_CASE__ = (
"""portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"""
""" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"""
""" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"""
""" children from bahnhof zoo, detailed """
)
SCREAMING_SNAKE_CASE__ = 40_0366_0346
SCREAMING_SNAKE_CASE__ = 7
# without safety guidance (sld_guidance_scale = 0)
SCREAMING_SNAKE_CASE__ = torch.manual_seed(__A )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=__A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
SCREAMING_SNAKE_CASE__ = torch.manual_seed(__A )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=__A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :Any ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__A )
SCREAMING_SNAKE_CASE__ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
SCREAMING_SNAKE_CASE__ = """padme amidala taking a bath artwork, safe for work, no nudity"""
SCREAMING_SNAKE_CASE__ = 27_3497_1755
SCREAMING_SNAKE_CASE__ = 7
SCREAMING_SNAKE_CASE__ = torch.manual_seed(__A )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=__A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
SCREAMING_SNAKE_CASE__ = torch.manual_seed(__A )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=__A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :Dict ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
SCREAMING_SNAKE_CASE__ = (
"""the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."""
""" leyendecker"""
)
SCREAMING_SNAKE_CASE__ = 10_4435_5234
SCREAMING_SNAKE_CASE__ = 12
SCREAMING_SNAKE_CASE__ = torch.manual_seed(__A )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=__A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
SCREAMING_SNAKE_CASE__ = torch.manual_seed(__A )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=__A , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 6 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Tuple ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :List[str] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Optional[Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
# Removed: 'text_encoder/model.safetensors',
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :List[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Optional[int] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
# 'text_encoder/model.fp16.safetensors',
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) | 6 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ):
@register_to_config
def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any:
"""simple docstring"""
super().__init__()
# pass init params to Encoder
SCREAMING_SNAKE_CASE__ = Encoder(
in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , )
SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A )
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
# pass init params to Decoder
SCREAMING_SNAKE_CASE__ = Decoder(
in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , )
@apply_forward_hook
def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.encoder(__A )
SCREAMING_SNAKE_CASE__ = self.quant_conv(__A )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=__A )
@apply_forward_hook
def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if not force_not_quantize:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A )
else:
SCREAMING_SNAKE_CASE__ = h
SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A )
SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A )
def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = sample
SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents
SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A ) | 6 |
import argparse
import datetime
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = {
"""0""": """Sunday""",
"""1""": """Monday""",
"""2""": """Tuesday""",
"""3""": """Wednesday""",
"""4""": """Thursday""",
"""5""": """Friday""",
"""6""": """Saturday""",
}
SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(UpperCamelCase__ ) < 11:
raise ValueError("""Must be 10 characters long""" )
# Get month
SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("""Month must be between 1 - 12""" )
SCREAMING_SNAKE_CASE__ = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get day
SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("""Date must be between 1 - 31""" )
# Get second separator
SCREAMING_SNAKE_CASE__ = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get year
SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8_500:
raise ValueError(
"""Year out of range. There has to be some sort of limit...right?""" )
# Get datetime obj for validation
SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) )
# Start math
if m <= 2:
SCREAMING_SNAKE_CASE__ = y - 1
SCREAMING_SNAKE_CASE__ = m + 12
# maths var
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] )
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] )
SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 )
SCREAMING_SNAKE_CASE__ = int(c / 4 )
SCREAMING_SNAKE_CASE__ = int(k / 4 )
SCREAMING_SNAKE_CASE__ = int(d + k )
SCREAMING_SNAKE_CASE__ = int(t + u + v + x )
SCREAMING_SNAKE_CASE__ = int(z - (2 * c) )
SCREAMING_SNAKE_CASE__ = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" )
# Response
SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
_lowerCamelCase = parser.parse_args()
zeller(args.date_input) | 6 | 1 |
from typing import Any
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list ):
if not input_list:
return []
SCREAMING_SNAKE_CASE__ = [input_list.count(UpperCamelCase__ ) for value in input_list]
SCREAMING_SNAKE_CASE__ = max(UpperCamelCase__ ) # Gets the maximum count in the input list.
# Gets values of modes
return sorted({input_list[i] for i, value in enumerate(UpperCamelCase__ ) if value == y} )
if __name__ == "__main__":
import doctest
doctest.testmod() | 6 |
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
_lowerCamelCase = logging.getLogger(__name__)
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser(
description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'
)
parser.add_argument(
'--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.'
)
parser.add_argument(
'--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.'
)
parser.add_argument('--vocab_size', default=30522, type=int)
_lowerCamelCase = parser.parse_args()
logger.info(F'''Loading data from {args.data_file}''')
with open(args.data_file, 'rb') as fp:
_lowerCamelCase = pickle.load(fp)
logger.info('Counting occurrences for MLM.')
_lowerCamelCase = Counter()
for tk_ids in data:
counter.update(tk_ids)
_lowerCamelCase = [0] * args.vocab_size
for k, v in counter.items():
_lowerCamelCase = v
logger.info(F'''Dump to {args.token_counts_dump}''')
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL) | 6 | 1 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: List[Any] ):
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
SCREAMING_SNAKE_CASE__ = mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE__ = max(
mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , mf_knapsack(i - 1 , UpperCamelCase__ , UpperCamelCase__ , j - wt[i - 1] ) + val[i - 1] , )
SCREAMING_SNAKE_CASE__ = val
return f[i][j]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: str , UpperCamelCase__: int ):
SCREAMING_SNAKE_CASE__ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
SCREAMING_SNAKE_CASE__ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
SCREAMING_SNAKE_CASE__ = dp[i - 1][w_]
return dp[n][w_], dp
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: list , UpperCamelCase__: list ):
if not (isinstance(UpperCamelCase__ , (list, tuple) ) and isinstance(UpperCamelCase__ , (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
if num_items != len(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = (
"""The number of weights must be the same as the number of values.\n"""
f'''But got {num_items} weights and {len(UpperCamelCase__ )} values'''
)
raise ValueError(UpperCamelCase__ )
for i in range(UpperCamelCase__ ):
if not isinstance(wt[i] , UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = (
"""All weights must be integers but got weight of """
f'''type {type(wt[i] )} at index {i}'''
)
raise TypeError(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = knapsack(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = set()
_construct_solution(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
return optimal_val, example_optional_set
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list , UpperCamelCase__: list , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: set ):
# for the current item i at a maximum weight j to be part of an optimal subset,
# the optimal value at (i, j) must be greater than the optimal value at (i-1, j).
# where i - 1 means considering only the previous items at the given maximum weight
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , UpperCamelCase__ , UpperCamelCase__ )
else:
optimal_set.add(UpperCamelCase__ )
_construct_solution(UpperCamelCase__ , UpperCamelCase__ , i - 1 , j - wt[i - 1] , UpperCamelCase__ )
if __name__ == "__main__":
_lowerCamelCase = [3, 2, 4, 4]
_lowerCamelCase = [4, 3, 2, 3]
_lowerCamelCase = 4
_lowerCamelCase = 6
_lowerCamelCase = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
_lowerCamelCase , _lowerCamelCase = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
_lowerCamelCase , _lowerCamelCase = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print('optimal_value = ', optimal_solution)
print('An optimal subset corresponding to the optimal value', optimal_subset) | 6 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
_lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 6 | 1 |
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = '▁'
_lowerCamelCase = {
'vocab_file': 'vocab.json',
'spm_file': 'sentencepiece.bpe.model',
}
_lowerCamelCase = {
'vocab_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'
),
},
'spm_file': {
'facebook/s2t-small-librispeech-asr': (
'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'
)
},
}
_lowerCamelCase = {
'facebook/s2t-small-librispeech-asr': 1024,
}
_lowerCamelCase = ['pt', 'fr', 'ru', 'nl', 'ro', 'it', 'es', 'de']
_lowerCamelCase = {'mustc': MUSTC_LANGS}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = VOCAB_FILES_NAMES
lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase_ = MAX_MODEL_INPUT_SIZES
lowerCamelCase_ = ["input_ids", "attention_mask"]
lowerCamelCase_ = []
def __init__( self :Union[str, Any] , __A :Dict , __A :Tuple , __A :List[str]="<s>" , __A :str="</s>" , __A :List[str]="<pad>" , __A :Union[str, Any]="<unk>" , __A :List[Any]=False , __A :Tuple=False , __A :Optional[int]=None , __A :Dict=None , __A :Optional[Dict[str, Any]] = None , **__A :int , ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__A , eos_token=__A , unk_token=__A , pad_token=__A , do_upper_case=__A , do_lower_case=__A , tgt_lang=__A , lang_codes=__A , sp_model_kwargs=self.sp_model_kwargs , **__A , )
SCREAMING_SNAKE_CASE__ = do_upper_case
SCREAMING_SNAKE_CASE__ = do_lower_case
SCREAMING_SNAKE_CASE__ = load_json(__A )
SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()}
SCREAMING_SNAKE_CASE__ = spm_file
SCREAMING_SNAKE_CASE__ = load_spm(__A , self.sp_model_kwargs )
if lang_codes is not None:
SCREAMING_SNAKE_CASE__ = lang_codes
SCREAMING_SNAKE_CASE__ = LANGUAGES[lang_codes]
SCREAMING_SNAKE_CASE__ = [f'''<lang:{lang}>''' for lang in self.langs]
SCREAMING_SNAKE_CASE__ = {lang: self.sp_model.PieceToId(f'''<lang:{lang}>''' ) for lang in self.langs}
SCREAMING_SNAKE_CASE__ = self.lang_tokens
SCREAMING_SNAKE_CASE__ = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
SCREAMING_SNAKE_CASE__ = {}
@property
def _snake_case ( self :Dict ) -> int:
"""simple docstring"""
return len(self.encoder )
@property
def _snake_case ( self :str ) -> str:
"""simple docstring"""
return self._tgt_lang
@tgt_lang.setter
def _snake_case ( self :List[Any] , __A :Optional[int] ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = new_tgt_lang
self.set_tgt_lang_special_tokens(__A )
def _snake_case ( self :Union[str, Any] , __A :str ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.lang_code_to_id[tgt_lang]
SCREAMING_SNAKE_CASE__ = [lang_code_id]
def _snake_case ( self :Optional[int] , __A :str ) -> List[str]:
"""simple docstring"""
return self.sp_model.encode(__A , out_type=__A )
def _snake_case ( self :List[Any] , __A :Optional[Any] ) -> Any:
"""simple docstring"""
return self.encoder.get(__A , self.encoder[self.unk_token] )
def _snake_case ( self :List[Any] , __A :int ) -> str:
"""simple docstring"""
return self.decoder.get(__A , self.unk_token )
def _snake_case ( self :str , __A :List[str] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
SCREAMING_SNAKE_CASE__ = self.sp_model.decode(__A )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
SCREAMING_SNAKE_CASE__ = []
else:
current_sub_tokens.append(__A )
SCREAMING_SNAKE_CASE__ = self.sp_model.decode(__A )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def _snake_case ( self :Any , __A :Optional[int] , __A :Dict=None ) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def _snake_case ( self :int , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
SCREAMING_SNAKE_CASE__ = [1] * len(self.prefix_tokens )
SCREAMING_SNAKE_CASE__ = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__A )) + suffix_ones
return prefix_ones + ([0] * len(__A )) + ([0] * len(__A )) + suffix_ones
def _snake_case ( self :str ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self :Dict ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.__dict__.copy()
SCREAMING_SNAKE_CASE__ = None
return state
def __setstate__( self :Tuple , __A :Dict ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = load_spm(self.spm_file , self.sp_model_kwargs )
def _snake_case ( self :Dict , __A :str , __A :Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = Path(__A )
assert save_dir.is_dir(), f'''{save_directory} should be a directory'''
SCREAMING_SNAKE_CASE__ = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""]
)
SCREAMING_SNAKE_CASE__ = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""]
)
save_json(self.encoder , __A )
if os.path.abspath(self.spm_file ) != os.path.abspath(__A ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __A )
elif not os.path.isfile(self.spm_file ):
with open(__A , """wb""" ) as fi:
SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto()
fi.write(__A )
return (str(__A ), str(__A ))
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Dict[str, Any] ):
SCREAMING_SNAKE_CASE__ = sentencepiece.SentencePieceProcessor(**UpperCamelCase__ )
spm.Load(str(UpperCamelCase__ ) )
return spm
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
with open(UpperCamelCase__ , """r""" ) as f:
return json.load(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: str ):
with open(UpperCamelCase__ , """w""" ) as f:
json.dump(UpperCamelCase__ , UpperCamelCase__ , indent=2 ) | 6 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "OwlViTImageProcessor"
lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __A , )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" )
SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__A , __A )
def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple:
"""simple docstring"""
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )):
SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )]
elif isinstance(__A , __A ) and isinstance(text[0] , __A ):
SCREAMING_SNAKE_CASE__ = []
# Maximum number of queries across batch
SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__A ) != max_num_queries:
SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A ))
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )
encodings.append(__A )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = input_ids
SCREAMING_SNAKE_CASE__ = attention_mask
if query_images is not None:
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = self.image_processor(
__A , return_tensors=__A , **__A ).pixel_values
SCREAMING_SNAKE_CASE__ = query_pixel_values
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]:
"""simple docstring"""
return self.image_processor.post_process(*__A , **__A )
def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor.post_process_object_detection(*__A , **__A )
def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any:
"""simple docstring"""
return self.image_processor.post_process_image_guided_detection(*__A , **__A )
def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :List[Any] ) -> Optional[int]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , )
return self.image_processor_class
@property
def _snake_case ( self :Any ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , )
return self.image_processor | 6 | 1 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Tuple ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :List[str] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Optional[Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
# Removed: 'text_encoder/model.safetensors',
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :List[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Optional[int] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
# 'text_encoder/model.fp16.safetensors',
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) | 6 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ):
@register_to_config
def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any:
"""simple docstring"""
super().__init__()
# pass init params to Encoder
SCREAMING_SNAKE_CASE__ = Encoder(
in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , )
SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A )
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
# pass init params to Decoder
SCREAMING_SNAKE_CASE__ = Decoder(
in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , )
@apply_forward_hook
def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.encoder(__A )
SCREAMING_SNAKE_CASE__ = self.quant_conv(__A )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=__A )
@apply_forward_hook
def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if not force_not_quantize:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A )
else:
SCREAMING_SNAKE_CASE__ = h
SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A )
SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A )
def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = sample
SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents
SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A ) | 6 | 1 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = model.config
SCREAMING_SNAKE_CASE__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
SCREAMING_SNAKE_CASE__ = MBartConfig(
is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , )
return encoder_config, decoder_config
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
if "encoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
SCREAMING_SNAKE_CASE__ = """encoder.""" + name
if "attn.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias"""
return name
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ):
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ )
if "qkv" in key:
SCREAMING_SNAKE_CASE__ = key.split(""".""" )
SCREAMING_SNAKE_CASE__ = int(key_split[3] )
SCREAMING_SNAKE_CASE__ = int(key_split[5] )
SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
SCREAMING_SNAKE_CASE__ = val[:dim, :]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE__ = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE__ = val[:dim]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2]
SCREAMING_SNAKE_CASE__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
SCREAMING_SNAKE_CASE__ = val
return orig_state_dict
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ):
# load original model
SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval()
# load HuggingFace model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
model.eval()
SCREAMING_SNAKE_CASE__ = original_model.state_dict()
SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ )
model.load_state_dict(UpperCamelCase__ )
# verify results on scanned document
SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" )
SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
SCREAMING_SNAKE_CASE__ = """When is the coffee break?"""
SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
SCREAMING_SNAKE_CASE__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
SCREAMING_SNAKE_CASE__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
SCREAMING_SNAKE_CASE__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[
"""input_ids"""
]
SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ )
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
# verify encoder hidden states
SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 )
# verify decoder hidden states
SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
_lowerCamelCase = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 6 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
lowerCamelCase_ = jnp.floataa
lowerCamelCase_ = True
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
super().setup()
SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype )
def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A )
SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ):
def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ):
SCREAMING_SNAKE_CASE__ = logits.shape[-1]
SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" )
SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 )
SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ )
return loss
SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = "google/bigbird-roberta-base"
lowerCamelCase_ = 30_00
lowerCamelCase_ = 1_05_00
lowerCamelCase_ = 1_28
lowerCamelCase_ = 3
lowerCamelCase_ = 1
lowerCamelCase_ = 5
# tx_args
lowerCamelCase_ = 3e-5
lowerCamelCase_ = 0.0
lowerCamelCase_ = 2_00_00
lowerCamelCase_ = 0.0095
lowerCamelCase_ = "bigbird-roberta-natural-questions"
lowerCamelCase_ = "training-expt"
lowerCamelCase_ = "data/nq-training.jsonl"
lowerCamelCase_ = "data/nq-validation.jsonl"
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
os.makedirs(self.base_dir , exist_ok=__A )
SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir )
SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count()
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 40_96 # no dynamic padding on TPUs
def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.collate_fn(__A )
SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A )
return batch
def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] )
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": jnp.array(__A , dtype=jnp.intaa ),
"""attention_mask""": jnp.array(__A , dtype=jnp.intaa ),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ),
}
return batch
def _snake_case ( self :Tuple , __A :list ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids]
return zip(*__A )
def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )]
while len(__A ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ):
if seed is not None:
SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ )
for i in range(len(UpperCamelCase__ ) // batch_size ):
SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(UpperCamelCase__ )
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ):
def loss_fn(UpperCamelCase__: List[Any] ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
return state.loss_fn(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" )
SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class UpperCamelCase_ ( train_state.TrainState ):
lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ )
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = None
def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = model.params
SCREAMING_SNAKE_CASE__ = TrainState.create(
apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , )
if ckpt_dir is not None:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A )
SCREAMING_SNAKE_CASE__ = train_state.TrainState(
step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , )
SCREAMING_SNAKE_CASE__ = args
SCREAMING_SNAKE_CASE__ = data_collator
SCREAMING_SNAKE_CASE__ = lr
SCREAMING_SNAKE_CASE__ = params
SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A )
return state
def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.args
SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size
SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() )
for epoch in range(args.max_epochs ):
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
if i % args.logging_steps == 0:
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step )
SCREAMING_SNAKE_CASE__ = running_loss.item() / i
SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 )
SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(__A ) )
self.logger.log(__A , commit=__A )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A )
def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size )
SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
return running_loss / i
def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A )
print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ )
self.model_save_fn(__A , params=state.params )
with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) )
joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) )
with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f:
json.dump({"""step""": state.step.item()} , __A )
print("""DONE""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ):
print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ )
with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() )
with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) )
with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f:
SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ):
def weight_decay_mask(UpperCamelCase__: Any ):
SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ )
return tx, lr | 6 | 1 |
_lowerCamelCase = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] ):
# Return True if there is node that has not iterated.
SCREAMING_SNAKE_CASE__ = [False] * len(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = [s]
SCREAMING_SNAKE_CASE__ = True
while queue:
SCREAMING_SNAKE_CASE__ = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = u
return visited[t]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ):
SCREAMING_SNAKE_CASE__ = [-1] * (len(UpperCamelCase__ ))
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = [i[:] for i in graph] # Record original cut, copy.
while bfs(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = float("""Inf""" )
SCREAMING_SNAKE_CASE__ = sink
while s != source:
# Find the minimum value in select path
SCREAMING_SNAKE_CASE__ = min(UpperCamelCase__ , graph[parent[s]][s] )
SCREAMING_SNAKE_CASE__ = parent[s]
max_flow += path_flow
SCREAMING_SNAKE_CASE__ = sink
while v != source:
SCREAMING_SNAKE_CASE__ = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
SCREAMING_SNAKE_CASE__ = parent[v]
for i in range(len(UpperCamelCase__ ) ):
for j in range(len(graph[0] ) ):
if graph[i][j] == 0 and temp[i][j] > 0:
res.append((i, j) )
return res
if __name__ == "__main__":
print(mincut(test_graph, source=0, sink=5)) | 6 |
from torch import nn
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f'''Unsupported activation function: {act_fn}''' ) | 6 | 1 |
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
_lowerCamelCase = {
'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'bert': (BertConfig, BertForMaskedLM, BertTokenizer),
'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: int ):
if args.student_type == "roberta":
SCREAMING_SNAKE_CASE__ = False
elif args.student_type == "gpt2":
SCREAMING_SNAKE_CASE__ = False
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: int ):
if args.student_type == "roberta":
SCREAMING_SNAKE_CASE__ = False
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser(description="""Training""" )
parser.add_argument("""--force""" , action="""store_true""" , help="""Overwrite dump_path if it already exists.""" )
parser.add_argument(
"""--dump_path""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The output directory (log, checkpoints, parameters, etc.)""" )
parser.add_argument(
"""--data_file""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The binarized file (tokenized + tokens_to_ids) and grouped by sequence.""" , )
parser.add_argument(
"""--student_type""" , type=UpperCamelCase__ , choices=["""distilbert""", """roberta""", """gpt2"""] , required=UpperCamelCase__ , help="""The student type (DistilBERT, RoBERTa).""" , )
parser.add_argument("""--student_config""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""Path to the student configuration.""" )
parser.add_argument(
"""--student_pretrained_weights""" , default=UpperCamelCase__ , type=UpperCamelCase__ , help="""Load student initialization checkpoint.""" )
parser.add_argument(
"""--teacher_type""" , choices=["""bert""", """roberta""", """gpt2"""] , required=UpperCamelCase__ , help="""Teacher type (BERT, RoBERTa).""" )
parser.add_argument("""--teacher_name""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The teacher model.""" )
parser.add_argument("""--temperature""" , default=2.0 , type=UpperCamelCase__ , help="""Temperature for the softmax temperature.""" )
parser.add_argument(
"""--alpha_ce""" , default=0.5 , type=UpperCamelCase__ , help="""Linear weight for the distillation loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_mlm""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.""" , )
parser.add_argument("""--alpha_clm""" , default=0.5 , type=UpperCamelCase__ , help="""Linear weight for the CLM loss. Must be >=0.""" )
parser.add_argument("""--alpha_mse""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight of the MSE loss. Must be >=0.""" )
parser.add_argument(
"""--alpha_cos""" , default=0.0 , type=UpperCamelCase__ , help="""Linear weight of the cosine embedding loss. Must be >=0.""" )
parser.add_argument(
"""--mlm""" , action="""store_true""" , help="""The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.""" )
parser.add_argument(
"""--mlm_mask_prop""" , default=0.1_5 , type=UpperCamelCase__ , help="""Proportion of tokens for which we need to make a prediction.""" , )
parser.add_argument("""--word_mask""" , default=0.8 , type=UpperCamelCase__ , help="""Proportion of tokens to mask out.""" )
parser.add_argument("""--word_keep""" , default=0.1 , type=UpperCamelCase__ , help="""Proportion of tokens to keep.""" )
parser.add_argument("""--word_rand""" , default=0.1 , type=UpperCamelCase__ , help="""Proportion of tokens to randomly replace.""" )
parser.add_argument(
"""--mlm_smoothing""" , default=0.7 , type=UpperCamelCase__ , help="""Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).""" , )
parser.add_argument("""--token_counts""" , type=UpperCamelCase__ , help="""The token counts in the data_file for MLM.""" )
parser.add_argument(
"""--restrict_ce_to_mask""" , action="""store_true""" , help="""If true, compute the distillation loss only the [MLM] prediction distribution.""" , )
parser.add_argument(
"""--freeze_pos_embs""" , action="""store_true""" , help="""Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only.""" , )
parser.add_argument(
"""--freeze_token_type_embds""" , action="""store_true""" , help="""Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only.""" , )
parser.add_argument("""--n_epoch""" , type=UpperCamelCase__ , default=3 , help="""Number of pass on the whole dataset.""" )
parser.add_argument("""--batch_size""" , type=UpperCamelCase__ , default=5 , help="""Batch size (for each process).""" )
parser.add_argument(
"""--group_by_size""" , action="""store_false""" , help="""If true, group sequences that have similar length into the same batch. Default is true.""" , )
parser.add_argument(
"""--gradient_accumulation_steps""" , type=UpperCamelCase__ , default=50 , help="""Gradient accumulation for larger training batches.""" , )
parser.add_argument("""--warmup_prop""" , default=0.0_5 , type=UpperCamelCase__ , help="""Linear warmup proportion.""" )
parser.add_argument("""--weight_decay""" , default=0.0 , type=UpperCamelCase__ , help="""Weight decay if we apply some.""" )
parser.add_argument("""--learning_rate""" , default=5e-4 , type=UpperCamelCase__ , help="""The initial learning rate for Adam.""" )
parser.add_argument("""--adam_epsilon""" , default=1e-6 , type=UpperCamelCase__ , help="""Epsilon for Adam optimizer.""" )
parser.add_argument("""--max_grad_norm""" , default=5.0 , type=UpperCamelCase__ , help="""Max gradient norm.""" )
parser.add_argument("""--initializer_range""" , default=0.0_2 , type=UpperCamelCase__ , help="""Random initialization range.""" )
parser.add_argument(
"""--fp16""" , action="""store_true""" , help="""Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit""" , )
parser.add_argument(
"""--fp16_opt_level""" , type=UpperCamelCase__ , default="""O1""" , help=(
"""For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."""
"""See details at https://nvidia.github.io/apex/amp.html"""
) , )
parser.add_argument("""--n_gpu""" , type=UpperCamelCase__ , default=1 , help="""Number of GPUs in the node.""" )
parser.add_argument("""--local_rank""" , type=UpperCamelCase__ , default=-1 , help="""Distributed training - Local rank""" )
parser.add_argument("""--seed""" , type=UpperCamelCase__ , default=56 , help="""Random seed""" )
parser.add_argument("""--log_interval""" , type=UpperCamelCase__ , default=500 , help="""Tensorboard logging interval.""" )
parser.add_argument("""--checkpoint_interval""" , type=UpperCamelCase__ , default=4_000 , help="""Checkpoint interval.""" )
SCREAMING_SNAKE_CASE__ = parser.parse_args()
sanity_checks(UpperCamelCase__ )
# ARGS #
init_gpu_params(UpperCamelCase__ )
set_seed(UpperCamelCase__ )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
""" itUse `--force` if you want to overwrite it""" )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(f'''Param: {args}''' )
with open(os.path.join(args.dump_path , """parameters.json""" ) , """w""" ) as f:
json.dump(vars(UpperCamelCase__ ) , UpperCamelCase__ , indent=4 )
git_log(args.dump_path )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = MODEL_CLASSES[args.student_type]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
SCREAMING_SNAKE_CASE__ = teacher_tokenizer_class.from_pretrained(args.teacher_name )
SCREAMING_SNAKE_CASE__ = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
SCREAMING_SNAKE_CASE__ = tokenizer.all_special_tokens.index(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = tokenizer.all_special_ids[idx]
logger.info(f'''Special tokens {special_tok_ids}''' )
SCREAMING_SNAKE_CASE__ = special_tok_ids
SCREAMING_SNAKE_CASE__ = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(f'''Loading data from {args.data_file}''' )
with open(args.data_file , """rb""" ) as fp:
SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ )
if args.mlm:
logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , """rb""" ) as fp:
SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = np.maximum(UpperCamelCase__ , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
SCREAMING_SNAKE_CASE__ = 0.0 # do not predict special tokens
SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = LmSeqsDataset(params=UpperCamelCase__ , data=UpperCamelCase__ )
logger.info("""Data loader created.""" )
# STUDENT #
logger.info(f'''Loading student config from {args.student_config}''' )
SCREAMING_SNAKE_CASE__ = student_config_class.from_pretrained(args.student_config )
SCREAMING_SNAKE_CASE__ = True
if args.student_pretrained_weights is not None:
logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' )
SCREAMING_SNAKE_CASE__ = student_model_class.from_pretrained(args.student_pretrained_weights , config=UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE__ = student_model_class(UpperCamelCase__ )
if args.n_gpu > 0:
student.to(f'''cuda:{args.local_rank}''' )
logger.info("""Student loaded.""" )
# TEACHER #
SCREAMING_SNAKE_CASE__ = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=UpperCamelCase__ )
if args.n_gpu > 0:
teacher.to(f'''cuda:{args.local_rank}''' )
logger.info(f'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(UpperCamelCase__ , UpperCamelCase__ )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(UpperCamelCase__ , UpperCamelCase__ )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
SCREAMING_SNAKE_CASE__ = Distiller(
params=UpperCamelCase__ , dataset=UpperCamelCase__ , token_probs=UpperCamelCase__ , student=UpperCamelCase__ , teacher=UpperCamelCase__ )
distiller.train()
logger.info("""Let's go get some drinks.""" )
if __name__ == "__main__":
main() | 6 |
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained(
"""microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = """huggingface/label-files"""
if "ade20k-full" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 847
SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json"""
elif "ade" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 150
SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json"""
elif "coco-stuff" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 171
SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json"""
elif "coco" in model_name:
# TODO
SCREAMING_SNAKE_CASE__ = 133
SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json"""
elif "cityscapes" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 19
SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json"""
elif "vistas" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 65
SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json"""
SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
SCREAMING_SNAKE_CASE__ = []
# stem
# fmt: off
rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") )
rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") )
# heads on top
rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") )
for i in range(3 ):
rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ):
SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = val
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ):
SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
SCREAMING_SNAKE_CASE__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[
dim : dim * 2
]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
-dim :, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :]
# fmt: on
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ):
# fmt: off
SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size]
SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2]
SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size]
SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2]
SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :]
# fmt: on
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ):
SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ )
# load original state_dict
with open(UpperCamelCase__ , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = data["""model"""]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ )
for src, dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config )
read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ )
# update to torch tensors
for key, value in state_dict.items():
SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ )
# load 🤗 model
SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ )
model.eval()
for name, param in model.named_parameters():
print(UpperCamelCase__ , param.shape )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}'''
# verify results
SCREAMING_SNAKE_CASE__ = prepare_img()
if "vistas" in model_name:
SCREAMING_SNAKE_CASE__ = 65
elif "cityscapes" in model_name:
SCREAMING_SNAKE_CASE__ = 65_535
else:
SCREAMING_SNAKE_CASE__ = 255
SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False
SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ )
print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
SCREAMING_SNAKE_CASE__ = torch.tensor(
[[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
image_processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
print("""Pushing model and image processor to the hub...""" )
model.push_to_hub(f'''nielsr/{model_name}''' )
image_processor.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='maskformer-swin-tiny-ade',
type=str,
help=('Name of the MaskFormer model you\'d like to convert',),
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl',
type=str,
help='Path to the original state dict (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
) | 6 | 1 |
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
_lowerCamelCase = logging.get_logger(__name__)
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str ):
if "xprophetnet" in prophetnet_checkpoint_path:
SCREAMING_SNAKE_CASE__ = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = XLMProphetNetForConditionalGeneration.from_pretrained(
UpperCamelCase__ , output_loading_info=UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE__ = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = ProphetNetForConditionalGeneration.from_pretrained(
UpperCamelCase__ , output_loading_info=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = ["""key_proj""", """value_proj""", """query_proj"""]
SCREAMING_SNAKE_CASE__ = {
"""self_attn""": """ngram_self_attn""",
"""cross_attn""": """encoder_attn""",
"""cross_attn_layer_norm""": """encoder_attn_layer_norm""",
"""feed_forward_layer_norm""": """final_layer_norm""",
"""feed_forward""": """""",
"""intermediate""": """fc1""",
"""output""": """fc2""",
"""key_proj""": """k_proj""",
"""query_proj""": """q_proj""",
"""value_proj""": """v_proj""",
"""word_embeddings""": """embed_tokens""",
"""embeddings_layer_norm""": """emb_layer_norm""",
"""relative_pos_embeddings""": """relative_linear""",
"""ngram_embeddings""": """ngram_input_embed""",
"""position_embeddings""": """embed_positions""",
}
for key in loading_info["missing_keys"]:
SCREAMING_SNAKE_CASE__ = key.split(""".""" )
if attributes[0] == "lm_head":
SCREAMING_SNAKE_CASE__ = prophet
SCREAMING_SNAKE_CASE__ = prophet_old
else:
SCREAMING_SNAKE_CASE__ = prophet.prophetnet
SCREAMING_SNAKE_CASE__ = prophet_old.model
SCREAMING_SNAKE_CASE__ = False
for attribute in attributes:
if attribute in mapping:
SCREAMING_SNAKE_CASE__ = mapping[attribute]
if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0:
SCREAMING_SNAKE_CASE__ = attribute
elif hasattr(UpperCamelCase__ , UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
SCREAMING_SNAKE_CASE__ = old_model.weight
logger.info(f'''{attribute} is initialized.''' )
SCREAMING_SNAKE_CASE__ = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
SCREAMING_SNAKE_CASE__ = old_model.bias
logger.info(f'''{attribute} is initialized''' )
SCREAMING_SNAKE_CASE__ = True
break
elif attribute in special_keys and hasattr(UpperCamelCase__ , """in_proj_weight""" ):
SCREAMING_SNAKE_CASE__ = old_model.in_proj_weight.shape[0] // 3
SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase__ , UpperCamelCase__ )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
SCREAMING_SNAKE_CASE__ = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
SCREAMING_SNAKE_CASE__ = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
SCREAMING_SNAKE_CASE__ = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
SCREAMING_SNAKE_CASE__ = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
SCREAMING_SNAKE_CASE__ = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
SCREAMING_SNAKE_CASE__ = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
SCREAMING_SNAKE_CASE__ = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings."
SCREAMING_SNAKE_CASE__ = nn.Parameter(old_model.embed_positions.weight[:512, :] )
SCREAMING_SNAKE_CASE__ = True
break
if attribute.isdigit():
SCREAMING_SNAKE_CASE__ = model[int(UpperCamelCase__ )]
SCREAMING_SNAKE_CASE__ = old_model[int(UpperCamelCase__ )]
else:
SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase__ , UpperCamelCase__ )
if old_attribute == "":
SCREAMING_SNAKE_CASE__ = old_model
else:
if not hasattr(UpperCamelCase__ , UpperCamelCase__ ):
raise ValueError(f'''{old_model} does not have {old_attribute}''' )
SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase__ , UpperCamelCase__ )
if not is_key_init:
raise ValueError(f'''{key} was not correctly initialized!''' )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
prophet.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--prophetnet_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_lowerCamelCase = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path) | 6 |
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'nielsr/canine-s': 2048,
}
# Unicode defines 1,114,112 total “codepoints”
_lowerCamelCase = 1114112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
_lowerCamelCase = 0
_lowerCamelCase = 0XE0_00
_lowerCamelCase = 0XE0_01
_lowerCamelCase = 0XE0_02
_lowerCamelCase = 0XE0_03
_lowerCamelCase = 0XE0_04
# Maps special codepoints to human-readable names.
_lowerCamelCase = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
_lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , )
# Creates a mapping for looking up the IDs of special symbols.
SCREAMING_SNAKE_CASE__ = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
SCREAMING_SNAKE_CASE__ = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
SCREAMING_SNAKE_CASE__ = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE
SCREAMING_SNAKE_CASE__ = len(self._special_codepoints )
@property
def _snake_case ( self :Optional[Any] ) -> int:
"""simple docstring"""
return self._unicode_vocab_size
def _snake_case ( self :Tuple , __A :str ) -> List[str]:
"""simple docstring"""
return list(__A )
def _snake_case ( self :Optional[Any] , __A :str ) -> int:
"""simple docstring"""
try:
return ord(__A )
except TypeError:
raise ValueError(f'''invalid token: \'{token}\'''' )
def _snake_case ( self :str , __A :int ) -> str:
"""simple docstring"""
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(__A )
except TypeError:
raise ValueError(f'''invalid id: {index}''' )
def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any:
"""simple docstring"""
return "".join(__A )
def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1]
if token_ids_a is not None:
result += ([0] * len(__A )) + [1]
return result
def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any:
"""simple docstring"""
return () | 6 | 1 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = [[False for _ in range(m + 1 )] for _ in range(n + 1 )]
SCREAMING_SNAKE_CASE__ = True
for i in range(UpperCamelCase__ ):
for j in range(m + 1 ):
if dp[i][j]:
if j < m and a[i].upper() == b[j]:
SCREAMING_SNAKE_CASE__ = True
if a[i].islower():
SCREAMING_SNAKE_CASE__ = True
return dp[n][m]
if __name__ == "__main__":
import doctest
doctest.testmod() | 6 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
_lowerCamelCase = 'bert-base-cased'
_lowerCamelCase = 'fp16'
_lowerCamelCase = 'bf16'
_lowerCamelCase = [FPaa, BFaa]
@require_fsdp
@require_cuda
class UpperCamelCase_ ( UpperCamelCase__ ):
def _snake_case ( self :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE__ = dict(
ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , )
def _snake_case ( self :List[Any] ) -> Tuple:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = f'''{i + 1}'''
SCREAMING_SNAKE_CASE__ = strategy
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) )
def _snake_case ( self :int ) -> List[str]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = prefetch_policy
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) )
def _snake_case ( self :List[str] ) -> List[str]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = state_dict_type
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def _snake_case ( self :str ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A )
for policy in FSDP_AUTO_WRAP_POLICY:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = policy
if policy == "TRANSFORMER_BASED_WRAP":
SCREAMING_SNAKE_CASE__ = """BertLayer"""
elif policy == "SIZE_BASED_WRAP":
SCREAMING_SNAKE_CASE__ = """2000"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__A )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP"""
SCREAMING_SNAKE_CASE__ = """T5Layer"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
with self.assertRaises(__A ) as cm:
fsdp_plugin.set_auto_wrap_policy(__A )
self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) )
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP"""
SCREAMING_SNAKE_CASE__ = """0"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__A )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def _snake_case ( self :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = mp_dtype
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = Accelerator()
if mp_dtype == "fp16":
SCREAMING_SNAKE_CASE__ = torch.floataa
elif mp_dtype == "bf16":
SCREAMING_SNAKE_CASE__ = torch.bfloataa
SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , __A ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__A )
def _snake_case ( self :str ) -> str:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = str(__A ).lower()
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) )
@require_fsdp
@require_multi_gpu
@slow
class UpperCamelCase_ ( UpperCamelCase__ ):
def _snake_case ( self :Any ) -> Any:
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE__ = 0.8_2
SCREAMING_SNAKE_CASE__ = [
"""fsdp_shard_grad_op_transformer_based_wrap""",
"""fsdp_full_shard_transformer_based_wrap""",
]
SCREAMING_SNAKE_CASE__ = {
"""multi_gpu_fp16""": 3200,
"""fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000,
"""fsdp_full_shard_transformer_based_wrap_fp16""": 1900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
SCREAMING_SNAKE_CASE__ = 160
SCREAMING_SNAKE_CASE__ = 160
SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils )
SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] )
def _snake_case ( self :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" )
SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""]
for config in self.performance_configs:
SCREAMING_SNAKE_CASE__ = cmd.copy()
for i, strategy in enumerate(__A ):
if strategy.lower() in config:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "fp32" in config:
cmd_config.append("""--mixed_precision=no""" )
else:
cmd_config.append("""--mixed_precision=fp16""" )
if "cpu_offload" in config:
cmd_config.append("""--fsdp_offload_params=True""" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("""--fsdp_min_num_params=2000""" )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--performance_lower_bound={self.performance_lower_bound}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
def _snake_case ( self :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" )
SCREAMING_SNAKE_CASE__ = [
"""accelerate""",
"""launch""",
"""--num_processes=2""",
"""--num_machines=1""",
"""--machine_rank=0""",
"""--use_fsdp""",
"""--mixed_precision=fp16""",
"""--fsdp_transformer_layer_cls_to_wrap=BertLayer""",
]
for i, strategy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = cmd.copy()
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
if strategy != "FULL_SHARD":
continue
SCREAMING_SNAKE_CASE__ = len(__A )
for state_dict_type in FSDP_STATE_DICT_TYPE:
SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index]
cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
"""--partial_train_epoch=1""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
SCREAMING_SNAKE_CASE__ = cmd_config[:-1]
SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" )
cmd_config.extend(
[
f'''--resume_from_checkpoint={resume_from_checkpoint}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
def _snake_case ( self :Tuple ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" )
SCREAMING_SNAKE_CASE__ = [
"""accelerate""",
"""launch""",
"""--num_processes=2""",
"""--num_machines=1""",
"""--machine_rank=0""",
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
SCREAMING_SNAKE_CASE__ = cmd.copy()
if "fp16" in spec:
cmd_config.extend(["""--mixed_precision=fp16"""] )
else:
cmd_config.extend(["""--mixed_precision=no"""] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(["""--use_fsdp"""] )
for i, strategy in enumerate(__A ):
if strategy.lower() in spec:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "cpu_offload" in spec:
cmd_config.append("""--fsdp_offload_params=True""" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("""--fsdp_min_num_params=2000""" )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--peak_memory_upper_bound={peak_mem_upper_bound}''',
f'''--n_train={self.n_train}''',
f'''--n_val={self.n_val}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() ) | 6 | 1 |
import os
from typing import List, Optional, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
from ..auto import AutoTokenizer
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "BlipImageProcessor"
lowerCamelCase_ = "AutoTokenizer"
def __init__( self :List[Any] , __A :str , __A :Dict , __A :List[str] ) -> Any:
"""simple docstring"""
super().__init__(__A , __A )
# add QFormer tokenizer
SCREAMING_SNAKE_CASE__ = qformer_tokenizer
def __call__( self :Any , __A :ImageInput = None , __A :Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __A :bool = True , __A :Union[bool, str, PaddingStrategy] = False , __A :Union[bool, str, TruncationStrategy] = None , __A :Optional[int] = None , __A :int = 0 , __A :Optional[int] = None , __A :Optional[bool] = None , __A :bool = False , __A :bool = False , __A :bool = False , __A :bool = False , __A :bool = False , __A :bool = True , __A :Optional[Union[str, TensorType]] = None , **__A :int , ) -> BatchFeature:
"""simple docstring"""
if images is None and text is None:
raise ValueError("""You have to specify at least images or text.""" )
SCREAMING_SNAKE_CASE__ = BatchFeature()
if text is not None:
SCREAMING_SNAKE_CASE__ = self.tokenizer(
text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , )
encoding.update(__A )
SCREAMING_SNAKE_CASE__ = self.qformer_tokenizer(
text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , )
SCREAMING_SNAKE_CASE__ = qformer_text_encoding.pop("""input_ids""" )
SCREAMING_SNAKE_CASE__ = qformer_text_encoding.pop("""attention_mask""" )
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A )
encoding.update(__A )
return encoding
def _snake_case ( self :Any , *__A :List[str] , **__A :List[str] ) -> List[str]:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :Tuple , *__A :str , **__A :Tuple ) -> int:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def _snake_case ( self :List[Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.tokenizer.model_input_names
SCREAMING_SNAKE_CASE__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
def _snake_case ( self :Any , __A :str , **__A :int ) -> str:
"""simple docstring"""
if os.path.isfile(__A ):
raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' )
os.makedirs(__A , exist_ok=__A )
SCREAMING_SNAKE_CASE__ = os.path.join(__A , """qformer_tokenizer""" )
self.qformer_tokenizer.save_pretrained(__A )
return super().save_pretrained(__A , **__A )
@classmethod
def _snake_case ( cls :str , __A :Dict , **__A :List[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__A , subfolder="""qformer_tokenizer""" )
SCREAMING_SNAKE_CASE__ = cls._get_arguments_from_pretrained(__A , **__A )
args.append(__A )
return cls(*__A ) | 6 |
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
_lowerCamelCase = logging.get_logger(__name__)
# General docstring
_lowerCamelCase = 'PoolFormerConfig'
# Base docstring
_lowerCamelCase = 'sail/poolformer_s12'
_lowerCamelCase = [1, 512, 7, 7]
# Image classification docstring
_lowerCamelCase = 'sail/poolformer_s12'
_lowerCamelCase = 'tabby, tabby cat'
_lowerCamelCase = [
'sail/poolformer_s12',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ):
if drop_prob == 0.0 or not training:
return input
SCREAMING_SNAKE_CASE__ = 1 - drop_prob
SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor
return output
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = drop_prob
def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
return drop_path(__A , self.drop_prob , self.training )
def _snake_case ( self :Dict ) -> str:
"""simple docstring"""
return "p={}".format(self.drop_prob )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size)
SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride)
SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding)
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A )
SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity()
def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.projection(__A )
SCREAMING_SNAKE_CASE__ = self.norm(__A )
return embeddings
class UpperCamelCase_ ( nn.GroupNorm ):
def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict:
"""simple docstring"""
super().__init__(1 , __A , **__A )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :List[str] , __A :Optional[int] ) -> Any:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A )
def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return self.pool(__A ) - hidden_states
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A )
if isinstance(config.hidden_act , __A ):
SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act]
else:
SCREAMING_SNAKE_CASE__ = config.hidden_act
def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.conva(__A )
SCREAMING_SNAKE_CASE__ = self.act_fn(__A )
SCREAMING_SNAKE_CASE__ = self.drop(__A )
SCREAMING_SNAKE_CASE__ = self.conva(__A )
SCREAMING_SNAKE_CASE__ = self.drop(__A )
return hidden_states
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A )
SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A )
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A )
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A )
# Useful for training neural nets
SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity()
SCREAMING_SNAKE_CASE__ = config.use_layer_scale
if config.use_layer_scale:
SCREAMING_SNAKE_CASE__ = nn.Parameter(
config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A )
SCREAMING_SNAKE_CASE__ = nn.Parameter(
config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A )
def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str:
"""simple docstring"""
if self.use_layer_scale:
SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) )
SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A )
SCREAMING_SNAKE_CASE__ = ()
SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) )
SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A )
SCREAMING_SNAKE_CASE__ = (output,) + outputs
return outputs
else:
SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) )
# First residual connection
SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states
SCREAMING_SNAKE_CASE__ = ()
# Second residual connection inside the PoolFormerOutput block
SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) )
SCREAMING_SNAKE_CASE__ = hidden_states + layer_output
SCREAMING_SNAKE_CASE__ = (output,) + outputs
return outputs
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = config
# stochastic depth decay rule
SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
SCREAMING_SNAKE_CASE__ = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A )
# Transformer blocks
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
SCREAMING_SNAKE_CASE__ = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
__A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(__A ) )
SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A )
def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None
SCREAMING_SNAKE_CASE__ = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers
# Get patch embeddings from hidden_states
SCREAMING_SNAKE_CASE__ = embedding_layer(__A )
# Send the embeddings through the blocks
for _, blk in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = blk(__A )
SCREAMING_SNAKE_CASE__ = layer_outputs[0]
if output_hidden_states:
SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A )
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = PoolFormerConfig
lowerCamelCase_ = "poolformer"
lowerCamelCase_ = "pixel_values"
lowerCamelCase_ = True
def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict:
"""simple docstring"""
if isinstance(__A , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__A , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any:
"""simple docstring"""
if isinstance(__A , __A ):
SCREAMING_SNAKE_CASE__ = value
_lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
_lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n'
@add_start_docstrings(
"The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , )
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :Union[str, Any] , __A :Any ) -> int:
"""simple docstring"""
super().__init__(__A )
SCREAMING_SNAKE_CASE__ = config
SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A )
# Initialize weights and apply final processing
self.post_init()
def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(__A )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""" )
SCREAMING_SNAKE_CASE__ = self.encoder(
__A , output_hidden_states=__A , return_dict=__A , )
SCREAMING_SNAKE_CASE__ = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :int , __A :Optional[int] ) -> Tuple:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size )
def _snake_case ( self :List[Any] , __A :Dict ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.dense(__A )
return output
@add_start_docstrings(
"\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , )
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :str , __A :Union[str, Any] ) -> int:
"""simple docstring"""
super().__init__(__A )
SCREAMING_SNAKE_CASE__ = config.num_labels
SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A )
# Final norm
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
SCREAMING_SNAKE_CASE__ = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__A )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE__ = self.poolformer(
__A , output_hidden_states=__A , return_dict=__A , )
SCREAMING_SNAKE_CASE__ = outputs[0]
SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) )
SCREAMING_SNAKE_CASE__ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
SCREAMING_SNAKE_CASE__ = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
SCREAMING_SNAKE_CASE__ = """single_label_classification"""
else:
SCREAMING_SNAKE_CASE__ = """multi_label_classification"""
if self.config.problem_type == "regression":
SCREAMING_SNAKE_CASE__ = MSELoss()
if self.num_labels == 1:
SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() )
else:
SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A )
elif self.config.problem_type == "single_label_classification":
SCREAMING_SNAKE_CASE__ = CrossEntropyLoss()
SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss()
SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A )
if not return_dict:
SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states ) | 6 | 1 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: dict ):
SCREAMING_SNAKE_CASE__ = set()
# edges = list of graph's edges
SCREAMING_SNAKE_CASE__ = get_edges(UpperCamelCase__ )
# While there are still elements in edges list, take an arbitrary edge
# (from_node, to_node) and add his extremity to chosen_vertices and then
# remove all arcs adjacent to the from_node and to_node
while edges:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = edges.pop()
chosen_vertices.add(UpperCamelCase__ )
chosen_vertices.add(UpperCamelCase__ )
for edge in edges.copy():
if from_node in edge or to_node in edge:
edges.discard(UpperCamelCase__ )
return chosen_vertices
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: dict ):
SCREAMING_SNAKE_CASE__ = set()
for from_node, to_nodes in graph.items():
for to_node in to_nodes:
edges.add((from_node, to_node) )
return edges
if __name__ == "__main__":
import doctest
doctest.testmod()
# graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]}
# print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}") | 6 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = seq_length
SCREAMING_SNAKE_CASE__ = is_training
SCREAMING_SNAKE_CASE__ = use_input_lengths
SCREAMING_SNAKE_CASE__ = use_token_type_ids
SCREAMING_SNAKE_CASE__ = use_labels
SCREAMING_SNAKE_CASE__ = gelu_activation
SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings
SCREAMING_SNAKE_CASE__ = causal
SCREAMING_SNAKE_CASE__ = asm
SCREAMING_SNAKE_CASE__ = n_langs
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = n_special
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = type_vocab_size
SCREAMING_SNAKE_CASE__ = type_sequence_label_size
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = num_labels
SCREAMING_SNAKE_CASE__ = num_choices
SCREAMING_SNAKE_CASE__ = summary_type
SCREAMING_SNAKE_CASE__ = use_proj
SCREAMING_SNAKE_CASE__ = scope
def _snake_case ( self :Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ = None
if self.use_input_lengths:
SCREAMING_SNAKE_CASE__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
SCREAMING_SNAKE_CASE__ = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float()
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _snake_case ( self :List[str] ) -> Optional[int]:
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A )
SCREAMING_SNAKE_CASE__ = model(__A , langs=__A )
SCREAMING_SNAKE_CASE__ = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(
__A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , )
SCREAMING_SNAKE_CASE__ = model(
__A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , )
((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple()
SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A )
((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(__A , labels=__A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_choices
SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self :Union[str, Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
lowerCamelCase_ = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
lowerCamelCase_ = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
SCREAMING_SNAKE_CASE__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__A )
SCREAMING_SNAKE_CASE__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__A )
return inputs_dict
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 )
def _snake_case ( self :int ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def _snake_case ( self :Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__A )
def _snake_case ( self :Tuple ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__A )
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*__A )
def _snake_case ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__A )
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__A )
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*__A )
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*__A )
@slow
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A )
self.assertIsNotNone(__A )
@slow
@require_torch_gpu
def _snake_case ( self :Tuple ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = model_class(config=__A )
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A )
SCREAMING_SNAKE_CASE__ = torch.jit.trace(
__A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) )
SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A )
loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) )
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
@slow
def _snake_case ( self :Dict ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = model(__A )[0]
SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __A )
SCREAMING_SNAKE_CASE__ = torch.tensor(
[[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) ) | 6 | 1 |
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
_lowerCamelCase = logging.getLogger(__name__)
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser(
description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'
)
parser.add_argument(
'--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.'
)
parser.add_argument(
'--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.'
)
parser.add_argument('--vocab_size', default=30522, type=int)
_lowerCamelCase = parser.parse_args()
logger.info(F'''Loading data from {args.data_file}''')
with open(args.data_file, 'rb') as fp:
_lowerCamelCase = pickle.load(fp)
logger.info('Counting occurrences for MLM.')
_lowerCamelCase = Counter()
for tk_ids in data:
counter.update(tk_ids)
_lowerCamelCase = [0] * args.vocab_size
for k, v in counter.items():
_lowerCamelCase = v
logger.info(F'''Dump to {args.token_counts_dump}''')
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL) | 6 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ):
model.train()
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ):
set_seed(42 )
SCREAMING_SNAKE_CASE__ = RegressionModel()
SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
model.to(accelerator.device )
if sched:
SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 )
SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 )
SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 )
SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 )
# Make a copy of `model`
if sched:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
# Test when on a single CPU or GPU that the context manager does nothing
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
# Use a single batch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
# Sync grads
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ):
# Test on distributed setup that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
# Use a single batch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
# Sync grads
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ):
SCREAMING_SNAKE_CASE__ = Accelerator(
split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
for iteration, batch in enumerate(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values()
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ):
SCREAMING_SNAKE_CASE__ = Accelerator(
split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ )
for iteration, batch in enumerate(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values()
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n'''
SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ ))
if accelerator.num_processes > 1:
check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = Accelerator()
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(UpperCamelCase__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ )
if iteration < len(UpperCamelCase__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(UpperCamelCase__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ )
if batch_num < len(UpperCamelCase__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = Accelerator()
SCREAMING_SNAKE_CASE__ = accelerator.state
if state.local_process_index == 0:
print("""**Test `accumulate` gradient accumulation with dataloader break**""" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("""**Test NOOP `no_sync` context manager**""" )
test_noop_sync(UpperCamelCase__ )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("""**Test Distributed `no_sync` context manager**""" )
test_distributed_sync(UpperCamelCase__ )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 6 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {'tokenizer_file': 'tokenizer.json'}
_lowerCamelCase = {
'tokenizer_file': {
'bigscience/tokenizer': 'https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json',
'bigscience/bloom-560m': 'https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json',
'bigscience/bloom-1b1': 'https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json',
'bigscience/bloom-1b7': 'https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json',
'bigscience/bloom-3b': 'https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json',
'bigscience/bloom-7b1': 'https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json',
'bigscience/bloom': 'https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json',
},
}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = VOCAB_FILES_NAMES
lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase_ = ["input_ids", "attention_mask"]
lowerCamelCase_ = None
def __init__( self :Any , __A :List[str]=None , __A :Tuple=None , __A :Union[str, Any]=None , __A :Tuple="<unk>" , __A :Union[str, Any]="<s>" , __A :Optional[Any]="</s>" , __A :Tuple="<pad>" , __A :str=False , __A :str=False , **__A :Dict , ) -> Tuple:
"""simple docstring"""
super().__init__(
__A , __A , tokenizer_file=__A , unk_token=__A , bos_token=__A , eos_token=__A , pad_token=__A , add_prefix_space=__A , clean_up_tokenization_spaces=__A , **__A , )
SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __A ) != add_prefix_space:
SCREAMING_SNAKE_CASE__ = getattr(__A , pre_tok_state.pop("""type""" ) )
SCREAMING_SNAKE_CASE__ = add_prefix_space
SCREAMING_SNAKE_CASE__ = pre_tok_class(**__A )
SCREAMING_SNAKE_CASE__ = add_prefix_space
def _snake_case ( self :Tuple , *__A :List[str] , **__A :List[Any] ) -> BatchEncoding:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = kwargs.get("""is_split_into_words""" , __A )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
""" pretokenized inputs.""" )
return super()._batch_encode_plus(*__A , **__A )
def _snake_case ( self :Union[str, Any] , *__A :List[str] , **__A :List[str] ) -> BatchEncoding:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = kwargs.get("""is_split_into_words""" , __A )
if not (self.add_prefix_space or not is_split_into_words):
raise Exception(
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with'''
""" pretokenized inputs.""" )
return super()._encode_plus(*__A , **__A )
def _snake_case ( self :Union[str, Any] , __A :str , __A :Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__A , name=__A )
return tuple(__A )
def _snake_case ( self :str , __A :"Conversation" ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__A , add_special_tokens=__A ) + [self.eos_token_id] )
if len(__A ) > self.model_max_length:
SCREAMING_SNAKE_CASE__ = input_ids[-self.model_max_length :]
return input_ids | 6 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "AutoImageProcessor"
lowerCamelCase_ = "AutoTokenizer"
def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict:
"""simple docstring"""
super().__init__(__A , __A )
SCREAMING_SNAKE_CASE__ = self.image_processor
def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]:
"""simple docstring"""
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A )
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :Dict ) -> List[Any]:
"""simple docstring"""
return ["input_ids", "attention_mask", "pixel_values"] | 6 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
_lowerCamelCase = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = _ask_options(
"""In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
SCREAMING_SNAKE_CASE__ = get_sagemaker_input()
else:
SCREAMING_SNAKE_CASE__ = get_cluster_input()
return config
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any]=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE__ = subparsers.add_parser("""config""" , description=UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser("""Accelerate config command""" , description=UpperCamelCase__ )
parser.add_argument(
"""--config_file""" , default=UpperCamelCase__ , help=(
"""The path to use to store the config file. Will default to a file named default_config.yaml in the cache """
"""location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """
"""such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """
"""with 'huggingface'."""
) , )
if subparsers is not None:
parser.set_defaults(func=UpperCamelCase__ )
return parser
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = get_user_input()
if args.config_file is not None:
SCREAMING_SNAKE_CASE__ = args.config_file
else:
if not os.path.isdir(UpperCamelCase__ ):
os.makedirs(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = default_yaml_config_file
if config_file.endswith(""".json""" ):
config.to_json_file(UpperCamelCase__ )
else:
config.to_yaml_file(UpperCamelCase__ )
print(f'''accelerate configuration saved at {config_file}''' )
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = config_command_parser()
SCREAMING_SNAKE_CASE__ = parser.parse_args()
config_command(UpperCamelCase__ )
if __name__ == "__main__":
main() | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
SCREAMING_SNAKE_CASE__ = True
for i in range(1 , s + 1 ):
SCREAMING_SNAKE_CASE__ = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
SCREAMING_SNAKE_CASE__ = dp[i][j - 1]
if arr[i - 1] <= j:
SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
SCREAMING_SNAKE_CASE__ = s - 2 * j
break
return diff | 6 | 1 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
_lowerCamelCase = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
_lowerCamelCase = [file for file in filepaths if file != file.lower()]
if upper_files:
print(F'''{len(upper_files)} files contain uppercase characters:''')
print('\n'.join(upper_files) + '\n')
_lowerCamelCase = [file for file in filepaths if ' ' in file]
if space_files:
print(F'''{len(space_files)} files contain space characters:''')
print('\n'.join(space_files) + '\n')
_lowerCamelCase = [file for file in filepaths if '-' in file]
if hyphen_files:
print(F'''{len(hyphen_files)} files contain hyphen characters:''')
print('\n'.join(hyphen_files) + '\n')
_lowerCamelCase = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(F'''{len(nodir_files)} files are not in a directory:''')
print('\n'.join(nodir_files) + '\n')
_lowerCamelCase = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files) | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ):
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) | 6 | 1 |
class UpperCamelCase_ :
def __init__( self :Tuple ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = {}
def _snake_case ( self :Dict , __A :Tuple ) -> Tuple:
"""simple docstring"""
if vertex not in self.adjacency:
SCREAMING_SNAKE_CASE__ = {}
self.num_vertices += 1
def _snake_case ( self :Optional[int] , __A :Any , __A :Optional[int] , __A :List[Any] ) -> Optional[int]:
"""simple docstring"""
self.add_vertex(__A )
self.add_vertex(__A )
if head == tail:
return
SCREAMING_SNAKE_CASE__ = weight
SCREAMING_SNAKE_CASE__ = weight
def _snake_case ( self :int ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_edges()
for edge in edges:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = edge
edges.remove((tail, head, weight) )
for i in range(len(__A ) ):
SCREAMING_SNAKE_CASE__ = list(edges[i] )
edges.sort(key=lambda __A : e[2] )
for i in range(len(__A ) - 1 ):
if edges[i][2] >= edges[i + 1][2]:
SCREAMING_SNAKE_CASE__ = edges[i][2] + 1
for edge in edges:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = edge
SCREAMING_SNAKE_CASE__ = weight
SCREAMING_SNAKE_CASE__ = weight
def __str__( self :str ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """"""
for tail in self.adjacency:
for head in self.adjacency[tail]:
SCREAMING_SNAKE_CASE__ = self.adjacency[head][tail]
string += f'''{head} -> {tail} == {weight}\n'''
return string.rstrip("""\n""" )
def _snake_case ( self :Union[str, Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = []
for tail in self.adjacency:
for head in self.adjacency[tail]:
output.append((tail, head, self.adjacency[head][tail]) )
return output
def _snake_case ( self :Any ) -> Optional[Any]:
"""simple docstring"""
return self.adjacency.keys()
@staticmethod
def _snake_case ( __A :List[Any]=None , __A :List[Any]=None ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = Graph()
if vertices is None:
SCREAMING_SNAKE_CASE__ = []
if edges is None:
SCREAMING_SNAKE_CASE__ = []
for vertex in vertices:
g.add_vertex(__A )
for edge in edges:
g.add_edge(*__A )
return g
class UpperCamelCase_ :
def __init__( self :List[Any] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = {}
def __len__( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
return len(self.parent )
def _snake_case ( self :Optional[int] , __A :Any ) -> Any:
"""simple docstring"""
if item in self.parent:
return self.find(__A )
SCREAMING_SNAKE_CASE__ = item
SCREAMING_SNAKE_CASE__ = 0
return item
def _snake_case ( self :Any , __A :Dict ) -> Optional[int]:
"""simple docstring"""
if item not in self.parent:
return self.make_set(__A )
if item != self.parent[item]:
SCREAMING_SNAKE_CASE__ = self.find(self.parent[item] )
return self.parent[item]
def _snake_case ( self :Optional[Any] , __A :List[Any] , __A :str ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.find(__A )
SCREAMING_SNAKE_CASE__ = self.find(__A )
if roota == roota:
return roota
if self.rank[roota] > self.rank[roota]:
SCREAMING_SNAKE_CASE__ = roota
return roota
if self.rank[roota] < self.rank[roota]:
SCREAMING_SNAKE_CASE__ = roota
return roota
if self.rank[roota] == self.rank[roota]:
self.rank[roota] += 1
SCREAMING_SNAKE_CASE__ = roota
return roota
return None
@staticmethod
def _snake_case ( __A :List[Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = graph.num_vertices
SCREAMING_SNAKE_CASE__ = Graph.UnionFind()
SCREAMING_SNAKE_CASE__ = []
while num_components > 1:
SCREAMING_SNAKE_CASE__ = {}
for vertex in graph.get_vertices():
SCREAMING_SNAKE_CASE__ = -1
SCREAMING_SNAKE_CASE__ = graph.get_edges()
for edge in edges:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = edge
edges.remove((tail, head, weight) )
for edge in edges:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = edge
SCREAMING_SNAKE_CASE__ = union_find.find(__A )
SCREAMING_SNAKE_CASE__ = union_find.find(__A )
if seta != seta:
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
SCREAMING_SNAKE_CASE__ = [head, tail, weight]
if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight:
SCREAMING_SNAKE_CASE__ = [head, tail, weight]
for vertex in cheap_edge:
if cheap_edge[vertex] != -1:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = cheap_edge[vertex]
if union_find.find(__A ) != union_find.find(__A ):
union_find.union(__A , __A )
mst_edges.append(cheap_edge[vertex] )
SCREAMING_SNAKE_CASE__ = num_components - 1
SCREAMING_SNAKE_CASE__ = Graph.build(edges=__A )
return mst | 6 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "encoder-decoder"
lowerCamelCase_ = True
def __init__( self :Optional[int] , **__A :str ) -> int:
"""simple docstring"""
super().__init__(**__A )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" )
SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" )
SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = True
@classmethod
def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig:
"""simple docstring"""
logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A )
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE__ = self.encoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.decoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.__class__.model_type
return output | 6 | 1 |
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
_lowerCamelCase = {
'return_dict': False,
'output_hidden_states': True,
'output_attentions': True,
'torchscript': True,
'torch_dtype': 'float16',
'use_bfloat16': True,
'tf_legacy_loss': True,
'pruned_heads': {'a': 1},
'tie_word_embeddings': False,
'is_decoder': True,
'cross_attention_hidden_size': 128,
'add_cross_attention': True,
'tie_encoder_decoder': True,
'max_length': 50,
'min_length': 3,
'do_sample': True,
'early_stopping': True,
'num_beams': 3,
'num_beam_groups': 3,
'diversity_penalty': 0.5,
'temperature': 2.0,
'top_k': 10,
'top_p': 0.7,
'typical_p': 0.2,
'repetition_penalty': 0.8,
'length_penalty': 0.8,
'no_repeat_ngram_size': 5,
'encoder_no_repeat_ngram_size': 5,
'bad_words_ids': [1, 2, 3],
'num_return_sequences': 3,
'chunk_size_feed_forward': 5,
'output_scores': True,
'return_dict_in_generate': True,
'forced_bos_token_id': 2,
'forced_eos_token_id': 3,
'remove_invalid_values': True,
'architectures': ['BertModel'],
'finetuning_task': 'translation',
'id2label': {0: 'label'},
'label2id': {'label': '0'},
'tokenizer_class': 'BertTokenizerFast',
'prefix': 'prefix',
'bos_token_id': 6,
'pad_token_id': 7,
'eos_token_id': 8,
'sep_token_id': 9,
'decoder_start_token_id': 10,
'exponential_decay_length_penalty': (5, 1.01),
'suppress_tokens': [0, 1],
'begin_suppress_tokens': 2,
'task_specific_params': {'translation': 'some_params'},
'problem_type': 'regression',
}
@is_staging_test
class UpperCamelCase_ ( unittest.TestCase ):
@classmethod
def _snake_case ( cls :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TOKEN
HfFolder.save_token(__A )
@classmethod
def _snake_case ( cls :Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id="""test-config""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-config-org""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""test-dynamic-config""" )
except HTTPError:
pass
def _snake_case ( self :Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub("""test-config""" , use_auth_token=self._token )
SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained(f'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__A , getattr(__A , __A ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-config""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(__A , repo_id="""test-config""" , push_to_hub=__A , use_auth_token=self._token )
SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained(f'''{USER}/test-config''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__A , getattr(__A , __A ) )
def _snake_case ( self :List[str] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub("""valid_org/test-config-org""" , use_auth_token=self._token )
SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained("""valid_org/test-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__A , getattr(__A , __A ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-config-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
__A , repo_id="""valid_org/test-config-org""" , push_to_hub=__A , use_auth_token=self._token )
SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained("""valid_org/test-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(__A , getattr(__A , __A ) )
def _snake_case ( self :Optional[int] ) -> Optional[Any]:
"""simple docstring"""
CustomConfig.register_for_auto_class()
SCREAMING_SNAKE_CASE__ = CustomConfig(attribute=42 )
config.push_to_hub("""test-dynamic-config""" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {"""AutoConfig""": """custom_configuration.CustomConfig"""} )
SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=__A )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , """CustomConfig""" )
self.assertEqual(new_config.attribute , 42 )
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
SCREAMING_SNAKE_CASE__ = c.n_embd + 1 # int
SCREAMING_SNAKE_CASE__ = c.resid_pdrop + 1.0 # float
SCREAMING_SNAKE_CASE__ = not c.scale_attn_weights # bool
SCREAMING_SNAKE_CASE__ = c.summary_type + """foo""" # str
c.update_from_string(
f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' )
self.assertEqual(__A , c.n_embd , """mismatch for key: n_embd""" )
self.assertEqual(__A , c.resid_pdrop , """mismatch for key: resid_pdrop""" )
self.assertEqual(__A , c.scale_attn_weights , """mismatch for key: scale_attn_weights""" )
self.assertEqual(__A , c.summary_type , """mismatch for key: summary_type""" )
def _snake_case ( self :Dict ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = PretrainedConfig()
SCREAMING_SNAKE_CASE__ = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
__A , ["""is_encoder_decoder""", """_name_or_path""", """_commit_hash""", """transformers_version"""] )
SCREAMING_SNAKE_CASE__ = [key for key, value in config_common_kwargs.items() if value == getattr(__A , __A )]
if len(__A ) > 0:
raise ValueError(
"""The following keys are set with the default values in"""
""" `test_configuration_common.config_common_kwargs` pick another value for them:"""
f''' {', '.join(__A )}.''' )
def _snake_case ( self :Optional[int] ) -> Optional[int]:
"""simple docstring"""
with self.assertRaises(__A ):
# config is in subfolder, the following should not work without specifying the subfolder
SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" )
SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert-subfolder""" , subfolder="""bert""" )
self.assertIsNotNone(__A )
def _snake_case ( self :str ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = mock.Mock()
SCREAMING_SNAKE_CASE__ = 500
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = HTTPError
SCREAMING_SNAKE_CASE__ = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("""requests.Session.request""" , return_value=__A ) as mock_head:
SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained("""hf-internal-testing/tiny-random-bert""" )
# This check we did call the fake head request
mock_head.assert_called()
def _snake_case ( self :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = BertConfig.from_pretrained(
"""https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json""" )
def _snake_case ( self :Tuple ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained("""bert-base-cased""" )
SCREAMING_SNAKE_CASE__ = ["""config.4.0.0.json"""]
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(__A )
SCREAMING_SNAKE_CASE__ = 2
json.dump(configuration.to_dict() , open(os.path.join(__A , """config.4.0.0.json""" ) , """w""" ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__A )
self.assertEqual(new_configuration.hidden_size , 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
SCREAMING_SNAKE_CASE__ = ["""config.42.0.0.json"""]
SCREAMING_SNAKE_CASE__ = 768
configuration.save_pretrained(__A )
shutil.move(os.path.join(__A , """config.4.0.0.json""" ) , os.path.join(__A , """config.42.0.0.json""" ) )
SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__A )
self.assertEqual(new_configuration.hidden_size , 768 )
def _snake_case ( self :List[Any] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """hf-internal-testing/test-two-configs"""
import transformers as new_transformers
SCREAMING_SNAKE_CASE__ = """v4.0.0"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = new_transformers.models.auto.AutoConfig.from_pretrained(
__A , return_unused_kwargs=__A )
self.assertEqual(new_configuration.hidden_size , 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(__A , {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
SCREAMING_SNAKE_CASE__ = """v3.0.0"""
SCREAMING_SNAKE_CASE__ = old_transformers.models.auto.AutoConfig.from_pretrained(__A )
self.assertEqual(old_configuration.hidden_size , 768 ) | 6 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase__ )
class UpperCamelCase_ ( UpperCamelCase__ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowerCamelCase_ = Features({"text": Value("string" )} )
lowerCamelCase_ = Features({"labels": ClassLabel} )
lowerCamelCase_ = "text"
lowerCamelCase_ = "labels"
def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]:
"""simple docstring"""
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self )
SCREAMING_SNAKE_CASE__ = self.label_schema.copy()
SCREAMING_SNAKE_CASE__ = features[self.label_column]
SCREAMING_SNAKE_CASE__ = label_schema
return task_template
@property
def _snake_case ( self :str ) -> Dict[str, str]:
"""simple docstring"""
return {
self.text_column: "text",
self.label_column: "labels",
} | 6 | 1 |
from typing import Dict, Optional
import numpy as np
import datasets
_lowerCamelCase = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n'
_lowerCamelCase = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n'
_lowerCamelCase = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}'
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: bool , UpperCamelCase__: Optional[Dict[int, int]] = None , UpperCamelCase__: bool = False , ):
if label_map is not None:
for old_id, new_id in label_map.items():
SCREAMING_SNAKE_CASE__ = new_id
# turn into Numpy arrays
SCREAMING_SNAKE_CASE__ = np.array(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = np.array(UpperCamelCase__ )
if reduce_labels:
SCREAMING_SNAKE_CASE__ = 255
SCREAMING_SNAKE_CASE__ = label - 1
SCREAMING_SNAKE_CASE__ = 255
SCREAMING_SNAKE_CASE__ = label != ignore_index
SCREAMING_SNAKE_CASE__ = np.not_equal(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = pred_label[mask]
SCREAMING_SNAKE_CASE__ = np.array(UpperCamelCase__ )[mask]
SCREAMING_SNAKE_CASE__ = pred_label[pred_label == label]
SCREAMING_SNAKE_CASE__ = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0]
SCREAMING_SNAKE_CASE__ = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0]
SCREAMING_SNAKE_CASE__ = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0]
SCREAMING_SNAKE_CASE__ = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Tuple , UpperCamelCase__: List[str] , UpperCamelCase__: bool , UpperCamelCase__: Optional[Dict[int, int]] = None , UpperCamelCase__: bool = False , ):
SCREAMING_SNAKE_CASE__ = np.zeros((num_labels,) , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ = np.zeros((num_labels,) , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ = np.zeros((num_labels,) , dtype=np.floataa )
SCREAMING_SNAKE_CASE__ = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(UpperCamelCase__ , UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = intersect_and_union(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int , UpperCamelCase__: bool , UpperCamelCase__: Optional[int] = None , UpperCamelCase__: Optional[Dict[int, int]] = None , UpperCamelCase__: bool = False , ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = total_intersect_and_union(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# compute metrics
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = total_area_intersect.sum() / total_area_label.sum()
SCREAMING_SNAKE_CASE__ = total_area_intersect / total_area_union
SCREAMING_SNAKE_CASE__ = total_area_intersect / total_area_label
SCREAMING_SNAKE_CASE__ = np.nanmean(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = np.nanmean(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = all_acc
SCREAMING_SNAKE_CASE__ = iou
SCREAMING_SNAKE_CASE__ = acc
if nan_to_num is not None:
SCREAMING_SNAKE_CASE__ = {metric: np.nan_to_num(UpperCamelCase__ , nan=UpperCamelCase__ ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
"""predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ),
"""references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ),
} ) , reference_urls=[
"""https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"""
] , )
def _snake_case ( self :Dict , __A :Any , __A :Dict , __A :int , __A :bool , __A :Optional[int] = None , __A :Optional[Dict[int, int]] = None , __A :bool = False , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = mean_iou(
results=__A , gt_seg_maps=__A , num_labels=__A , ignore_index=__A , nan_to_num=__A , label_map=__A , reduce_labels=__A , )
return iou_result | 6 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = model.config
SCREAMING_SNAKE_CASE__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
SCREAMING_SNAKE_CASE__ = MBartConfig(
is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , )
return encoder_config, decoder_config
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
if "encoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
SCREAMING_SNAKE_CASE__ = """encoder.""" + name
if "attn.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias"""
return name
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ):
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ )
if "qkv" in key:
SCREAMING_SNAKE_CASE__ = key.split(""".""" )
SCREAMING_SNAKE_CASE__ = int(key_split[3] )
SCREAMING_SNAKE_CASE__ = int(key_split[5] )
SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
SCREAMING_SNAKE_CASE__ = val[:dim, :]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE__ = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE__ = val[:dim]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2]
SCREAMING_SNAKE_CASE__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
SCREAMING_SNAKE_CASE__ = val
return orig_state_dict
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ):
# load original model
SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval()
# load HuggingFace model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
model.eval()
SCREAMING_SNAKE_CASE__ = original_model.state_dict()
SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ )
model.load_state_dict(UpperCamelCase__ )
# verify results on scanned document
SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" )
SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
SCREAMING_SNAKE_CASE__ = """When is the coffee break?"""
SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
SCREAMING_SNAKE_CASE__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
SCREAMING_SNAKE_CASE__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
SCREAMING_SNAKE_CASE__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[
"""input_ids"""
]
SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ )
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
# verify encoder hidden states
SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 )
# verify decoder hidden states
SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
_lowerCamelCase = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 6 | 1 |
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
_lowerCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
_lowerCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu'
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[Any]=100 , UpperCamelCase__: Tuple=" " ):
SCREAMING_SNAKE_CASE__ = text.split(UpperCamelCase__ )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ )]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: dict ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = [], []
for title, text in zip(documents["""title"""] , documents["""text"""] ):
if text is not None:
for passage in split_text(UpperCamelCase__ ):
titles.append(title if title is not None else """""" )
texts.append(UpperCamelCase__ )
return {"title": titles, "text": texts}
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: dict , UpperCamelCase__: DPRContextEncoder , UpperCamelCase__: DPRContextEncoderTokenizerFast ):
SCREAMING_SNAKE_CASE__ = ctx_tokenizer(
documents["""title"""] , documents["""text"""] , truncation=UpperCamelCase__ , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""]
SCREAMING_SNAKE_CASE__ = ctx_encoder(input_ids.to(device=UpperCamelCase__ ) , return_dict=UpperCamelCase__ ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: "RagExampleArguments" , UpperCamelCase__: "ProcessingArguments" , UpperCamelCase__: "IndexHnswArguments" , ):
######################################
logger.info("""Step 1 - Create the dataset""" )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
SCREAMING_SNAKE_CASE__ = load_dataset(
"""csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
SCREAMING_SNAKE_CASE__ = dataset.map(UpperCamelCase__ , batched=UpperCamelCase__ , num_proc=processing_args.num_proc )
# And compute the embeddings
SCREAMING_SNAKE_CASE__ = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
SCREAMING_SNAKE_CASE__ = Features(
{"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space
SCREAMING_SNAKE_CASE__ = dataset.map(
partial(UpperCamelCase__ , ctx_encoder=UpperCamelCase__ , ctx_tokenizer=UpperCamelCase__ ) , batched=UpperCamelCase__ , batch_size=processing_args.batch_size , features=UpperCamelCase__ , )
# And finally save your dataset
SCREAMING_SNAKE_CASE__ = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" )
dataset.save_to_disk(UpperCamelCase__ )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("""Step 2 - Index the dataset""" )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
SCREAMING_SNAKE_CASE__ = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index("""embeddings""" , custom_index=UpperCamelCase__ )
# And save the index
SCREAMING_SNAKE_CASE__ = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" )
dataset.get_index("""embeddings""" ).save(UpperCamelCase__ )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = field(
default=str(Path(UpperCamelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , )
lowerCamelCase_ = field(
default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , )
lowerCamelCase_ = field(
default="facebook/dpr-ctx_encoder-multiset-base" , metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} , )
lowerCamelCase_ = field(
default=str(Path(UpperCamelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , )
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} , )
lowerCamelCase_ = field(
default=16 , metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} , )
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = field(
default=7_68 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , )
lowerCamelCase_ = field(
default=1_28 , metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
_lowerCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
_lowerCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args) | 6 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_dpmpp_2m""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 6 | 1 |
from scipy.stats import pearsonr
import datasets
_lowerCamelCase = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n'
_lowerCamelCase = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n'
_lowerCamelCase = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , )
def _snake_case ( self :Union[str, Any] , __A :List[Any] , __A :Optional[Any] , __A :int=False ) -> int:
"""simple docstring"""
if return_pvalue:
SCREAMING_SNAKE_CASE__ = pearsonr(__A , __A )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(__A , __A )[0] )} | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ):
try:
SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = 2
while i * i <= n:
while n % i == 0:
SCREAMING_SNAKE_CASE__ = i
n //= i
i += 1
if n > 1:
SCREAMING_SNAKE_CASE__ = n
return int(UpperCamelCase__ )
if __name__ == "__main__":
print(F'''{solution() = }''') | 6 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "dpr"
def __init__( self :Optional[Any] , __A :List[str]=3_0522 , __A :List[str]=768 , __A :int=12 , __A :Union[str, Any]=12 , __A :str=3072 , __A :Optional[int]="gelu" , __A :Optional[Any]=0.1 , __A :Union[str, Any]=0.1 , __A :Optional[Any]=512 , __A :Any=2 , __A :Optional[Any]=0.0_2 , __A :int=1E-12 , __A :Optional[Any]=0 , __A :Optional[Any]="absolute" , __A :int = 0 , **__A :str , ) -> Optional[int]:
"""simple docstring"""
super().__init__(pad_token_id=__A , **__A )
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = intermediate_size
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = type_vocab_size
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = layer_norm_eps
SCREAMING_SNAKE_CASE__ = projection_dim
SCREAMING_SNAKE_CASE__ = position_embedding_type | 6 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Tuple ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :List[str] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Optional[Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
# Removed: 'text_encoder/model.safetensors',
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :List[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Optional[int] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
# 'text_encoder/model.fp16.safetensors',
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) | 6 | 1 |
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class UpperCamelCase_ :
def __init__( self :Optional[Any] , __A :List[Any] , __A :int=13 , __A :Tuple=3 , __A :Any=True , __A :Any=True , __A :Optional[Any]=0.1 , __A :List[Any]=0.1 , __A :Dict=224 , __A :Optional[Any]=1000 , __A :List[Any]=[3, 3, 6, 4] , __A :List[Any]=[48, 56, 112, 220] , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = num_channels
SCREAMING_SNAKE_CASE__ = is_training
SCREAMING_SNAKE_CASE__ = use_labels
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = num_labels
SCREAMING_SNAKE_CASE__ = image_size
SCREAMING_SNAKE_CASE__ = layer_depths
SCREAMING_SNAKE_CASE__ = embed_dims
def _snake_case ( self :Dict ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE__ = self.get_config()
return config, pixel_values, labels
def _snake_case ( self :Union[str, Any] ) -> int:
"""simple docstring"""
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__A , layer_scale_init_value=1E-5 , )
def _snake_case ( self :Tuple , __A :Dict , __A :str , __A :List[Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = SwiftFormerModel(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def _snake_case ( self :Tuple , __A :str , __A :List[str] , __A :List[str] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = SwiftFormerForImageClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
SCREAMING_SNAKE_CASE__ = SwiftFormerForImageClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ = model(__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self :int ) -> str:
"""simple docstring"""
((SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__) , (SCREAMING_SNAKE_CASE__)) = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
lowerCamelCase_ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
lowerCamelCase_ = (
{"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
def _snake_case ( self :Tuple ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = SwiftFormerModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(
self , config_class=__A , has_text_modality=__A , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def _snake_case ( self :Dict ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" )
def _snake_case ( self :Tuple ) -> Union[str, Any]:
"""simple docstring"""
pass
def _snake_case ( self :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ = model_class(__A )
SCREAMING_SNAKE_CASE__ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__A , nn.Linear ) )
def _snake_case ( self :List[str] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ = model_class(__A )
SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE__ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __A )
def _snake_case ( self :List[str] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
def _snake_case ( self :List[str] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__A )
@slow
def _snake_case ( self :Dict ) -> str:
"""simple docstring"""
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ = SwiftFormerModel.from_pretrained(__A )
self.assertIsNotNone(__A )
@unittest.skip(reason="""SwiftFormer does not output attentions""" )
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
pass
def _snake_case ( self :Union[str, Any] ) -> List[Any]:
"""simple docstring"""
def check_hidden_states_output(__A :List[Any] , __A :str , __A :List[str] ):
SCREAMING_SNAKE_CASE__ = model_class(__A )
model.to(__A )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__A , __A ) )
SCREAMING_SNAKE_CASE__ = outputs.hidden_states
SCREAMING_SNAKE_CASE__ = 8
self.assertEqual(len(__A ) , __A ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(__A ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ = True
check_hidden_states_output(__A , __A , __A )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE__ = True
check_hidden_states_output(__A , __A , __A )
def _snake_case ( self :Optional[int] ) -> Optional[Any]:
"""simple docstring"""
def _config_zero_init(__A :Optional[int] ):
SCREAMING_SNAKE_CASE__ = copy.deepcopy(__A )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(__A , __A , 1E-10 )
if isinstance(getattr(__A , __A , __A ) , __A ):
SCREAMING_SNAKE_CASE__ = _config_zero_init(getattr(__A , __A ) )
setattr(__A , __A , __A )
return configs_no_init
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE__ = _config_zero_init(__A )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ = model_class(config=__A )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def _snake_case ( self :str ) -> str:
"""simple docstring"""
pass
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
@cached_property
def _snake_case ( self :Optional[int] ) -> List[Any]:
"""simple docstring"""
return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None
@slow
def _snake_case ( self :List[Any] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(__A )
SCREAMING_SNAKE_CASE__ = self.default_image_processor
SCREAMING_SNAKE_CASE__ = prepare_img()
SCREAMING_SNAKE_CASE__ = image_processor(images=__A , return_tensors="""pt""" ).to(__A )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = model(**__A )
# verify the logits
SCREAMING_SNAKE_CASE__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __A )
SCREAMING_SNAKE_CASE__ = torch.tensor([[-2.1_703E00, 2.1_107E00, -2.0_811E00]] ).to(__A )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1E-4 ) ) | 6 |
import argparse
import datetime
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = {
"""0""": """Sunday""",
"""1""": """Monday""",
"""2""": """Tuesday""",
"""3""": """Wednesday""",
"""4""": """Thursday""",
"""5""": """Friday""",
"""6""": """Saturday""",
}
SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(UpperCamelCase__ ) < 11:
raise ValueError("""Must be 10 characters long""" )
# Get month
SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("""Month must be between 1 - 12""" )
SCREAMING_SNAKE_CASE__ = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get day
SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("""Date must be between 1 - 31""" )
# Get second separator
SCREAMING_SNAKE_CASE__ = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get year
SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8_500:
raise ValueError(
"""Year out of range. There has to be some sort of limit...right?""" )
# Get datetime obj for validation
SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) )
# Start math
if m <= 2:
SCREAMING_SNAKE_CASE__ = y - 1
SCREAMING_SNAKE_CASE__ = m + 12
# maths var
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] )
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] )
SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 )
SCREAMING_SNAKE_CASE__ = int(c / 4 )
SCREAMING_SNAKE_CASE__ = int(k / 4 )
SCREAMING_SNAKE_CASE__ = int(d + k )
SCREAMING_SNAKE_CASE__ = int(t + u + v + x )
SCREAMING_SNAKE_CASE__ = int(z - (2 * c) )
SCREAMING_SNAKE_CASE__ = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" )
# Response
SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
_lowerCamelCase = parser.parse_args()
zeller(args.date_input) | 6 | 1 |
import sys
import turtle
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: tuple[float, float] , UpperCamelCase__: tuple[float, float] ):
return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: tuple[float, float] , UpperCamelCase__: tuple[float, float] , UpperCamelCase__: tuple[float, float] , UpperCamelCase__: int , ):
my_pen.up()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.down()
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
my_pen.goto(vertexa[0] , vertexa[1] )
if depth == 0:
return
triangle(UpperCamelCase__ , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , depth - 1 )
triangle(UpperCamelCase__ , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , depth - 1 )
triangle(UpperCamelCase__ , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , get_mid(UpperCamelCase__ , UpperCamelCase__ ) , depth - 1 )
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
'Correct format for using this script: '
'python fractals.py <int:depth_for_fractal>'
)
_lowerCamelCase = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor('red')
_lowerCamelCase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1])) | 6 |
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
_lowerCamelCase = logging.getLogger(__name__)
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser(
description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'
)
parser.add_argument(
'--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.'
)
parser.add_argument(
'--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.'
)
parser.add_argument('--vocab_size', default=30522, type=int)
_lowerCamelCase = parser.parse_args()
logger.info(F'''Loading data from {args.data_file}''')
with open(args.data_file, 'rb') as fp:
_lowerCamelCase = pickle.load(fp)
logger.info('Counting occurrences for MLM.')
_lowerCamelCase = Counter()
for tk_ids in data:
counter.update(tk_ids)
_lowerCamelCase = [0] * args.vocab_size
for k, v in counter.items():
_lowerCamelCase = v
logger.info(F'''Dump to {args.token_counts_dump}''')
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL) | 6 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Dict ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """ZinengTang/tvlt-base"""
SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp()
def _snake_case ( self :Optional[int] , **__A :List[str] ) -> Union[str, Any]:
"""simple docstring"""
return TvltImageProcessor.from_pretrained(self.checkpoint , **__A )
def _snake_case ( self :Dict , **__A :Union[str, Any] ) -> str:
"""simple docstring"""
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **__A )
def _snake_case ( self :List[Any] ) -> List[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _snake_case ( self :Tuple ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_feature_extractor()
SCREAMING_SNAKE_CASE__ = TvltProcessor(image_processor=__A , feature_extractor=__A )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , __A )
self.assertIsInstance(processor.image_processor , __A )
def _snake_case ( self :List[Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_feature_extractor()
SCREAMING_SNAKE_CASE__ = TvltProcessor(image_processor=__A , feature_extractor=__A )
SCREAMING_SNAKE_CASE__ = np.ones([1_2000] )
SCREAMING_SNAKE_CASE__ = feature_extractor(__A , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ = processor(audio=__A , return_tensors="""np""" )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _snake_case ( self :Dict ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_feature_extractor()
SCREAMING_SNAKE_CASE__ = TvltProcessor(image_processor=__A , feature_extractor=__A )
SCREAMING_SNAKE_CASE__ = np.ones([3, 224, 224] )
SCREAMING_SNAKE_CASE__ = image_processor(__A , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ = processor(images=__A , return_tensors="""np""" )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _snake_case ( self :Tuple ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_feature_extractor()
SCREAMING_SNAKE_CASE__ = TvltProcessor(image_processor=__A , feature_extractor=__A )
SCREAMING_SNAKE_CASE__ = np.ones([1_2000] )
SCREAMING_SNAKE_CASE__ = np.ones([3, 224, 224] )
SCREAMING_SNAKE_CASE__ = processor(audio=__A , images=__A )
self.assertListEqual(list(inputs.keys() ) , ["""audio_values""", """audio_mask""", """pixel_values""", """pixel_mask"""] )
# test if it raises when no input is passed
with pytest.raises(__A ):
processor()
def _snake_case ( self :Dict ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_feature_extractor()
SCREAMING_SNAKE_CASE__ = TvltProcessor(image_processor=__A , feature_extractor=__A )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="""`processor` and `image_processor`+`feature_extractor` model input names do not match""" , ) | 6 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
_lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 6 | 1 |
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :Any , __A :Any , __A :Any ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = params
SCREAMING_SNAKE_CASE__ = np.array(__A )
SCREAMING_SNAKE_CASE__ = np.array([len(__A ) for t in data] )
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__( self :Dict , __A :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return (self.token_ids[index], self.lengths[index])
def __len__( self :str ) -> List[Any]:
"""simple docstring"""
return len(self.lengths )
def _snake_case ( self :Tuple ) -> str:
"""simple docstring"""
assert len(self.token_ids ) == len(self.lengths )
assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) )
def _snake_case ( self :List[str] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.params.max_model_input_size
SCREAMING_SNAKE_CASE__ = self.lengths > max_len
logger.info(f'''Splitting {sum(__A )} too long sequences.''' )
def divide_chunks(__A :Dict , __A :Optional[Any] ):
return [l[i : i + n] for i in range(0 , len(__A ) , __A )]
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = []
if self.params.mlm:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""]
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""]
for seq_, len_ in zip(self.token_ids , self.lengths ):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_ )
new_lengths.append(len_ )
else:
SCREAMING_SNAKE_CASE__ = []
for sub_s in divide_chunks(seq_ , max_len - 2 ):
if sub_s[0] != cls_id:
SCREAMING_SNAKE_CASE__ = np.insert(__A , 0 , __A )
if sub_s[-1] != sep_id:
SCREAMING_SNAKE_CASE__ = np.insert(__A , len(__A ) , __A )
assert len(__A ) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(__A )
new_tok_ids.extend(__A )
new_lengths.extend([len(__A ) for l in sub_seqs] )
SCREAMING_SNAKE_CASE__ = np.array(__A )
SCREAMING_SNAKE_CASE__ = np.array(__A )
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = len(self )
SCREAMING_SNAKE_CASE__ = self.lengths > 11
SCREAMING_SNAKE_CASE__ = self.token_ids[indices]
SCREAMING_SNAKE_CASE__ = self.lengths[indices]
SCREAMING_SNAKE_CASE__ = len(self )
logger.info(f'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' )
def _snake_case ( self :str ) -> Any:
"""simple docstring"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids["""unk_token"""]
SCREAMING_SNAKE_CASE__ = len(self )
SCREAMING_SNAKE_CASE__ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] )
SCREAMING_SNAKE_CASE__ = (unk_occs / self.lengths) < 0.5
SCREAMING_SNAKE_CASE__ = self.token_ids[indices]
SCREAMING_SNAKE_CASE__ = self.lengths[indices]
SCREAMING_SNAKE_CASE__ = len(self )
logger.info(f'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' )
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
if not self.params.is_master:
return
logger.info(f'''{len(self )} sequences''' )
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def _snake_case ( self :List[Any] , __A :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [t[0] for t in batch]
SCREAMING_SNAKE_CASE__ = [t[1] for t in batch]
assert len(__A ) == len(__A )
# Max for paddings
SCREAMING_SNAKE_CASE__ = max(__A )
# Pad token ids
if self.params.mlm:
SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids["""pad_token"""]
else:
SCREAMING_SNAKE_CASE__ = self.params.special_tok_ids["""unk_token"""]
SCREAMING_SNAKE_CASE__ = [list(t.astype(__A ) ) + [pad_idx] * (max_seq_len_ - len(__A )) for t in token_ids]
assert len(tk_ ) == len(__A )
assert all(len(__A ) == max_seq_len_ for t in tk_ )
SCREAMING_SNAKE_CASE__ = torch.tensor(tk_ ) # (bs, max_seq_len_)
SCREAMING_SNAKE_CASE__ = torch.tensor(__A ) # (bs)
return tk_t, lg_t | 6 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "OwlViTImageProcessor"
lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __A , )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" )
SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__A , __A )
def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple:
"""simple docstring"""
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )):
SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )]
elif isinstance(__A , __A ) and isinstance(text[0] , __A ):
SCREAMING_SNAKE_CASE__ = []
# Maximum number of queries across batch
SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__A ) != max_num_queries:
SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A ))
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )
encodings.append(__A )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = input_ids
SCREAMING_SNAKE_CASE__ = attention_mask
if query_images is not None:
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = self.image_processor(
__A , return_tensors=__A , **__A ).pixel_values
SCREAMING_SNAKE_CASE__ = query_pixel_values
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]:
"""simple docstring"""
return self.image_processor.post_process(*__A , **__A )
def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor.post_process_object_detection(*__A , **__A )
def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any:
"""simple docstring"""
return self.image_processor.post_process_image_guided_detection(*__A , **__A )
def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :List[Any] ) -> Optional[int]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , )
return self.image_processor_class
@property
def _snake_case ( self :Any ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , )
return self.image_processor | 6 | 1 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] , UpperCamelCase__: int ):
SCREAMING_SNAKE_CASE__ = 0
while b > 0:
if b & 1:
res += a
a += a
b >>= 1
return res
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = 0
while b > 0:
if b & 1:
SCREAMING_SNAKE_CASE__ = ((res % c) + (a % c)) % c
a += a
b >>= 1
return res | 6 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ):
@register_to_config
def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any:
"""simple docstring"""
super().__init__()
# pass init params to Encoder
SCREAMING_SNAKE_CASE__ = Encoder(
in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , )
SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A )
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
# pass init params to Decoder
SCREAMING_SNAKE_CASE__ = Decoder(
in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , )
@apply_forward_hook
def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.encoder(__A )
SCREAMING_SNAKE_CASE__ = self.quant_conv(__A )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=__A )
@apply_forward_hook
def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if not force_not_quantize:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A )
else:
SCREAMING_SNAKE_CASE__ = h
SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A )
SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A )
def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = sample
SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents
SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A ) | 6 | 1 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str = "https://www.worldometers.info/coronavirus" ):
SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(UpperCamelCase__ ).text , """html.parser""" )
SCREAMING_SNAKE_CASE__ = soup.findAll("""h1""" )
SCREAMING_SNAKE_CASE__ = soup.findAll("""div""" , {"""class""": """maincounter-number"""} )
keys += soup.findAll("""span""" , {"""class""": """panel-title"""} )
values += soup.findAll("""div""" , {"""class""": """number-table-main"""} )
return {key.text.strip(): value.text.strip() for key, value in zip(UpperCamelCase__ , UpperCamelCase__ )}
if __name__ == "__main__":
print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n')
for key, value in world_covidaa_stats().items():
print(F'''{key}\n{value}\n''') | 6 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
lowerCamelCase_ = jnp.floataa
lowerCamelCase_ = True
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
super().setup()
SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype )
def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A )
SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ):
def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ):
SCREAMING_SNAKE_CASE__ = logits.shape[-1]
SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" )
SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 )
SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ )
return loss
SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = "google/bigbird-roberta-base"
lowerCamelCase_ = 30_00
lowerCamelCase_ = 1_05_00
lowerCamelCase_ = 1_28
lowerCamelCase_ = 3
lowerCamelCase_ = 1
lowerCamelCase_ = 5
# tx_args
lowerCamelCase_ = 3e-5
lowerCamelCase_ = 0.0
lowerCamelCase_ = 2_00_00
lowerCamelCase_ = 0.0095
lowerCamelCase_ = "bigbird-roberta-natural-questions"
lowerCamelCase_ = "training-expt"
lowerCamelCase_ = "data/nq-training.jsonl"
lowerCamelCase_ = "data/nq-validation.jsonl"
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
os.makedirs(self.base_dir , exist_ok=__A )
SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir )
SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count()
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 40_96 # no dynamic padding on TPUs
def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.collate_fn(__A )
SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A )
return batch
def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] )
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": jnp.array(__A , dtype=jnp.intaa ),
"""attention_mask""": jnp.array(__A , dtype=jnp.intaa ),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ),
}
return batch
def _snake_case ( self :Tuple , __A :list ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids]
return zip(*__A )
def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )]
while len(__A ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ):
if seed is not None:
SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ )
for i in range(len(UpperCamelCase__ ) // batch_size ):
SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(UpperCamelCase__ )
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ):
def loss_fn(UpperCamelCase__: List[Any] ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
return state.loss_fn(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" )
SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class UpperCamelCase_ ( train_state.TrainState ):
lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ )
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = None
def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = model.params
SCREAMING_SNAKE_CASE__ = TrainState.create(
apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , )
if ckpt_dir is not None:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A )
SCREAMING_SNAKE_CASE__ = train_state.TrainState(
step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , )
SCREAMING_SNAKE_CASE__ = args
SCREAMING_SNAKE_CASE__ = data_collator
SCREAMING_SNAKE_CASE__ = lr
SCREAMING_SNAKE_CASE__ = params
SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A )
return state
def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.args
SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size
SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() )
for epoch in range(args.max_epochs ):
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
if i % args.logging_steps == 0:
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step )
SCREAMING_SNAKE_CASE__ = running_loss.item() / i
SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 )
SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(__A ) )
self.logger.log(__A , commit=__A )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A )
def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size )
SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
return running_loss / i
def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A )
print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ )
self.model_save_fn(__A , params=state.params )
with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) )
joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) )
with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f:
json.dump({"""step""": state.step.item()} , __A )
print("""DONE""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ):
print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ )
with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() )
with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) )
with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f:
SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ):
def weight_decay_mask(UpperCamelCase__: Any ):
SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ )
return tx, lr | 6 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Dict ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ = SamImageProcessor()
SCREAMING_SNAKE_CASE__ = SamProcessor(__A )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self :Dict , **__A :Any ) -> List[str]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).image_processor
def _snake_case ( self :Tuple ) -> List[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _snake_case ( self :Dict ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self :Tuple ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__A , padding_value=1.0 )
SCREAMING_SNAKE_CASE__ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__A , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __A )
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = SamProcessor(image_processor=__A )
SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ = image_processor(__A , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ = processor(images=__A , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_torch
def _snake_case ( self :Union[str, Any] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = SamProcessor(image_processor=__A )
SCREAMING_SNAKE_CASE__ = [torch.ones((1, 3, 5, 5) )]
SCREAMING_SNAKE_CASE__ = [[1764, 2646]]
SCREAMING_SNAKE_CASE__ = [[683, 1024]]
SCREAMING_SNAKE_CASE__ = processor.post_process_masks(__A , __A , __A )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
SCREAMING_SNAKE_CASE__ = processor.post_process_masks(
__A , torch.tensor(__A ) , torch.tensor(__A ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
SCREAMING_SNAKE_CASE__ = [np.ones((1, 3, 5, 5) )]
SCREAMING_SNAKE_CASE__ = processor.post_process_masks(__A , np.array(__A ) , np.array(__A ) )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
SCREAMING_SNAKE_CASE__ = [[1, 0], [0, 1]]
with self.assertRaises(__A ):
SCREAMING_SNAKE_CASE__ = processor.post_process_masks(__A , np.array(__A ) , np.array(__A ) )
@require_vision
@require_tf
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ = SamImageProcessor()
SCREAMING_SNAKE_CASE__ = SamProcessor(__A )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self :Any , **__A :Union[str, Any] ) -> str:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).image_processor
def _snake_case ( self :str ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _snake_case ( self :int ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self :int ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__A , padding_value=1.0 )
SCREAMING_SNAKE_CASE__ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=__A , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __A )
def _snake_case ( self :List[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = SamProcessor(image_processor=__A )
SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ = image_processor(__A , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ = processor(images=__A , return_tensors="""np""" )
input_feat_extract.pop("""original_sizes""" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("""reshaped_input_sizes""" ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_tf
def _snake_case ( self :Dict ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = SamProcessor(image_processor=__A )
SCREAMING_SNAKE_CASE__ = [tf.ones((1, 3, 5, 5) )]
SCREAMING_SNAKE_CASE__ = [[1764, 2646]]
SCREAMING_SNAKE_CASE__ = [[683, 1024]]
SCREAMING_SNAKE_CASE__ = processor.post_process_masks(__A , __A , __A , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
SCREAMING_SNAKE_CASE__ = processor.post_process_masks(
__A , tf.convert_to_tensor(__A ) , tf.convert_to_tensor(__A ) , return_tensors="""tf""" , )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
# should also work with np
SCREAMING_SNAKE_CASE__ = [np.ones((1, 3, 5, 5) )]
SCREAMING_SNAKE_CASE__ = processor.post_process_masks(
__A , np.array(__A ) , np.array(__A ) , return_tensors="""tf""" )
self.assertEqual(masks[0].shape , (1, 3, 1764, 2646) )
SCREAMING_SNAKE_CASE__ = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
SCREAMING_SNAKE_CASE__ = processor.post_process_masks(
__A , np.array(__A ) , np.array(__A ) , return_tensors="""tf""" )
@require_vision
@require_torchvision
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :List[str] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE__ = SamImageProcessor()
SCREAMING_SNAKE_CASE__ = SamProcessor(__A )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self :Dict , **__A :str ) -> Union[str, Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **__A ).image_processor
def _snake_case ( self :List[str] ) -> List[Any]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def _snake_case ( self :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = SamProcessor(image_processor=__A )
SCREAMING_SNAKE_CASE__ = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
SCREAMING_SNAKE_CASE__ = [tf.convert_to_tensor(__A )]
SCREAMING_SNAKE_CASE__ = [torch.tensor(__A )]
SCREAMING_SNAKE_CASE__ = [[1764, 2646]]
SCREAMING_SNAKE_CASE__ = [[683, 1024]]
SCREAMING_SNAKE_CASE__ = processor.post_process_masks(
__A , __A , __A , return_tensors="""tf""" )
SCREAMING_SNAKE_CASE__ = processor.post_process_masks(
__A , __A , __A , return_tensors="""pt""" )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def _snake_case ( self :Dict ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = SamProcessor(image_processor=__A )
SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ = image_processor(__A , return_tensors="""pt""" )["""pixel_values"""].numpy()
SCREAMING_SNAKE_CASE__ = processor(images=__A , return_tensors="""pt""" )["""pixel_values"""].numpy()
SCREAMING_SNAKE_CASE__ = image_processor(__A , return_tensors="""tf""" )["""pixel_values"""].numpy()
SCREAMING_SNAKE_CASE__ = processor(images=__A , return_tensors="""tf""" )["""pixel_values"""].numpy()
self.assertTrue(np.allclose(__A , __A ) )
self.assertTrue(np.allclose(__A , __A ) )
self.assertTrue(np.allclose(__A , __A ) ) | 6 |
from torch import nn
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f'''Unsupported activation function: {act_fn}''' ) | 6 | 1 |
import inspect
import tempfile
from collections import OrderedDict, UserDict
from collections.abc import MutableMapping
from contextlib import ExitStack, contextmanager
from dataclasses import fields
from enum import Enum
from typing import Any, ContextManager, List, Tuple
import numpy as np
from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy
if is_flax_available():
import jax.numpy as jnp
class UpperCamelCase_ ( UpperCamelCase__ ):
def __get__( self :Any , __A :Dict , __A :List[Any]=None ) -> List[Any]:
"""simple docstring"""
if obj is None:
return self
if self.fget is None:
raise AttributeError("""unreadable attribute""" )
SCREAMING_SNAKE_CASE__ = """__cached_""" + self.fget.__name__
SCREAMING_SNAKE_CASE__ = getattr(__A , __A , __A )
if cached is None:
SCREAMING_SNAKE_CASE__ = self.fget(__A )
setattr(__A , __A , __A )
return cached
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ):
SCREAMING_SNAKE_CASE__ = val.lower()
if val in {"y", "yes", "t", "true", "on", "1"}:
return 1
if val in {"n", "no", "f", "false", "off", "0"}:
return 0
raise ValueError(f'''invalid truth value {val!r}''' )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ):
if is_torch_fx_proxy(UpperCamelCase__ ):
return True
if is_torch_available():
import torch
if isinstance(UpperCamelCase__ , torch.Tensor ):
return True
if is_tf_available():
import tensorflow as tf
if isinstance(UpperCamelCase__ , tf.Tensor ):
return True
if is_flax_available():
import jax.numpy as jnp
from jax.core import Tracer
if isinstance(UpperCamelCase__ , (jnp.ndarray, Tracer) ):
return True
return isinstance(UpperCamelCase__ , np.ndarray )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
return isinstance(UpperCamelCase__ , np.ndarray )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
return _is_numpy(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ):
import torch
return isinstance(UpperCamelCase__ , torch.Tensor )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
return False if not is_torch_available() else _is_torch(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ):
import torch
return isinstance(UpperCamelCase__ , torch.device )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
return False if not is_torch_available() else _is_torch_device(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
import torch
if isinstance(UpperCamelCase__ , UpperCamelCase__ ):
if hasattr(UpperCamelCase__ , UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = getattr(UpperCamelCase__ , UpperCamelCase__ )
else:
return False
return isinstance(UpperCamelCase__ , torch.dtype )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
return False if not is_torch_available() else _is_torch_dtype(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ):
import tensorflow as tf
return isinstance(UpperCamelCase__ , tf.Tensor )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ):
return False if not is_tf_available() else _is_tensorflow(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
import tensorflow as tf
# the `is_symbolic_tensor` predicate is only available starting with TF 2.14
if hasattr(UpperCamelCase__ , """is_symbolic_tensor""" ):
return tf.is_symbolic_tensor(UpperCamelCase__ )
return type(UpperCamelCase__ ) == tf.Tensor
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ):
return False if not is_tf_available() else _is_tf_symbolic_tensor(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ):
import jax.numpy as jnp # noqa: F811
return isinstance(UpperCamelCase__ , jnp.ndarray )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
return False if not is_flax_available() else _is_jax(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] ):
if isinstance(UpperCamelCase__ , (dict, UserDict) ):
return {k: to_py_obj(UpperCamelCase__ ) for k, v in obj.items()}
elif isinstance(UpperCamelCase__ , (list, tuple) ):
return [to_py_obj(UpperCamelCase__ ) for o in obj]
elif is_tf_tensor(UpperCamelCase__ ):
return obj.numpy().tolist()
elif is_torch_tensor(UpperCamelCase__ ):
return obj.detach().cpu().tolist()
elif is_jax_tensor(UpperCamelCase__ ):
return np.asarray(UpperCamelCase__ ).tolist()
elif isinstance(UpperCamelCase__ , (np.ndarray, np.number) ): # tolist also works on 0d np arrays
return obj.tolist()
else:
return obj
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
if isinstance(UpperCamelCase__ , (dict, UserDict) ):
return {k: to_numpy(UpperCamelCase__ ) for k, v in obj.items()}
elif isinstance(UpperCamelCase__ , (list, tuple) ):
return np.array(UpperCamelCase__ )
elif is_tf_tensor(UpperCamelCase__ ):
return obj.numpy()
elif is_torch_tensor(UpperCamelCase__ ):
return obj.detach().cpu().numpy()
elif is_jax_tensor(UpperCamelCase__ ):
return np.asarray(UpperCamelCase__ )
else:
return obj
class UpperCamelCase_ ( UpperCamelCase__ ):
def _snake_case ( self :List[Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = fields(self )
# Safety and consistency checks
if not len(__A ):
raise ValueError(f'''{self.__class__.__name__} has no fields.''' )
if not all(field.default is None for field in class_fields[1:] ):
raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' )
SCREAMING_SNAKE_CASE__ = getattr(self , class_fields[0].name )
SCREAMING_SNAKE_CASE__ = all(getattr(self , field.name ) is None for field in class_fields[1:] )
if other_fields_are_none and not is_tensor(__A ):
if isinstance(__A , __A ):
SCREAMING_SNAKE_CASE__ = first_field.items()
SCREAMING_SNAKE_CASE__ = True
else:
try:
SCREAMING_SNAKE_CASE__ = iter(__A )
SCREAMING_SNAKE_CASE__ = True
except TypeError:
SCREAMING_SNAKE_CASE__ = False
# if we provided an iterator as first field and the iterator is a (key, value) iterator
# set the associated fields
if first_field_iterator:
for idx, element in enumerate(__A ):
if (
not isinstance(__A , (list, tuple) )
or not len(__A ) == 2
or not isinstance(element[0] , __A )
):
if idx == 0:
# If we do not have an iterator of key/values, set it as attribute
SCREAMING_SNAKE_CASE__ = first_field
else:
# If we have a mixed iterator, raise an error
raise ValueError(
f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' )
break
setattr(self , element[0] , element[1] )
if element[1] is not None:
SCREAMING_SNAKE_CASE__ = element[1]
elif first_field is not None:
SCREAMING_SNAKE_CASE__ = first_field
else:
for field in class_fields:
SCREAMING_SNAKE_CASE__ = getattr(self , field.name )
if v is not None:
SCREAMING_SNAKE_CASE__ = v
def __delitem__( self :List[str] , *__A :Tuple , **__A :str ) -> List[str]:
"""simple docstring"""
raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' )
def _snake_case ( self :Union[str, Any] , *__A :Union[str, Any] , **__A :List[Any] ) -> Optional[Any]:
"""simple docstring"""
raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' )
def _snake_case ( self :Union[str, Any] , *__A :List[Any] , **__A :Union[str, Any] ) -> Tuple:
"""simple docstring"""
raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' )
def _snake_case ( self :Optional[Any] , *__A :Union[str, Any] , **__A :Optional[int] ) -> int:
"""simple docstring"""
raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' )
def __getitem__( self :List[str] , __A :List[str] ) -> str:
"""simple docstring"""
if isinstance(__A , __A ):
SCREAMING_SNAKE_CASE__ = dict(self.items() )
return inner_dict[k]
else:
return self.to_tuple()[k]
def __setattr__( self :List[str] , __A :Dict , __A :Union[str, Any] ) -> Any:
"""simple docstring"""
if name in self.keys() and value is not None:
# Don't call self.__setitem__ to avoid recursion errors
super().__setitem__(__A , __A )
super().__setattr__(__A , __A )
def __setitem__( self :Optional[int] , __A :int , __A :Any ) -> Tuple:
"""simple docstring"""
super().__setitem__(__A , __A )
# Don't call self.__setattr__ to avoid recursion errors
super().__setattr__(__A , __A )
def _snake_case ( self :Union[str, Any] ) -> Tuple[Any]:
"""simple docstring"""
return tuple(self[k] for k in self.keys() )
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ):
@classmethod
def _snake_case ( cls :Union[str, Any] , __A :str ) -> str:
"""simple docstring"""
raise ValueError(
f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' )
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "longest"
lowerCamelCase_ = "max_length"
lowerCamelCase_ = "do_not_pad"
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "pt"
lowerCamelCase_ = "tf"
lowerCamelCase_ = "np"
lowerCamelCase_ = "jax"
class UpperCamelCase_ :
def __init__( self :Union[str, Any] , __A :List[ContextManager] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = context_managers
SCREAMING_SNAKE_CASE__ = ExitStack()
def __enter__( self :Any ) -> Any:
"""simple docstring"""
for context_manager in self.context_managers:
self.stack.enter_context(__A )
def __exit__( self :Any , *__A :Union[str, Any] , **__A :Dict ) -> Tuple:
"""simple docstring"""
self.stack.__exit__(*__A , **__A )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ):
SCREAMING_SNAKE_CASE__ = infer_framework(UpperCamelCase__ )
if framework == "tf":
SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.forward ) # PyTorch models
else:
SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.__call__ ) # Flax models
for p in signature.parameters:
if p == "return_loss" and signature.parameters[p].default is True:
return True
return False
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ):
SCREAMING_SNAKE_CASE__ = model_class.__name__
SCREAMING_SNAKE_CASE__ = infer_framework(UpperCamelCase__ )
if framework == "tf":
SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.call ) # TensorFlow models
elif framework == "pt":
SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.forward ) # PyTorch models
else:
SCREAMING_SNAKE_CASE__ = inspect.signature(model_class.__call__ ) # Flax models
if "QuestionAnswering" in model_name:
return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")]
else:
return [p for p in signature.parameters if "label" in p]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: MutableMapping , UpperCamelCase__: str = "" , UpperCamelCase__: str = "." ):
def _flatten_dict(UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple="" , UpperCamelCase__: Optional[Any]="." ):
for k, v in d.items():
SCREAMING_SNAKE_CASE__ = str(UpperCamelCase__ ) + delimiter + str(UpperCamelCase__ ) if parent_key else k
if v and isinstance(UpperCamelCase__ , UpperCamelCase__ ):
yield from flatten_dict(UpperCamelCase__ , UpperCamelCase__ , delimiter=UpperCamelCase__ ).items()
else:
yield key, v
return dict(_flatten_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
@contextmanager
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: bool = False ):
if use_temp_dir:
with tempfile.TemporaryDirectory() as tmp_dir:
yield tmp_dir
else:
yield working_dir
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int]=None ):
if is_numpy_array(UpperCamelCase__ ):
return np.transpose(UpperCamelCase__ , axes=UpperCamelCase__ )
elif is_torch_tensor(UpperCamelCase__ ):
return array.T if axes is None else array.permute(*UpperCamelCase__ )
elif is_tf_tensor(UpperCamelCase__ ):
import tensorflow as tf
return tf.transpose(UpperCamelCase__ , perm=UpperCamelCase__ )
elif is_jax_tensor(UpperCamelCase__ ):
return jnp.transpose(UpperCamelCase__ , axes=UpperCamelCase__ )
else:
raise ValueError(f'''Type not supported for transpose: {type(UpperCamelCase__ )}.''' )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: str ):
if is_numpy_array(UpperCamelCase__ ):
return np.reshape(UpperCamelCase__ , UpperCamelCase__ )
elif is_torch_tensor(UpperCamelCase__ ):
return array.reshape(*UpperCamelCase__ )
elif is_tf_tensor(UpperCamelCase__ ):
import tensorflow as tf
return tf.reshape(UpperCamelCase__ , UpperCamelCase__ )
elif is_jax_tensor(UpperCamelCase__ ):
return jnp.reshape(UpperCamelCase__ , UpperCamelCase__ )
else:
raise ValueError(f'''Type not supported for reshape: {type(UpperCamelCase__ )}.''' )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[Any]=None ):
if is_numpy_array(UpperCamelCase__ ):
return np.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ )
elif is_torch_tensor(UpperCamelCase__ ):
return array.squeeze() if axis is None else array.squeeze(dim=UpperCamelCase__ )
elif is_tf_tensor(UpperCamelCase__ ):
import tensorflow as tf
return tf.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ )
elif is_jax_tensor(UpperCamelCase__ ):
return jnp.squeeze(UpperCamelCase__ , axis=UpperCamelCase__ )
else:
raise ValueError(f'''Type not supported for squeeze: {type(UpperCamelCase__ )}.''' )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: str ):
if is_numpy_array(UpperCamelCase__ ):
return np.expand_dims(UpperCamelCase__ , UpperCamelCase__ )
elif is_torch_tensor(UpperCamelCase__ ):
return array.unsqueeze(dim=UpperCamelCase__ )
elif is_tf_tensor(UpperCamelCase__ ):
import tensorflow as tf
return tf.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ )
elif is_jax_tensor(UpperCamelCase__ ):
return jnp.expand_dims(UpperCamelCase__ , axis=UpperCamelCase__ )
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCamelCase__ )}.''' )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
if is_numpy_array(UpperCamelCase__ ):
return np.size(UpperCamelCase__ )
elif is_torch_tensor(UpperCamelCase__ ):
return array.numel()
elif is_tf_tensor(UpperCamelCase__ ):
import tensorflow as tf
return tf.size(UpperCamelCase__ )
elif is_jax_tensor(UpperCamelCase__ ):
return array.size
else:
raise ValueError(f'''Type not supported for expand_dims: {type(UpperCamelCase__ )}.''' )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] ):
for key, value in auto_map.items():
if isinstance(UpperCamelCase__ , (tuple, list) ):
SCREAMING_SNAKE_CASE__ = [f'''{repo_id}--{v}''' if (v is not None and """--""" not in v) else v for v in value]
elif value is not None and "--" not in value:
SCREAMING_SNAKE_CASE__ = f'''{repo_id}--{value}'''
return auto_map
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ):
for base_class in inspect.getmro(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = base_class.__module__
SCREAMING_SNAKE_CASE__ = base_class.__name__
if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel":
return "tf"
elif module.startswith("""torch""" ) or name == "PreTrainedModel":
return "pt"
elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel":
return "flax"
else:
raise TypeError(f'''Could not infer framework from class {model_class}.''' ) | 6 |
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained(
"""microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = """huggingface/label-files"""
if "ade20k-full" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 847
SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json"""
elif "ade" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 150
SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json"""
elif "coco-stuff" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 171
SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json"""
elif "coco" in model_name:
# TODO
SCREAMING_SNAKE_CASE__ = 133
SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json"""
elif "cityscapes" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 19
SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json"""
elif "vistas" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 65
SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json"""
SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
SCREAMING_SNAKE_CASE__ = []
# stem
# fmt: off
rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") )
rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") )
# heads on top
rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") )
for i in range(3 ):
rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ):
SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = val
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ):
SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
SCREAMING_SNAKE_CASE__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[
dim : dim * 2
]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
-dim :, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :]
# fmt: on
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ):
# fmt: off
SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size]
SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2]
SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size]
SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2]
SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :]
# fmt: on
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ):
SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ )
# load original state_dict
with open(UpperCamelCase__ , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = data["""model"""]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ )
for src, dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config )
read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ )
# update to torch tensors
for key, value in state_dict.items():
SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ )
# load 🤗 model
SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ )
model.eval()
for name, param in model.named_parameters():
print(UpperCamelCase__ , param.shape )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}'''
# verify results
SCREAMING_SNAKE_CASE__ = prepare_img()
if "vistas" in model_name:
SCREAMING_SNAKE_CASE__ = 65
elif "cityscapes" in model_name:
SCREAMING_SNAKE_CASE__ = 65_535
else:
SCREAMING_SNAKE_CASE__ = 255
SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False
SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ )
print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
SCREAMING_SNAKE_CASE__ = torch.tensor(
[[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
image_processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
print("""Pushing model and image processor to the hub...""" )
model.push_to_hub(f'''nielsr/{model_name}''' )
image_processor.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='maskformer-swin-tiny-ade',
type=str,
help=('Name of the MaskFormer model you\'d like to convert',),
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl',
type=str,
help='Path to the original state dict (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
) | 6 | 1 |
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
_lowerCamelCase = 3
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ):
print("""Generating primitive root of p""" )
while True:
SCREAMING_SNAKE_CASE__ = random.randrange(3 , UpperCamelCase__ )
if pow(UpperCamelCase__ , 2 , UpperCamelCase__ ) == 1:
continue
if pow(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) == 1:
continue
return g
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int ):
print("""Generating prime p...""" )
SCREAMING_SNAKE_CASE__ = rabin_miller.generate_large_prime(UpperCamelCase__ ) # select large prime number.
SCREAMING_SNAKE_CASE__ = primitive_root(UpperCamelCase__ ) # one primitive root on modulo p.
SCREAMING_SNAKE_CASE__ = random.randrange(3 , UpperCamelCase__ ) # private_key -> have to be greater than 2 for safety.
SCREAMING_SNAKE_CASE__ = cryptomath.find_mod_inverse(pow(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = (key_size, e_a, e_a, p)
SCREAMING_SNAKE_CASE__ = (key_size, d)
return public_key, private_key
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: int ):
if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ):
print("""\nWARNING:""" )
print(
f'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n'''
"""Use a different name or delete these files and re-run this program.""" )
sys.exit()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = generate_key(UpperCamelCase__ )
print(f'''\nWriting public key to file {name}_pubkey.txt...''' )
with open(f'''{name}_pubkey.txt''' , """w""" ) as fo:
fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' )
print(f'''Writing private key to file {name}_privkey.txt...''' )
with open(f'''{name}_privkey.txt''' , """w""" ) as fo:
fo.write(f'''{private_key[0]},{private_key[1]}''' )
def SCREAMING_SNAKE_CASE__ ( ):
print("""Making key files...""" )
make_key_files("""elgamal""" , 2_048 )
print("""Key files generation successful""" )
if __name__ == "__main__":
main() | 6 |
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'nielsr/canine-s': 2048,
}
# Unicode defines 1,114,112 total “codepoints”
_lowerCamelCase = 1114112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
_lowerCamelCase = 0
_lowerCamelCase = 0XE0_00
_lowerCamelCase = 0XE0_01
_lowerCamelCase = 0XE0_02
_lowerCamelCase = 0XE0_03
_lowerCamelCase = 0XE0_04
# Maps special codepoints to human-readable names.
_lowerCamelCase = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
_lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , )
# Creates a mapping for looking up the IDs of special symbols.
SCREAMING_SNAKE_CASE__ = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
SCREAMING_SNAKE_CASE__ = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
SCREAMING_SNAKE_CASE__ = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE
SCREAMING_SNAKE_CASE__ = len(self._special_codepoints )
@property
def _snake_case ( self :Optional[Any] ) -> int:
"""simple docstring"""
return self._unicode_vocab_size
def _snake_case ( self :Tuple , __A :str ) -> List[str]:
"""simple docstring"""
return list(__A )
def _snake_case ( self :Optional[Any] , __A :str ) -> int:
"""simple docstring"""
try:
return ord(__A )
except TypeError:
raise ValueError(f'''invalid token: \'{token}\'''' )
def _snake_case ( self :str , __A :int ) -> str:
"""simple docstring"""
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(__A )
except TypeError:
raise ValueError(f'''invalid id: {index}''' )
def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any:
"""simple docstring"""
return "".join(__A )
def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1]
if token_ids_a is not None:
result += ([0] * len(__A )) + [1]
return result
def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any:
"""simple docstring"""
return () | 6 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "imagegpt"
lowerCamelCase_ = ["past_key_values"]
lowerCamelCase_ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self :int , __A :int=512 + 1 , __A :int=32 * 32 , __A :Any=512 , __A :Any=24 , __A :Tuple=8 , __A :Tuple=None , __A :Optional[Any]="quick_gelu" , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :int=0.1 , __A :Dict=1E-5 , __A :List[str]=0.0_2 , __A :Optional[int]=True , __A :str=True , __A :Union[str, Any]=False , __A :Dict=False , __A :List[Any]=False , **__A :str , ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = n_positions
SCREAMING_SNAKE_CASE__ = n_embd
SCREAMING_SNAKE_CASE__ = n_layer
SCREAMING_SNAKE_CASE__ = n_head
SCREAMING_SNAKE_CASE__ = n_inner
SCREAMING_SNAKE_CASE__ = activation_function
SCREAMING_SNAKE_CASE__ = resid_pdrop
SCREAMING_SNAKE_CASE__ = embd_pdrop
SCREAMING_SNAKE_CASE__ = attn_pdrop
SCREAMING_SNAKE_CASE__ = layer_norm_epsilon
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = scale_attn_weights
SCREAMING_SNAKE_CASE__ = use_cache
SCREAMING_SNAKE_CASE__ = scale_attn_by_inverse_layer_idx
SCREAMING_SNAKE_CASE__ = reorder_and_upcast_attn
SCREAMING_SNAKE_CASE__ = tie_word_embeddings
super().__init__(tie_word_embeddings=__A , **__A )
class UpperCamelCase_ ( UpperCamelCase__ ):
@property
def _snake_case ( self :str ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """sequence"""}),
] )
def _snake_case ( self :Dict , __A :"FeatureExtractionMixin" , __A :int = 1 , __A :int = -1 , __A :bool = False , __A :Optional["TensorType"] = None , __A :int = 3 , __A :int = 32 , __A :int = 32 , ) -> Mapping[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self._generate_dummy_images(__A , __A , __A , __A )
SCREAMING_SNAKE_CASE__ = dict(preprocessor(images=__A , return_tensors=__A ) )
return inputs | 6 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
_lowerCamelCase = 'bert-base-cased'
_lowerCamelCase = 'fp16'
_lowerCamelCase = 'bf16'
_lowerCamelCase = [FPaa, BFaa]
@require_fsdp
@require_cuda
class UpperCamelCase_ ( UpperCamelCase__ ):
def _snake_case ( self :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE__ = dict(
ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , )
def _snake_case ( self :List[Any] ) -> Tuple:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = f'''{i + 1}'''
SCREAMING_SNAKE_CASE__ = strategy
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) )
def _snake_case ( self :int ) -> List[str]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = prefetch_policy
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) )
def _snake_case ( self :List[str] ) -> List[str]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = state_dict_type
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def _snake_case ( self :str ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A )
for policy in FSDP_AUTO_WRAP_POLICY:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = policy
if policy == "TRANSFORMER_BASED_WRAP":
SCREAMING_SNAKE_CASE__ = """BertLayer"""
elif policy == "SIZE_BASED_WRAP":
SCREAMING_SNAKE_CASE__ = """2000"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__A )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP"""
SCREAMING_SNAKE_CASE__ = """T5Layer"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
with self.assertRaises(__A ) as cm:
fsdp_plugin.set_auto_wrap_policy(__A )
self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) )
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP"""
SCREAMING_SNAKE_CASE__ = """0"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__A )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def _snake_case ( self :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = mp_dtype
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = Accelerator()
if mp_dtype == "fp16":
SCREAMING_SNAKE_CASE__ = torch.floataa
elif mp_dtype == "bf16":
SCREAMING_SNAKE_CASE__ = torch.bfloataa
SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , __A ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__A )
def _snake_case ( self :str ) -> str:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = str(__A ).lower()
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) )
@require_fsdp
@require_multi_gpu
@slow
class UpperCamelCase_ ( UpperCamelCase__ ):
def _snake_case ( self :Any ) -> Any:
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE__ = 0.8_2
SCREAMING_SNAKE_CASE__ = [
"""fsdp_shard_grad_op_transformer_based_wrap""",
"""fsdp_full_shard_transformer_based_wrap""",
]
SCREAMING_SNAKE_CASE__ = {
"""multi_gpu_fp16""": 3200,
"""fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000,
"""fsdp_full_shard_transformer_based_wrap_fp16""": 1900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
SCREAMING_SNAKE_CASE__ = 160
SCREAMING_SNAKE_CASE__ = 160
SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils )
SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] )
def _snake_case ( self :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" )
SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""]
for config in self.performance_configs:
SCREAMING_SNAKE_CASE__ = cmd.copy()
for i, strategy in enumerate(__A ):
if strategy.lower() in config:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "fp32" in config:
cmd_config.append("""--mixed_precision=no""" )
else:
cmd_config.append("""--mixed_precision=fp16""" )
if "cpu_offload" in config:
cmd_config.append("""--fsdp_offload_params=True""" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("""--fsdp_min_num_params=2000""" )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--performance_lower_bound={self.performance_lower_bound}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
def _snake_case ( self :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" )
SCREAMING_SNAKE_CASE__ = [
"""accelerate""",
"""launch""",
"""--num_processes=2""",
"""--num_machines=1""",
"""--machine_rank=0""",
"""--use_fsdp""",
"""--mixed_precision=fp16""",
"""--fsdp_transformer_layer_cls_to_wrap=BertLayer""",
]
for i, strategy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = cmd.copy()
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
if strategy != "FULL_SHARD":
continue
SCREAMING_SNAKE_CASE__ = len(__A )
for state_dict_type in FSDP_STATE_DICT_TYPE:
SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index]
cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
"""--partial_train_epoch=1""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
SCREAMING_SNAKE_CASE__ = cmd_config[:-1]
SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" )
cmd_config.extend(
[
f'''--resume_from_checkpoint={resume_from_checkpoint}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
def _snake_case ( self :Tuple ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" )
SCREAMING_SNAKE_CASE__ = [
"""accelerate""",
"""launch""",
"""--num_processes=2""",
"""--num_machines=1""",
"""--machine_rank=0""",
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
SCREAMING_SNAKE_CASE__ = cmd.copy()
if "fp16" in spec:
cmd_config.extend(["""--mixed_precision=fp16"""] )
else:
cmd_config.extend(["""--mixed_precision=no"""] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(["""--use_fsdp"""] )
for i, strategy in enumerate(__A ):
if strategy.lower() in spec:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "cpu_offload" in spec:
cmd_config.append("""--fsdp_offload_params=True""" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("""--fsdp_min_num_params=2000""" )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--peak_memory_upper_bound={peak_mem_upper_bound}''',
f'''--n_train={self.n_train}''',
f'''--n_val={self.n_val}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() ) | 6 | 1 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
lowerCamelCase_ = jnp.floataa
lowerCamelCase_ = True
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
super().setup()
SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype )
def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A )
SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ):
def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ):
SCREAMING_SNAKE_CASE__ = logits.shape[-1]
SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" )
SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 )
SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ )
return loss
SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = "google/bigbird-roberta-base"
lowerCamelCase_ = 30_00
lowerCamelCase_ = 1_05_00
lowerCamelCase_ = 1_28
lowerCamelCase_ = 3
lowerCamelCase_ = 1
lowerCamelCase_ = 5
# tx_args
lowerCamelCase_ = 3e-5
lowerCamelCase_ = 0.0
lowerCamelCase_ = 2_00_00
lowerCamelCase_ = 0.0095
lowerCamelCase_ = "bigbird-roberta-natural-questions"
lowerCamelCase_ = "training-expt"
lowerCamelCase_ = "data/nq-training.jsonl"
lowerCamelCase_ = "data/nq-validation.jsonl"
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
os.makedirs(self.base_dir , exist_ok=__A )
SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir )
SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count()
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 40_96 # no dynamic padding on TPUs
def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.collate_fn(__A )
SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A )
return batch
def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] )
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": jnp.array(__A , dtype=jnp.intaa ),
"""attention_mask""": jnp.array(__A , dtype=jnp.intaa ),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ),
}
return batch
def _snake_case ( self :Tuple , __A :list ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids]
return zip(*__A )
def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )]
while len(__A ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ):
if seed is not None:
SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ )
for i in range(len(UpperCamelCase__ ) // batch_size ):
SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(UpperCamelCase__ )
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ):
def loss_fn(UpperCamelCase__: List[Any] ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
return state.loss_fn(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" )
SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class UpperCamelCase_ ( train_state.TrainState ):
lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ )
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = None
def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = model.params
SCREAMING_SNAKE_CASE__ = TrainState.create(
apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , )
if ckpt_dir is not None:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A )
SCREAMING_SNAKE_CASE__ = train_state.TrainState(
step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , )
SCREAMING_SNAKE_CASE__ = args
SCREAMING_SNAKE_CASE__ = data_collator
SCREAMING_SNAKE_CASE__ = lr
SCREAMING_SNAKE_CASE__ = params
SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A )
return state
def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.args
SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size
SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() )
for epoch in range(args.max_epochs ):
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
if i % args.logging_steps == 0:
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step )
SCREAMING_SNAKE_CASE__ = running_loss.item() / i
SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 )
SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(__A ) )
self.logger.log(__A , commit=__A )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A )
def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size )
SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
return running_loss / i
def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A )
print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ )
self.model_save_fn(__A , params=state.params )
with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) )
joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) )
with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f:
json.dump({"""step""": state.step.item()} , __A )
print("""DONE""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ):
print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ )
with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() )
with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) )
with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f:
SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ):
def weight_decay_mask(UpperCamelCase__: Any ):
SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ )
return tx, lr | 6 |
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
_lowerCamelCase = logging.get_logger(__name__)
# General docstring
_lowerCamelCase = 'PoolFormerConfig'
# Base docstring
_lowerCamelCase = 'sail/poolformer_s12'
_lowerCamelCase = [1, 512, 7, 7]
# Image classification docstring
_lowerCamelCase = 'sail/poolformer_s12'
_lowerCamelCase = 'tabby, tabby cat'
_lowerCamelCase = [
'sail/poolformer_s12',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ):
if drop_prob == 0.0 or not training:
return input
SCREAMING_SNAKE_CASE__ = 1 - drop_prob
SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor
return output
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = drop_prob
def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
return drop_path(__A , self.drop_prob , self.training )
def _snake_case ( self :Dict ) -> str:
"""simple docstring"""
return "p={}".format(self.drop_prob )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size)
SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride)
SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding)
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A )
SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity()
def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.projection(__A )
SCREAMING_SNAKE_CASE__ = self.norm(__A )
return embeddings
class UpperCamelCase_ ( nn.GroupNorm ):
def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict:
"""simple docstring"""
super().__init__(1 , __A , **__A )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :List[str] , __A :Optional[int] ) -> Any:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A )
def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return self.pool(__A ) - hidden_states
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A )
if isinstance(config.hidden_act , __A ):
SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act]
else:
SCREAMING_SNAKE_CASE__ = config.hidden_act
def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.conva(__A )
SCREAMING_SNAKE_CASE__ = self.act_fn(__A )
SCREAMING_SNAKE_CASE__ = self.drop(__A )
SCREAMING_SNAKE_CASE__ = self.conva(__A )
SCREAMING_SNAKE_CASE__ = self.drop(__A )
return hidden_states
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A )
SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A )
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A )
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A )
# Useful for training neural nets
SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity()
SCREAMING_SNAKE_CASE__ = config.use_layer_scale
if config.use_layer_scale:
SCREAMING_SNAKE_CASE__ = nn.Parameter(
config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A )
SCREAMING_SNAKE_CASE__ = nn.Parameter(
config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A )
def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str:
"""simple docstring"""
if self.use_layer_scale:
SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) )
SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A )
SCREAMING_SNAKE_CASE__ = ()
SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) )
SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A )
SCREAMING_SNAKE_CASE__ = (output,) + outputs
return outputs
else:
SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) )
# First residual connection
SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states
SCREAMING_SNAKE_CASE__ = ()
# Second residual connection inside the PoolFormerOutput block
SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) )
SCREAMING_SNAKE_CASE__ = hidden_states + layer_output
SCREAMING_SNAKE_CASE__ = (output,) + outputs
return outputs
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = config
# stochastic depth decay rule
SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
SCREAMING_SNAKE_CASE__ = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A )
# Transformer blocks
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
SCREAMING_SNAKE_CASE__ = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
__A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(__A ) )
SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A )
def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None
SCREAMING_SNAKE_CASE__ = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers
# Get patch embeddings from hidden_states
SCREAMING_SNAKE_CASE__ = embedding_layer(__A )
# Send the embeddings through the blocks
for _, blk in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = blk(__A )
SCREAMING_SNAKE_CASE__ = layer_outputs[0]
if output_hidden_states:
SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A )
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = PoolFormerConfig
lowerCamelCase_ = "poolformer"
lowerCamelCase_ = "pixel_values"
lowerCamelCase_ = True
def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict:
"""simple docstring"""
if isinstance(__A , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__A , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any:
"""simple docstring"""
if isinstance(__A , __A ):
SCREAMING_SNAKE_CASE__ = value
_lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
_lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n'
@add_start_docstrings(
"The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , )
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :Union[str, Any] , __A :Any ) -> int:
"""simple docstring"""
super().__init__(__A )
SCREAMING_SNAKE_CASE__ = config
SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A )
# Initialize weights and apply final processing
self.post_init()
def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(__A )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""" )
SCREAMING_SNAKE_CASE__ = self.encoder(
__A , output_hidden_states=__A , return_dict=__A , )
SCREAMING_SNAKE_CASE__ = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :int , __A :Optional[int] ) -> Tuple:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size )
def _snake_case ( self :List[Any] , __A :Dict ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.dense(__A )
return output
@add_start_docstrings(
"\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , )
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :str , __A :Union[str, Any] ) -> int:
"""simple docstring"""
super().__init__(__A )
SCREAMING_SNAKE_CASE__ = config.num_labels
SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A )
# Final norm
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
SCREAMING_SNAKE_CASE__ = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__A )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE__ = self.poolformer(
__A , output_hidden_states=__A , return_dict=__A , )
SCREAMING_SNAKE_CASE__ = outputs[0]
SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) )
SCREAMING_SNAKE_CASE__ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
SCREAMING_SNAKE_CASE__ = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
SCREAMING_SNAKE_CASE__ = """single_label_classification"""
else:
SCREAMING_SNAKE_CASE__ = """multi_label_classification"""
if self.config.problem_type == "regression":
SCREAMING_SNAKE_CASE__ = MSELoss()
if self.num_labels == 1:
SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() )
else:
SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A )
elif self.config.problem_type == "single_label_classification":
SCREAMING_SNAKE_CASE__ = CrossEntropyLoss()
SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss()
SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A )
if not return_dict:
SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states ) | 6 | 1 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
_lowerCamelCase = '2.13.1'
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse('3.7'):
raise ImportWarning(
'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.'
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n'
'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.'
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
_lowerCamelCase = concatenate_datasets
_lowerCamelCase = DownloadConfig
_lowerCamelCase = DownloadManager
_lowerCamelCase = DownloadMode
_lowerCamelCase = DownloadConfig
_lowerCamelCase = DownloadMode
_lowerCamelCase = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager | 6 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = seq_length
SCREAMING_SNAKE_CASE__ = is_training
SCREAMING_SNAKE_CASE__ = use_input_lengths
SCREAMING_SNAKE_CASE__ = use_token_type_ids
SCREAMING_SNAKE_CASE__ = use_labels
SCREAMING_SNAKE_CASE__ = gelu_activation
SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings
SCREAMING_SNAKE_CASE__ = causal
SCREAMING_SNAKE_CASE__ = asm
SCREAMING_SNAKE_CASE__ = n_langs
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = n_special
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = type_vocab_size
SCREAMING_SNAKE_CASE__ = type_sequence_label_size
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = num_labels
SCREAMING_SNAKE_CASE__ = num_choices
SCREAMING_SNAKE_CASE__ = summary_type
SCREAMING_SNAKE_CASE__ = use_proj
SCREAMING_SNAKE_CASE__ = scope
def _snake_case ( self :Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ = None
if self.use_input_lengths:
SCREAMING_SNAKE_CASE__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
SCREAMING_SNAKE_CASE__ = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float()
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _snake_case ( self :List[str] ) -> Optional[int]:
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A )
SCREAMING_SNAKE_CASE__ = model(__A , langs=__A )
SCREAMING_SNAKE_CASE__ = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(
__A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , )
SCREAMING_SNAKE_CASE__ = model(
__A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , )
((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple()
SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A )
((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(__A , labels=__A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_choices
SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self :Union[str, Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
lowerCamelCase_ = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
lowerCamelCase_ = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
SCREAMING_SNAKE_CASE__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__A )
SCREAMING_SNAKE_CASE__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__A )
return inputs_dict
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 )
def _snake_case ( self :int ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def _snake_case ( self :Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__A )
def _snake_case ( self :Tuple ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__A )
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*__A )
def _snake_case ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__A )
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__A )
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*__A )
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*__A )
@slow
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A )
self.assertIsNotNone(__A )
@slow
@require_torch_gpu
def _snake_case ( self :Tuple ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = model_class(config=__A )
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A )
SCREAMING_SNAKE_CASE__ = torch.jit.trace(
__A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) )
SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A )
loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) )
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
@slow
def _snake_case ( self :Dict ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = model(__A )[0]
SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __A )
SCREAMING_SNAKE_CASE__ = torch.tensor(
[[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) ) | 6 | 1 |
import re
from pathlib import Path
from unittest import TestCase
import pytest
@pytest.mark.integration
class UpperCamelCase_ ( UpperCamelCase__ ):
def _snake_case ( self :List[str] , __A :str ) -> Optional[int]:
"""simple docstring"""
with open(__A , encoding="""utf-8""" ) as input_file:
SCREAMING_SNAKE_CASE__ = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" )
SCREAMING_SNAKE_CASE__ = input_file.read()
SCREAMING_SNAKE_CASE__ = regexp.search(__A )
return match
def _snake_case ( self :Tuple , __A :str ) -> Optional[Any]:
"""simple docstring"""
with open(__A , encoding="""utf-8""" ) as input_file:
SCREAMING_SNAKE_CASE__ = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL )
SCREAMING_SNAKE_CASE__ = input_file.read()
# use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search`
SCREAMING_SNAKE_CASE__ = regexp.finditer(__A )
SCREAMING_SNAKE_CASE__ = [match for match in matches if match is not None and match.group(1 ) is not None]
return matches[0] if matches else None
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = Path("""./datasets""" )
SCREAMING_SNAKE_CASE__ = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_encoding_on_file_open(str(__A ) ):
raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' )
def _snake_case ( self :str ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = Path("""./datasets""" )
SCREAMING_SNAKE_CASE__ = list(dataset_paths.absolute().glob("""**/*.py""" ) )
for dataset in dataset_files:
if self._no_print_statements(str(__A ) ):
raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' ) | 6 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ):
model.train()
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ):
set_seed(42 )
SCREAMING_SNAKE_CASE__ = RegressionModel()
SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
model.to(accelerator.device )
if sched:
SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 )
SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 )
SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 )
SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 )
# Make a copy of `model`
if sched:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
# Test when on a single CPU or GPU that the context manager does nothing
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
# Use a single batch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
# Sync grads
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ):
# Test on distributed setup that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
# Use a single batch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
# Sync grads
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ):
SCREAMING_SNAKE_CASE__ = Accelerator(
split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
for iteration, batch in enumerate(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values()
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ):
SCREAMING_SNAKE_CASE__ = Accelerator(
split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ )
for iteration, batch in enumerate(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values()
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n'''
SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ ))
if accelerator.num_processes > 1:
check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = Accelerator()
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(UpperCamelCase__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ )
if iteration < len(UpperCamelCase__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(UpperCamelCase__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ )
if batch_num < len(UpperCamelCase__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = Accelerator()
SCREAMING_SNAKE_CASE__ = accelerator.state
if state.local_process_index == 0:
print("""**Test `accumulate` gradient accumulation with dataloader break**""" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("""**Test NOOP `no_sync` context manager**""" )
test_noop_sync(UpperCamelCase__ )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("""**Test Distributed `no_sync` context manager**""" )
test_distributed_sync(UpperCamelCase__ )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 6 | 1 |
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: List[Any] ):
# Initialise PyTorch model
SCREAMING_SNAKE_CASE__ = FunnelConfig.from_json_file(UpperCamelCase__ )
print(f'''Building PyTorch model from configuration: {config}''' )
SCREAMING_SNAKE_CASE__ = FunnelBaseModel(UpperCamelCase__ ) if base_model else FunnelModel(UpperCamelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict() , UpperCamelCase__ )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--config_file',
default=None,
type=str,
required=True,
help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.',
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.'
)
_lowerCamelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
) | 6 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "AutoImageProcessor"
lowerCamelCase_ = "AutoTokenizer"
def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict:
"""simple docstring"""
super().__init__(__A , __A )
SCREAMING_SNAKE_CASE__ = self.image_processor
def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]:
"""simple docstring"""
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A )
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :Dict ) -> List[Any]:
"""simple docstring"""
return ["input_ids", "attention_mask", "pixel_values"] | 6 | 1 |
import warnings
from diffusers import StableDiffusionImgaImgPipeline # noqa F401
warnings.warn(
'The `image_to_image.py` script is outdated. Please use directly `from diffusers import'
' StableDiffusionImg2ImgPipeline` instead.'
) | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
SCREAMING_SNAKE_CASE__ = True
for i in range(1 , s + 1 ):
SCREAMING_SNAKE_CASE__ = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
SCREAMING_SNAKE_CASE__ = dp[i][j - 1]
if arr[i - 1] <= j:
SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
SCREAMING_SNAKE_CASE__ = s - 2 * j
break
return diff | 6 | 1 |
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt')
_lowerCamelCase = logging.getLogger(__name__)
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} , )
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={"help": "Train language if it is different from the evaluation language."} )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowerCamelCase_ = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
lowerCamelCase_ = field(
default=UpperCamelCase__ , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def SCREAMING_SNAKE_CASE__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
SCREAMING_SNAKE_CASE__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_xnli""" , UpperCamelCase__ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = training_args.get_process_log_level()
logger.setLevel(UpperCamelCase__ )
datasets.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
SCREAMING_SNAKE_CASE__ = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
SCREAMING_SNAKE_CASE__ = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
SCREAMING_SNAKE_CASE__ = load_dataset(
"""xnli""" , model_args.language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
SCREAMING_SNAKE_CASE__ = load_dataset(
"""xnli""" , model_args.train_language , split="""train""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ = train_dataset.features["""label"""].names
if training_args.do_eval:
SCREAMING_SNAKE_CASE__ = load_dataset(
"""xnli""" , model_args.language , split="""validation""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ = eval_dataset.features["""label"""].names
if training_args.do_predict:
SCREAMING_SNAKE_CASE__ = load_dataset(
"""xnli""" , model_args.language , split="""test""" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ = predict_dataset.features["""label"""].names
# Labels
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCamelCase__ , idalabel={str(UpperCamelCase__ ): label for i, label in enumerate(UpperCamelCase__ )} , labelaid={label: i for i, label in enumerate(UpperCamelCase__ )} , finetuning_task="""xnli""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
SCREAMING_SNAKE_CASE__ = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE__ = """max_length"""
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
SCREAMING_SNAKE_CASE__ = False
def preprocess_function(UpperCamelCase__: Any ):
# Tokenize the texts
return tokenizer(
examples["""premise"""] , examples["""hypothesis"""] , padding=UpperCamelCase__ , max_length=data_args.max_seq_length , truncation=UpperCamelCase__ , )
if training_args.do_train:
if data_args.max_train_samples is not None:
SCREAMING_SNAKE_CASE__ = min(len(UpperCamelCase__ ) , data_args.max_train_samples )
SCREAMING_SNAKE_CASE__ = train_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc="""train dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ = train_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on train dataset""" , )
# Log a few random samples from the training set:
for index in random.sample(range(len(UpperCamelCase__ ) ) , 3 ):
logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
SCREAMING_SNAKE_CASE__ = min(len(UpperCamelCase__ ) , data_args.max_eval_samples )
SCREAMING_SNAKE_CASE__ = eval_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc="""validation dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ = eval_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on validation dataset""" , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
SCREAMING_SNAKE_CASE__ = min(len(UpperCamelCase__ ) , data_args.max_predict_samples )
SCREAMING_SNAKE_CASE__ = predict_dataset.select(range(UpperCamelCase__ ) )
with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ):
SCREAMING_SNAKE_CASE__ = predict_dataset.map(
UpperCamelCase__ , batched=UpperCamelCase__ , load_from_cache_file=not data_args.overwrite_cache , desc="""Running tokenizer on prediction dataset""" , )
# Get the metric function
SCREAMING_SNAKE_CASE__ = evaluate.load("""xnli""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(UpperCamelCase__: EvalPrediction ):
SCREAMING_SNAKE_CASE__ = p.predictions[0] if isinstance(p.predictions , UpperCamelCase__ ) else p.predictions
SCREAMING_SNAKE_CASE__ = np.argmax(UpperCamelCase__ , axis=1 )
return metric.compute(predictions=UpperCamelCase__ , references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE__ = default_data_collator
elif training_args.fpaa:
SCREAMING_SNAKE_CASE__ = DataCollatorWithPadding(UpperCamelCase__ , pad_to_multiple_of=8 )
else:
SCREAMING_SNAKE_CASE__ = None
# Initialize our Trainer
SCREAMING_SNAKE_CASE__ = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=UpperCamelCase__ , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , )
# Training
if training_args.do_train:
SCREAMING_SNAKE_CASE__ = None
if training_args.resume_from_checkpoint is not None:
SCREAMING_SNAKE_CASE__ = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
SCREAMING_SNAKE_CASE__ = last_checkpoint
SCREAMING_SNAKE_CASE__ = trainer.train(resume_from_checkpoint=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = train_result.metrics
SCREAMING_SNAKE_CASE__ = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(UpperCamelCase__ )
)
SCREAMING_SNAKE_CASE__ = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("""train""" , UpperCamelCase__ )
trainer.save_metrics("""train""" , UpperCamelCase__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
SCREAMING_SNAKE_CASE__ = trainer.evaluate(eval_dataset=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics("""eval""" , UpperCamelCase__ )
trainer.save_metrics("""eval""" , UpperCamelCase__ )
# Prediction
if training_args.do_predict:
logger.info("""*** Predict ***""" )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = trainer.predict(UpperCamelCase__ , metric_key_prefix="""predict""" )
SCREAMING_SNAKE_CASE__ = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(UpperCamelCase__ )
)
SCREAMING_SNAKE_CASE__ = min(UpperCamelCase__ , len(UpperCamelCase__ ) )
trainer.log_metrics("""predict""" , UpperCamelCase__ )
trainer.save_metrics("""predict""" , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = np.argmax(UpperCamelCase__ , axis=1 )
SCREAMING_SNAKE_CASE__ = os.path.join(training_args.output_dir , """predictions.txt""" )
if trainer.is_world_process_zero():
with open(UpperCamelCase__ , """w""" ) as writer:
writer.write("""index\tprediction\n""" )
for index, item in enumerate(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = label_list[item]
writer.write(f'''{index}\t{item}\n''' )
if __name__ == "__main__":
main() | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ):
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) | 6 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
_lowerCamelCase = None
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'}
_lowerCamelCase = {
'vocab_file': {
'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model',
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model'
),
},
'tokenizer_file': {
'google/bigbird-roberta-base': (
'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json'
),
'google/bigbird-roberta-large': (
'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json'
),
'google/bigbird-base-trivia-itc': (
'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json'
),
},
}
_lowerCamelCase = {
'google/bigbird-roberta-base': 4096,
'google/bigbird-roberta-large': 4096,
'google/bigbird-base-trivia-itc': 4096,
}
_lowerCamelCase = '▁'
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = VOCAB_FILES_NAMES
lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase_ = BigBirdTokenizer
lowerCamelCase_ = ["input_ids", "attention_mask"]
lowerCamelCase_ = []
def __init__( self :str , __A :Tuple=None , __A :Optional[Any]=None , __A :Any="<unk>" , __A :Any="<s>" , __A :Union[str, Any]="</s>" , __A :List[str]="<pad>" , __A :Optional[Any]="[SEP]" , __A :str="[MASK]" , __A :Optional[Any]="[CLS]" , **__A :Union[str, Any] , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else unk_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
__A , tokenizer_file=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , )
SCREAMING_SNAKE_CASE__ = vocab_file
SCREAMING_SNAKE_CASE__ = False if not self.vocab_file else True
def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _snake_case ( self :Optional[int] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(__A )) + [1]
return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1]
def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""" )
if not os.path.isdir(__A ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
SCREAMING_SNAKE_CASE__ = os.path.join(
__A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ):
copyfile(self.vocab_file , __A )
return (out_vocab_file,) | 6 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "encoder-decoder"
lowerCamelCase_ = True
def __init__( self :Optional[int] , **__A :str ) -> int:
"""simple docstring"""
super().__init__(**__A )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" )
SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" )
SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = True
@classmethod
def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig:
"""simple docstring"""
logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A )
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE__ = self.encoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.decoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.__class__.model_type
return output | 6 | 1 |
from dataclasses import dataclass
from typing import Optional
import numpy as np
import torch
import torch.nn as nn
from ..utils import BaseOutput, is_torch_version, randn_tensor
from .attention_processor import SpatialNorm
from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block
@dataclass
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Any , __A :str=3 , __A :List[Any]=3 , __A :str=("DownEncoderBlock2D",) , __A :Optional[int]=(64,) , __A :str=2 , __A :Optional[Any]=32 , __A :int="silu" , __A :List[Any]=True , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = layers_per_block
SCREAMING_SNAKE_CASE__ = torch.nn.Convad(
__A , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = nn.ModuleList([] )
# down
SCREAMING_SNAKE_CASE__ = block_out_channels[0]
for i, down_block_type in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = output_channel
SCREAMING_SNAKE_CASE__ = block_out_channels[i]
SCREAMING_SNAKE_CASE__ = i == len(__A ) - 1
SCREAMING_SNAKE_CASE__ = get_down_block(
__A , num_layers=self.layers_per_block , in_channels=__A , out_channels=__A , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=__A , resnet_groups=__A , attention_head_dim=__A , temb_channels=__A , )
self.down_blocks.append(__A )
# mid
SCREAMING_SNAKE_CASE__ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__A , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=__A , temb_channels=__A , )
# out
SCREAMING_SNAKE_CASE__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__A , eps=1E-6 )
SCREAMING_SNAKE_CASE__ = nn.SiLU()
SCREAMING_SNAKE_CASE__ = 2 * out_channels if double_z else out_channels
SCREAMING_SNAKE_CASE__ = nn.Convad(block_out_channels[-1] , __A , 3 , padding=1 )
SCREAMING_SNAKE_CASE__ = False
def _snake_case ( self :Optional[int] , __A :Tuple ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = x
SCREAMING_SNAKE_CASE__ = self.conv_in(__A )
if self.training and self.gradient_checkpointing:
def create_custom_forward(__A :Tuple ):
def custom_forward(*__A :List[Any] ):
return module(*__A )
return custom_forward
# down
if is_torch_version(""">=""" , """1.11.0""" ):
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(__A ) , __A , use_reentrant=__A )
# middle
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __A , use_reentrant=__A )
else:
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__A ) , __A )
# middle
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __A )
else:
# down
for down_block in self.down_blocks:
SCREAMING_SNAKE_CASE__ = down_block(__A )
# middle
SCREAMING_SNAKE_CASE__ = self.mid_block(__A )
# post-process
SCREAMING_SNAKE_CASE__ = self.conv_norm_out(__A )
SCREAMING_SNAKE_CASE__ = self.conv_act(__A )
SCREAMING_SNAKE_CASE__ = self.conv_out(__A )
return sample
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Any , __A :List[Any]=3 , __A :str=3 , __A :Tuple=("UpDecoderBlock2D",) , __A :Tuple=(64,) , __A :Any=2 , __A :int=32 , __A :Optional[int]="silu" , __A :Optional[Any]="group" , ) -> Optional[int]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = layers_per_block
SCREAMING_SNAKE_CASE__ = nn.Convad(
__A , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = nn.ModuleList([] )
SCREAMING_SNAKE_CASE__ = in_channels if norm_type == """spatial""" else None
# mid
SCREAMING_SNAKE_CASE__ = UNetMidBlockaD(
in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=__A , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__A , temb_channels=__A , )
# up
SCREAMING_SNAKE_CASE__ = list(reversed(__A ) )
SCREAMING_SNAKE_CASE__ = reversed_block_out_channels[0]
for i, up_block_type in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = output_channel
SCREAMING_SNAKE_CASE__ = reversed_block_out_channels[i]
SCREAMING_SNAKE_CASE__ = i == len(__A ) - 1
SCREAMING_SNAKE_CASE__ = get_up_block(
__A , num_layers=self.layers_per_block + 1 , in_channels=__A , out_channels=__A , prev_output_channel=__A , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=__A , resnet_groups=__A , attention_head_dim=__A , temb_channels=__A , resnet_time_scale_shift=__A , )
self.up_blocks.append(__A )
SCREAMING_SNAKE_CASE__ = output_channel
# out
if norm_type == "spatial":
SCREAMING_SNAKE_CASE__ = SpatialNorm(block_out_channels[0] , __A )
else:
SCREAMING_SNAKE_CASE__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__A , eps=1E-6 )
SCREAMING_SNAKE_CASE__ = nn.SiLU()
SCREAMING_SNAKE_CASE__ = nn.Convad(block_out_channels[0] , __A , 3 , padding=1 )
SCREAMING_SNAKE_CASE__ = False
def _snake_case ( self :str , __A :Tuple , __A :int=None ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = z
SCREAMING_SNAKE_CASE__ = self.conv_in(__A )
SCREAMING_SNAKE_CASE__ = next(iter(self.up_blocks.parameters() ) ).dtype
if self.training and self.gradient_checkpointing:
def create_custom_forward(__A :Tuple ):
def custom_forward(*__A :List[Any] ):
return module(*__A )
return custom_forward
if is_torch_version(""">=""" , """1.11.0""" ):
# middle
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __A , __A , use_reentrant=__A )
SCREAMING_SNAKE_CASE__ = sample.to(__A )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(__A ) , __A , __A , use_reentrant=__A )
else:
# middle
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(
create_custom_forward(self.mid_block ) , __A , __A )
SCREAMING_SNAKE_CASE__ = sample.to(__A )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE__ = torch.utils.checkpoint.checkpoint(create_custom_forward(__A ) , __A , __A )
else:
# middle
SCREAMING_SNAKE_CASE__ = self.mid_block(__A , __A )
SCREAMING_SNAKE_CASE__ = sample.to(__A )
# up
for up_block in self.up_blocks:
SCREAMING_SNAKE_CASE__ = up_block(__A , __A )
# post-process
if latent_embeds is None:
SCREAMING_SNAKE_CASE__ = self.conv_norm_out(__A )
else:
SCREAMING_SNAKE_CASE__ = self.conv_norm_out(__A , __A )
SCREAMING_SNAKE_CASE__ = self.conv_act(__A )
SCREAMING_SNAKE_CASE__ = self.conv_out(__A )
return sample
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Optional[int] , __A :Optional[Any] , __A :List[Any] , __A :str , __A :List[str]=None , __A :Optional[Any]="random" , __A :Optional[int]=False , __A :int=True ) -> Optional[int]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = n_e
SCREAMING_SNAKE_CASE__ = vq_embed_dim
SCREAMING_SNAKE_CASE__ = beta
SCREAMING_SNAKE_CASE__ = legacy
SCREAMING_SNAKE_CASE__ = nn.Embedding(self.n_e , self.vq_embed_dim )
self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e )
SCREAMING_SNAKE_CASE__ = remap
if self.remap is not None:
self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) )
SCREAMING_SNAKE_CASE__ = self.used.shape[0]
SCREAMING_SNAKE_CASE__ = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
SCREAMING_SNAKE_CASE__ = self.re_embed
SCREAMING_SNAKE_CASE__ = self.re_embed + 1
print(
f'''Remapping {self.n_e} indices to {self.re_embed} indices. '''
f'''Using {self.unknown_index} for unknown indices.''' )
else:
SCREAMING_SNAKE_CASE__ = n_e
SCREAMING_SNAKE_CASE__ = sane_index_shape
def _snake_case ( self :Tuple , __A :List[Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = inds.shape
assert len(__A ) > 1
SCREAMING_SNAKE_CASE__ = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE__ = self.used.to(__A )
SCREAMING_SNAKE_CASE__ = (inds[:, :, None] == used[None, None, ...]).long()
SCREAMING_SNAKE_CASE__ = match.argmax(-1 )
SCREAMING_SNAKE_CASE__ = match.sum(2 ) < 1
if self.unknown_index == "random":
SCREAMING_SNAKE_CASE__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device )
else:
SCREAMING_SNAKE_CASE__ = self.unknown_index
return new.reshape(__A )
def _snake_case ( self :Dict , __A :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = inds.shape
assert len(__A ) > 1
SCREAMING_SNAKE_CASE__ = inds.reshape(ishape[0] , -1 )
SCREAMING_SNAKE_CASE__ = self.used.to(__A )
if self.re_embed > self.used.shape[0]: # extra token
SCREAMING_SNAKE_CASE__ = 0 # simply set to zero
SCREAMING_SNAKE_CASE__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __A )
return back.reshape(__A )
def _snake_case ( self :Optional[int] , __A :List[str] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = z.permute(0 , 2 , 3 , 1 ).contiguous()
SCREAMING_SNAKE_CASE__ = z.view(-1 , self.vq_embed_dim )
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
SCREAMING_SNAKE_CASE__ = torch.argmin(torch.cdist(__A , self.embedding.weight ) , dim=1 )
SCREAMING_SNAKE_CASE__ = self.embedding(__A ).view(z.shape )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
# compute loss for embedding
if not self.legacy:
SCREAMING_SNAKE_CASE__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 )
else:
SCREAMING_SNAKE_CASE__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 )
# preserve gradients
SCREAMING_SNAKE_CASE__ = z + (z_q - z).detach()
# reshape back to match original input shape
SCREAMING_SNAKE_CASE__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
if self.remap is not None:
SCREAMING_SNAKE_CASE__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE__ = self.remap_to_used(__A )
SCREAMING_SNAKE_CASE__ = min_encoding_indices.reshape(-1 , 1 ) # flatten
if self.sane_index_shape:
SCREAMING_SNAKE_CASE__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] )
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
def _snake_case ( self :Union[str, Any] , __A :Dict , __A :Optional[Any] ) -> Dict:
"""simple docstring"""
if self.remap is not None:
SCREAMING_SNAKE_CASE__ = indices.reshape(shape[0] , -1 ) # add batch axis
SCREAMING_SNAKE_CASE__ = self.unmap_to_all(__A )
SCREAMING_SNAKE_CASE__ = indices.reshape(-1 ) # flatten again
# get quantized latent vectors
SCREAMING_SNAKE_CASE__ = self.embedding(__A )
if shape is not None:
SCREAMING_SNAKE_CASE__ = z_q.view(__A )
# reshape back to match original input shape
SCREAMING_SNAKE_CASE__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous()
return z_q
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :List[Any] , __A :List[str] , __A :Dict=False ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parameters
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = torch.chunk(__A , 2 , dim=1 )
SCREAMING_SNAKE_CASE__ = torch.clamp(self.logvar , -3_0.0 , 2_0.0 )
SCREAMING_SNAKE_CASE__ = deterministic
SCREAMING_SNAKE_CASE__ = torch.exp(0.5 * self.logvar )
SCREAMING_SNAKE_CASE__ = torch.exp(self.logvar )
if self.deterministic:
SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = torch.zeros_like(
self.mean , device=self.parameters.device , dtype=self.parameters.dtype )
def _snake_case ( self :Union[str, Any] , __A :Optional[torch.Generator] = None ) -> torch.FloatTensor:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = randn_tensor(
self.mean.shape , generator=__A , device=self.parameters.device , dtype=self.parameters.dtype )
SCREAMING_SNAKE_CASE__ = self.mean + self.std * sample
return x
def _snake_case ( self :str , __A :Any=None ) -> Union[str, Any]:
"""simple docstring"""
if self.deterministic:
return torch.Tensor([0.0] )
else:
if other is None:
return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] )
else:
return 0.5 * torch.sum(
torch.pow(self.mean - other.mean , 2 ) / other.var
+ self.var / other.var
- 1.0
- self.logvar
+ other.logvar , dim=[1, 2, 3] , )
def _snake_case ( self :str , __A :Optional[int] , __A :List[Any]=[1, 2, 3] ) -> Any:
"""simple docstring"""
if self.deterministic:
return torch.Tensor([0.0] )
SCREAMING_SNAKE_CASE__ = np.log(2.0 * np.pi )
return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__A )
def _snake_case ( self :Any ) -> str:
"""simple docstring"""
return self.mean | 6 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase__ )
class UpperCamelCase_ ( UpperCamelCase__ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowerCamelCase_ = Features({"text": Value("string" )} )
lowerCamelCase_ = Features({"labels": ClassLabel} )
lowerCamelCase_ = "text"
lowerCamelCase_ = "labels"
def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]:
"""simple docstring"""
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self )
SCREAMING_SNAKE_CASE__ = self.label_schema.copy()
SCREAMING_SNAKE_CASE__ = features[self.label_column]
SCREAMING_SNAKE_CASE__ = label_schema
return task_template
@property
def _snake_case ( self :str ) -> Dict[str, str]:
"""simple docstring"""
return {
self.text_column: "text",
self.label_column: "labels",
} | 6 | 1 |
import math
from enum import Enum
from typing import Optional, Union
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR
from .utils import logging
_lowerCamelCase = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "linear"
lowerCamelCase_ = "cosine"
lowerCamelCase_ = "cosine_with_restarts"
lowerCamelCase_ = "polynomial"
lowerCamelCase_ = "constant"
lowerCamelCase_ = "constant_with_warmup"
lowerCamelCase_ = "piecewise_constant"
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optimizer , UpperCamelCase__: int = -1 ):
return LambdaLR(UpperCamelCase__ , lambda UpperCamelCase__ : 1 , last_epoch=UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optimizer , UpperCamelCase__: int , UpperCamelCase__: int = -1 ):
def lr_lambda(UpperCamelCase__: int ):
if current_step < num_warmup_steps:
return float(UpperCamelCase__ ) / float(max(1.0 , UpperCamelCase__ ) )
return 1.0
return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , last_epoch=UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optimizer , UpperCamelCase__: str , UpperCamelCase__: int = -1 ):
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = step_rules.split(""",""" )
for rule_str in rule_list[:-1]:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = rule_str.split(""":""" )
SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = float(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = value
SCREAMING_SNAKE_CASE__ = float(rule_list[-1] )
def create_rules_function(UpperCamelCase__: Optional[int] , UpperCamelCase__: Any ):
def rule_func(UpperCamelCase__: int ) -> float:
SCREAMING_SNAKE_CASE__ = sorted(rules_dict.keys() )
for i, sorted_step in enumerate(UpperCamelCase__ ):
if steps < sorted_step:
return rules_dict[sorted_steps[i]]
return last_lr_multiple
return rule_func
SCREAMING_SNAKE_CASE__ = create_rules_function(UpperCamelCase__ , UpperCamelCase__ )
return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , last_epoch=UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: str , UpperCamelCase__: Dict , UpperCamelCase__: List[str]=-1 ):
def lr_lambda(UpperCamelCase__: int ):
if current_step < num_warmup_steps:
return float(UpperCamelCase__ ) / float(max(1 , UpperCamelCase__ ) )
return max(
0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) )
return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optimizer , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: float = 0.5 , UpperCamelCase__: int = -1 ):
def lr_lambda(UpperCamelCase__: Any ):
if current_step < num_warmup_steps:
return float(UpperCamelCase__ ) / float(max(1 , UpperCamelCase__ ) )
SCREAMING_SNAKE_CASE__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(UpperCamelCase__ ) * 2.0 * progress )) )
return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optimizer , UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: int = 1 , UpperCamelCase__: int = -1 ):
def lr_lambda(UpperCamelCase__: Optional[Any] ):
if current_step < num_warmup_steps:
return float(UpperCamelCase__ ) / float(max(1 , UpperCamelCase__ ) )
SCREAMING_SNAKE_CASE__ = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) )
if progress >= 1.0:
return 0.0
return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(UpperCamelCase__ ) * progress) % 1.0) )) )
return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Any , UpperCamelCase__: int=1e-7 , UpperCamelCase__: int=1.0 , UpperCamelCase__: Optional[int]=-1 ):
SCREAMING_SNAKE_CASE__ = optimizer.defaults["""lr"""]
if not (lr_init > lr_end):
raise ValueError(f'''lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})''' )
def lr_lambda(UpperCamelCase__: int ):
if current_step < num_warmup_steps:
return float(UpperCamelCase__ ) / float(max(1 , UpperCamelCase__ ) )
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
SCREAMING_SNAKE_CASE__ = lr_init - lr_end
SCREAMING_SNAKE_CASE__ = num_training_steps - num_warmup_steps
SCREAMING_SNAKE_CASE__ = 1 - (current_step - num_warmup_steps) / decay_steps
SCREAMING_SNAKE_CASE__ = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
return LambdaLR(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
_lowerCamelCase = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule,
}
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, SchedulerType] , UpperCamelCase__: Optimizer , UpperCamelCase__: Optional[str] = None , UpperCamelCase__: Optional[int] = None , UpperCamelCase__: Optional[int] = None , UpperCamelCase__: int = 1 , UpperCamelCase__: float = 1.0 , UpperCamelCase__: int = -1 , ):
SCREAMING_SNAKE_CASE__ = SchedulerType(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = TYPE_TO_SCHEDULER_FUNCTION[name]
if name == SchedulerType.CONSTANT:
return schedule_func(UpperCamelCase__ , last_epoch=UpperCamelCase__ )
if name == SchedulerType.PIECEWISE_CONSTANT:
return schedule_func(UpperCamelCase__ , step_rules=UpperCamelCase__ , last_epoch=UpperCamelCase__ )
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f'''{name} requires `num_warmup_steps`, please provide that argument.''' )
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(UpperCamelCase__ , num_warmup_steps=UpperCamelCase__ , last_epoch=UpperCamelCase__ )
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f'''{name} requires `num_training_steps`, please provide that argument.''' )
if name == SchedulerType.COSINE_WITH_RESTARTS:
return schedule_func(
UpperCamelCase__ , num_warmup_steps=UpperCamelCase__ , num_training_steps=UpperCamelCase__ , num_cycles=UpperCamelCase__ , last_epoch=UpperCamelCase__ , )
if name == SchedulerType.POLYNOMIAL:
return schedule_func(
UpperCamelCase__ , num_warmup_steps=UpperCamelCase__ , num_training_steps=UpperCamelCase__ , power=UpperCamelCase__ , last_epoch=UpperCamelCase__ , )
return schedule_func(
UpperCamelCase__ , num_warmup_steps=UpperCamelCase__ , num_training_steps=UpperCamelCase__ , last_epoch=UpperCamelCase__ ) | 6 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = model.config
SCREAMING_SNAKE_CASE__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
SCREAMING_SNAKE_CASE__ = MBartConfig(
is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , )
return encoder_config, decoder_config
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
if "encoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
SCREAMING_SNAKE_CASE__ = """encoder.""" + name
if "attn.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias"""
return name
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ):
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ )
if "qkv" in key:
SCREAMING_SNAKE_CASE__ = key.split(""".""" )
SCREAMING_SNAKE_CASE__ = int(key_split[3] )
SCREAMING_SNAKE_CASE__ = int(key_split[5] )
SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
SCREAMING_SNAKE_CASE__ = val[:dim, :]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE__ = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE__ = val[:dim]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2]
SCREAMING_SNAKE_CASE__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
SCREAMING_SNAKE_CASE__ = val
return orig_state_dict
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ):
# load original model
SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval()
# load HuggingFace model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
model.eval()
SCREAMING_SNAKE_CASE__ = original_model.state_dict()
SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ )
model.load_state_dict(UpperCamelCase__ )
# verify results on scanned document
SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" )
SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
SCREAMING_SNAKE_CASE__ = """When is the coffee break?"""
SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
SCREAMING_SNAKE_CASE__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
SCREAMING_SNAKE_CASE__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
SCREAMING_SNAKE_CASE__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[
"""input_ids"""
]
SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ )
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
# verify encoder hidden states
SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 )
# verify decoder hidden states
SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
_lowerCamelCase = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 6 | 1 |
import os
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str = "input.txt" ):
with open(os.path.join(os.path.dirname(UpperCamelCase__ ) , UpperCamelCase__ ) ) as input_file:
SCREAMING_SNAKE_CASE__ = [
[int(UpperCamelCase__ ) for element in line.split(""",""" )]
for line in input_file.readlines()
]
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = len(matrix[0] )
SCREAMING_SNAKE_CASE__ = [[-1 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )]
for i in range(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = matrix[i][0]
for j in range(1 , UpperCamelCase__ ):
for i in range(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
SCREAMING_SNAKE_CASE__ = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(F'''{solution() = }''') | 6 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_dpmpp_2m""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 6 | 1 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list , UpperCamelCase__: list , UpperCamelCase__: int ):
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = [[0] * n for i in range(UpperCamelCase__ )]
for i in range(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = y_points[i]
for i in range(2 , UpperCamelCase__ ):
for j in range(UpperCamelCase__ , UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = (
(xa - x_points[j - i + 1]) * q[j][i - 1]
- (xa - x_points[j]) * q[j - 1][i - 1]
) / (x_points[j] - x_points[j - i + 1])
return [q[n - 1][n - 1], q]
if __name__ == "__main__":
import doctest
doctest.testmod() | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ):
try:
SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = 2
while i * i <= n:
while n % i == 0:
SCREAMING_SNAKE_CASE__ = i
n //= i
i += 1
if n > 1:
SCREAMING_SNAKE_CASE__ = n
return int(UpperCamelCase__ )
if __name__ == "__main__":
print(F'''{solution() = }''') | 6 | 1 |
from ...configuration_utils import PretrainedConfig
_lowerCamelCase = {
'google/tapas-base-finetuned-sqa': (
'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'
),
'google/tapas-base-finetuned-wtq': (
'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'
),
'google/tapas-base-finetuned-wikisql-supervised': (
'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'
),
'google/tapas-base-finetuned-tabfact': (
'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'
),
}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "tapas"
def __init__( self :Tuple , __A :List[Any]=3_0522 , __A :Dict=768 , __A :List[Any]=12 , __A :int=12 , __A :Any=3072 , __A :str="gelu" , __A :Union[str, Any]=0.1 , __A :Optional[Any]=0.1 , __A :Tuple=1024 , __A :Any=[3, 256, 256, 2, 256, 256, 10] , __A :Optional[Any]=0.0_2 , __A :Tuple=1E-12 , __A :Any=0 , __A :Union[str, Any]=1_0.0 , __A :Any=0 , __A :Tuple=1.0 , __A :Optional[int]=None , __A :Dict=1.0 , __A :Optional[Any]=False , __A :Union[str, Any]=None , __A :List[Any]=1.0 , __A :int=1.0 , __A :Optional[int]=False , __A :Optional[int]=False , __A :Tuple="ratio" , __A :List[Any]=None , __A :Optional[int]=None , __A :Any=64 , __A :Tuple=32 , __A :Any=False , __A :List[str]=True , __A :Optional[Any]=False , __A :str=False , __A :List[str]=True , __A :Any=False , __A :Optional[int]=None , __A :Any=None , **__A :Any , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=__A , **__A )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = intermediate_size
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = type_vocab_sizes
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = layer_norm_eps
# Fine-tuning task hyperparameters
SCREAMING_SNAKE_CASE__ = positive_label_weight
SCREAMING_SNAKE_CASE__ = num_aggregation_labels
SCREAMING_SNAKE_CASE__ = aggregation_loss_weight
SCREAMING_SNAKE_CASE__ = use_answer_as_supervision
SCREAMING_SNAKE_CASE__ = answer_loss_importance
SCREAMING_SNAKE_CASE__ = use_normalized_answer_loss
SCREAMING_SNAKE_CASE__ = huber_loss_delta
SCREAMING_SNAKE_CASE__ = temperature
SCREAMING_SNAKE_CASE__ = aggregation_temperature
SCREAMING_SNAKE_CASE__ = use_gumbel_for_cells
SCREAMING_SNAKE_CASE__ = use_gumbel_for_aggregation
SCREAMING_SNAKE_CASE__ = average_approximation_function
SCREAMING_SNAKE_CASE__ = cell_selection_preference
SCREAMING_SNAKE_CASE__ = answer_loss_cutoff
SCREAMING_SNAKE_CASE__ = max_num_rows
SCREAMING_SNAKE_CASE__ = max_num_columns
SCREAMING_SNAKE_CASE__ = average_logits_per_cell
SCREAMING_SNAKE_CASE__ = select_one_column
SCREAMING_SNAKE_CASE__ = allow_empty_column_selection
SCREAMING_SNAKE_CASE__ = init_cell_selection_weights_to_zero
SCREAMING_SNAKE_CASE__ = reset_position_index_per_cell
SCREAMING_SNAKE_CASE__ = disable_per_token_loss
# Aggregation hyperparameters
SCREAMING_SNAKE_CASE__ = aggregation_labels
SCREAMING_SNAKE_CASE__ = no_aggregation_label_index
if isinstance(self.aggregation_labels , __A ):
SCREAMING_SNAKE_CASE__ = {int(__A ): v for k, v in aggregation_labels.items()} | 6 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Tuple ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :List[str] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Optional[Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
# Removed: 'text_encoder/model.safetensors',
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :List[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Optional[int] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
# 'text_encoder/model.fp16.safetensors',
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) | 6 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 42
class UpperCamelCase_ :
def __init__( self :Optional[Any] , __A :int ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [[] for _ in range(__A )]
SCREAMING_SNAKE_CASE__ = size
def __getitem__( self :Dict , __A :int ) -> Iterator[Edge]:
"""simple docstring"""
return iter(self._graph[vertex] )
@property
def _snake_case ( self :Tuple ) -> Optional[int]:
"""simple docstring"""
return self._size
def _snake_case ( self :List[Any] , __A :int , __A :int , __A :int ) -> int:
"""simple docstring"""
if weight not in (0, 1):
raise ValueError("""Edge weight must be either 0 or 1.""" )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("""Vertex indexes must be in [0; size).""" )
self._graph[from_vertex].append(Edge(__A , __A ) )
def _snake_case ( self :List[Any] , __A :int , __A :int ) -> int | None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = deque([start_vertex] )
SCREAMING_SNAKE_CASE__ = [None] * self.size
SCREAMING_SNAKE_CASE__ = 0
while queue:
SCREAMING_SNAKE_CASE__ = queue.popleft()
SCREAMING_SNAKE_CASE__ = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
SCREAMING_SNAKE_CASE__ = current_distance + edge.weight
SCREAMING_SNAKE_CASE__ = distances[edge.destination_vertex]
if (
isinstance(__A , __A )
and new_distance >= dest_vertex_distance
):
continue
SCREAMING_SNAKE_CASE__ = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("""No path from start_vertex to finish_vertex.""" )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod() | 6 |
import argparse
import datetime
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = {
"""0""": """Sunday""",
"""1""": """Monday""",
"""2""": """Tuesday""",
"""3""": """Wednesday""",
"""4""": """Thursday""",
"""5""": """Friday""",
"""6""": """Saturday""",
}
SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(UpperCamelCase__ ) < 11:
raise ValueError("""Must be 10 characters long""" )
# Get month
SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("""Month must be between 1 - 12""" )
SCREAMING_SNAKE_CASE__ = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get day
SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("""Date must be between 1 - 31""" )
# Get second separator
SCREAMING_SNAKE_CASE__ = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get year
SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8_500:
raise ValueError(
"""Year out of range. There has to be some sort of limit...right?""" )
# Get datetime obj for validation
SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) )
# Start math
if m <= 2:
SCREAMING_SNAKE_CASE__ = y - 1
SCREAMING_SNAKE_CASE__ = m + 12
# maths var
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] )
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] )
SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 )
SCREAMING_SNAKE_CASE__ = int(c / 4 )
SCREAMING_SNAKE_CASE__ = int(k / 4 )
SCREAMING_SNAKE_CASE__ = int(d + k )
SCREAMING_SNAKE_CASE__ = int(t + u + v + x )
SCREAMING_SNAKE_CASE__ = int(z - (2 * c) )
SCREAMING_SNAKE_CASE__ = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" )
# Response
SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
_lowerCamelCase = parser.parse_args()
zeller(args.date_input) | 6 | 1 |
import warnings
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'nvidia/segformer-b0-finetuned-ade-512-512': (
'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json'
),
# See all SegFormer models at https://huggingface.co/models?filter=segformer
}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "segformer"
def __init__( self :Optional[int] , __A :Optional[Any]=3 , __A :Optional[Any]=4 , __A :int=[2, 2, 2, 2] , __A :int=[8, 4, 2, 1] , __A :str=[32, 64, 160, 256] , __A :Optional[int]=[7, 3, 3, 3] , __A :Optional[int]=[4, 2, 2, 2] , __A :int=[1, 2, 5, 8] , __A :List[str]=[4, 4, 4, 4] , __A :Union[str, Any]="gelu" , __A :Tuple=0.0 , __A :int=0.0 , __A :Optional[int]=0.1 , __A :Any=0.0_2 , __A :Union[str, Any]=0.1 , __A :Dict=1E-6 , __A :Optional[int]=256 , __A :Dict=255 , **__A :Any , ) -> Dict:
"""simple docstring"""
super().__init__(**__A )
if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False:
warnings.warn(
"""Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be"""
""" removed, as the behaviour will default to that of reshape_last_stage = True.""" , __A , )
SCREAMING_SNAKE_CASE__ = num_channels
SCREAMING_SNAKE_CASE__ = num_encoder_blocks
SCREAMING_SNAKE_CASE__ = depths
SCREAMING_SNAKE_CASE__ = sr_ratios
SCREAMING_SNAKE_CASE__ = hidden_sizes
SCREAMING_SNAKE_CASE__ = patch_sizes
SCREAMING_SNAKE_CASE__ = strides
SCREAMING_SNAKE_CASE__ = mlp_ratios
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = classifier_dropout_prob
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = drop_path_rate
SCREAMING_SNAKE_CASE__ = layer_norm_eps
SCREAMING_SNAKE_CASE__ = decoder_hidden_size
SCREAMING_SNAKE_CASE__ = kwargs.get("""reshape_last_stage""" , __A )
SCREAMING_SNAKE_CASE__ = semantic_loss_ignore_index
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = version.parse("1.11" )
@property
def _snake_case ( self :int ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _snake_case ( self :Union[str, Any] ) -> float:
"""simple docstring"""
return 1E-4
@property
def _snake_case ( self :List[str] ) -> int:
"""simple docstring"""
return 12 | 6 |
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
_lowerCamelCase = logging.getLogger(__name__)
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser(
description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'
)
parser.add_argument(
'--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.'
)
parser.add_argument(
'--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.'
)
parser.add_argument('--vocab_size', default=30522, type=int)
_lowerCamelCase = parser.parse_args()
logger.info(F'''Loading data from {args.data_file}''')
with open(args.data_file, 'rb') as fp:
_lowerCamelCase = pickle.load(fp)
logger.info('Counting occurrences for MLM.')
_lowerCamelCase = Counter()
for tk_ids in data:
counter.update(tk_ids)
_lowerCamelCase = [0] * args.vocab_size
for k, v in counter.items():
_lowerCamelCase = v
logger.info(F'''Dump to {args.token_counts_dump}''')
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL) | 6 | 1 |
import unittest
from pathlib import Path
from tempfile import TemporaryDirectory
from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available
from transformers.models.gpta.tokenization_gpta import GPTaTokenizer
from transformers.testing_utils import require_keras_nlp, require_tf, slow
if is_tf_available():
import tensorflow as tf
if is_keras_nlp_available():
from transformers.models.gpta import TFGPTaTokenizer
_lowerCamelCase = ['gpt2']
_lowerCamelCase = 'gpt2'
if is_tf_available():
class UpperCamelCase_ ( tf.Module ):
def __init__( self :Optional[Any] , __A :Union[str, Any] ) -> List[Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = tokenizer
SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__A )
SCREAMING_SNAKE_CASE__ = TFGPTaLMHeadModel.from_config(__A )
@tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) )
def _snake_case ( self :Optional[int] , __A :int ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A )
SCREAMING_SNAKE_CASE__ = tokenized["""input_ids"""].to_tensor()
SCREAMING_SNAKE_CASE__ = tf.cast(input_ids_dense > 0 , tf.intaa )
# input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN])
SCREAMING_SNAKE_CASE__ = self.model(input_ids=__A , attention_mask=__A )["""logits"""]
return outputs
@require_tf
@require_keras_nlp
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :List[Any] ) -> Dict:
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE__ = [GPTaTokenizer.from_pretrained(__A ) for checkpoint in (TOKENIZER_CHECKPOINTS)]
SCREAMING_SNAKE_CASE__ = [TFGPTaTokenizer.from_pretrained(__A ) for checkpoint in TOKENIZER_CHECKPOINTS]
assert len(self.tokenizers ) == len(self.tf_tokenizers )
SCREAMING_SNAKE_CASE__ = [
"""This is a straightforward English test sentence.""",
"""This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""",
"""Now we're going to add some Chinese: 一 二 三 一二三""",
"""And some much more rare Chinese: 齉 堃 齉堃""",
"""Je vais aussi écrire en français pour tester les accents""",
"""Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""",
]
SCREAMING_SNAKE_CASE__ = list(zip(self.test_sentences , self.test_sentences[::-1] ) )
def _snake_case ( self :Any ) -> Any:
"""simple docstring"""
for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ):
for test_inputs in self.test_sentences:
SCREAMING_SNAKE_CASE__ = tokenizer([test_inputs] , return_tensors="""tf""" )
SCREAMING_SNAKE_CASE__ = tf_tokenizer([test_inputs] )
for key in python_outputs.keys():
# convert them to numpy to avoid messing with ragged tensors
SCREAMING_SNAKE_CASE__ = python_outputs[key].numpy()
SCREAMING_SNAKE_CASE__ = tf_outputs[key].numpy()
self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) )
self.assertTrue(tf.reduce_all(tf.cast(__A , tf.intaa ) == tf_outputs_values ) )
@slow
def _snake_case ( self :Any ) -> int:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
SCREAMING_SNAKE_CASE__ = tf.function(__A )
for test_inputs in self.test_sentences:
SCREAMING_SNAKE_CASE__ = tf.constant(__A )
SCREAMING_SNAKE_CASE__ = compiled_tokenizer(__A )
SCREAMING_SNAKE_CASE__ = tf_tokenizer(__A )
for key in eager_outputs.keys():
self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) )
@slow
def _snake_case ( self :List[Any] ) -> Any:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
SCREAMING_SNAKE_CASE__ = ModelToSave(tokenizer=__A )
SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor([self.test_sentences[0]] )
SCREAMING_SNAKE_CASE__ = model.serving(__A ) # Build model with some sample inputs
with TemporaryDirectory() as tempdir:
SCREAMING_SNAKE_CASE__ = Path(__A ) / """saved.model"""
tf.saved_model.save(__A , __A , signatures={"""serving_default""": model.serving} )
SCREAMING_SNAKE_CASE__ = tf.saved_model.load(__A )
SCREAMING_SNAKE_CASE__ = loaded_model.signatures["""serving_default"""](__A )["""output_0"""]
# We may see small differences because the loaded model is compiled, so we need an epsilon for the test
self.assertTrue(tf.reduce_all(out == loaded_output ) )
@slow
def _snake_case ( self :Dict ) -> int:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor([self.test_sentences[0]] )
SCREAMING_SNAKE_CASE__ = tf_tokenizer(__A ) # Build model with some sample inputs
SCREAMING_SNAKE_CASE__ = tf_tokenizer.get_config()
SCREAMING_SNAKE_CASE__ = TFGPTaTokenizer.from_config(__A )
SCREAMING_SNAKE_CASE__ = model_from_config(__A )
for key in from_config_output.keys():
self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) )
@slow
def _snake_case ( self :List[Any] ) -> Any:
"""simple docstring"""
for tf_tokenizer in self.tf_tokenizers:
# for the test to run
SCREAMING_SNAKE_CASE__ = 12_3123
for max_length in [3, 5, 1024]:
SCREAMING_SNAKE_CASE__ = tf.convert_to_tensor([self.test_sentences[0]] )
SCREAMING_SNAKE_CASE__ = tf_tokenizer(__A , max_length=__A )
SCREAMING_SNAKE_CASE__ = out["""input_ids"""].numpy().shape[1]
assert out_length == max_length | 6 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
_lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 6 | 1 |
from math import log
from scipy.constants import Boltzmann, physical_constants
_lowerCamelCase = 300 # TEMPERATURE (unit = K)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float , UpperCamelCase__: float , ):
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod() | 6 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "OwlViTImageProcessor"
lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __A , )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" )
SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__A , __A )
def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple:
"""simple docstring"""
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )):
SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )]
elif isinstance(__A , __A ) and isinstance(text[0] , __A ):
SCREAMING_SNAKE_CASE__ = []
# Maximum number of queries across batch
SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__A ) != max_num_queries:
SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A ))
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )
encodings.append(__A )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = input_ids
SCREAMING_SNAKE_CASE__ = attention_mask
if query_images is not None:
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = self.image_processor(
__A , return_tensors=__A , **__A ).pixel_values
SCREAMING_SNAKE_CASE__ = query_pixel_values
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]:
"""simple docstring"""
return self.image_processor.post_process(*__A , **__A )
def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor.post_process_object_detection(*__A , **__A )
def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any:
"""simple docstring"""
return self.image_processor.post_process_image_guided_detection(*__A , **__A )
def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :List[Any] ) -> Optional[int]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , )
return self.image_processor_class
@property
def _snake_case ( self :Any ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , )
return self.image_processor | 6 | 1 |
import functools
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int] , UpperCamelCase__: list[int] ):
# Validation
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for day in days ):
raise ValueError("""The parameter days should be a list of integers""" )
if len(UpperCamelCase__ ) != 3 or not all(isinstance(UpperCamelCase__ , UpperCamelCase__ ) for cost in costs ):
raise ValueError("""The parameter costs should be a list of three integers""" )
if len(UpperCamelCase__ ) == 0:
return 0
if min(UpperCamelCase__ ) <= 0:
raise ValueError("""All days elements should be greater than 0""" )
if max(UpperCamelCase__ ) >= 366:
raise ValueError("""All days elements should be less than 366""" )
SCREAMING_SNAKE_CASE__ = set(UpperCamelCase__ )
@functools.cache
def dynamic_programming(UpperCamelCase__: int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 6 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ):
@register_to_config
def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any:
"""simple docstring"""
super().__init__()
# pass init params to Encoder
SCREAMING_SNAKE_CASE__ = Encoder(
in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , )
SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A )
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
# pass init params to Decoder
SCREAMING_SNAKE_CASE__ = Decoder(
in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , )
@apply_forward_hook
def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.encoder(__A )
SCREAMING_SNAKE_CASE__ = self.quant_conv(__A )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=__A )
@apply_forward_hook
def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if not force_not_quantize:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A )
else:
SCREAMING_SNAKE_CASE__ = h
SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A )
SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A )
def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = sample
SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents
SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A ) | 6 | 1 |
from __future__ import annotations
_lowerCamelCase = 10
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int] ):
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = max(UpperCamelCase__ )
while placement <= max_digit:
# declare and initialize empty buckets
SCREAMING_SNAKE_CASE__ = [[] for _ in range(UpperCamelCase__ )]
# split list_of_ints between the buckets
for i in list_of_ints:
SCREAMING_SNAKE_CASE__ = int((i / placement) % RADIX )
buckets[tmp].append(UpperCamelCase__ )
# put each buckets' contents into list_of_ints
SCREAMING_SNAKE_CASE__ = 0
for b in range(UpperCamelCase__ ):
for i in buckets[b]:
SCREAMING_SNAKE_CASE__ = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod() | 6 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
lowerCamelCase_ = jnp.floataa
lowerCamelCase_ = True
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
super().setup()
SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype )
def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A )
SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ):
def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ):
SCREAMING_SNAKE_CASE__ = logits.shape[-1]
SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" )
SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 )
SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ )
return loss
SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = "google/bigbird-roberta-base"
lowerCamelCase_ = 30_00
lowerCamelCase_ = 1_05_00
lowerCamelCase_ = 1_28
lowerCamelCase_ = 3
lowerCamelCase_ = 1
lowerCamelCase_ = 5
# tx_args
lowerCamelCase_ = 3e-5
lowerCamelCase_ = 0.0
lowerCamelCase_ = 2_00_00
lowerCamelCase_ = 0.0095
lowerCamelCase_ = "bigbird-roberta-natural-questions"
lowerCamelCase_ = "training-expt"
lowerCamelCase_ = "data/nq-training.jsonl"
lowerCamelCase_ = "data/nq-validation.jsonl"
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
os.makedirs(self.base_dir , exist_ok=__A )
SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir )
SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count()
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 40_96 # no dynamic padding on TPUs
def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.collate_fn(__A )
SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A )
return batch
def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] )
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": jnp.array(__A , dtype=jnp.intaa ),
"""attention_mask""": jnp.array(__A , dtype=jnp.intaa ),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ),
}
return batch
def _snake_case ( self :Tuple , __A :list ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids]
return zip(*__A )
def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )]
while len(__A ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ):
if seed is not None:
SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ )
for i in range(len(UpperCamelCase__ ) // batch_size ):
SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(UpperCamelCase__ )
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ):
def loss_fn(UpperCamelCase__: List[Any] ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
return state.loss_fn(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" )
SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class UpperCamelCase_ ( train_state.TrainState ):
lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ )
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = None
def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = model.params
SCREAMING_SNAKE_CASE__ = TrainState.create(
apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , )
if ckpt_dir is not None:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A )
SCREAMING_SNAKE_CASE__ = train_state.TrainState(
step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , )
SCREAMING_SNAKE_CASE__ = args
SCREAMING_SNAKE_CASE__ = data_collator
SCREAMING_SNAKE_CASE__ = lr
SCREAMING_SNAKE_CASE__ = params
SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A )
return state
def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.args
SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size
SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() )
for epoch in range(args.max_epochs ):
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
if i % args.logging_steps == 0:
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step )
SCREAMING_SNAKE_CASE__ = running_loss.item() / i
SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 )
SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(__A ) )
self.logger.log(__A , commit=__A )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A )
def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size )
SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
return running_loss / i
def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A )
print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ )
self.model_save_fn(__A , params=state.params )
with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) )
joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) )
with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f:
json.dump({"""step""": state.step.item()} , __A )
print("""DONE""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ):
print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ )
with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() )
with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) )
with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f:
SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ):
def weight_decay_mask(UpperCamelCase__: Any ):
SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ )
return tx, lr | 6 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ):
SCREAMING_SNAKE_CASE__ = DPTConfig()
if "large" in checkpoint_url:
SCREAMING_SNAKE_CASE__ = 1_024
SCREAMING_SNAKE_CASE__ = 4_096
SCREAMING_SNAKE_CASE__ = 24
SCREAMING_SNAKE_CASE__ = 16
SCREAMING_SNAKE_CASE__ = [5, 11, 17, 23]
SCREAMING_SNAKE_CASE__ = [256, 512, 1_024, 1_024]
SCREAMING_SNAKE_CASE__ = (1, 384, 384)
if "ade" in checkpoint_url:
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = 150
SCREAMING_SNAKE_CASE__ = """huggingface/label-files"""
SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json"""
SCREAMING_SNAKE_CASE__ = json.load(open(cached_download(hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) ) , """r""" ) )
SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ = idalabel
SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ = [1, 150, 480, 480]
return config, expected_shape
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
SCREAMING_SNAKE_CASE__ = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.model""" , """dpt.encoder""" )
if "pretrained.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.model""" , """dpt.embeddings""" )
if "patch_embed" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed""" , """patch_embeddings""" )
if "pos_embed" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pos_embed""" , """position_embeddings""" )
if "attn.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "proj" in name and "project" not in name:
SCREAMING_SNAKE_CASE__ = name.replace("""proj""" , """projection""" )
if "blocks" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""blocks""" , """layer""" )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" )
if "norm1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" )
if "scratch.output_conv" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""scratch.output_conv""" , """head""" )
if "scratch" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""scratch""" , """neck""" )
if "layer1_rn" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""layer1_rn""" , """convs.0""" )
if "layer2_rn" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""layer2_rn""" , """convs.1""" )
if "layer3_rn" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""layer3_rn""" , """convs.2""" )
if "layer4_rn" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""layer4_rn""" , """convs.3""" )
if "refinenet" in name:
SCREAMING_SNAKE_CASE__ = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
SCREAMING_SNAKE_CASE__ = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""out_conv""" , """projection""" )
if "resConfUnit1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""resConfUnit1""" , """residual_layer1""" )
if "resConfUnit2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""resConfUnit2""" , """residual_layer2""" )
if "conv1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""conv1""" , """convolution1""" )
if "conv2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""conv2""" , """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""pretrained""" , """dpt""" )
if "bn" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""bn""" , """batch_norm""" )
if "head" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""head""" , """head.head""" )
if "encoder.norm" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""encoder.norm""" , """layernorm""" )
if "auxlayer" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""auxlayer""" , """auxiliary_head.head""" )
return name
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: List[str] ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[: config.hidden_size, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[: config.hidden_size]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
-config.hidden_size :, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Any , UpperCamelCase__: str , UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_dpt_config(UpperCamelCase__ )
# load original state_dict from URL
SCREAMING_SNAKE_CASE__ = torch.hub.load_state_dict_from_url(UpperCamelCase__ , map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(UpperCamelCase__ )
# rename keys
for key in state_dict.copy().keys():
SCREAMING_SNAKE_CASE__ = state_dict.pop(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = val
# read in qkv matrices
read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ )
# load HuggingFace model
SCREAMING_SNAKE_CASE__ = DPTForSemanticSegmentation(UpperCamelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCamelCase__ )
model.load_state_dict(UpperCamelCase__ )
model.eval()
# Check outputs on an image
SCREAMING_SNAKE_CASE__ = 480 if """ade""" in checkpoint_url else 384
SCREAMING_SNAKE_CASE__ = DPTImageProcessor(size=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = prepare_img()
SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" )
# forward pass
SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCamelCase__ ).predicted_depth
# Assert logits
SCREAMING_SNAKE_CASE__ = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] )
if "ade" in checkpoint_url:
SCREAMING_SNAKE_CASE__ = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] )
assert outputs.shape == torch.Size(UpperCamelCase__ )
assert (
torch.allclose(outputs[0, 0, :3, :3] , UpperCamelCase__ , atol=1e-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , UpperCamelCase__ )
)
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCamelCase__ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=UpperCamelCase__ , )
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCamelCase__ , UpperCamelCase__ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=UpperCamelCase__ , )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
_lowerCamelCase = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 6 |
from torch import nn
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f'''Unsupported activation function: {act_fn}''' ) | 6 | 1 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 10 , UpperCamelCase__: int = 1_000 , UpperCamelCase__: bool = True ):
assert (
isinstance(UpperCamelCase__ , UpperCamelCase__ )
and isinstance(UpperCamelCase__ , UpperCamelCase__ )
and isinstance(UpperCamelCase__ , UpperCamelCase__ )
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("""Invalid value for min_val or max_val (min_value < max_value)""" )
return min_val if option else max_val
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: int ):
return int((number_a + number_a) / 2 )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: int ):
assert (
isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ ) and isinstance(UpperCamelCase__ , UpperCamelCase__ )
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("""argument value for lower and higher must be(lower > higher)""" )
if not lower < to_guess < higher:
raise ValueError(
"""guess value must be within the range of lower and higher value""" )
def answer(UpperCamelCase__: int ) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("""started...""" )
SCREAMING_SNAKE_CASE__ = lower
SCREAMING_SNAKE_CASE__ = higher
SCREAMING_SNAKE_CASE__ = []
while True:
SCREAMING_SNAKE_CASE__ = get_avg(UpperCamelCase__ , UpperCamelCase__ )
last_numbers.append(UpperCamelCase__ )
if answer(UpperCamelCase__ ) == "low":
SCREAMING_SNAKE_CASE__ = number
elif answer(UpperCamelCase__ ) == "high":
SCREAMING_SNAKE_CASE__ = number
else:
break
print(f'''guess the number : {last_numbers[-1]}''' )
print(f'''details : {last_numbers!s}''' )
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = int(input("""Enter lower value : """ ).strip() )
SCREAMING_SNAKE_CASE__ = int(input("""Enter high value : """ ).strip() )
SCREAMING_SNAKE_CASE__ = int(input("""Enter value to guess : """ ).strip() )
guess_the_number(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
if __name__ == "__main__":
main() | 6 |
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained(
"""microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = """huggingface/label-files"""
if "ade20k-full" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 847
SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json"""
elif "ade" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 150
SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json"""
elif "coco-stuff" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 171
SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json"""
elif "coco" in model_name:
# TODO
SCREAMING_SNAKE_CASE__ = 133
SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json"""
elif "cityscapes" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 19
SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json"""
elif "vistas" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 65
SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json"""
SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
SCREAMING_SNAKE_CASE__ = []
# stem
# fmt: off
rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") )
rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") )
# heads on top
rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") )
for i in range(3 ):
rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ):
SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = val
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ):
SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
SCREAMING_SNAKE_CASE__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[
dim : dim * 2
]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
-dim :, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :]
# fmt: on
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ):
# fmt: off
SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size]
SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2]
SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size]
SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2]
SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :]
# fmt: on
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ):
SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ )
# load original state_dict
with open(UpperCamelCase__ , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = data["""model"""]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ )
for src, dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config )
read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ )
# update to torch tensors
for key, value in state_dict.items():
SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ )
# load 🤗 model
SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ )
model.eval()
for name, param in model.named_parameters():
print(UpperCamelCase__ , param.shape )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}'''
# verify results
SCREAMING_SNAKE_CASE__ = prepare_img()
if "vistas" in model_name:
SCREAMING_SNAKE_CASE__ = 65
elif "cityscapes" in model_name:
SCREAMING_SNAKE_CASE__ = 65_535
else:
SCREAMING_SNAKE_CASE__ = 255
SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False
SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ )
print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
SCREAMING_SNAKE_CASE__ = torch.tensor(
[[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
image_processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
print("""Pushing model and image processor to the hub...""" )
model.push_to_hub(f'''nielsr/{model_name}''' )
image_processor.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='maskformer-swin-tiny-ade',
type=str,
help=('Name of the MaskFormer model you\'d like to convert',),
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl',
type=str,
help='Path to the original state dict (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
) | 6 | 1 |
import numpy as np
from sklearn.datasets import fetch_california_housing
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
from xgboost import XGBRegressor
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: dict ):
return (data["data"], data["target"])
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: np.ndarray , UpperCamelCase__: np.ndarray , UpperCamelCase__: np.ndarray ):
SCREAMING_SNAKE_CASE__ = XGBRegressor(verbosity=0 , random_state=42 )
xgb.fit(UpperCamelCase__ , UpperCamelCase__ )
# Predict target for test data
SCREAMING_SNAKE_CASE__ = xgb.predict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = predictions.reshape(len(UpperCamelCase__ ) , 1 )
return predictions
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = fetch_california_housing()
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = data_handling(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = train_test_split(
UpperCamelCase__ , UpperCamelCase__ , test_size=0.2_5 , random_state=1 )
SCREAMING_SNAKE_CASE__ = xgboost(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Error printing
print(f'''Mean Absolute Error : {mean_absolute_error(UpperCamelCase__ , UpperCamelCase__ )}''' )
print(f'''Mean Square Error : {mean_squared_error(UpperCamelCase__ , UpperCamelCase__ )}''' )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main() | 6 |
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'nielsr/canine-s': 2048,
}
# Unicode defines 1,114,112 total “codepoints”
_lowerCamelCase = 1114112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
_lowerCamelCase = 0
_lowerCamelCase = 0XE0_00
_lowerCamelCase = 0XE0_01
_lowerCamelCase = 0XE0_02
_lowerCamelCase = 0XE0_03
_lowerCamelCase = 0XE0_04
# Maps special codepoints to human-readable names.
_lowerCamelCase = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
_lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , )
# Creates a mapping for looking up the IDs of special symbols.
SCREAMING_SNAKE_CASE__ = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
SCREAMING_SNAKE_CASE__ = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
SCREAMING_SNAKE_CASE__ = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE
SCREAMING_SNAKE_CASE__ = len(self._special_codepoints )
@property
def _snake_case ( self :Optional[Any] ) -> int:
"""simple docstring"""
return self._unicode_vocab_size
def _snake_case ( self :Tuple , __A :str ) -> List[str]:
"""simple docstring"""
return list(__A )
def _snake_case ( self :Optional[Any] , __A :str ) -> int:
"""simple docstring"""
try:
return ord(__A )
except TypeError:
raise ValueError(f'''invalid token: \'{token}\'''' )
def _snake_case ( self :str , __A :int ) -> str:
"""simple docstring"""
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(__A )
except TypeError:
raise ValueError(f'''invalid id: {index}''' )
def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any:
"""simple docstring"""
return "".join(__A )
def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1]
if token_ids_a is not None:
result += ([0] * len(__A )) + [1]
return result
def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any:
"""simple docstring"""
return () | 6 | 1 |
# This script creates a super tiny model that is useful inside tests, when we just want to test that
# the machinery works, without needing to the check the quality of the outcomes.
#
# This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny -
# all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and
# emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files.
# The latter is done by `fsmt-make-super-tiny-model.py`.
#
# It will be used then as "stas/tiny-wmt19-en-ru"
from pathlib import Path
import json
import tempfile
from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
_lowerCamelCase = 'tiny-wmt19-en-ru'
# Build
# borrowed from a test
_lowerCamelCase = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'w</w>',
'r</w>',
't</w>',
'lo',
'low',
'er</w>',
'low</w>',
'lowest</w>',
'newer</w>',
'wider</w>',
'<unk>',
]
_lowerCamelCase = dict(zip(vocab, range(len(vocab))))
_lowerCamelCase = ['l o 123', 'lo w 1456', 'e r</w> 1789', '']
with tempfile.TemporaryDirectory() as tmpdirname:
_lowerCamelCase = Path(tmpdirname)
_lowerCamelCase = build_dir / VOCAB_FILES_NAMES['src_vocab_file']
_lowerCamelCase = build_dir / VOCAB_FILES_NAMES['tgt_vocab_file']
_lowerCamelCase = build_dir / VOCAB_FILES_NAMES['merges_file']
with open(src_vocab_file, 'w') as fp:
fp.write(json.dumps(vocab_tokens))
with open(tgt_vocab_file, 'w') as fp:
fp.write(json.dumps(vocab_tokens))
with open(merges_file, 'w') as fp:
fp.write('\n'.join(merges))
_lowerCamelCase = FSMTTokenizer(
langs=['en', 'ru'],
src_vocab_size=len(vocab),
tgt_vocab_size=len(vocab),
src_vocab_file=src_vocab_file,
tgt_vocab_file=tgt_vocab_file,
merges_file=merges_file,
)
_lowerCamelCase = FSMTConfig(
langs=['ru', 'en'],
src_vocab_size=1000,
tgt_vocab_size=1000,
d_model=4,
encoder_layers=1,
decoder_layers=1,
encoder_ffn_dim=4,
decoder_ffn_dim=4,
encoder_attention_heads=1,
decoder_attention_heads=1,
)
_lowerCamelCase = FSMTForConditionalGeneration(config)
print(F'''num of params {tiny_model.num_parameters()}''')
# Test
_lowerCamelCase = tokenizer(['Making tiny model'], return_tensors='pt')
_lowerCamelCase = tiny_model(**batch)
print('test output:', len(outputs.logits[0]))
# Save
tiny_model.half() # makes it smaller
tiny_model.save_pretrained(mname_tiny)
tokenizer.save_pretrained(mname_tiny)
print(F'''Generated {mname_tiny}''')
# Upload
# transformers-cli upload tiny-wmt19-en-ru | 6 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
_lowerCamelCase = 'bert-base-cased'
_lowerCamelCase = 'fp16'
_lowerCamelCase = 'bf16'
_lowerCamelCase = [FPaa, BFaa]
@require_fsdp
@require_cuda
class UpperCamelCase_ ( UpperCamelCase__ ):
def _snake_case ( self :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE__ = dict(
ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , )
def _snake_case ( self :List[Any] ) -> Tuple:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = f'''{i + 1}'''
SCREAMING_SNAKE_CASE__ = strategy
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) )
def _snake_case ( self :int ) -> List[str]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = prefetch_policy
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) )
def _snake_case ( self :List[str] ) -> List[str]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = state_dict_type
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def _snake_case ( self :str ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A )
for policy in FSDP_AUTO_WRAP_POLICY:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = policy
if policy == "TRANSFORMER_BASED_WRAP":
SCREAMING_SNAKE_CASE__ = """BertLayer"""
elif policy == "SIZE_BASED_WRAP":
SCREAMING_SNAKE_CASE__ = """2000"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__A )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP"""
SCREAMING_SNAKE_CASE__ = """T5Layer"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
with self.assertRaises(__A ) as cm:
fsdp_plugin.set_auto_wrap_policy(__A )
self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) )
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP"""
SCREAMING_SNAKE_CASE__ = """0"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__A )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def _snake_case ( self :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = mp_dtype
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = Accelerator()
if mp_dtype == "fp16":
SCREAMING_SNAKE_CASE__ = torch.floataa
elif mp_dtype == "bf16":
SCREAMING_SNAKE_CASE__ = torch.bfloataa
SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , __A ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__A )
def _snake_case ( self :str ) -> str:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = str(__A ).lower()
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) )
@require_fsdp
@require_multi_gpu
@slow
class UpperCamelCase_ ( UpperCamelCase__ ):
def _snake_case ( self :Any ) -> Any:
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE__ = 0.8_2
SCREAMING_SNAKE_CASE__ = [
"""fsdp_shard_grad_op_transformer_based_wrap""",
"""fsdp_full_shard_transformer_based_wrap""",
]
SCREAMING_SNAKE_CASE__ = {
"""multi_gpu_fp16""": 3200,
"""fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000,
"""fsdp_full_shard_transformer_based_wrap_fp16""": 1900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
SCREAMING_SNAKE_CASE__ = 160
SCREAMING_SNAKE_CASE__ = 160
SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils )
SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] )
def _snake_case ( self :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" )
SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""]
for config in self.performance_configs:
SCREAMING_SNAKE_CASE__ = cmd.copy()
for i, strategy in enumerate(__A ):
if strategy.lower() in config:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "fp32" in config:
cmd_config.append("""--mixed_precision=no""" )
else:
cmd_config.append("""--mixed_precision=fp16""" )
if "cpu_offload" in config:
cmd_config.append("""--fsdp_offload_params=True""" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("""--fsdp_min_num_params=2000""" )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--performance_lower_bound={self.performance_lower_bound}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
def _snake_case ( self :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" )
SCREAMING_SNAKE_CASE__ = [
"""accelerate""",
"""launch""",
"""--num_processes=2""",
"""--num_machines=1""",
"""--machine_rank=0""",
"""--use_fsdp""",
"""--mixed_precision=fp16""",
"""--fsdp_transformer_layer_cls_to_wrap=BertLayer""",
]
for i, strategy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = cmd.copy()
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
if strategy != "FULL_SHARD":
continue
SCREAMING_SNAKE_CASE__ = len(__A )
for state_dict_type in FSDP_STATE_DICT_TYPE:
SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index]
cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
"""--partial_train_epoch=1""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
SCREAMING_SNAKE_CASE__ = cmd_config[:-1]
SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" )
cmd_config.extend(
[
f'''--resume_from_checkpoint={resume_from_checkpoint}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
def _snake_case ( self :Tuple ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" )
SCREAMING_SNAKE_CASE__ = [
"""accelerate""",
"""launch""",
"""--num_processes=2""",
"""--num_machines=1""",
"""--machine_rank=0""",
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
SCREAMING_SNAKE_CASE__ = cmd.copy()
if "fp16" in spec:
cmd_config.extend(["""--mixed_precision=fp16"""] )
else:
cmd_config.extend(["""--mixed_precision=no"""] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(["""--use_fsdp"""] )
for i, strategy in enumerate(__A ):
if strategy.lower() in spec:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "cpu_offload" in spec:
cmd_config.append("""--fsdp_offload_params=True""" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("""--fsdp_min_num_params=2000""" )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--peak_memory_upper_bound={peak_mem_upper_bound}''',
f'''--n_train={self.n_train}''',
f'''--n_val={self.n_val}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() ) | 6 | 1 |
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
_lowerCamelCase = {
'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in',
'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0',
'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out',
'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1',
'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm',
'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2',
'mask_downscaling.0': 'mask_embed.conv1',
'mask_downscaling.1': 'mask_embed.layer_norm1',
'mask_downscaling.3': 'mask_embed.conv2',
'mask_downscaling.4': 'mask_embed.layer_norm2',
'mask_downscaling.6': 'mask_embed.conv3',
'point_embeddings': 'point_embed',
'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding',
'image_encoder': 'vision_encoder',
'neck.0': 'neck.conv1',
'neck.1': 'neck.layer_norm1',
'neck.2': 'neck.conv2',
'neck.3': 'neck.layer_norm2',
'patch_embed.proj': 'patch_embed.projection',
'.norm': '.layer_norm',
'blocks': 'layers',
}
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ):
SCREAMING_SNAKE_CASE__ = {}
state_dict.pop("""pixel_mean""" , UpperCamelCase__ )
state_dict.pop("""pixel_std""" , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = R""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*"""
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
SCREAMING_SNAKE_CASE__ = key.replace(UpperCamelCase__ , UpperCamelCase__ )
if re.match(UpperCamelCase__ , UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = int(re.match(UpperCamelCase__ , UpperCamelCase__ ).group(2 ) )
if layer_nb == 0:
SCREAMING_SNAKE_CASE__ = key.replace("""layers.0""" , """proj_in""" )
elif layer_nb == 1:
SCREAMING_SNAKE_CASE__ = key.replace("""layers.1""" , """layers.0""" )
elif layer_nb == 2:
SCREAMING_SNAKE_CASE__ = key.replace("""layers.2""" , """proj_out""" )
SCREAMING_SNAKE_CASE__ = value
SCREAMING_SNAKE_CASE__ = model_state_dict[
"""prompt_encoder.shared_embedding.positional_embedding"""
]
return model_state_dict
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple , UpperCamelCase__: int , UpperCamelCase__: Tuple="ybelkada/segment-anything" ):
SCREAMING_SNAKE_CASE__ = hf_hub_download(UpperCamelCase__ , f'''checkpoints/{model_name}.pth''' )
if "sam_vit_b" in model_name:
SCREAMING_SNAKE_CASE__ = SamConfig()
elif "sam_vit_l" in model_name:
SCREAMING_SNAKE_CASE__ = SamVisionConfig(
hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , )
SCREAMING_SNAKE_CASE__ = SamConfig(
vision_config=UpperCamelCase__ , )
elif "sam_vit_h" in model_name:
SCREAMING_SNAKE_CASE__ = SamVisionConfig(
hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , )
SCREAMING_SNAKE_CASE__ = SamConfig(
vision_config=UpperCamelCase__ , )
SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase__ , map_location="""cpu""" )
SCREAMING_SNAKE_CASE__ = replace_keys(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = SamImageProcessor()
SCREAMING_SNAKE_CASE__ = SamProcessor(image_processor=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = SamModel(UpperCamelCase__ )
hf_model.load_state_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = hf_model.to("""cuda""" )
SCREAMING_SNAKE_CASE__ = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"""
SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("""RGB""" )
SCREAMING_SNAKE_CASE__ = [[[400, 650]]]
SCREAMING_SNAKE_CASE__ = [[1]]
SCREAMING_SNAKE_CASE__ = processor(images=np.array(UpperCamelCase__ ) , return_tensors="""pt""" ).to("""cuda""" )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = hf_model(**UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8
SCREAMING_SNAKE_CASE__ = processor(
images=np.array(UpperCamelCase__ ) , input_points=UpperCamelCase__ , input_labels=UpperCamelCase__ , return_tensors="""pt""" ).to("""cuda""" )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = hf_model(**UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4
SCREAMING_SNAKE_CASE__ = ((75, 275, 1_725, 850),)
SCREAMING_SNAKE_CASE__ = processor(images=np.array(UpperCamelCase__ ) , input_boxes=UpperCamelCase__ , return_tensors="""pt""" ).to("""cuda""" )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = hf_model(**UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4
# Test with 2 points and 1 image.
SCREAMING_SNAKE_CASE__ = [[[400, 650], [800, 650]]]
SCREAMING_SNAKE_CASE__ = [[1, 1]]
SCREAMING_SNAKE_CASE__ = processor(
images=np.array(UpperCamelCase__ ) , input_points=UpperCamelCase__ , input_labels=UpperCamelCase__ , return_tensors="""pt""" ).to("""cuda""" )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = hf_model(**UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
_lowerCamelCase = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195']
parser.add_argument(
'--model_name',
default='sam_vit_h_4b8939',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub after converting',
)
parser.add_argument(
'--model_hub_id',
default='ybelkada/segment-anything',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
_lowerCamelCase = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id) | 6 |
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
_lowerCamelCase = logging.get_logger(__name__)
# General docstring
_lowerCamelCase = 'PoolFormerConfig'
# Base docstring
_lowerCamelCase = 'sail/poolformer_s12'
_lowerCamelCase = [1, 512, 7, 7]
# Image classification docstring
_lowerCamelCase = 'sail/poolformer_s12'
_lowerCamelCase = 'tabby, tabby cat'
_lowerCamelCase = [
'sail/poolformer_s12',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ):
if drop_prob == 0.0 or not training:
return input
SCREAMING_SNAKE_CASE__ = 1 - drop_prob
SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor
return output
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = drop_prob
def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
return drop_path(__A , self.drop_prob , self.training )
def _snake_case ( self :Dict ) -> str:
"""simple docstring"""
return "p={}".format(self.drop_prob )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size)
SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride)
SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding)
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A )
SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity()
def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.projection(__A )
SCREAMING_SNAKE_CASE__ = self.norm(__A )
return embeddings
class UpperCamelCase_ ( nn.GroupNorm ):
def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict:
"""simple docstring"""
super().__init__(1 , __A , **__A )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :List[str] , __A :Optional[int] ) -> Any:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A )
def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return self.pool(__A ) - hidden_states
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A )
if isinstance(config.hidden_act , __A ):
SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act]
else:
SCREAMING_SNAKE_CASE__ = config.hidden_act
def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.conva(__A )
SCREAMING_SNAKE_CASE__ = self.act_fn(__A )
SCREAMING_SNAKE_CASE__ = self.drop(__A )
SCREAMING_SNAKE_CASE__ = self.conva(__A )
SCREAMING_SNAKE_CASE__ = self.drop(__A )
return hidden_states
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A )
SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A )
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A )
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A )
# Useful for training neural nets
SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity()
SCREAMING_SNAKE_CASE__ = config.use_layer_scale
if config.use_layer_scale:
SCREAMING_SNAKE_CASE__ = nn.Parameter(
config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A )
SCREAMING_SNAKE_CASE__ = nn.Parameter(
config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A )
def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str:
"""simple docstring"""
if self.use_layer_scale:
SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) )
SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A )
SCREAMING_SNAKE_CASE__ = ()
SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) )
SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A )
SCREAMING_SNAKE_CASE__ = (output,) + outputs
return outputs
else:
SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) )
# First residual connection
SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states
SCREAMING_SNAKE_CASE__ = ()
# Second residual connection inside the PoolFormerOutput block
SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) )
SCREAMING_SNAKE_CASE__ = hidden_states + layer_output
SCREAMING_SNAKE_CASE__ = (output,) + outputs
return outputs
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = config
# stochastic depth decay rule
SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
SCREAMING_SNAKE_CASE__ = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A )
# Transformer blocks
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
SCREAMING_SNAKE_CASE__ = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
__A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(__A ) )
SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A )
def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None
SCREAMING_SNAKE_CASE__ = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers
# Get patch embeddings from hidden_states
SCREAMING_SNAKE_CASE__ = embedding_layer(__A )
# Send the embeddings through the blocks
for _, blk in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = blk(__A )
SCREAMING_SNAKE_CASE__ = layer_outputs[0]
if output_hidden_states:
SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A )
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = PoolFormerConfig
lowerCamelCase_ = "poolformer"
lowerCamelCase_ = "pixel_values"
lowerCamelCase_ = True
def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict:
"""simple docstring"""
if isinstance(__A , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__A , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any:
"""simple docstring"""
if isinstance(__A , __A ):
SCREAMING_SNAKE_CASE__ = value
_lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
_lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n'
@add_start_docstrings(
"The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , )
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :Union[str, Any] , __A :Any ) -> int:
"""simple docstring"""
super().__init__(__A )
SCREAMING_SNAKE_CASE__ = config
SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A )
# Initialize weights and apply final processing
self.post_init()
def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(__A )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""" )
SCREAMING_SNAKE_CASE__ = self.encoder(
__A , output_hidden_states=__A , return_dict=__A , )
SCREAMING_SNAKE_CASE__ = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :int , __A :Optional[int] ) -> Tuple:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size )
def _snake_case ( self :List[Any] , __A :Dict ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.dense(__A )
return output
@add_start_docstrings(
"\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , )
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :str , __A :Union[str, Any] ) -> int:
"""simple docstring"""
super().__init__(__A )
SCREAMING_SNAKE_CASE__ = config.num_labels
SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A )
# Final norm
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
SCREAMING_SNAKE_CASE__ = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__A )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE__ = self.poolformer(
__A , output_hidden_states=__A , return_dict=__A , )
SCREAMING_SNAKE_CASE__ = outputs[0]
SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) )
SCREAMING_SNAKE_CASE__ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
SCREAMING_SNAKE_CASE__ = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
SCREAMING_SNAKE_CASE__ = """single_label_classification"""
else:
SCREAMING_SNAKE_CASE__ = """multi_label_classification"""
if self.config.problem_type == "regression":
SCREAMING_SNAKE_CASE__ = MSELoss()
if self.num_labels == 1:
SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() )
else:
SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A )
elif self.config.problem_type == "single_label_classification":
SCREAMING_SNAKE_CASE__ = CrossEntropyLoss()
SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss()
SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A )
if not return_dict:
SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states ) | 6 | 1 |
import os
import numpy
import onnx
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = a.name
SCREAMING_SNAKE_CASE__ = b.name
SCREAMING_SNAKE_CASE__ = """"""
SCREAMING_SNAKE_CASE__ = """"""
SCREAMING_SNAKE_CASE__ = a == b
SCREAMING_SNAKE_CASE__ = name_a
SCREAMING_SNAKE_CASE__ = name_b
return res
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] ):
for i, input_name in enumerate(node_proto.input ):
if input_name == name:
node_proto.input.insert(UpperCamelCase__ , UpperCamelCase__ )
node_proto.input.pop(i + 1 )
if node_proto.op_type == "If":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ )
_graph_replace_input_with(node_proto.attribute[1].g , UpperCamelCase__ , UpperCamelCase__ )
if node_proto.op_type == "Loop":
_graph_replace_input_with(node_proto.attribute[0].g , UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ):
for n in graph_proto.node:
_node_replace_input_with(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] ):
SCREAMING_SNAKE_CASE__ = list(model.graph.initializer )
SCREAMING_SNAKE_CASE__ = list(model_without_ext.graph.initializer )
for i, ref_i in ind_to_replace:
assert inits_with_data[i].name == inits[i].name
assert inits_with_data[ref_i].name == inits[ref_i].name
assert i > ref_i
SCREAMING_SNAKE_CASE__ = inits[i].name
SCREAMING_SNAKE_CASE__ = inits[ref_i].name
model_without_ext.graph.initializer.remove(inits[i] )
# for n in model.graph.node:
_graph_replace_input_with(model_without_ext.graph , UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ):
SCREAMING_SNAKE_CASE__ = os.path.dirname(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = os.path.basename(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = onnx.load(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) )
SCREAMING_SNAKE_CASE__ = list(model.graph.initializer )
SCREAMING_SNAKE_CASE__ = set()
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = 0
for i in range(len(UpperCamelCase__ ) ):
if i in dup_set:
continue
for j in range(i + 1 , len(UpperCamelCase__ ) ):
if j in dup_set:
continue
if _is_equal_tensor_proto(inits[i] , inits[j] ):
dup_set.add(UpperCamelCase__ )
dup_set.add(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = inits[j].data_type
SCREAMING_SNAKE_CASE__ = numpy.prod(inits[j].dims )
if dtype == 1:
mem_size *= 4
elif dtype == 6:
mem_size *= 4
elif dtype == 7 or dtype == 11:
mem_size *= 8
else:
print("""unexpected data type: """ , UpperCamelCase__ )
total_reduced_size += mem_size
SCREAMING_SNAKE_CASE__ = inits[i].name
SCREAMING_SNAKE_CASE__ = inits[j].name
if name_i in dup_map:
dup_map[name_i].append(UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE__ = [name_j]
ind_to_replace.append((j, i) )
print("""total reduced size: """ , total_reduced_size / 1_024 / 1_024 / 1_024 , """GB""" )
SCREAMING_SNAKE_CASE__ = sorted(UpperCamelCase__ )
_remove_dup_initializers_from_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = """optimized_""" + model_file_name
SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , UpperCamelCase__ )
onnx.save(UpperCamelCase__ , UpperCamelCase__ )
return new_model | 6 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = seq_length
SCREAMING_SNAKE_CASE__ = is_training
SCREAMING_SNAKE_CASE__ = use_input_lengths
SCREAMING_SNAKE_CASE__ = use_token_type_ids
SCREAMING_SNAKE_CASE__ = use_labels
SCREAMING_SNAKE_CASE__ = gelu_activation
SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings
SCREAMING_SNAKE_CASE__ = causal
SCREAMING_SNAKE_CASE__ = asm
SCREAMING_SNAKE_CASE__ = n_langs
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = n_special
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = type_vocab_size
SCREAMING_SNAKE_CASE__ = type_sequence_label_size
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = num_labels
SCREAMING_SNAKE_CASE__ = num_choices
SCREAMING_SNAKE_CASE__ = summary_type
SCREAMING_SNAKE_CASE__ = use_proj
SCREAMING_SNAKE_CASE__ = scope
def _snake_case ( self :Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ = None
if self.use_input_lengths:
SCREAMING_SNAKE_CASE__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
SCREAMING_SNAKE_CASE__ = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float()
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _snake_case ( self :List[str] ) -> Optional[int]:
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A )
SCREAMING_SNAKE_CASE__ = model(__A , langs=__A )
SCREAMING_SNAKE_CASE__ = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(
__A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , )
SCREAMING_SNAKE_CASE__ = model(
__A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , )
((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple()
SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A )
((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(__A , labels=__A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_choices
SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self :Union[str, Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
lowerCamelCase_ = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
lowerCamelCase_ = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
SCREAMING_SNAKE_CASE__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__A )
SCREAMING_SNAKE_CASE__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__A )
return inputs_dict
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 )
def _snake_case ( self :int ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def _snake_case ( self :Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__A )
def _snake_case ( self :Tuple ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__A )
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*__A )
def _snake_case ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__A )
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__A )
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*__A )
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*__A )
@slow
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A )
self.assertIsNotNone(__A )
@slow
@require_torch_gpu
def _snake_case ( self :Tuple ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = model_class(config=__A )
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A )
SCREAMING_SNAKE_CASE__ = torch.jit.trace(
__A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) )
SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A )
loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) )
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
@slow
def _snake_case ( self :Dict ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = model(__A )[0]
SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __A )
SCREAMING_SNAKE_CASE__ = torch.tensor(
[[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) ) | 6 | 1 |
from __future__ import annotations
import math
class UpperCamelCase_ :
def __init__( self :Tuple , __A :int ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = size
# approximate the overall size of segment tree with given value
SCREAMING_SNAKE_CASE__ = [0 for i in range(0 , 4 * size )]
# create array to store lazy update
SCREAMING_SNAKE_CASE__ = [0 for i in range(0 , 4 * size )]
SCREAMING_SNAKE_CASE__ = [0 for i in range(0 , 4 * size )] # flag for lazy update
def _snake_case ( self :Union[str, Any] , __A :int ) -> int:
"""simple docstring"""
return idx * 2
def _snake_case ( self :Dict , __A :int ) -> int:
"""simple docstring"""
return idx * 2 + 1
def _snake_case ( self :Tuple , __A :int , __A :int , __A :int , __A :list[int] ) -> None:
"""simple docstring"""
if left_element == right_element:
SCREAMING_SNAKE_CASE__ = a[left_element - 1]
else:
SCREAMING_SNAKE_CASE__ = (left_element + right_element) // 2
self.build(self.left(__A ) , __A , __A , __A )
self.build(self.right(__A ) , mid + 1 , __A , __A )
SCREAMING_SNAKE_CASE__ = max(
self.segment_tree[self.left(__A )] , self.segment_tree[self.right(__A )] )
def _snake_case ( self :Dict , __A :int , __A :int , __A :int , __A :int , __A :int , __A :int ) -> bool:
"""simple docstring"""
if self.flag[idx] is True:
SCREAMING_SNAKE_CASE__ = self.lazy[idx]
SCREAMING_SNAKE_CASE__ = False
if left_element != right_element:
SCREAMING_SNAKE_CASE__ = self.lazy[idx]
SCREAMING_SNAKE_CASE__ = self.lazy[idx]
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
if right_element < a or left_element > b:
return True
if left_element >= a and right_element <= b:
SCREAMING_SNAKE_CASE__ = val
if left_element != right_element:
SCREAMING_SNAKE_CASE__ = val
SCREAMING_SNAKE_CASE__ = val
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
return True
SCREAMING_SNAKE_CASE__ = (left_element + right_element) // 2
self.update(self.left(__A ) , __A , __A , __A , __A , __A )
self.update(self.right(__A ) , mid + 1 , __A , __A , __A , __A )
SCREAMING_SNAKE_CASE__ = max(
self.segment_tree[self.left(__A )] , self.segment_tree[self.right(__A )] )
return True
def _snake_case ( self :Dict , __A :int , __A :int , __A :int , __A :int , __A :int ) -> int | float:
"""simple docstring"""
if self.flag[idx] is True:
SCREAMING_SNAKE_CASE__ = self.lazy[idx]
SCREAMING_SNAKE_CASE__ = False
if left_element != right_element:
SCREAMING_SNAKE_CASE__ = self.lazy[idx]
SCREAMING_SNAKE_CASE__ = self.lazy[idx]
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
if right_element < a or left_element > b:
return -math.inf
if left_element >= a and right_element <= b:
return self.segment_tree[idx]
SCREAMING_SNAKE_CASE__ = (left_element + right_element) // 2
SCREAMING_SNAKE_CASE__ = self.query(self.left(__A ) , __A , __A , __A , __A )
SCREAMING_SNAKE_CASE__ = self.query(self.right(__A ) , mid + 1 , __A , __A , __A )
return max(__A , __A )
def __str__( self :Optional[Any] ) -> str:
"""simple docstring"""
return str([self.query(1 , 1 , self.size , __A , __A ) for i in range(1 , self.size + 1 )] )
if __name__ == "__main__":
_lowerCamelCase = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8]
_lowerCamelCase = 15
_lowerCamelCase = SegmentTree(size)
segt.build(1, 1, size, A)
print(segt.query(1, 1, size, 4, 6))
print(segt.query(1, 1, size, 7, 11))
print(segt.query(1, 1, size, 7, 12))
segt.update(1, 1, size, 1, 3, 111)
print(segt.query(1, 1, size, 1, 15))
segt.update(1, 1, size, 7, 8, 235)
print(segt) | 6 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ):
model.train()
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ):
set_seed(42 )
SCREAMING_SNAKE_CASE__ = RegressionModel()
SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
model.to(accelerator.device )
if sched:
SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 )
SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 )
SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 )
SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 )
# Make a copy of `model`
if sched:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
# Test when on a single CPU or GPU that the context manager does nothing
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
# Use a single batch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
# Sync grads
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ):
# Test on distributed setup that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
# Use a single batch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
# Sync grads
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ):
SCREAMING_SNAKE_CASE__ = Accelerator(
split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
for iteration, batch in enumerate(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values()
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ):
SCREAMING_SNAKE_CASE__ = Accelerator(
split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ )
for iteration, batch in enumerate(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values()
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n'''
SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ ))
if accelerator.num_processes > 1:
check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = Accelerator()
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(UpperCamelCase__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ )
if iteration < len(UpperCamelCase__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(UpperCamelCase__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ )
if batch_num < len(UpperCamelCase__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = Accelerator()
SCREAMING_SNAKE_CASE__ = accelerator.state
if state.local_process_index == 0:
print("""**Test `accumulate` gradient accumulation with dataloader break**""" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("""**Test NOOP `no_sync` context manager**""" )
test_noop_sync(UpperCamelCase__ )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("""**Test Distributed `no_sync` context manager**""" )
test_distributed_sync(UpperCamelCase__ )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 6 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_roberta import RobertaTokenizer
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
_lowerCamelCase = {
'vocab_file': {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/vocab.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/vocab.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/vocab.json',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json',
'roberta-large-openai-detector': (
'https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json'
),
},
'merges_file': {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/merges.txt',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/merges.txt',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/merges.txt',
'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt',
'roberta-large-openai-detector': (
'https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt'
),
},
'tokenizer_file': {
'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/tokenizer.json',
'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/tokenizer.json',
'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json',
'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json',
'roberta-base-openai-detector': (
'https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json'
),
'roberta-large-openai-detector': (
'https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json'
),
},
}
_lowerCamelCase = {
'roberta-base': 512,
'roberta-large': 512,
'roberta-large-mnli': 512,
'distilroberta-base': 512,
'roberta-base-openai-detector': 512,
'roberta-large-openai-detector': 512,
}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = VOCAB_FILES_NAMES
lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase_ = ["input_ids", "attention_mask"]
lowerCamelCase_ = RobertaTokenizer
def __init__( self :List[Any] , __A :Tuple=None , __A :str=None , __A :Tuple=None , __A :Tuple="replace" , __A :List[Any]="<s>" , __A :Union[str, Any]="</s>" , __A :Any="</s>" , __A :Dict="<s>" , __A :Optional[Any]="<unk>" , __A :List[str]="<pad>" , __A :Any="<mask>" , __A :Dict=False , __A :Tuple=True , **__A :Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(
__A , __A , tokenizer_file=__A , errors=__A , bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , unk_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , trim_offsets=__A , **__A , )
SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , __A ) != add_prefix_space:
SCREAMING_SNAKE_CASE__ = getattr(__A , pre_tok_state.pop("""type""" ) )
SCREAMING_SNAKE_CASE__ = add_prefix_space
SCREAMING_SNAKE_CASE__ = pre_tok_class(**__A )
SCREAMING_SNAKE_CASE__ = add_prefix_space
SCREAMING_SNAKE_CASE__ = """post_processor"""
SCREAMING_SNAKE_CASE__ = getattr(self.backend_tokenizer , __A , __A )
if tokenizer_component_instance:
SCREAMING_SNAKE_CASE__ = json.loads(tokenizer_component_instance.__getstate__() )
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
SCREAMING_SNAKE_CASE__ = tuple(state["""sep"""] )
if "cls" in state:
SCREAMING_SNAKE_CASE__ = tuple(state["""cls"""] )
SCREAMING_SNAKE_CASE__ = False
if state.get("""add_prefix_space""" , __A ) != add_prefix_space:
SCREAMING_SNAKE_CASE__ = add_prefix_space
SCREAMING_SNAKE_CASE__ = True
if state.get("""trim_offsets""" , __A ) != trim_offsets:
SCREAMING_SNAKE_CASE__ = trim_offsets
SCREAMING_SNAKE_CASE__ = True
if changes_to_apply:
SCREAMING_SNAKE_CASE__ = getattr(__A , state.pop("""type""" ) )
SCREAMING_SNAKE_CASE__ = component_class(**__A )
setattr(self.backend_tokenizer , __A , __A )
@property
def _snake_case ( self :str ) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""" )
return None
return str(self._mask_token )
@mask_token.setter
def _snake_case ( self :List[str] , __A :Tuple ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else value
SCREAMING_SNAKE_CASE__ = value
def _snake_case ( self :str , *__A :int , **__A :Tuple ) -> BatchEncoding:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = kwargs.get("""is_split_into_words""" , __A )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__A , **__A )
def _snake_case ( self :Optional[Any] , *__A :List[Any] , **__A :Dict ) -> BatchEncoding:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = kwargs.get("""is_split_into_words""" , __A )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__A , **__A )
def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(__A , name=__A )
return tuple(__A )
def _snake_case ( self :Dict , __A :Union[str, Any] , __A :Optional[Any]=None ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def _snake_case ( self :Optional[int] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] | 6 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "AutoImageProcessor"
lowerCamelCase_ = "AutoTokenizer"
def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict:
"""simple docstring"""
super().__init__(__A , __A )
SCREAMING_SNAKE_CASE__ = self.image_processor
def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]:
"""simple docstring"""
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A )
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :Dict ) -> List[Any]:
"""simple docstring"""
return ["input_ids", "attention_mask", "pixel_values"] | 6 | 1 |
class UpperCamelCase_ :
def __init__( self :str , __A :int ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = n
SCREAMING_SNAKE_CASE__ = [None] * self.n
SCREAMING_SNAKE_CASE__ = 0 # index of the first element
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
def __len__( self :Dict ) -> int:
"""simple docstring"""
return self.size
def _snake_case ( self :Optional[int] ) -> bool:
"""simple docstring"""
return self.size == 0
def _snake_case ( self :Dict ) -> List[Any]:
"""simple docstring"""
return False if self.is_empty() else self.array[self.front]
def _snake_case ( self :str , __A :Optional[int] ) -> Tuple:
"""simple docstring"""
if self.size >= self.n:
raise Exception("""QUEUE IS FULL""" )
SCREAMING_SNAKE_CASE__ = data
SCREAMING_SNAKE_CASE__ = (self.rear + 1) % self.n
self.size += 1
return self
def _snake_case ( self :Union[str, Any] ) -> str:
"""simple docstring"""
if self.size == 0:
raise Exception("""UNDERFLOW""" )
SCREAMING_SNAKE_CASE__ = self.array[self.front]
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = (self.front + 1) % self.n
self.size -= 1
return temp | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
SCREAMING_SNAKE_CASE__ = True
for i in range(1 , s + 1 ):
SCREAMING_SNAKE_CASE__ = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
SCREAMING_SNAKE_CASE__ = dp[i][j - 1]
if arr[i - 1] <= j:
SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
SCREAMING_SNAKE_CASE__ = s - 2 * j
break
return diff | 6 | 1 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int] , UpperCamelCase__: list[int] ):
# Check if the input is valid
if not len(UpperCamelCase__ ) == len(UpperCamelCase__ ) == 3:
raise ValueError("""Please enter a valid equation.""" )
if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0:
raise ValueError("""Both a & b of two equations can't be zero.""" )
# Extract the coefficients
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = equationa
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = equationa
# Calculate the determinants of the matrices
SCREAMING_SNAKE_CASE__ = aa * ba - aa * ba
SCREAMING_SNAKE_CASE__ = ca * ba - ca * ba
SCREAMING_SNAKE_CASE__ = aa * ca - aa * ca
# Check if the system of linear equations has a solution (using Cramer's rule)
if determinant == 0:
if determinant_x == determinant_y == 0:
raise ValueError("""Infinite solutions. (Consistent system)""" )
else:
raise ValueError("""No solution. (Inconsistent system)""" )
else:
if determinant_x == determinant_y == 0:
# Trivial solution (Inconsistent system)
return (0.0, 0.0)
else:
SCREAMING_SNAKE_CASE__ = determinant_x / determinant
SCREAMING_SNAKE_CASE__ = determinant_y / determinant
# Non-Trivial Solution (Consistent system)
return (x, y) | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ):
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) | 6 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ):
return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = create_tensor(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = gather(UpperCamelCase__ )
assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
SCREAMING_SNAKE_CASE__ = [state.process_index]
SCREAMING_SNAKE_CASE__ = gather_object(UpperCamelCase__ )
assert len(UpperCamelCase__ ) == state.num_processes, f'''{gathered_obj}, {len(UpperCamelCase__ )} != {state.num_processes}'''
assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}'''
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = create_tensor(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = broadcast(UpperCamelCase__ )
assert broadcasted_tensor.shape == torch.Size([state.num_processes] )
assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
# We need to pad the tensor with one more element if we are the main process
# to ensure that we can pad
if state.is_main_process:
SCREAMING_SNAKE_CASE__ = torch.arange(state.num_processes + 1 ).to(state.device )
else:
SCREAMING_SNAKE_CASE__ = torch.arange(state.num_processes ).to(state.device )
SCREAMING_SNAKE_CASE__ = pad_across_processes(UpperCamelCase__ )
assert padded_tensor.shape == torch.Size([state.num_processes + 1] )
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] ):
# For now runs on only two processes
if state.num_processes != 2:
return
SCREAMING_SNAKE_CASE__ = create_tensor(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = reduce(UpperCamelCase__ , """sum""" )
SCREAMING_SNAKE_CASE__ = torch.tensor([4.0, 6] ).to(state.device )
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ), f'''{reduced_tensor} != {truth_tensor}'''
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
# For now runs on only two processes
if state.num_processes != 2:
return
SCREAMING_SNAKE_CASE__ = create_tensor(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = reduce(UpperCamelCase__ , """mean""" )
SCREAMING_SNAKE_CASE__ = torch.tensor([2.0, 3] ).to(state.device )
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ), f'''{reduced_tensor} != {truth_tensor}'''
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[int] ):
# For xla_spawn (TPUs)
main()
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = PartialState()
state.print(f'''State: {state}''' )
state.print("""testing gather""" )
test_gather(UpperCamelCase__ )
state.print("""testing gather_object""" )
test_gather_object(UpperCamelCase__ )
state.print("""testing broadcast""" )
test_broadcast(UpperCamelCase__ )
state.print("""testing pad_across_processes""" )
test_pad_across_processes(UpperCamelCase__ )
state.print("""testing reduce_sum""" )
test_reduce_sum(UpperCamelCase__ )
state.print("""testing reduce_mean""" )
test_reduce_mean(UpperCamelCase__ )
if __name__ == "__main__":
main() | 6 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "encoder-decoder"
lowerCamelCase_ = True
def __init__( self :Optional[int] , **__A :str ) -> int:
"""simple docstring"""
super().__init__(**__A )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" )
SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" )
SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = True
@classmethod
def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig:
"""simple docstring"""
logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A )
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE__ = self.encoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.decoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.__class__.model_type
return output | 6 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_lowerCamelCase = {
'configuration_canine': ['CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CanineConfig'],
'tokenization_canine': ['CanineTokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = [
'CANINE_PRETRAINED_MODEL_ARCHIVE_LIST',
'CanineForMultipleChoice',
'CanineForQuestionAnswering',
'CanineForSequenceClassification',
'CanineForTokenClassification',
'CanineLayer',
'CanineModel',
'CaninePreTrainedModel',
'load_tf_weights_in_canine',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
_lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 6 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase__ )
class UpperCamelCase_ ( UpperCamelCase__ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowerCamelCase_ = Features({"text": Value("string" )} )
lowerCamelCase_ = Features({"labels": ClassLabel} )
lowerCamelCase_ = "text"
lowerCamelCase_ = "labels"
def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]:
"""simple docstring"""
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self )
SCREAMING_SNAKE_CASE__ = self.label_schema.copy()
SCREAMING_SNAKE_CASE__ = features[self.label_column]
SCREAMING_SNAKE_CASE__ = label_schema
return task_template
@property
def _snake_case ( self :str ) -> Dict[str, str]:
"""simple docstring"""
return {
self.text_column: "text",
self.label_column: "labels",
} | 6 | 1 |
class UpperCamelCase_ :
def __init__( self :Optional[int] , __A :str = "" , __A :bool = False ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = {}
# A node will be a leaf if the tree contains its word
SCREAMING_SNAKE_CASE__ = is_leaf
SCREAMING_SNAKE_CASE__ = prefix
def _snake_case ( self :Optional[int] , __A :str ) -> tuple[str, str, str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 0
for q, w in zip(self.prefix , __A ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def _snake_case ( self :Any , __A :list[str] ) -> None:
"""simple docstring"""
for word in words:
self.insert(__A )
def _snake_case ( self :Tuple , __A :str ) -> None:
"""simple docstring"""
if self.prefix == word:
SCREAMING_SNAKE_CASE__ = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
SCREAMING_SNAKE_CASE__ = RadixNode(prefix=__A , is_leaf=__A )
else:
SCREAMING_SNAKE_CASE__ = self.nodes[word[0]]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = incoming_node.match(
__A )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(__A )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
SCREAMING_SNAKE_CASE__ = remaining_prefix
SCREAMING_SNAKE_CASE__ = self.nodes[matching_string[0]]
SCREAMING_SNAKE_CASE__ = RadixNode(__A , __A )
SCREAMING_SNAKE_CASE__ = aux_node
if remaining_word == "":
SCREAMING_SNAKE_CASE__ = True
else:
self.nodes[matching_string[0]].insert(__A )
def _snake_case ( self :Optional[int] , __A :str ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.nodes.get(word[0] , __A )
if not incoming_node:
return False
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = incoming_node.match(
__A )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(__A )
def _snake_case ( self :Optional[Any] , __A :str ) -> bool:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.nodes.get(word[0] , __A )
if not incoming_node:
return False
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = incoming_node.match(
__A )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(__A )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
SCREAMING_SNAKE_CASE__ = list(self.nodes.values() )[0]
SCREAMING_SNAKE_CASE__ = merging_node.is_leaf
self.prefix += merging_node.prefix
SCREAMING_SNAKE_CASE__ = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
SCREAMING_SNAKE_CASE__ = False
# If there is 1 edge, we merge it with its child
else:
SCREAMING_SNAKE_CASE__ = list(incoming_node.nodes.values() )[0]
SCREAMING_SNAKE_CASE__ = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
SCREAMING_SNAKE_CASE__ = merging_node.nodes
return True
def _snake_case ( self :Optional[Any] , __A :int = 0 ) -> None:
"""simple docstring"""
if self.prefix != "":
print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" )
for value in self.nodes.values():
value.print_tree(height + 1 )
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = """banana bananas bandana band apple all beast""".split()
SCREAMING_SNAKE_CASE__ = RadixNode()
root.insert_many(UpperCamelCase__ )
assert all(root.find(UpperCamelCase__ ) for word in words )
assert not root.find("""bandanas""" )
assert not root.find("""apps""" )
root.delete("""all""" )
assert not root.find("""all""" )
root.delete("""banana""" )
assert not root.find("""banana""" )
assert root.find("""bananas""" )
return True
def SCREAMING_SNAKE_CASE__ ( ):
assert test_trie()
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = RadixNode()
SCREAMING_SNAKE_CASE__ = """banana bananas bandanas bandana band apple all beast""".split()
root.insert_many(UpperCamelCase__ )
print("""Words:""" , UpperCamelCase__ )
print("""Tree:""" )
root.print_tree()
if __name__ == "__main__":
main() | 6 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = model.config
SCREAMING_SNAKE_CASE__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
SCREAMING_SNAKE_CASE__ = MBartConfig(
is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , )
return encoder_config, decoder_config
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
if "encoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
SCREAMING_SNAKE_CASE__ = """encoder.""" + name
if "attn.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias"""
return name
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ):
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ )
if "qkv" in key:
SCREAMING_SNAKE_CASE__ = key.split(""".""" )
SCREAMING_SNAKE_CASE__ = int(key_split[3] )
SCREAMING_SNAKE_CASE__ = int(key_split[5] )
SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
SCREAMING_SNAKE_CASE__ = val[:dim, :]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE__ = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE__ = val[:dim]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2]
SCREAMING_SNAKE_CASE__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
SCREAMING_SNAKE_CASE__ = val
return orig_state_dict
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ):
# load original model
SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval()
# load HuggingFace model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
model.eval()
SCREAMING_SNAKE_CASE__ = original_model.state_dict()
SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ )
model.load_state_dict(UpperCamelCase__ )
# verify results on scanned document
SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" )
SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
SCREAMING_SNAKE_CASE__ = """When is the coffee break?"""
SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
SCREAMING_SNAKE_CASE__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
SCREAMING_SNAKE_CASE__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
SCREAMING_SNAKE_CASE__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[
"""input_ids"""
]
SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ )
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
# verify encoder hidden states
SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 )
# verify decoder hidden states
SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
_lowerCamelCase = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 6 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "facebook/bart-large-mnli"
lowerCamelCase_ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
lowerCamelCase_ = "text_classifier"
lowerCamelCase_ = AutoTokenizer
lowerCamelCase_ = AutoModelForSequenceClassification
lowerCamelCase_ = ["text", ["text"]]
lowerCamelCase_ = ["text"]
def _snake_case ( self :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
super().setup()
SCREAMING_SNAKE_CASE__ = self.model.config
SCREAMING_SNAKE_CASE__ = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("""entail""" ):
SCREAMING_SNAKE_CASE__ = int(__A )
if self.entailment_id == -1:
raise ValueError("""Could not determine the entailment ID from the model config, please pass it at init.""" )
def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Dict ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = labels
return self.pre_processor(
[text] * len(__A ) , [f'''This example is {label}''' for label in labels] , return_tensors="""pt""" , padding="""max_length""" , )
def _snake_case ( self :str , __A :Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = outputs.logits
SCREAMING_SNAKE_CASE__ = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id] | 6 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_dpmpp_2m""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 6 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json',
}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "open-llama"
def __init__( self :Union[str, Any] , __A :Tuple=10_0000 , __A :Dict=4096 , __A :int=1_1008 , __A :Optional[int]=32 , __A :Optional[Any]=32 , __A :Dict="silu" , __A :List[str]=2048 , __A :Dict=0.0_2 , __A :Dict=1E-6 , __A :Union[str, Any]=True , __A :Any=0 , __A :List[Any]=1 , __A :Any=2 , __A :Optional[Any]=False , __A :Tuple=True , __A :Optional[int]=0.1 , __A :Tuple=0.1 , __A :str=True , __A :Union[str, Any]=True , __A :Any=None , **__A :Any , ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = intermediate_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = rms_norm_eps
SCREAMING_SNAKE_CASE__ = use_cache
SCREAMING_SNAKE_CASE__ = kwargs.pop(
"""use_memorry_efficient_attention""" , __A )
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_dropout_prob
SCREAMING_SNAKE_CASE__ = use_stable_embedding
SCREAMING_SNAKE_CASE__ = shared_input_output_embedding
SCREAMING_SNAKE_CASE__ = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A , )
def _snake_case ( self :Optional[int] ) -> int:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __A ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("""type""" , __A )
SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("""factor""" , __A )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__A , __A ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' ) | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ):
try:
SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = 2
while i * i <= n:
while n % i == 0:
SCREAMING_SNAKE_CASE__ = i
n //= i
i += 1
if n > 1:
SCREAMING_SNAKE_CASE__ = n
return int(UpperCamelCase__ )
if __name__ == "__main__":
print(F'''{solution() = }''') | 6 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "CLIPImageProcessor"
lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self :List[Any] , __A :Tuple=None , __A :Dict=None , **__A :Optional[Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __A , )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" )
SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__A , __A )
def __call__( self :Any , __A :str=None , __A :List[Any]=None , __A :Union[str, Any]=None , **__A :List[Any] ) -> List[str]:
"""simple docstring"""
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A )
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :Union[str, Any] , *__A :Optional[int] , **__A :Any ) -> str:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :Optional[Any] , *__A :str , **__A :Tuple ) -> List[Any]:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :Any ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.tokenizer.model_input_names
SCREAMING_SNAKE_CASE__ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def _snake_case ( self :Dict ) -> int:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , )
return self.image_processor_class
@property
def _snake_case ( self :Optional[Any] ) -> int:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , )
return self.image_processor | 6 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Tuple ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :List[str] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Optional[Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
# Removed: 'text_encoder/model.safetensors',
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :List[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Optional[int] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
# 'text_encoder/model.fp16.safetensors',
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) | 6 | 1 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: int ):
if a < 0 or b < 0:
raise ValueError("""the value of both inputs must be positive""" )
SCREAMING_SNAKE_CASE__ = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b"
SCREAMING_SNAKE_CASE__ = str(bin(UpperCamelCase__ ) )[2:]
SCREAMING_SNAKE_CASE__ = max(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) )
return "0b" + "".join(
str(int("""1""" in (char_a, char_b) ) )
for char_a, char_b in zip(a_binary.zfill(UpperCamelCase__ ) , b_binary.zfill(UpperCamelCase__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 6 |
import argparse
import datetime
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = {
"""0""": """Sunday""",
"""1""": """Monday""",
"""2""": """Tuesday""",
"""3""": """Wednesday""",
"""4""": """Thursday""",
"""5""": """Friday""",
"""6""": """Saturday""",
}
SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(UpperCamelCase__ ) < 11:
raise ValueError("""Must be 10 characters long""" )
# Get month
SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("""Month must be between 1 - 12""" )
SCREAMING_SNAKE_CASE__ = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get day
SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("""Date must be between 1 - 31""" )
# Get second separator
SCREAMING_SNAKE_CASE__ = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get year
SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8_500:
raise ValueError(
"""Year out of range. There has to be some sort of limit...right?""" )
# Get datetime obj for validation
SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) )
# Start math
if m <= 2:
SCREAMING_SNAKE_CASE__ = y - 1
SCREAMING_SNAKE_CASE__ = m + 12
# maths var
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] )
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] )
SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 )
SCREAMING_SNAKE_CASE__ = int(c / 4 )
SCREAMING_SNAKE_CASE__ = int(k / 4 )
SCREAMING_SNAKE_CASE__ = int(d + k )
SCREAMING_SNAKE_CASE__ = int(t + u + v + x )
SCREAMING_SNAKE_CASE__ = int(z - (2 * c) )
SCREAMING_SNAKE_CASE__ = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" )
# Response
SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
_lowerCamelCase = parser.parse_args()
zeller(args.date_input) | 6 | 1 |
import functools
from typing import Any
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: list[str] ):
# Validation
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or len(UpperCamelCase__ ) == 0:
raise ValueError("""the string should be not empty string""" )
if not isinstance(UpperCamelCase__ , UpperCamelCase__ ) or not all(
isinstance(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0 for item in words ):
raise ValueError("""the words should be a list of non-empty strings""" )
# Build trie
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = """WORD_KEEPER"""
for word in words:
SCREAMING_SNAKE_CASE__ = trie
for c in word:
if c not in trie_node:
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = trie_node[c]
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
# Dynamic programming method
@functools.cache
def is_breakable(UpperCamelCase__: int ) -> bool:
if index == len_string:
return True
SCREAMING_SNAKE_CASE__ = trie
for i in range(UpperCamelCase__ , UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = trie_node.get(string[i] , UpperCamelCase__ )
if trie_node is None:
return False
if trie_node.get(UpperCamelCase__ , UpperCamelCase__ ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 6 |
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
_lowerCamelCase = logging.getLogger(__name__)
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser(
description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'
)
parser.add_argument(
'--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.'
)
parser.add_argument(
'--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.'
)
parser.add_argument('--vocab_size', default=30522, type=int)
_lowerCamelCase = parser.parse_args()
logger.info(F'''Loading data from {args.data_file}''')
with open(args.data_file, 'rb') as fp:
_lowerCamelCase = pickle.load(fp)
logger.info('Counting occurrences for MLM.')
_lowerCamelCase = Counter()
for tk_ids in data:
counter.update(tk_ids)
_lowerCamelCase = [0] * args.vocab_size
for k, v in counter.items():
_lowerCamelCase = v
logger.info(F'''Dump to {args.token_counts_dump}''')
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL) | 6 | 1 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ):
model.train()
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ):
set_seed(42 )
SCREAMING_SNAKE_CASE__ = RegressionModel()
SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
model.to(accelerator.device )
if sched:
SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 )
SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 )
SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 )
SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 )
# Make a copy of `model`
if sched:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
# Test when on a single CPU or GPU that the context manager does nothing
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
# Use a single batch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
# Sync grads
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ):
# Test on distributed setup that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
# Use a single batch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
# Sync grads
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ):
SCREAMING_SNAKE_CASE__ = Accelerator(
split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
for iteration, batch in enumerate(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values()
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ):
SCREAMING_SNAKE_CASE__ = Accelerator(
split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ )
for iteration, batch in enumerate(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values()
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n'''
SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ ))
if accelerator.num_processes > 1:
check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = Accelerator()
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(UpperCamelCase__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ )
if iteration < len(UpperCamelCase__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(UpperCamelCase__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ )
if batch_num < len(UpperCamelCase__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = Accelerator()
SCREAMING_SNAKE_CASE__ = accelerator.state
if state.local_process_index == 0:
print("""**Test `accumulate` gradient accumulation with dataloader break**""" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("""**Test NOOP `no_sync` context manager**""" )
test_noop_sync(UpperCamelCase__ )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("""**Test Distributed `no_sync` context manager**""" )
test_distributed_sync(UpperCamelCase__ )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 6 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
_lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 6 | 1 |
from collections import Counter
from pathlib import Path
from typing import Optional, Tuple
import yaml
class UpperCamelCase_ ( yaml.SafeLoader ):
def _snake_case ( self :List[str] , __A :List[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.constructed_objects[key_node] for key_node, _ in node.value]
SCREAMING_SNAKE_CASE__ = [tuple(__A ) if isinstance(__A , __A ) else key for key in keys]
SCREAMING_SNAKE_CASE__ = Counter(__A )
SCREAMING_SNAKE_CASE__ = [key for key in counter if counter[key] > 1]
if duplicate_keys:
raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' )
def _snake_case ( self :Optional[int] , __A :List[Any] , __A :Union[str, Any]=False ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super().construct_mapping(__A , deep=__A )
self._check_no_duplicates_on_constructed_node(__A )
return mapping
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = list(readme_content.splitlines() )
if full_content and full_content[0] == "---" and "---" in full_content[1:]:
SCREAMING_SNAKE_CASE__ = full_content[1:].index("""---""" ) + 1
SCREAMING_SNAKE_CASE__ = """\n""".join(full_content[1:sep_idx] )
return yamlblock, "\n".join(full_content[sep_idx + 1 :] )
return None, "\n".join(UpperCamelCase__ )
class UpperCamelCase_ ( UpperCamelCase__ ):
# class attributes
lowerCamelCase_ = {"train_eval_index"} # train-eval-index in the YAML metadata
@classmethod
def _snake_case ( cls :int , __A :Path ) -> "DatasetMetadata":
"""simple docstring"""
with open(__A , encoding="""utf-8""" ) as readme_file:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _split_yaml_from_readme(readme_file.read() )
if yaml_string is not None:
return cls.from_yaml_string(__A )
else:
return cls()
def _snake_case ( self :int , __A :Path ) -> str:
"""simple docstring"""
if path.exists():
with open(__A , encoding="""utf-8""" ) as readme_file:
SCREAMING_SNAKE_CASE__ = readme_file.read()
else:
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = self._to_readme(__A )
with open(__A , """w""" , encoding="""utf-8""" ) as readme_file:
readme_file.write(__A )
def _snake_case ( self :int , __A :Optional[str] = None ) -> str:
"""simple docstring"""
if readme_content is not None:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = _split_yaml_from_readme(__A )
SCREAMING_SNAKE_CASE__ = """---\n""" + self.to_yaml_string() + """---\n""" + content
else:
SCREAMING_SNAKE_CASE__ = """---\n""" + self.to_yaml_string() + """---\n"""
return full_content
@classmethod
def _snake_case ( cls :Tuple , __A :str ) -> "DatasetMetadata":
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = yaml.load(__A , Loader=_NoDuplicateSafeLoader ) or {}
# Convert the YAML keys to DatasetMetadata fields
SCREAMING_SNAKE_CASE__ = {
(key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value
for key, value in metadata_dict.items()
}
return cls(**__A )
def _snake_case ( self :Union[str, Any] ) -> str:
"""simple docstring"""
return yaml.safe_dump(
{
(key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value
for key, value in self.items()
} , sort_keys=__A , allow_unicode=__A , encoding="""utf-8""" , ).decode("""utf-8""" )
_lowerCamelCase = {
'image-classification': [],
'translation': [],
'image-segmentation': [],
'fill-mask': [],
'automatic-speech-recognition': [],
'token-classification': [],
'sentence-similarity': [],
'audio-classification': [],
'question-answering': [],
'summarization': [],
'zero-shot-classification': [],
'table-to-text': [],
'feature-extraction': [],
'other': [],
'multiple-choice': [],
'text-classification': [],
'text-to-image': [],
'text2text-generation': [],
'zero-shot-image-classification': [],
'tabular-classification': [],
'tabular-regression': [],
'image-to-image': [],
'tabular-to-text': [],
'unconditional-image-generation': [],
'text-retrieval': [],
'text-to-speech': [],
'object-detection': [],
'audio-to-audio': [],
'text-generation': [],
'conversational': [],
'table-question-answering': [],
'visual-question-answering': [],
'image-to-text': [],
'reinforcement-learning': [],
'voice-activity-detection': [],
'time-series-forecasting': [],
'document-question-answering': [],
}
if __name__ == "__main__":
from argparse import ArgumentParser
_lowerCamelCase = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.')
ap.add_argument('readme_filepath')
_lowerCamelCase = ap.parse_args()
_lowerCamelCase = Path(args.readme_filepath)
_lowerCamelCase = DatasetMetadata.from_readme(readme_filepath)
print(dataset_metadata)
dataset_metadata.to_readme(readme_filepath) | 6 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "OwlViTImageProcessor"
lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __A , )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" )
SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__A , __A )
def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple:
"""simple docstring"""
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )):
SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )]
elif isinstance(__A , __A ) and isinstance(text[0] , __A ):
SCREAMING_SNAKE_CASE__ = []
# Maximum number of queries across batch
SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__A ) != max_num_queries:
SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A ))
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )
encodings.append(__A )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = input_ids
SCREAMING_SNAKE_CASE__ = attention_mask
if query_images is not None:
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = self.image_processor(
__A , return_tensors=__A , **__A ).pixel_values
SCREAMING_SNAKE_CASE__ = query_pixel_values
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]:
"""simple docstring"""
return self.image_processor.post_process(*__A , **__A )
def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor.post_process_object_detection(*__A , **__A )
def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any:
"""simple docstring"""
return self.image_processor.post_process_image_guided_detection(*__A , **__A )
def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :List[Any] ) -> Optional[int]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , )
return self.image_processor_class
@property
def _snake_case ( self :Any ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , )
return self.image_processor | 6 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/config.json',
'distilbert-base-uncased-distilled-squad': (
'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/config.json',
'distilbert-base-cased-distilled-squad': (
'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json'
),
'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json',
'distilbert-base-multilingual-cased': (
'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json'
),
'distilbert-base-uncased-finetuned-sst-2-english': (
'https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json'
),
}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "distilbert"
lowerCamelCase_ = {
"hidden_size": "dim",
"num_attention_heads": "n_heads",
"num_hidden_layers": "n_layers",
}
def __init__( self :Optional[int] , __A :Optional[Any]=3_0522 , __A :Tuple=512 , __A :Dict=False , __A :Any=6 , __A :int=12 , __A :Dict=768 , __A :Any=4 * 768 , __A :Dict=0.1 , __A :str=0.1 , __A :Optional[Any]="gelu" , __A :int=0.0_2 , __A :Optional[Any]=0.1 , __A :List[str]=0.2 , __A :Optional[int]=0 , **__A :int , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = sinusoidal_pos_embds
SCREAMING_SNAKE_CASE__ = n_layers
SCREAMING_SNAKE_CASE__ = n_heads
SCREAMING_SNAKE_CASE__ = dim
SCREAMING_SNAKE_CASE__ = hidden_dim
SCREAMING_SNAKE_CASE__ = dropout
SCREAMING_SNAKE_CASE__ = attention_dropout
SCREAMING_SNAKE_CASE__ = activation
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = qa_dropout
SCREAMING_SNAKE_CASE__ = seq_classif_dropout
super().__init__(**__A , pad_token_id=__A )
class UpperCamelCase_ ( UpperCamelCase__ ):
@property
def _snake_case ( self :Any ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
SCREAMING_SNAKE_CASE__ = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] ) | 6 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ):
@register_to_config
def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any:
"""simple docstring"""
super().__init__()
# pass init params to Encoder
SCREAMING_SNAKE_CASE__ = Encoder(
in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , )
SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A )
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
# pass init params to Decoder
SCREAMING_SNAKE_CASE__ = Decoder(
in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , )
@apply_forward_hook
def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.encoder(__A )
SCREAMING_SNAKE_CASE__ = self.quant_conv(__A )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=__A )
@apply_forward_hook
def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if not force_not_quantize:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A )
else:
SCREAMING_SNAKE_CASE__ = h
SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A )
SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A )
def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = sample
SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents
SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A ) | 6 | 1 |
from __future__ import annotations
from typing import Any
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[Any] ):
create_state_space_tree(UpperCamelCase__ , [] , 0 )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[Any] , UpperCamelCase__: list[Any] , UpperCamelCase__: int ):
if index == len(UpperCamelCase__ ):
print(UpperCamelCase__ )
return
create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 )
current_subsequence.append(sequence[index] )
create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 )
current_subsequence.pop()
if __name__ == "__main__":
_lowerCamelCase = [3, 1, 2, 4]
generate_all_subsequences(seq)
seq.clear()
seq.extend(['A', 'B', 'C'])
generate_all_subsequences(seq) | 6 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
lowerCamelCase_ = jnp.floataa
lowerCamelCase_ = True
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
super().setup()
SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype )
def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A )
SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ):
def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ):
SCREAMING_SNAKE_CASE__ = logits.shape[-1]
SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" )
SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 )
SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ )
return loss
SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = "google/bigbird-roberta-base"
lowerCamelCase_ = 30_00
lowerCamelCase_ = 1_05_00
lowerCamelCase_ = 1_28
lowerCamelCase_ = 3
lowerCamelCase_ = 1
lowerCamelCase_ = 5
# tx_args
lowerCamelCase_ = 3e-5
lowerCamelCase_ = 0.0
lowerCamelCase_ = 2_00_00
lowerCamelCase_ = 0.0095
lowerCamelCase_ = "bigbird-roberta-natural-questions"
lowerCamelCase_ = "training-expt"
lowerCamelCase_ = "data/nq-training.jsonl"
lowerCamelCase_ = "data/nq-validation.jsonl"
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
os.makedirs(self.base_dir , exist_ok=__A )
SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir )
SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count()
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 40_96 # no dynamic padding on TPUs
def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.collate_fn(__A )
SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A )
return batch
def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] )
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": jnp.array(__A , dtype=jnp.intaa ),
"""attention_mask""": jnp.array(__A , dtype=jnp.intaa ),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ),
}
return batch
def _snake_case ( self :Tuple , __A :list ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids]
return zip(*__A )
def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )]
while len(__A ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ):
if seed is not None:
SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ )
for i in range(len(UpperCamelCase__ ) // batch_size ):
SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(UpperCamelCase__ )
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ):
def loss_fn(UpperCamelCase__: List[Any] ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
return state.loss_fn(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" )
SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class UpperCamelCase_ ( train_state.TrainState ):
lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ )
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = None
def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = model.params
SCREAMING_SNAKE_CASE__ = TrainState.create(
apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , )
if ckpt_dir is not None:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A )
SCREAMING_SNAKE_CASE__ = train_state.TrainState(
step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , )
SCREAMING_SNAKE_CASE__ = args
SCREAMING_SNAKE_CASE__ = data_collator
SCREAMING_SNAKE_CASE__ = lr
SCREAMING_SNAKE_CASE__ = params
SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A )
return state
def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.args
SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size
SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() )
for epoch in range(args.max_epochs ):
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
if i % args.logging_steps == 0:
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step )
SCREAMING_SNAKE_CASE__ = running_loss.item() / i
SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 )
SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(__A ) )
self.logger.log(__A , commit=__A )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A )
def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size )
SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
return running_loss / i
def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A )
print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ )
self.model_save_fn(__A , params=state.params )
with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) )
joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) )
with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f:
json.dump({"""step""": state.step.item()} , __A )
print("""DONE""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ):
print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ )
with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() )
with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) )
with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f:
SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ):
def weight_decay_mask(UpperCamelCase__: Any ):
SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ )
return tx, lr | 6 | 1 |
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'nielsr/canine-s': 2048,
}
# Unicode defines 1,114,112 total “codepoints”
_lowerCamelCase = 1114112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
_lowerCamelCase = 0
_lowerCamelCase = 0XE0_00
_lowerCamelCase = 0XE0_01
_lowerCamelCase = 0XE0_02
_lowerCamelCase = 0XE0_03
_lowerCamelCase = 0XE0_04
# Maps special codepoints to human-readable names.
_lowerCamelCase = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
_lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , )
# Creates a mapping for looking up the IDs of special symbols.
SCREAMING_SNAKE_CASE__ = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
SCREAMING_SNAKE_CASE__ = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
SCREAMING_SNAKE_CASE__ = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE
SCREAMING_SNAKE_CASE__ = len(self._special_codepoints )
@property
def _snake_case ( self :Optional[Any] ) -> int:
"""simple docstring"""
return self._unicode_vocab_size
def _snake_case ( self :Tuple , __A :str ) -> List[str]:
"""simple docstring"""
return list(__A )
def _snake_case ( self :Optional[Any] , __A :str ) -> int:
"""simple docstring"""
try:
return ord(__A )
except TypeError:
raise ValueError(f'''invalid token: \'{token}\'''' )
def _snake_case ( self :str , __A :int ) -> str:
"""simple docstring"""
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(__A )
except TypeError:
raise ValueError(f'''invalid id: {index}''' )
def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any:
"""simple docstring"""
return "".join(__A )
def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1]
if token_ids_a is not None:
result += ([0] * len(__A )) + [1]
return result
def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any:
"""simple docstring"""
return () | 6 |
from torch import nn
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f'''Unsupported activation function: {act_fn}''' ) | 6 | 1 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = RobertaPreLayerNormConfig.from_pretrained(
UpperCamelCase__ , architectures=["""RobertaPreLayerNormForMaskedLM"""] )
# convert state_dict
SCREAMING_SNAKE_CASE__ = torch.load(hf_hub_download(repo_id=UpperCamelCase__ , filename="""pytorch_model.bin""" ) )
SCREAMING_SNAKE_CASE__ = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith("""roberta.""" ):
SCREAMING_SNAKE_CASE__ = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ):
continue
SCREAMING_SNAKE_CASE__ = tensor_value
SCREAMING_SNAKE_CASE__ = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=UpperCamelCase__ , config=UpperCamelCase__ , state_dict=UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
# convert tokenizer
SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(UpperCamelCase__ )
tokenizer.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_lowerCamelCase = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path) | 6 |
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = SwinConfig.from_pretrained(
"""microsoft/swin-tiny-patch4-window7-224""" , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
SCREAMING_SNAKE_CASE__ = MaskFormerConfig(backbone_config=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = """huggingface/label-files"""
if "ade20k-full" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 847
SCREAMING_SNAKE_CASE__ = """maskformer-ade20k-full-id2label.json"""
elif "ade" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 150
SCREAMING_SNAKE_CASE__ = """ade20k-id2label.json"""
elif "coco-stuff" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 171
SCREAMING_SNAKE_CASE__ = """maskformer-coco-stuff-id2label.json"""
elif "coco" in model_name:
# TODO
SCREAMING_SNAKE_CASE__ = 133
SCREAMING_SNAKE_CASE__ = """coco-panoptic-id2label.json"""
elif "cityscapes" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 19
SCREAMING_SNAKE_CASE__ = """cityscapes-id2label.json"""
elif "vistas" in model_name:
# this should be ok
SCREAMING_SNAKE_CASE__ = 65
SCREAMING_SNAKE_CASE__ = """mapillary-vistas-id2label.json"""
SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
SCREAMING_SNAKE_CASE__ = []
# stem
# fmt: off
rename_keys.append(("""backbone.patch_embed.proj.weight""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight""") )
rename_keys.append(("""backbone.patch_embed.proj.bias""", """model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias""") )
rename_keys.append(("""backbone.patch_embed.norm.weight""", """model.pixel_level_module.encoder.model.embeddings.norm.weight""") )
rename_keys.append(("""backbone.patch_embed.norm.bias""", """model.pixel_level_module.encoder.model.embeddings.norm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') )
# FPN
rename_keys.append(("""sem_seg_head.layer_4.weight""", """model.pixel_level_module.decoder.fpn.stem.0.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.weight""", """model.pixel_level_module.decoder.fpn.stem.1.weight""") )
rename_keys.append(("""sem_seg_head.layer_4.norm.bias""", """model.pixel_level_module.decoder.fpn.stem.1.bias""") )
for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ):
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') )
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') )
rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') )
rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') )
rename_keys.append(("""sem_seg_head.mask_features.weight""", """model.pixel_level_module.decoder.mask_projection.weight""") )
rename_keys.append(("""sem_seg_head.mask_features.bias""", """model.pixel_level_module.decoder.mask_projection.bias""") )
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers ):
# self-attention out projection
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') )
# cross-attention out projection
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') )
# MLP 1
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') )
# MLP 2
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') )
# layernorm 1 (self-attention layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') )
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') )
# layernorm 3 (final layernorm)
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.weight""", """model.transformer_module.decoder.layernorm.weight""") )
rename_keys.append(("""sem_seg_head.predictor.transformer.decoder.norm.bias""", """model.transformer_module.decoder.layernorm.bias""") )
# heads on top
rename_keys.append(("""sem_seg_head.predictor.query_embed.weight""", """model.transformer_module.queries_embedder.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.weight""", """model.transformer_module.input_projection.weight""") )
rename_keys.append(("""sem_seg_head.predictor.input_proj.bias""", """model.transformer_module.input_projection.bias""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.weight""", """class_predictor.weight""") )
rename_keys.append(("""sem_seg_head.predictor.class_embed.bias""", """class_predictor.bias""") )
for i in range(3 ):
rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') )
rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') )
# fmt: on
return rename_keys
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[int] ):
SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = val
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Union[str, Any] ):
SCREAMING_SNAKE_CASE__ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
SCREAMING_SNAKE_CASE__ = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[:dim, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[: dim]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
dim : dim * 2, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[
dim : dim * 2
]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
-dim :, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-dim :]
# fmt: on
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ):
# fmt: off
SCREAMING_SNAKE_CASE__ = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers ):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size]
SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2]
SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[: hidden_size, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[:config.hidden_size]
SCREAMING_SNAKE_CASE__ = in_proj_weight[hidden_size : hidden_size * 2, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[hidden_size : hidden_size * 2]
SCREAMING_SNAKE_CASE__ = in_proj_weight[-hidden_size :, :]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-hidden_size :]
# fmt: on
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: str , UpperCamelCase__: bool = False ):
SCREAMING_SNAKE_CASE__ = get_maskformer_config(UpperCamelCase__ )
# load original state_dict
with open(UpperCamelCase__ , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = pickle.load(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = data["""model"""]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ )
for src, dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
read_in_swin_q_k_v(UpperCamelCase__ , config.backbone_config )
read_in_decoder_q_k_v(UpperCamelCase__ , UpperCamelCase__ )
# update to torch tensors
for key, value in state_dict.items():
SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ )
# load 🤗 model
SCREAMING_SNAKE_CASE__ = MaskFormerForInstanceSegmentation(UpperCamelCase__ )
model.eval()
for name, param in model.named_parameters():
print(UpperCamelCase__ , param.shape )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(UpperCamelCase__ ) == 0, f'''Unexpected keys: {unexpected_keys}'''
# verify results
SCREAMING_SNAKE_CASE__ = prepare_img()
if "vistas" in model_name:
SCREAMING_SNAKE_CASE__ = 65
elif "cityscapes" in model_name:
SCREAMING_SNAKE_CASE__ = 65_535
else:
SCREAMING_SNAKE_CASE__ = 255
SCREAMING_SNAKE_CASE__ = True if """ade""" in model_name else False
SCREAMING_SNAKE_CASE__ = MaskFormerImageProcessor(ignore_index=UpperCamelCase__ , reduce_labels=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = image_processor(UpperCamelCase__ , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ = model(**UpperCamelCase__ )
print("""Logits:""" , outputs.class_queries_logits[0, :3, :3] )
if model_name == "maskformer-swin-tiny-ade":
SCREAMING_SNAKE_CASE__ = torch.tensor(
[[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] )
assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' )
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
model.save_pretrained(UpperCamelCase__ )
image_processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
print("""Pushing model and image processor to the hub...""" )
model.push_to_hub(f'''nielsr/{model_name}''' )
image_processor.push_to_hub(f'''nielsr/{model_name}''' )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='maskformer-swin-tiny-ade',
type=str,
help=('Name of the MaskFormer model you\'d like to convert',),
)
parser.add_argument(
'--checkpoint_path',
default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl',
type=str,
help='Path to the original state dict (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
_lowerCamelCase = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
) | 6 | 1 |
import math
import os
import unittest
from transformers import MegatronBertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
)
class UpperCamelCase_ :
def __init__( self :int , __A :Optional[Any] , __A :Any=13 , __A :Optional[int]=7 , __A :str=True , __A :Tuple=True , __A :Union[str, Any]=True , __A :int=True , __A :Any=99 , __A :Union[str, Any]=64 , __A :int=32 , __A :Tuple=5 , __A :int=4 , __A :Tuple=37 , __A :Optional[Any]="gelu" , __A :Union[str, Any]=0.1 , __A :Any=0.1 , __A :str=512 , __A :Tuple=16 , __A :Optional[Any]=2 , __A :Tuple=0.0_2 , __A :int=3 , __A :Union[str, Any]=4 , __A :List[Any]=None , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = seq_length
SCREAMING_SNAKE_CASE__ = is_training
SCREAMING_SNAKE_CASE__ = use_input_mask
SCREAMING_SNAKE_CASE__ = use_token_type_ids
SCREAMING_SNAKE_CASE__ = use_labels
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = embedding_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = intermediate_size
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = type_vocab_size
SCREAMING_SNAKE_CASE__ = type_sequence_label_size
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = num_labels
SCREAMING_SNAKE_CASE__ = num_choices
SCREAMING_SNAKE_CASE__ = scope
def _snake_case ( self :Dict ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _snake_case ( self :int ) -> Union[str, Any]:
"""simple docstring"""
return MegatronBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , )
def _snake_case ( self :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Union[str, Any] , __A :int , __A :str , __A :List[Any] , __A :List[str] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MegatronBertModel(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , token_type_ids=__A )
SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A )
SCREAMING_SNAKE_CASE__ = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _snake_case ( self :List[Any] , __A :List[str] , __A :Optional[Any] , __A :Optional[int] , __A :List[str] , __A :List[Any] , __A :int , __A :Any ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MegatronBertForMaskedLM(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self :List[Any] , __A :Any , __A :Tuple , __A :str , __A :str , __A :List[str] , __A :Union[str, Any] , __A :Optional[int] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MegatronBertForCausalLM(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self :Tuple , __A :int , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :int , __A :Union[str, Any] , __A :str ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MegatronBertForNextSentencePrediction(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def _snake_case ( self :Union[str, Any] , __A :str , __A :Any , __A :Union[str, Any] , __A :List[Any] , __A :Any , __A :str , __A :Dict ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MegatronBertForPreTraining(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , next_sentence_label=__A , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def _snake_case ( self :Optional[Any] , __A :int , __A :Optional[Any] , __A :List[Any] , __A :Tuple , __A :Any , __A :Union[str, Any] , __A :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MegatronBertForQuestionAnswering(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(
__A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self :str , __A :int , __A :List[Any] , __A :Tuple , __A :Optional[Any] , __A :Optional[int] , __A :Dict , __A :Optional[int] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = MegatronBertForSequenceClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self :Optional[Any] , __A :List[Any] , __A :List[Any] , __A :Any , __A :Tuple , __A :Any , __A :Optional[int] , __A :str ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = MegatronBertForTokenClassification(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self :Optional[Any] , __A :int , __A :List[Any] , __A :List[str] , __A :Any , __A :List[Any] , __A :Any , __A :Optional[int] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_choices
SCREAMING_SNAKE_CASE__ = MegatronBertForMultipleChoice(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
lowerCamelCase_ = (
(
MegatronBertModel,
MegatronBertForMaskedLM,
MegatronBertForCausalLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCamelCase_ = (
{
"feature-extraction": MegatronBertModel,
"fill-mask": MegatronBertForMaskedLM,
"question-answering": MegatronBertForQuestionAnswering,
"text-classification": MegatronBertForSequenceClassification,
"text-generation": MegatronBertForCausalLM,
"token-classification": MegatronBertForTokenClassification,
"zero-shot": MegatronBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCamelCase_ = True
# test_resize_embeddings = False
lowerCamelCase_ = False
def _snake_case ( self :int , __A :Tuple , __A :List[str] , __A :int=False ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A )
if return_labels:
if model_class in get_values(__A ):
SCREAMING_SNAKE_CASE__ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A )
SCREAMING_SNAKE_CASE__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__A )
return inputs_dict
def _snake_case ( self :Tuple ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = MegatronBertModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , hidden_size=37 )
def _snake_case ( self :List[Any] ) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def _snake_case ( self :int ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_model(*__A )
def _snake_case ( self :List[Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__A )
def _snake_case ( self :Optional[Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__A )
def _snake_case ( self :Any ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__A )
def _snake_case ( self :Optional[Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_pretraining(*__A )
def _snake_case ( self :List[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_question_answering(*__A )
def _snake_case ( self :Tuple ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__A )
def _snake_case ( self :Optional[int] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_megatron_bert_for_token_classification(*__A )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
return torch.tensor(
UpperCamelCase__ , dtype=torch.long , device=UpperCamelCase__ , )
_lowerCamelCase = 1e-4
@require_torch
@require_sentencepiece
@require_tokenizers
class UpperCamelCase_ ( unittest.TestCase ):
@slow
@unittest.skip("""Model is not available.""" )
def _snake_case ( self :int ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """nvidia/megatron-bert-uncased-345m"""
if "MYDIR" in os.environ:
SCREAMING_SNAKE_CASE__ = os.path.join(os.environ["""MYDIR"""] , __A )
SCREAMING_SNAKE_CASE__ = MegatronBertModel.from_pretrained(__A )
model.to(__A )
model.half()
SCREAMING_SNAKE_CASE__ = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = model(__A )[0]
SCREAMING_SNAKE_CASE__ = torch.Size((1, 9, 1024) )
self.assertEqual(output.shape , __A )
SCREAMING_SNAKE_CASE__ = [-0.6_0_4_0, -0.2_5_1_7, -0.1_0_2_5, 0.3_4_2_0, -0.6_7_5_8, -0.0_0_1_7, -0.1_0_8_9, -0.1_9_9_0, 0.5_7_2_8]
for ii in range(3 ):
for jj in range(3 ):
SCREAMING_SNAKE_CASE__ = output[0, ii, jj]
SCREAMING_SNAKE_CASE__ = expected[3 * ii + jj]
SCREAMING_SNAKE_CASE__ = """ii={} jj={} a={} b={}""".format(__A , __A , __A , __A )
self.assertTrue(math.isclose(__A , __A , rel_tol=__A , abs_tol=__A ) , msg=__A ) | 6 |
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'nielsr/canine-s': 2048,
}
# Unicode defines 1,114,112 total “codepoints”
_lowerCamelCase = 1114112
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
_lowerCamelCase = 0
_lowerCamelCase = 0XE0_00
_lowerCamelCase = 0XE0_01
_lowerCamelCase = 0XE0_02
_lowerCamelCase = 0XE0_03
_lowerCamelCase = 0XE0_04
# Maps special codepoints to human-readable names.
_lowerCamelCase = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
_lowerCamelCase = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self :str , __A :str=chr(__A ) , __A :str=chr(__A ) , __A :Dict=chr(__A ) , __A :str=chr(__A ) , __A :Union[str, Any]=chr(__A ) , __A :str=chr(__A ) , __A :int=False , __A :int=2048 , **__A :Dict , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else bos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else eos_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else sep_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else cls_token
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE__ = AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token
super().__init__(
bos_token=__A , eos_token=__A , sep_token=__A , cls_token=__A , pad_token=__A , mask_token=__A , add_prefix_space=__A , model_max_length=__A , **__A , )
# Creates a mapping for looking up the IDs of special symbols.
SCREAMING_SNAKE_CASE__ = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
SCREAMING_SNAKE_CASE__ = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
SCREAMING_SNAKE_CASE__ = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
SCREAMING_SNAKE_CASE__ = UNICODE_VOCAB_SIZE
SCREAMING_SNAKE_CASE__ = len(self._special_codepoints )
@property
def _snake_case ( self :Optional[Any] ) -> int:
"""simple docstring"""
return self._unicode_vocab_size
def _snake_case ( self :Tuple , __A :str ) -> List[str]:
"""simple docstring"""
return list(__A )
def _snake_case ( self :Optional[Any] , __A :str ) -> int:
"""simple docstring"""
try:
return ord(__A )
except TypeError:
raise ValueError(f'''invalid token: \'{token}\'''' )
def _snake_case ( self :str , __A :int ) -> str:
"""simple docstring"""
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(__A )
except TypeError:
raise ValueError(f'''invalid id: {index}''' )
def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Any:
"""simple docstring"""
return "".join(__A )
def _snake_case ( self :Optional[Any] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def _snake_case ( self :List[Any] , __A :List[int] , __A :Optional[List[int]] = None , __A :bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__A , token_ids_a=__A , already_has_special_tokens=__A )
SCREAMING_SNAKE_CASE__ = [1] + ([0] * len(__A )) + [1]
if token_ids_a is not None:
result += ([0] * len(__A )) + [1]
return result
def _snake_case ( self :List[str] , __A :List[int] , __A :Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self.sep_token_id]
SCREAMING_SNAKE_CASE__ = [self.cls_token_id]
SCREAMING_SNAKE_CASE__ = len(cls + token_ids_a + sep ) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep ) * [1]
return result
def _snake_case ( self :int , __A :str , __A :Optional[str] = None ) -> Any:
"""simple docstring"""
return () | 6 | 1 |
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str = "AAPL" ):
SCREAMING_SNAKE_CASE__ = f'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}'''
SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(UpperCamelCase__ ).text , """html.parser""" )
SCREAMING_SNAKE_CASE__ = """My(6px) Pos(r) smartphone_Mt(6px)"""
return soup.find("""div""" , class_=class_ ).find("""span""" ).text
if __name__ == "__main__":
for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split():
print(F'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''') | 6 |
import inspect
import os
import torch
from transformers import AutoModel
from transformers.testing_utils import mockenv_context
from transformers.trainer_utils import set_seed
import accelerate
from accelerate.accelerator import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils.testing import (
AccelerateTestCase,
TempDirTestCase,
execute_subprocess_async,
require_cuda,
require_fsdp,
require_multi_gpu,
slow,
)
from accelerate.utils.constants import (
FSDP_AUTO_WRAP_POLICY,
FSDP_BACKWARD_PREFETCH,
FSDP_SHARDING_STRATEGY,
FSDP_STATE_DICT_TYPE,
)
from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin
from accelerate.utils.other import patch_environment
set_seed(42)
_lowerCamelCase = 'bert-base-cased'
_lowerCamelCase = 'fp16'
_lowerCamelCase = 'bf16'
_lowerCamelCase = [FPaa, BFaa]
@require_fsdp
@require_cuda
class UpperCamelCase_ ( UpperCamelCase__ ):
def _snake_case ( self :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE__ = dict(
ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , )
def _snake_case ( self :List[Any] ) -> Tuple:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy
for i, strategy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = f'''{i + 1}'''
SCREAMING_SNAKE_CASE__ = strategy
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) )
def _snake_case ( self :int ) -> List[str]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch
for i, prefetch_policy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = prefetch_policy
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
if prefetch_policy == "NO_PREFETCH":
self.assertIsNone(fsdp_plugin.backward_prefetch )
else:
self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) )
def _snake_case ( self :List[str] ) -> List[str]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
for i, state_dict_type in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = state_dict_type
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) )
if state_dict_type == "FULL_STATE_DICT":
self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu )
self.assertTrue(fsdp_plugin.state_dict_config.ranka_only )
def _snake_case ( self :str ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A )
for policy in FSDP_AUTO_WRAP_POLICY:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = policy
if policy == "TRANSFORMER_BASED_WRAP":
SCREAMING_SNAKE_CASE__ = """BertLayer"""
elif policy == "SIZE_BASED_WRAP":
SCREAMING_SNAKE_CASE__ = """2000"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__A )
if policy == "NO_WRAP":
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
else:
self.assertIsNotNone(fsdp_plugin.auto_wrap_policy )
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP"""
SCREAMING_SNAKE_CASE__ = """T5Layer"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
with self.assertRaises(__A ) as cm:
fsdp_plugin.set_auto_wrap_policy(__A )
self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) )
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP"""
SCREAMING_SNAKE_CASE__ = """0"""
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
fsdp_plugin.set_auto_wrap_policy(__A )
self.assertIsNone(fsdp_plugin.auto_wrap_policy )
def _snake_case ( self :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler
for mp_dtype in dtypes:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = mp_dtype
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = Accelerator()
if mp_dtype == "fp16":
SCREAMING_SNAKE_CASE__ = torch.floataa
elif mp_dtype == "bf16":
SCREAMING_SNAKE_CASE__ = torch.bfloataa
SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A )
self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A )
if mp_dtype == FPaa:
self.assertTrue(isinstance(accelerator.scaler , __A ) )
elif mp_dtype == BFaa:
self.assertIsNone(accelerator.scaler )
AcceleratorState._reset_state(__A )
def _snake_case ( self :str ) -> str:
"""simple docstring"""
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload
for flag in [True, False]:
SCREAMING_SNAKE_CASE__ = self.dist_env.copy()
SCREAMING_SNAKE_CASE__ = str(__A ).lower()
with mockenv_context(**__A ):
SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin()
self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) )
@require_fsdp
@require_multi_gpu
@slow
class UpperCamelCase_ ( UpperCamelCase__ ):
def _snake_case ( self :Any ) -> Any:
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE__ = 0.8_2
SCREAMING_SNAKE_CASE__ = [
"""fsdp_shard_grad_op_transformer_based_wrap""",
"""fsdp_full_shard_transformer_based_wrap""",
]
SCREAMING_SNAKE_CASE__ = {
"""multi_gpu_fp16""": 3200,
"""fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000,
"""fsdp_full_shard_transformer_based_wrap_fp16""": 1900,
# Disabling below test as it overwhelms the RAM memory usage
# on CI self-hosted runner leading to tests getting killed.
# "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang
}
SCREAMING_SNAKE_CASE__ = 160
SCREAMING_SNAKE_CASE__ = 160
SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils )
SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] )
def _snake_case ( self :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" )
SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""]
for config in self.performance_configs:
SCREAMING_SNAKE_CASE__ = cmd.copy()
for i, strategy in enumerate(__A ):
if strategy.lower() in config:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "fp32" in config:
cmd_config.append("""--mixed_precision=no""" )
else:
cmd_config.append("""--mixed_precision=fp16""" )
if "cpu_offload" in config:
cmd_config.append("""--fsdp_offload_params=True""" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in config:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("""--fsdp_min_num_params=2000""" )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--performance_lower_bound={self.performance_lower_bound}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
def _snake_case ( self :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" )
SCREAMING_SNAKE_CASE__ = [
"""accelerate""",
"""launch""",
"""--num_processes=2""",
"""--num_machines=1""",
"""--machine_rank=0""",
"""--use_fsdp""",
"""--mixed_precision=fp16""",
"""--fsdp_transformer_layer_cls_to_wrap=BertLayer""",
]
for i, strategy in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = cmd.copy()
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
if strategy != "FULL_SHARD":
continue
SCREAMING_SNAKE_CASE__ = len(__A )
for state_dict_type in FSDP_STATE_DICT_TYPE:
SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index]
cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
"""--partial_train_epoch=1""",
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
SCREAMING_SNAKE_CASE__ = cmd_config[:-1]
SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" )
cmd_config.extend(
[
f'''--resume_from_checkpoint={resume_from_checkpoint}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() )
def _snake_case ( self :Tuple ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" )
SCREAMING_SNAKE_CASE__ = [
"""accelerate""",
"""launch""",
"""--num_processes=2""",
"""--num_machines=1""",
"""--machine_rank=0""",
]
for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items():
SCREAMING_SNAKE_CASE__ = cmd.copy()
if "fp16" in spec:
cmd_config.extend(["""--mixed_precision=fp16"""] )
else:
cmd_config.extend(["""--mixed_precision=no"""] )
if "multi_gpu" in spec:
continue
else:
cmd_config.extend(["""--use_fsdp"""] )
for i, strategy in enumerate(__A ):
if strategy.lower() in spec:
cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' )
break
if "cpu_offload" in spec:
cmd_config.append("""--fsdp_offload_params=True""" )
for policy in FSDP_AUTO_WRAP_POLICY:
if policy.lower() in spec:
cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' )
break
if policy == "TRANSFORMER_BASED_WRAP":
cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" )
elif policy == "SIZE_BASED_WRAP":
cmd_config.append("""--fsdp_min_num_params=2000""" )
cmd_config.extend(
[
self.test_file_path,
f'''--output_dir={self.tmpdir}''',
f'''--peak_memory_upper_bound={peak_mem_upper_bound}''',
f'''--n_train={self.n_train}''',
f'''--n_val={self.n_val}''',
] )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__A , env=os.environ.copy() ) | 6 | 1 |
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
SCREAMING_SNAKE_CASE__ = k.replace(UpperCamelCase__ , UpperCamelCase__ )
if k.startswith("""encoder""" ):
SCREAMING_SNAKE_CASE__ = k.replace(""".attn""" , """.self_attn""" )
SCREAMING_SNAKE_CASE__ = k.replace("""norm1""" , """self_attn_layer_norm""" )
SCREAMING_SNAKE_CASE__ = k.replace("""norm2""" , """final_layer_norm""" )
elif k.startswith("""decoder""" ):
SCREAMING_SNAKE_CASE__ = k.replace("""norm1""" , """self_attn_layer_norm""" )
SCREAMING_SNAKE_CASE__ = k.replace("""norm2""" , """encoder_attn_layer_norm""" )
SCREAMING_SNAKE_CASE__ = k.replace("""norm3""" , """final_layer_norm""" )
return k
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ):
SCREAMING_SNAKE_CASE__ = [
"""model.encoder.layernorm_embedding.weight""",
"""model.encoder.layernorm_embedding.bias""",
"""model.decoder.layernorm_embedding.weight""",
"""model.decoder.layernorm_embedding.bias""",
]
for k in keys:
SCREAMING_SNAKE_CASE__ = sd.pop(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = k.replace("""layernorm_embedding""" , """layer_norm""" )
assert new_k not in sd
SCREAMING_SNAKE_CASE__ = v
_lowerCamelCase = ['START']
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Any , UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase__ , map_location="""cpu""" )
SCREAMING_SNAKE_CASE__ = model["""model"""]
SCREAMING_SNAKE_CASE__ = BlenderbotConfig.from_json_file(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = BlenderbotForConditionalGeneration(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = m.model.state_dict().keys()
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
SCREAMING_SNAKE_CASE__ = rename_state_dict_key(UpperCamelCase__ )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
SCREAMING_SNAKE_CASE__ = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(UpperCamelCase__ )
m.model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ )
m.half()
m.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
_lowerCamelCase = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json) | 6 |
import collections.abc
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_poolformer import PoolFormerConfig
_lowerCamelCase = logging.get_logger(__name__)
# General docstring
_lowerCamelCase = 'PoolFormerConfig'
# Base docstring
_lowerCamelCase = 'sail/poolformer_s12'
_lowerCamelCase = [1, 512, 7, 7]
# Image classification docstring
_lowerCamelCase = 'sail/poolformer_s12'
_lowerCamelCase = 'tabby, tabby cat'
_lowerCamelCase = [
'sail/poolformer_s12',
# See all PoolFormer models at https://huggingface.co/models?filter=poolformer
]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , UpperCamelCase__: float = 0.0 , UpperCamelCase__: bool = False ):
if drop_prob == 0.0 or not training:
return input
SCREAMING_SNAKE_CASE__ = 1 - drop_prob
SCREAMING_SNAKE_CASE__ = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
SCREAMING_SNAKE_CASE__ = keep_prob + torch.rand(UpperCamelCase__ , dtype=input.dtype , device=input.device )
random_tensor.floor_() # binarize
SCREAMING_SNAKE_CASE__ = input.div(UpperCamelCase__ ) * random_tensor
return output
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Optional[Any] , __A :Optional[float] = None ) -> None:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = drop_prob
def _snake_case ( self :Any , __A :torch.Tensor ) -> torch.Tensor:
"""simple docstring"""
return drop_path(__A , self.drop_prob , self.training )
def _snake_case ( self :Dict ) -> str:
"""simple docstring"""
return "p={}".format(self.drop_prob )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Dict , __A :Optional[Any] , __A :Dict , __A :List[str] , __A :Optional[Any] , __A :Tuple , __A :Optional[Any]=None ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = patch_size if isinstance(__A , collections.abc.Iterable ) else (patch_size, patch_size)
SCREAMING_SNAKE_CASE__ = stride if isinstance(__A , collections.abc.Iterable ) else (stride, stride)
SCREAMING_SNAKE_CASE__ = padding if isinstance(__A , collections.abc.Iterable ) else (padding, padding)
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , kernel_size=__A , stride=__A , padding=__A )
SCREAMING_SNAKE_CASE__ = norm_layer(__A ) if norm_layer else nn.Identity()
def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.projection(__A )
SCREAMING_SNAKE_CASE__ = self.norm(__A )
return embeddings
class UpperCamelCase_ ( nn.GroupNorm ):
def __init__( self :Dict , __A :Tuple , **__A :Union[str, Any] ) -> Dict:
"""simple docstring"""
super().__init__(1 , __A , **__A )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :List[str] , __A :Optional[int] ) -> Any:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.AvgPoolad(__A , stride=1 , padding=pool_size // 2 , count_include_pad=__A )
def _snake_case ( self :Any , __A :Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
return self.pool(__A ) - hidden_states
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Optional[Any] , __A :Tuple , __A :Dict , __A :int , __A :Any ) -> str:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A )
if isinstance(config.hidden_act , __A ):
SCREAMING_SNAKE_CASE__ = ACTaFN[config.hidden_act]
else:
SCREAMING_SNAKE_CASE__ = config.hidden_act
def _snake_case ( self :Union[str, Any] , __A :Optional[int] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.conva(__A )
SCREAMING_SNAKE_CASE__ = self.act_fn(__A )
SCREAMING_SNAKE_CASE__ = self.drop(__A )
SCREAMING_SNAKE_CASE__ = self.conva(__A )
SCREAMING_SNAKE_CASE__ = self.drop(__A )
return hidden_states
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Any , __A :str , __A :List[str] , __A :Tuple , __A :Dict , __A :Union[str, Any] , __A :int ) -> Optional[int]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = PoolFormerPooling(__A )
SCREAMING_SNAKE_CASE__ = PoolFormerOutput(__A , __A , __A , __A )
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A )
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(__A )
# Useful for training neural nets
SCREAMING_SNAKE_CASE__ = PoolFormerDropPath(__A ) if drop_path > 0.0 else nn.Identity()
SCREAMING_SNAKE_CASE__ = config.use_layer_scale
if config.use_layer_scale:
SCREAMING_SNAKE_CASE__ = nn.Parameter(
config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A )
SCREAMING_SNAKE_CASE__ = nn.Parameter(
config.layer_scale_init_value * torch.ones((__A) ) , requires_grad=__A )
def _snake_case ( self :Optional[Any] , __A :Optional[int] ) -> str:
"""simple docstring"""
if self.use_layer_scale:
SCREAMING_SNAKE_CASE__ = self.pooling(self.before_norm(__A ) )
SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output
# First residual connection
SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A )
SCREAMING_SNAKE_CASE__ = ()
SCREAMING_SNAKE_CASE__ = self.output(self.after_norm(__A ) )
SCREAMING_SNAKE_CASE__ = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output
# Second residual connection
SCREAMING_SNAKE_CASE__ = hidden_states + self.drop_path(__A )
SCREAMING_SNAKE_CASE__ = (output,) + outputs
return outputs
else:
SCREAMING_SNAKE_CASE__ = self.drop_path(self.pooling(self.before_norm(__A ) ) )
# First residual connection
SCREAMING_SNAKE_CASE__ = pooling_output + hidden_states
SCREAMING_SNAKE_CASE__ = ()
# Second residual connection inside the PoolFormerOutput block
SCREAMING_SNAKE_CASE__ = self.drop_path(self.output(self.after_norm(__A ) ) )
SCREAMING_SNAKE_CASE__ = hidden_states + layer_output
SCREAMING_SNAKE_CASE__ = (output,) + outputs
return outputs
class UpperCamelCase_ ( nn.Module ):
def __init__( self :Union[str, Any] , __A :List[Any] ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = config
# stochastic depth decay rule
SCREAMING_SNAKE_CASE__ = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )]
# patch embeddings
SCREAMING_SNAKE_CASE__ = []
for i in range(config.num_encoder_blocks ):
embeddings.append(
PoolFormerEmbeddings(
patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) )
SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A )
# Transformer blocks
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = 0
for i in range(config.num_encoder_blocks ):
# each block consists of layers
SCREAMING_SNAKE_CASE__ = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i] ):
layers.append(
PoolFormerLayer(
__A , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) )
blocks.append(nn.ModuleList(__A ) )
SCREAMING_SNAKE_CASE__ = nn.ModuleList(__A )
def _snake_case ( self :str , __A :Tuple , __A :Dict=False , __A :Tuple=True ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = () if output_hidden_states else None
SCREAMING_SNAKE_CASE__ = pixel_values
for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = layers
# Get patch embeddings from hidden_states
SCREAMING_SNAKE_CASE__ = embedding_layer(__A )
# Send the embeddings through the blocks
for _, blk in enumerate(__A ):
SCREAMING_SNAKE_CASE__ = blk(__A )
SCREAMING_SNAKE_CASE__ = layer_outputs[0]
if output_hidden_states:
SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=__A , hidden_states=__A )
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = PoolFormerConfig
lowerCamelCase_ = "poolformer"
lowerCamelCase_ = "pixel_values"
lowerCamelCase_ = True
def _snake_case ( self :Optional[Any] , __A :Tuple ) -> Dict:
"""simple docstring"""
if isinstance(__A , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(__A , nn.LayerNorm ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
def _snake_case ( self :str , __A :Optional[Any] , __A :Union[str, Any]=False ) -> Any:
"""simple docstring"""
if isinstance(__A , __A ):
SCREAMING_SNAKE_CASE__ = value
_lowerCamelCase = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
_lowerCamelCase = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n'
@add_start_docstrings(
"The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , UpperCamelCase__ , )
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :Union[str, Any] , __A :Any ) -> int:
"""simple docstring"""
super().__init__(__A )
SCREAMING_SNAKE_CASE__ = config
SCREAMING_SNAKE_CASE__ = PoolFormerEncoder(__A )
# Initialize weights and apply final processing
self.post_init()
def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(__A )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__A , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _snake_case ( self :Dict , __A :Optional[torch.FloatTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("""You have to specify pixel_values""" )
SCREAMING_SNAKE_CASE__ = self.encoder(
__A , output_hidden_states=__A , return_dict=__A , )
SCREAMING_SNAKE_CASE__ = encoder_outputs[0]
if not return_dict:
return (sequence_output, None) + encoder_outputs[1:]
return BaseModelOutputWithNoAttention(
last_hidden_state=__A , hidden_states=encoder_outputs.hidden_states , )
class UpperCamelCase_ ( nn.Module ):
def __init__( self :int , __A :Optional[int] ) -> Tuple:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.hidden_size )
def _snake_case ( self :List[Any] , __A :Dict ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.dense(__A )
return output
@add_start_docstrings(
"\n PoolFormer Model transformer with an image classification head on top\n " , UpperCamelCase__ , )
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :str , __A :Union[str, Any] ) -> int:
"""simple docstring"""
super().__init__(__A )
SCREAMING_SNAKE_CASE__ = config.num_labels
SCREAMING_SNAKE_CASE__ = PoolFormerModel(__A )
# Final norm
SCREAMING_SNAKE_CASE__ = PoolFormerGroupNorm(config.hidden_sizes[-1] )
# Classifier head
SCREAMING_SNAKE_CASE__ = (
nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__A )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _snake_case ( self :int , __A :Optional[torch.FloatTensor] = None , __A :Optional[torch.LongTensor] = None , __A :Optional[bool] = None , __A :Optional[bool] = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE__ = self.poolformer(
__A , output_hidden_states=__A , return_dict=__A , )
SCREAMING_SNAKE_CASE__ = outputs[0]
SCREAMING_SNAKE_CASE__ = self.classifier(self.norm(__A ).mean([-2, -1] ) )
SCREAMING_SNAKE_CASE__ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
SCREAMING_SNAKE_CASE__ = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
SCREAMING_SNAKE_CASE__ = """single_label_classification"""
else:
SCREAMING_SNAKE_CASE__ = """multi_label_classification"""
if self.config.problem_type == "regression":
SCREAMING_SNAKE_CASE__ = MSELoss()
if self.num_labels == 1:
SCREAMING_SNAKE_CASE__ = loss_fct(logits.squeeze() , labels.squeeze() )
else:
SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A )
elif self.config.problem_type == "single_label_classification":
SCREAMING_SNAKE_CASE__ = CrossEntropyLoss()
SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
SCREAMING_SNAKE_CASE__ = BCEWithLogitsLoss()
SCREAMING_SNAKE_CASE__ = loss_fct(__A , __A )
if not return_dict:
SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__A , logits=__A , hidden_states=outputs.hidden_states ) | 6 | 1 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = (DDIMParallelScheduler,)
lowerCamelCase_ = (("eta", 0.0), ("num_inference_steps", 50))
def _snake_case ( self :List[Any] , **__A :List[str] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = {
"""num_train_timesteps""": 1000,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""clip_sample""": True,
}
config.update(**__A )
return config
def _snake_case ( self :int , **__A :List[str] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(**__A )
SCREAMING_SNAKE_CASE__ = scheduler_class(**__A )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 10, 0.0
SCREAMING_SNAKE_CASE__ = self.dummy_model()
SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter
scheduler.set_timesteps(__A )
for t in scheduler.timesteps:
SCREAMING_SNAKE_CASE__ = model(__A , __A )
SCREAMING_SNAKE_CASE__ = scheduler.step(__A , __A , __A , __A ).prev_sample
return sample
def _snake_case ( self :Tuple ) -> Optional[int]:
"""simple docstring"""
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=__A )
def _snake_case ( self :Union[str, Any] ) -> Tuple:
"""simple docstring"""
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=__A )
SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ = self.get_scheduler_config(steps_offset=1 )
SCREAMING_SNAKE_CASE__ = scheduler_class(**__A )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def _snake_case ( self :List[str] ) -> Any:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=__A , beta_end=__A )
def _snake_case ( self :Dict ) -> Optional[Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=__A )
def _snake_case ( self :int ) -> List[Any]:
"""simple docstring"""
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__A )
def _snake_case ( self :Optional[Any] ) -> List[Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__A )
def _snake_case ( self :Any ) -> Any:
"""simple docstring"""
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=__A )
def _snake_case ( self :List[Any] ) -> Tuple:
"""simple docstring"""
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=__A )
def _snake_case ( self :Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self.check_over_configs(thresholding=__A )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=__A , prediction_type=__A , sample_max_value=__A , )
def _snake_case ( self :Optional[int] ) -> List[Any]:
"""simple docstring"""
for t in [1, 10, 49]:
self.check_over_forward(time_step=__A )
def _snake_case ( self :str ) -> Tuple:
"""simple docstring"""
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=__A , num_inference_steps=__A )
def _snake_case ( self :Tuple ) -> str:
"""simple docstring"""
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=__A , eta=__A )
def _snake_case ( self :List[str] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ = scheduler_class(**__A )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4_7_7_1 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2_4_6_0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0_9_7_9 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.0_2 ) ) < 1E-5
def _snake_case ( self :int ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE__ = self.get_scheduler_config()
SCREAMING_SNAKE_CASE__ = scheduler_class(**__A )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 10, 0.0
scheduler.set_timesteps(__A )
SCREAMING_SNAKE_CASE__ = self.dummy_model()
SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter
SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter + 0.1
SCREAMING_SNAKE_CASE__ = self.dummy_sample_deter - 0.1
SCREAMING_SNAKE_CASE__ = samplea.shape[0]
SCREAMING_SNAKE_CASE__ = torch.stack([samplea, samplea, samplea] , dim=0 )
SCREAMING_SNAKE_CASE__ = torch.arange(__A )[0:3, None].repeat(1 , __A )
SCREAMING_SNAKE_CASE__ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
SCREAMING_SNAKE_CASE__ = scheduler.batch_step_no_noise(__A , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , __A )
SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) )
SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1E-2
assert abs(result_mean.item() - 0.4_9_8_2 ) < 1E-3
def _snake_case ( self :Tuple ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.full_loop()
SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) )
SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1E-2
assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1E-3
def _snake_case ( self :Optional[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.full_loop(prediction_type="""v_prediction""" )
SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) )
SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1E-2
assert abs(result_mean.item() - 0.0_6_8_4 ) < 1E-3
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.full_loop(set_alpha_to_one=__A , beta_start=0.0_1 )
SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) )
SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1E-2
assert abs(result_mean.item() - 0.1_9_5_1 ) < 1E-3
def _snake_case ( self :Tuple ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.full_loop(set_alpha_to_one=__A , beta_start=0.0_1 )
SCREAMING_SNAKE_CASE__ = torch.sum(torch.abs(__A ) )
SCREAMING_SNAKE_CASE__ = torch.mean(torch.abs(__A ) )
assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1E-2
assert abs(result_mean.item() - 0.1_9_4_1 ) < 1E-3 | 6 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class UpperCamelCase_ ( UpperCamelCase__ ):
def __init__( self :Union[str, Any] , __A :Optional[int] , __A :Tuple=13 , __A :Dict=7 , __A :Dict=True , __A :str=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Optional[Any]=True , __A :Any=False , __A :Dict=False , __A :Any=False , __A :Tuple=2 , __A :Dict=99 , __A :Optional[Any]=0 , __A :List[str]=32 , __A :Optional[int]=5 , __A :Dict=4 , __A :List[str]=0.1 , __A :Union[str, Any]=0.1 , __A :Tuple=512 , __A :Any=12 , __A :Optional[int]=2 , __A :Union[str, Any]=0.0_2 , __A :Dict=3 , __A :Optional[int]=4 , __A :Any="last" , __A :List[Any]=None , __A :Any=None , ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = seq_length
SCREAMING_SNAKE_CASE__ = is_training
SCREAMING_SNAKE_CASE__ = use_input_lengths
SCREAMING_SNAKE_CASE__ = use_token_type_ids
SCREAMING_SNAKE_CASE__ = use_labels
SCREAMING_SNAKE_CASE__ = gelu_activation
SCREAMING_SNAKE_CASE__ = sinusoidal_embeddings
SCREAMING_SNAKE_CASE__ = causal
SCREAMING_SNAKE_CASE__ = asm
SCREAMING_SNAKE_CASE__ = n_langs
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = n_special
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = type_vocab_size
SCREAMING_SNAKE_CASE__ = type_sequence_label_size
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = num_labels
SCREAMING_SNAKE_CASE__ = num_choices
SCREAMING_SNAKE_CASE__ = summary_type
SCREAMING_SNAKE_CASE__ = use_proj
SCREAMING_SNAKE_CASE__ = scope
def _snake_case ( self :Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE__ = None
if self.use_input_lengths:
SCREAMING_SNAKE_CASE__ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
SCREAMING_SNAKE_CASE__ = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , 2 ).float()
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_choices )
SCREAMING_SNAKE_CASE__ = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _snake_case ( self :List[str] ) -> Optional[int]:
"""simple docstring"""
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def _snake_case ( self :Tuple , __A :str , __A :int , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[int] , __A :Union[str, Any] , __A :Union[str, Any] , __A :str , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModel(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , lengths=__A , langs=__A )
SCREAMING_SNAKE_CASE__ = model(__A , langs=__A )
SCREAMING_SNAKE_CASE__ = model(__A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self :str , __A :Any , __A :str , __A :Union[str, Any] , __A :Optional[Any] , __A :Optional[int] , __A :Any , __A :Union[str, Any] , __A :Optional[Any] , __A :Union[str, Any] , ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertWithLMHeadModel(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , token_type_ids=__A , labels=__A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self :Tuple , __A :Union[str, Any] , __A :Optional[Any] , __A :Dict , __A :Dict , __A :Union[str, Any] , __A :List[str] , __A :Optional[int] , __A :int , __A :str , ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnsweringSimple(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _snake_case ( self :List[str] , __A :Any , __A :int , __A :Tuple , __A :Optional[Any] , __A :Tuple , __A :Optional[int] , __A :str , __A :int , __A :str , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForQuestionAnswering(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(
__A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , p_mask=__A , )
SCREAMING_SNAKE_CASE__ = model(
__A , start_positions=__A , end_positions=__A , cls_index=__A , is_impossible=__A , )
((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple()
SCREAMING_SNAKE_CASE__ = model(__A , start_positions=__A , end_positions=__A )
((SCREAMING_SNAKE_CASE__) , ) = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def _snake_case ( self :Optional[int] , __A :str , __A :Optional[int] , __A :Tuple , __A :Dict , __A :List[str] , __A :Tuple , __A :List[str] , __A :Dict , __A :List[str] , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertForSequenceClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A )
SCREAMING_SNAKE_CASE__ = model(__A , labels=__A )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _snake_case ( self :Optional[Any] , __A :Optional[Any] , __A :Optional[Any] , __A :List[str] , __A :Optional[Any] , __A :int , __A :Tuple , __A :Optional[int] , __A :Union[str, Any] , __A :Dict , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = FlaubertForTokenClassification(__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , attention_mask=__A , labels=__A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _snake_case ( self :str , __A :Any , __A :Tuple , __A :List[str] , __A :Tuple , __A :Any , __A :int , __A :Dict , __A :List[str] , __A :Tuple , ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.num_choices
SCREAMING_SNAKE_CASE__ = FlaubertForMultipleChoice(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
SCREAMING_SNAKE_CASE__ = model(
__A , attention_mask=__A , token_type_ids=__A , labels=__A , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _snake_case ( self :Union[str, Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
lowerCamelCase_ = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
lowerCamelCase_ = (
{
"feature-extraction": FlaubertModel,
"fill-mask": FlaubertWithLMHeadModel,
"question-answering": FlaubertForQuestionAnsweringSimple,
"text-classification": FlaubertForSequenceClassification,
"token-classification": FlaubertForTokenClassification,
"zero-shot": FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def _snake_case ( self :Any , __A :Optional[int] , __A :Optional[int] , __A :Dict , __A :List[Any] , __A :Tuple ) -> str:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _snake_case ( self :Tuple , __A :List[str] , __A :Optional[int] , __A :Dict=False ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super()._prepare_for_class(__A , __A , return_labels=__A )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
SCREAMING_SNAKE_CASE__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__A )
SCREAMING_SNAKE_CASE__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__A )
return inputs_dict
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , emb_dim=37 )
def _snake_case ( self :int ) -> int:
"""simple docstring"""
self.config_tester.run_common_tests()
def _snake_case ( self :Optional[Any] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__A )
def _snake_case ( self :Tuple ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__A )
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*__A )
def _snake_case ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__A )
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__A )
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*__A )
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*__A )
@slow
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained(__A )
self.assertIsNotNone(__A )
@slow
@require_torch_gpu
def _snake_case ( self :Tuple ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = model_class(config=__A )
SCREAMING_SNAKE_CASE__ = self._prepare_for_class(__A , __A )
SCREAMING_SNAKE_CASE__ = torch.jit.trace(
__A , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(__A , os.path.join(__A , """traced_model.pt""" ) )
SCREAMING_SNAKE_CASE__ = torch.jit.load(os.path.join(__A , """traced_model.pt""" ) , map_location=__A )
loaded(inputs_dict["""input_ids"""].to(__A ) , inputs_dict["""attention_mask"""].to(__A ) )
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
@slow
def _snake_case ( self :Dict ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
SCREAMING_SNAKE_CASE__ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = model(__A )[0]
SCREAMING_SNAKE_CASE__ = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __A )
SCREAMING_SNAKE_CASE__ = torch.tensor(
[[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1E-4 ) ) | 6 | 1 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[Any]=None ):
SCREAMING_SNAKE_CASE__ = None
if token is not None:
SCREAMING_SNAKE_CASE__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
SCREAMING_SNAKE_CASE__ = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100'''
SCREAMING_SNAKE_CASE__ = requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).json()
SCREAMING_SNAKE_CASE__ = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
SCREAMING_SNAKE_CASE__ = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = requests.get(url + f'''&page={i + 2}''' , headers=UpperCamelCase__ ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: str=None ):
SCREAMING_SNAKE_CASE__ = None
if token is not None:
SCREAMING_SNAKE_CASE__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
SCREAMING_SNAKE_CASE__ = f'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100'''
SCREAMING_SNAKE_CASE__ = requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).json()
SCREAMING_SNAKE_CASE__ = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
SCREAMING_SNAKE_CASE__ = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = requests.get(url + f'''&page={i + 2}''' , headers=UpperCamelCase__ ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' )
return {}
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: List[Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[Any] ):
SCREAMING_SNAKE_CASE__ = None
if token is not None:
SCREAMING_SNAKE_CASE__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f'''Bearer {token}'''}
SCREAMING_SNAKE_CASE__ = requests.get(UpperCamelCase__ , headers=UpperCamelCase__ , allow_redirects=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = result.headers["""Location"""]
SCREAMING_SNAKE_CASE__ = requests.get(UpperCamelCase__ , allow_redirects=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = os.path.join(UpperCamelCase__ , f'''{artifact_name}.zip''' )
with open(UpperCamelCase__ , """wb""" ) as fp:
fp.write(response.content )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Any=None ):
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = None
with zipfile.ZipFile(UpperCamelCase__ ) as z:
for filename in z.namelist():
if not os.path.isdir(UpperCamelCase__ ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(UpperCamelCase__ ) as f:
for line in f:
SCREAMING_SNAKE_CASE__ = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
SCREAMING_SNAKE_CASE__ = line[: line.index(""": """ )]
SCREAMING_SNAKE_CASE__ = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
SCREAMING_SNAKE_CASE__ = line[len("""FAILED """ ) :]
failed_tests.append(UpperCamelCase__ )
elif filename == "job_name.txt":
SCREAMING_SNAKE_CASE__ = line
if len(UpperCamelCase__ ) != len(UpperCamelCase__ ):
raise ValueError(
f'''`errors` and `failed_tests` should have the same number of elements. Got {len(UpperCamelCase__ )} for `errors` '''
f'''and {len(UpperCamelCase__ )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some'''
""" problem.""" )
SCREAMING_SNAKE_CASE__ = None
if job_name and job_links:
SCREAMING_SNAKE_CASE__ = job_links.get(UpperCamelCase__ , UpperCamelCase__ )
# A list with elements of the form (line of error, error, failed test)
SCREAMING_SNAKE_CASE__ = [x + [y] + [job_link] for x, y in zip(UpperCamelCase__ , UpperCamelCase__ )]
return result
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Any=None ):
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = [os.path.join(UpperCamelCase__ , UpperCamelCase__ ) for p in os.listdir(UpperCamelCase__ ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(UpperCamelCase__ , job_links=UpperCamelCase__ ) )
return errors
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: str=None ):
SCREAMING_SNAKE_CASE__ = Counter()
counter.update([x[1] for x in logs] )
SCREAMING_SNAKE_CASE__ = counter.most_common()
SCREAMING_SNAKE_CASE__ = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
SCREAMING_SNAKE_CASE__ = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
SCREAMING_SNAKE_CASE__ = dict(sorted(r.items() , key=lambda UpperCamelCase__ : item[1]["count"] , reverse=UpperCamelCase__ ) )
return r
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
SCREAMING_SNAKE_CASE__ = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
SCREAMING_SNAKE_CASE__ = test.split("""/""" )[2]
else:
SCREAMING_SNAKE_CASE__ = None
return test
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Any=None ):
SCREAMING_SNAKE_CASE__ = [(x[0], x[1], get_model(x[2] )) for x in logs]
SCREAMING_SNAKE_CASE__ = [x for x in logs if x[2] is not None]
SCREAMING_SNAKE_CASE__ = {x[2] for x in logs}
SCREAMING_SNAKE_CASE__ = {}
for test in tests:
SCREAMING_SNAKE_CASE__ = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
SCREAMING_SNAKE_CASE__ = counter.most_common()
SCREAMING_SNAKE_CASE__ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
SCREAMING_SNAKE_CASE__ = sum(error_counts.values() )
if n_errors > 0:
SCREAMING_SNAKE_CASE__ = {"""count""": n_errors, """errors""": error_counts}
SCREAMING_SNAKE_CASE__ = dict(sorted(r.items() , key=lambda UpperCamelCase__ : item[1]["count"] , reverse=UpperCamelCase__ ) )
return r
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
SCREAMING_SNAKE_CASE__ = """| no. | error | status |"""
SCREAMING_SNAKE_CASE__ = """|-:|:-|:-|"""
SCREAMING_SNAKE_CASE__ = [header, sep]
for error in reduced_by_error:
SCREAMING_SNAKE_CASE__ = reduced_by_error[error]["""count"""]
SCREAMING_SNAKE_CASE__ = f'''| {count} | {error[:100]} | |'''
lines.append(UpperCamelCase__ )
return "\n".join(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
SCREAMING_SNAKE_CASE__ = """| model | no. of errors | major error | count |"""
SCREAMING_SNAKE_CASE__ = """|-:|-:|-:|-:|"""
SCREAMING_SNAKE_CASE__ = [header, sep]
for model in reduced_by_model:
SCREAMING_SNAKE_CASE__ = reduced_by_model[model]["""count"""]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = list(reduced_by_model[model]["""errors"""].items() )[0]
SCREAMING_SNAKE_CASE__ = f'''| {model} | {count} | {error[:60]} | {_count} |'''
lines.append(UpperCamelCase__ )
return "\n".join(UpperCamelCase__ )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.')
parser.add_argument(
'--output_dir',
type=str,
required=True,
help='Where to store the downloaded artifacts and other result files.',
)
parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.')
_lowerCamelCase = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
_lowerCamelCase = get_job_links(args.workflow_run_id, token=args.token)
_lowerCamelCase = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
_lowerCamelCase = k.find(' / ')
_lowerCamelCase = k[index + len(' / ') :]
_lowerCamelCase = v
with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
_lowerCamelCase = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
_lowerCamelCase = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
_lowerCamelCase = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
_lowerCamelCase = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
_lowerCamelCase = reduce_by_error(errors)
_lowerCamelCase = reduce_by_model(errors)
_lowerCamelCase = make_github_table(reduced_by_error)
_lowerCamelCase = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp:
fp.write(sa) | 6 |
from copy import deepcopy
import torch
import torch.nn.functional as F
from torch.optim import AdamW
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import DistributedType, is_torch_version, set_seed
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Union[str, Any] ):
for param, grad_param in zip(model_a.parameters() , model_b.parameters() ):
if not param.requires_grad:
continue
if not did_step:
# Grads should not be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , grad_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})'''
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple=True ):
model.train()
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = F.mse_loss(UpperCamelCase__ , target.to(output.device ) )
if not do_backward:
loss /= accelerator.gradient_accumulation_steps
loss.backward()
else:
accelerator.backward(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: List[Any]=False ):
set_seed(42 )
SCREAMING_SNAKE_CASE__ = RegressionModel()
SCREAMING_SNAKE_CASE__ = deepcopy(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
model.to(accelerator.device )
if sched:
SCREAMING_SNAKE_CASE__ = AdamW(params=model.parameters() , lr=1e-3 )
SCREAMING_SNAKE_CASE__ = AdamW(params=ddp_model.parameters() , lr=1e-3 )
SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 )
SCREAMING_SNAKE_CASE__ = LambdaLR(UpperCamelCase__ , lr_lambda=lambda UpperCamelCase__ : epoch**0.6_5 )
# Make a copy of `model`
if sched:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ )
if sched:
return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched)
return model, ddp_model, dataloader
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple ):
# Test when on a single CPU or GPU that the context manager does nothing
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
# Use a single batch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
# Sync grads
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync
check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
assert torch.allclose(
param.grad , ddp_param.grad ), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] ):
# Test on distributed setup that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
# Use a single batch
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = next(iter(UpperCamelCase__ ) ).values()
for iteration in range(3 ):
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
if iteration % 2 == 0:
# Accumulate grads locally
with accelerator.no_sync(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
# Sync grads
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if iteration % 2 == 0:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
else:
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int=False , UpperCamelCase__: Union[str, Any]=False ):
SCREAMING_SNAKE_CASE__ = Accelerator(
split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ )
for iteration, batch in enumerate(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values()
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Do "gradient accumulation" (noop)
with accelerator.accumulate(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# DDP model and model should only be in sync when not (iteration % 2 == 0)
for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ):
if not param.requires_grad:
continue
if ((iteration + 1) % 2 == 0) or (iteration == len(UpperCamelCase__ ) - 1):
# Grads should be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is True
), f'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})'''
else:
# Grads should not be in sync
assert (
torch.allclose(param.grad , ddp_param.grad ) is False
), f'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})'''
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
SCREAMING_SNAKE_CASE__ = ddp_input[torch.randperm(len(UpperCamelCase__ ) )]
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple=False , UpperCamelCase__: List[str]=False ):
SCREAMING_SNAKE_CASE__ = Accelerator(
split_batches=UpperCamelCase__ , dispatch_batches=UpperCamelCase__ , gradient_accumulation_steps=2 )
# Test that context manager behaves properly
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_training_setup(UpperCamelCase__ , UpperCamelCase__ )
for iteration, batch in enumerate(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = batch.values()
# Gather the distributed inputs and targs for the base model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.gather((ddp_input, ddp_target) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = input.to(accelerator.device ), target.to(accelerator.device )
# Perform our initial ground truth step in non "DDP"
model.train()
ddp_model.train()
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
opt.step()
if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(UpperCamelCase__ )):
if split_batches:
sched.step()
else:
for _ in range(accelerator.num_processes ):
sched.step()
opt.zero_grad()
# Perform gradient accumulation under wrapper
with accelerator.accumulate(UpperCamelCase__ ):
step_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
ddp_opt.step()
ddp_sched.step()
ddp_opt.zero_grad()
# Learning rates should be the same
assert (
opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"]
), f'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n'''
SCREAMING_SNAKE_CASE__ = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(UpperCamelCase__ ))
if accelerator.num_processes > 1:
check_model_parameters(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# Shuffle ddp_input on each iteration
torch.manual_seed(1_337 + iteration )
GradientState._reset_state()
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = Accelerator()
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=80 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
SCREAMING_SNAKE_CASE__ = RegressionDataset(length=96 )
SCREAMING_SNAKE_CASE__ = DataLoader(UpperCamelCase__ , batch_size=16 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ )
assert accelerator.gradient_state.active_dataloader is None
for iteration, _ in enumerate(UpperCamelCase__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ )
if iteration < len(UpperCamelCase__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
if iteration == 1:
for batch_num, _ in enumerate(UpperCamelCase__ ):
assert id(accelerator.gradient_state.active_dataloader ) == id(UpperCamelCase__ )
if batch_num < len(UpperCamelCase__ ) - 1:
assert not accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
else:
assert accelerator.gradient_state.end_of_dataloader
assert accelerator.gradient_state.active_dataloader is None
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = Accelerator()
SCREAMING_SNAKE_CASE__ = accelerator.state
if state.local_process_index == 0:
print("""**Test `accumulate` gradient accumulation with dataloader break**""" )
test_dataloader_break()
if state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print("""**Test NOOP `no_sync` context manager**""" )
test_noop_sync(UpperCamelCase__ )
if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU):
if state.local_process_index == 0:
print("""**Test Distributed `no_sync` context manager**""" )
test_distributed_sync(UpperCamelCase__ )
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation(UpperCamelCase__ , UpperCamelCase__ )
# Currently will break on torch 2.0 +, need to investigate why
if is_torch_version("""<""" , """2.0""" ) or state.distributed_type == DistributedType.NO:
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , """`split_batches=False`, `dispatch_batches=False`**""" , )
test_gradient_accumulation_with_opt_and_scheduler()
if state.distributed_type == DistributedType.MULTI_GPU:
for split_batch in [True, False]:
for dispatch_batches in [True, False]:
if not split_batch and not dispatch_batches:
continue
if state.local_process_index == 0:
print(
"""**Test `accumulate` gradient accumulation with optimizer and scheduler, """ , f'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , )
test_gradient_accumulation_with_opt_and_scheduler(UpperCamelCase__ , UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 6 | 1 |
import argparse
import json
from pathlib import Path
import requests
import timm
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Union[str, Any]=False ):
SCREAMING_SNAKE_CASE__ = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''deit.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''deit.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''deit.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''deit.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''deit.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''deit.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''deit.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''deit.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''deit.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''deit.encoder.layer.{i}.output.dense.bias''') )
# projection layer + position embeddings
rename_keys.extend(
[
("""cls_token""", """deit.embeddings.cls_token"""),
("""dist_token""", """deit.embeddings.distillation_token"""),
("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""),
("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""),
("""pos_embed""", """deit.embeddings.position_embeddings"""),
] )
if base_model:
# layernorm + pooler
rename_keys.extend(
[
("""norm.weight""", """layernorm.weight"""),
("""norm.bias""", """layernorm.bias"""),
("""pre_logits.fc.weight""", """pooler.dense.weight"""),
("""pre_logits.fc.bias""", """pooler.dense.bias"""),
] )
# if just the base model, we should remove "deit" from all keys that start with "deit"
SCREAMING_SNAKE_CASE__ = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys]
else:
# layernorm + classification heads
rename_keys.extend(
[
("""norm.weight""", """deit.layernorm.weight"""),
("""norm.bias""", """deit.layernorm.bias"""),
("""head.weight""", """cls_classifier.weight"""),
("""head.bias""", """cls_classifier.bias"""),
("""head_dist.weight""", """distillation_classifier.weight"""),
("""head_dist.bias""", """distillation_classifier.bias"""),
] )
return rename_keys
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any]=False ):
for i in range(config.num_hidden_layers ):
if base_model:
SCREAMING_SNAKE_CASE__ = """"""
else:
SCREAMING_SNAKE_CASE__ = """deit."""
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' )
SCREAMING_SNAKE_CASE__ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE__ = in_proj_weight[
: config.hidden_size, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[: config.hidden_size]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
SCREAMING_SNAKE_CASE__ = in_proj_weight[
-config.hidden_size :, :
]
SCREAMING_SNAKE_CASE__ = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: List[str] ):
SCREAMING_SNAKE_CASE__ = dct.pop(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = val
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = """http://images.cocodataset.org/val2017/000000039769.jpg"""
SCREAMING_SNAKE_CASE__ = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any , UpperCamelCase__: Tuple ):
SCREAMING_SNAKE_CASE__ = DeiTConfig()
# all deit models have fine-tuned heads
SCREAMING_SNAKE_CASE__ = False
# dataset (fine-tuned on ImageNet 2012), patch_size and image_size
SCREAMING_SNAKE_CASE__ = 1_000
SCREAMING_SNAKE_CASE__ = """huggingface/label-files"""
SCREAMING_SNAKE_CASE__ = """imagenet-1k-id2label.json"""
SCREAMING_SNAKE_CASE__ = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) )
SCREAMING_SNAKE_CASE__ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ = idalabel
SCREAMING_SNAKE_CASE__ = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE__ = int(deit_name[-6:-4] )
SCREAMING_SNAKE_CASE__ = int(deit_name[-3:] )
# size of the architecture
if deit_name[9:].startswith("""tiny""" ):
SCREAMING_SNAKE_CASE__ = 192
SCREAMING_SNAKE_CASE__ = 768
SCREAMING_SNAKE_CASE__ = 12
SCREAMING_SNAKE_CASE__ = 3
elif deit_name[9:].startswith("""small""" ):
SCREAMING_SNAKE_CASE__ = 384
SCREAMING_SNAKE_CASE__ = 1_536
SCREAMING_SNAKE_CASE__ = 12
SCREAMING_SNAKE_CASE__ = 6
if deit_name[9:].startswith("""base""" ):
pass
elif deit_name[4:].startswith("""large""" ):
SCREAMING_SNAKE_CASE__ = 1_024
SCREAMING_SNAKE_CASE__ = 4_096
SCREAMING_SNAKE_CASE__ = 24
SCREAMING_SNAKE_CASE__ = 16
# load original model from timm
SCREAMING_SNAKE_CASE__ = timm.create_model(UpperCamelCase__ , pretrained=UpperCamelCase__ )
timm_model.eval()
# load state_dict of original model, remove and rename some keys
SCREAMING_SNAKE_CASE__ = timm_model.state_dict()
SCREAMING_SNAKE_CASE__ = create_rename_keys(UpperCamelCase__ , UpperCamelCase__ )
for src, dest in rename_keys:
rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
read_in_q_k_v(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# load HuggingFace model
SCREAMING_SNAKE_CASE__ = DeiTForImageClassificationWithTeacher(UpperCamelCase__ ).eval()
model.load_state_dict(UpperCamelCase__ )
# Check outputs on an image, prepared by DeiTImageProcessor
SCREAMING_SNAKE_CASE__ = int(
(256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103
SCREAMING_SNAKE_CASE__ = DeiTImageProcessor(size=UpperCamelCase__ , crop_size=config.image_size )
SCREAMING_SNAKE_CASE__ = image_processor(images=prepare_img() , return_tensors="""pt""" )
SCREAMING_SNAKE_CASE__ = encoding["""pixel_values"""]
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = timm_model(UpperCamelCase__ )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(UpperCamelCase__ , outputs.logits , atol=1e-3 )
Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ )
print(f'''Saving model {deit_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCamelCase__ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(UpperCamelCase__ )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--deit_name',
default='vit_deit_base_distilled_patch16_224',
type=str,
help='Name of the DeiT timm model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
_lowerCamelCase = parser.parse_args()
convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path) | 6 |
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "AutoImageProcessor"
lowerCamelCase_ = "AutoTokenizer"
def __init__( self :Optional[int] , __A :Optional[Any] , __A :Dict ) -> Dict:
"""simple docstring"""
super().__init__(__A , __A )
SCREAMING_SNAKE_CASE__ = self.image_processor
def __call__( self :int , __A :str=None , __A :int=None , __A :Union[str, Any]=None , **__A :str ) -> Optional[Any]:
"""simple docstring"""
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""" )
if text is not None:
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , return_tensors=__A , **__A )
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :str , *__A :List[str] , **__A :List[str] ) -> List[Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :List[str] , *__A :Any , **__A :Any ) -> Tuple:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :Dict ) -> List[Any]:
"""simple docstring"""
return ["input_ids", "attention_mask", "pixel_values"] | 6 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Optional[Any] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = tempfile.mkdtemp()
# fmt: off
SCREAMING_SNAKE_CASE__ = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
SCREAMING_SNAKE_CASE__ = dict(zip(__A , range(len(__A ) ) ) )
SCREAMING_SNAKE_CASE__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
SCREAMING_SNAKE_CASE__ = {"""unk_token""": """<unk>"""}
SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(__A ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(__A ) )
SCREAMING_SNAKE_CASE__ = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
"""image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , __A )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(__A , __A )
def _snake_case ( self :Optional[Any] , **__A :Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
return CLIPTokenizer.from_pretrained(self.tmpdirname , **__A )
def _snake_case ( self :Optional[int] , **__A :List[str] ) -> Union[str, Any]:
"""simple docstring"""
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__A )
def _snake_case ( self :str , **__A :Dict ) -> List[str]:
"""simple docstring"""
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__A )
def _snake_case ( self :Union[str, Any] ) -> str:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _snake_case ( self :str ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE__ = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self :Dict ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer()
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=__A , image_processor=__A )
processor_slow.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__A )
SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=__A , image_processor=__A )
processor_fast.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , __A )
self.assertIsInstance(processor_fast.tokenizer , __A )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , __A )
self.assertIsInstance(processor_fast.image_processor , __A )
def _snake_case ( self :Tuple ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
SCREAMING_SNAKE_CASE__ = self.get_image_processor(do_normalize=__A , padding_value=1.0 )
SCREAMING_SNAKE_CASE__ = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__A , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __A )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __A )
def _snake_case ( self :Any ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=__A , image_processor=__A )
SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ = image_processor(__A , return_tensors="""np""" )
SCREAMING_SNAKE_CASE__ = processor(images=__A , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _snake_case ( self :Optional[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=__A , image_processor=__A )
SCREAMING_SNAKE_CASE__ = """lower newer"""
SCREAMING_SNAKE_CASE__ = processor(text=__A )
SCREAMING_SNAKE_CASE__ = tokenizer(__A )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self :Any ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=__A , image_processor=__A )
SCREAMING_SNAKE_CASE__ = """lower newer"""
SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ = processor(text=__A , images=__A )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(__A ):
processor()
def _snake_case ( self :List[Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=__A , image_processor=__A )
SCREAMING_SNAKE_CASE__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE__ = processor.batch_decode(__A )
SCREAMING_SNAKE_CASE__ = tokenizer.batch_decode(__A )
self.assertListEqual(__A , __A )
def _snake_case ( self :Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.get_image_processor()
SCREAMING_SNAKE_CASE__ = self.get_tokenizer()
SCREAMING_SNAKE_CASE__ = CLIPProcessor(tokenizer=__A , image_processor=__A )
SCREAMING_SNAKE_CASE__ = """lower newer"""
SCREAMING_SNAKE_CASE__ = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE__ = processor(text=__A , images=__A )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = sum(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
SCREAMING_SNAKE_CASE__ = True
for i in range(1 , s + 1 ):
SCREAMING_SNAKE_CASE__ = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
SCREAMING_SNAKE_CASE__ = dp[i][j - 1]
if arr[i - 1] <= j:
SCREAMING_SNAKE_CASE__ = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
SCREAMING_SNAKE_CASE__ = s - 2 * j
break
return diff | 6 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json',
# See all Nat models at https://huggingface.co/models?filter=nat
}
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ):
lowerCamelCase_ = "nat"
lowerCamelCase_ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self :List[Any] , __A :Union[str, Any]=4 , __A :Dict=3 , __A :str=64 , __A :Optional[int]=[3, 4, 6, 5] , __A :Tuple=[2, 4, 8, 16] , __A :List[str]=7 , __A :Optional[Any]=3.0 , __A :Tuple=True , __A :Tuple=0.0 , __A :Dict=0.0 , __A :Tuple=0.1 , __A :str="gelu" , __A :Tuple=0.0_2 , __A :str=1E-5 , __A :Tuple=0.0 , __A :List[str]=None , __A :Optional[Any]=None , **__A :Optional[Any] , ) -> List[str]:
"""simple docstring"""
super().__init__(**__A )
SCREAMING_SNAKE_CASE__ = patch_size
SCREAMING_SNAKE_CASE__ = num_channels
SCREAMING_SNAKE_CASE__ = embed_dim
SCREAMING_SNAKE_CASE__ = depths
SCREAMING_SNAKE_CASE__ = len(__A )
SCREAMING_SNAKE_CASE__ = num_heads
SCREAMING_SNAKE_CASE__ = kernel_size
SCREAMING_SNAKE_CASE__ = mlp_ratio
SCREAMING_SNAKE_CASE__ = qkv_bias
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__ = drop_path_rate
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = layer_norm_eps
SCREAMING_SNAKE_CASE__ = initializer_range
# we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
SCREAMING_SNAKE_CASE__ = int(embed_dim * 2 ** (len(__A ) - 1) )
SCREAMING_SNAKE_CASE__ = layer_scale_init_value
SCREAMING_SNAKE_CASE__ = ["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__A ) + 1 )]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_aligned_output_features_output_indices(
out_features=__A , out_indices=__A , stage_names=self.stage_names ) | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: float , UpperCamelCase__: float ):
if mass < 0:
raise ValueError("""The mass of a body cannot be negative""" )
return 0.5 * mass * abs(UpperCamelCase__ ) * abs(UpperCamelCase__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) | 6 | 1 |
from __future__ import annotations
class UpperCamelCase_ :
def __init__( self :Tuple , __A :list[list[int]] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TypeError(
"""Matrices must be formed from a list of zero or more lists containing at """
"""least one and the same number of values, each of which must be of type """
"""int or float.""" )
if len(__A ) != 0:
SCREAMING_SNAKE_CASE__ = len(rows[0] )
if cols == 0:
raise error
for row in rows:
if len(__A ) != cols:
raise error
for value in row:
if not isinstance(__A , (int, float) ):
raise error
SCREAMING_SNAKE_CASE__ = rows
else:
SCREAMING_SNAKE_CASE__ = []
def _snake_case ( self :int ) -> list[list[int]]:
"""simple docstring"""
return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )]
@property
def _snake_case ( self :List[Any] ) -> int:
"""simple docstring"""
return len(self.rows )
@property
def _snake_case ( self :Optional[int] ) -> int:
"""simple docstring"""
return len(self.rows[0] )
@property
def _snake_case ( self :Dict ) -> tuple[int, int]:
"""simple docstring"""
return (self.num_rows, self.num_columns)
@property
def _snake_case ( self :Any ) -> bool:
"""simple docstring"""
return self.order[0] == self.order[1]
def _snake_case ( self :int ) -> Matrix:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
[0 if column_num != row_num else 1 for column_num in range(self.num_rows )]
for row_num in range(self.num_rows )
]
return Matrix(__A )
def _snake_case ( self :List[Any] ) -> int:
"""simple docstring"""
if not self.is_square:
return 0
if self.order == (0, 0):
return 1
if self.order == (1, 1):
return int(self.rows[0][0] )
if self.order == (2, 2):
return int(
(self.rows[0][0] * self.rows[1][1])
- (self.rows[0][1] * self.rows[1][0]) )
else:
return sum(
self.rows[0][column] * self.cofactors().rows[0][column]
for column in range(self.num_columns ) )
def _snake_case ( self :Any ) -> bool:
"""simple docstring"""
return bool(self.determinant() )
def _snake_case ( self :str , __A :int , __A :int ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
[
self.rows[other_row][other_column]
for other_column in range(self.num_columns )
if other_column != column
]
for other_row in range(self.num_rows )
if other_row != row
]
return Matrix(__A ).determinant()
def _snake_case ( self :List[str] , __A :int , __A :int ) -> int:
"""simple docstring"""
if (row + column) % 2 == 0:
return self.get_minor(__A , __A )
return -1 * self.get_minor(__A , __A )
def _snake_case ( self :Dict ) -> Matrix:
"""simple docstring"""
return Matrix(
[
[self.get_minor(__A , __A ) for column in range(self.num_columns )]
for row in range(self.num_rows )
] )
def _snake_case ( self :List[Any] ) -> Matrix:
"""simple docstring"""
return Matrix(
[
[
self.minors().rows[row][column]
if (row + column) % 2 == 0
else self.minors().rows[row][column] * -1
for column in range(self.minors().num_columns )
]
for row in range(self.minors().num_rows )
] )
def _snake_case ( self :Tuple ) -> Matrix:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
[self.cofactors().rows[column][row] for column in range(self.num_columns )]
for row in range(self.num_rows )
]
return Matrix(__A )
def _snake_case ( self :List[str] ) -> Matrix:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.determinant()
if not determinant:
raise TypeError("""Only matrices with a non-zero determinant have an inverse""" )
return self.adjugate() * (1 / determinant)
def __repr__( self :Any ) -> str:
"""simple docstring"""
return str(self.rows )
def __str__( self :Optional[Any] ) -> str:
"""simple docstring"""
if self.num_rows == 0:
return "[]"
if self.num_rows == 1:
return "[[" + ". ".join(str(self.rows[0] ) ) + "]]"
return (
"["
+ "\n ".join(
[
"""[""" + """. """.join([str(__A ) for value in row] ) + """.]"""
for row in self.rows
] )
+ "]"
)
def _snake_case ( self :Optional[Any] , __A :list[int] , __A :int | None = None ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TypeError("""Row must be a list containing all ints and/or floats""" )
if not isinstance(__A , __A ):
raise type_error
for value in row:
if not isinstance(__A , (int, float) ):
raise type_error
if len(__A ) != self.num_columns:
raise ValueError(
"""Row must be equal in length to the other rows in the matrix""" )
if position is None:
self.rows.append(__A )
else:
SCREAMING_SNAKE_CASE__ = self.rows[0:position] + [row] + self.rows[position:]
def _snake_case ( self :List[str] , __A :list[int] , __A :int | None = None ) -> None:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = TypeError(
"""Column must be a list containing all ints and/or floats""" )
if not isinstance(__A , __A ):
raise type_error
for value in column:
if not isinstance(__A , (int, float) ):
raise type_error
if len(__A ) != self.num_rows:
raise ValueError(
"""Column must be equal in length to the other columns in the matrix""" )
if position is None:
SCREAMING_SNAKE_CASE__ = [self.rows[i] + [column[i]] for i in range(self.num_rows )]
else:
SCREAMING_SNAKE_CASE__ = [
self.rows[i][0:position] + [column[i]] + self.rows[i][position:]
for i in range(self.num_rows )
]
def __eq__( self :Optional[int] , __A :object ) -> bool:
"""simple docstring"""
if not isinstance(__A , __A ):
return NotImplemented
return self.rows == other.rows
def __ne__( self :Dict , __A :object ) -> bool:
"""simple docstring"""
return not self == other
def __neg__( self :Optional[int] ) -> Matrix:
"""simple docstring"""
return self * -1
def __add__( self :Dict , __A :Matrix ) -> Matrix:
"""simple docstring"""
if self.order != other.order:
raise ValueError("""Addition requires matrices of the same order""" )
return Matrix(
[
[self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __sub__( self :str , __A :Matrix ) -> Matrix:
"""simple docstring"""
if self.order != other.order:
raise ValueError("""Subtraction requires matrices of the same order""" )
return Matrix(
[
[self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )]
for i in range(self.num_rows )
] )
def __mul__( self :Optional[int] , __A :Matrix | int | float ) -> Matrix:
"""simple docstring"""
if isinstance(__A , (int, float) ):
return Matrix(
[[int(element * other ) for element in row] for row in self.rows] )
elif isinstance(__A , __A ):
if self.num_columns != other.num_rows:
raise ValueError(
"""The number of columns in the first matrix must """
"""be equal to the number of rows in the second""" )
return Matrix(
[
[Matrix.dot_product(__A , __A ) for column in other.columns()]
for row in self.rows
] )
else:
raise TypeError(
"""A Matrix can only be multiplied by an int, float, or another matrix""" )
def __pow__( self :str , __A :int ) -> Matrix:
"""simple docstring"""
if not isinstance(__A , __A ):
raise TypeError("""A Matrix can only be raised to the power of an int""" )
if not self.is_square:
raise ValueError("""Only square matrices can be raised to a power""" )
if other == 0:
return self.identity()
if other < 0:
if self.is_invertable():
return self.inverse() ** (-other)
raise ValueError(
"""Only invertable matrices can be raised to a negative power""" )
SCREAMING_SNAKE_CASE__ = self
for _ in range(other - 1 ):
result *= self
return result
@classmethod
def _snake_case ( cls :str , __A :list[int] , __A :list[int] ) -> int:
"""simple docstring"""
return sum(row[i] * column[i] for i in range(len(__A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod() | 6 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "encoder-decoder"
lowerCamelCase_ = True
def __init__( self :Optional[int] , **__A :str ) -> int:
"""simple docstring"""
super().__init__(**__A )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" )
SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" )
SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = True
@classmethod
def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig:
"""simple docstring"""
logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A )
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE__ = self.encoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.decoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.__class__.model_type
return output | 6 | 1 |
import numpy as np
from PIL import Image
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: np.ndarray , UpperCamelCase__: int , UpperCamelCase__: int ):
SCREAMING_SNAKE_CASE__ = np.array(UpperCamelCase__ )
if arr.shape[0] != arr.shape[1]:
raise ValueError("""The input array is not a square matrix""" )
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
# compute the shape of the output matrix
SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape maxpool_shape
SCREAMING_SNAKE_CASE__ = np.zeros((maxpool_shape, maxpool_shape) )
while i < arr.shape[0]:
if i + size > arr.shape[0]:
# if the end of the matrix is reached, break
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the maximum of the pooling matrix
SCREAMING_SNAKE_CASE__ = np.max(arr[i : i + size, j : j + size] )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
return updated_arr
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: np.ndarray , UpperCamelCase__: int , UpperCamelCase__: int ):
SCREAMING_SNAKE_CASE__ = np.array(UpperCamelCase__ )
if arr.shape[0] != arr.shape[1]:
raise ValueError("""The input array is not a square matrix""" )
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
# compute the shape of the output matrix
SCREAMING_SNAKE_CASE__ = (arr.shape[0] - size) // stride + 1
# initialize the output matrix with zeros of shape avgpool_shape
SCREAMING_SNAKE_CASE__ = np.zeros((avgpool_shape, avgpool_shape) )
while i < arr.shape[0]:
# if the end of the matrix is reached, break
if i + size > arr.shape[0]:
break
while j < arr.shape[1]:
# if the end of the matrix is reached, break
if j + size > arr.shape[1]:
break
# compute the average of the pooling matrix
SCREAMING_SNAKE_CASE__ = int(np.average(arr[i : i + size, j : j + size] ) )
# shift the pooling matrix by stride of column pixels
j += stride
mat_j += 1
# shift the pooling matrix by stride of row pixels
i += stride
mat_i += 1
# reset the column index to 0
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = 0
return updated_arr
# Main Function
if __name__ == "__main__":
from doctest import testmod
testmod(name='avgpooling', verbose=True)
# Loading the image
_lowerCamelCase = Image.open('path_to_image')
# Converting the image to numpy array and maxpooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show()
# Converting the image to numpy array and averagepooling, displaying the result
# Ensure that the image is a square matrix
Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show() | 6 |
import copy
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import ClassLabel, Features, Value
from .base import TaskTemplate
@dataclass(frozen=UpperCamelCase__ )
class UpperCamelCase_ ( UpperCamelCase__ ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
lowerCamelCase_ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} )
lowerCamelCase_ = Features({"text": Value("string" )} )
lowerCamelCase_ = Features({"labels": ClassLabel} )
lowerCamelCase_ = "text"
lowerCamelCase_ = "labels"
def _snake_case ( self :Any , __A :Dict ) -> Optional[Any]:
"""simple docstring"""
if self.label_column not in features:
raise ValueError(f'''Column {self.label_column} is not present in features.''' )
if not isinstance(features[self.label_column] , __A ):
raise ValueError(f'''Column {self.label_column} is not a ClassLabel.''' )
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self )
SCREAMING_SNAKE_CASE__ = self.label_schema.copy()
SCREAMING_SNAKE_CASE__ = features[self.label_column]
SCREAMING_SNAKE_CASE__ = label_schema
return task_template
@property
def _snake_case ( self :str ) -> Dict[str, str]:
"""simple docstring"""
return {
self.text_column: "text",
self.label_column: "labels",
} | 6 | 1 |
import inspect
import unittest
from transformers import DecisionTransformerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import DecisionTransformerModel
from transformers.models.decision_transformer.modeling_decision_transformer import (
DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
)
class UpperCamelCase_ :
def __init__( self :int , __A :Any , __A :int=13 , __A :Optional[Any]=7 , __A :Any=6 , __A :List[Any]=17 , __A :List[str]=23 , __A :List[str]=11 , __A :Optional[Any]=True , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = seq_length
SCREAMING_SNAKE_CASE__ = act_dim
SCREAMING_SNAKE_CASE__ = state_dim
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = max_length
SCREAMING_SNAKE_CASE__ = is_training
def _snake_case ( self :int ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = floats_tensor((self.batch_size, self.seq_length, self.state_dim) )
SCREAMING_SNAKE_CASE__ = floats_tensor((self.batch_size, self.seq_length, self.act_dim) )
SCREAMING_SNAKE_CASE__ = floats_tensor((self.batch_size, self.seq_length, 1) )
SCREAMING_SNAKE_CASE__ = floats_tensor((self.batch_size, self.seq_length, 1) )
SCREAMING_SNAKE_CASE__ = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000 )
SCREAMING_SNAKE_CASE__ = random_attention_mask((self.batch_size, self.seq_length) )
SCREAMING_SNAKE_CASE__ = self.get_config()
return (
config,
states,
actions,
rewards,
returns_to_go,
timesteps,
attention_mask,
)
def _snake_case ( self :Optional[Any] ) -> Tuple:
"""simple docstring"""
return DecisionTransformerConfig(
batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , )
def _snake_case ( self :List[Any] , __A :Union[str, Any] , __A :str , __A :Dict , __A :Union[str, Any] , __A :Tuple , __A :Tuple , __A :Dict , ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = DecisionTransformerModel(config=__A )
model.to(__A )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__A , __A , __A , __A , __A , __A )
self.parent.assertEqual(result.state_preds.shape , states.shape )
self.parent.assertEqual(result.action_preds.shape , actions.shape )
self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size) ) # seq length *3 as there are 3 modelities: states, returns and actions
def _snake_case ( self :Union[str, Any] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) , (
SCREAMING_SNAKE_CASE__
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE__ = {
"""states""": states,
"""actions""": actions,
"""rewards""": rewards,
"""returns_to_go""": returns_to_go,
"""timesteps""": timesteps,
"""attention_mask""": attention_mask,
}
return config, inputs_dict
@require_torch
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ):
lowerCamelCase_ = (DecisionTransformerModel,) if is_torch_available() else ()
lowerCamelCase_ = ()
lowerCamelCase_ = {"feature-extraction": DecisionTransformerModel} if is_torch_available() else {}
# Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids
lowerCamelCase_ = False
# Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
lowerCamelCase_ = False
def _snake_case ( self :List[Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = DecisionTransformerModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__A , hidden_size=37 )
def _snake_case ( self :Union[str, Any] ) -> Any:
"""simple docstring"""
self.config_tester.run_common_tests()
def _snake_case ( self :Union[str, Any] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__A )
@slow
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ = DecisionTransformerModel.from_pretrained(__A )
self.assertIsNotNone(__A )
def _snake_case ( self :str ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ = model_class(__A )
SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE__ = [
"""states""",
"""actions""",
"""rewards""",
"""returns_to_go""",
"""timesteps""",
"""attention_mask""",
]
self.assertListEqual(arg_names[: len(__A )] , __A )
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
@slow
def _snake_case ( self :Union[str, Any] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = 2 # number of steps of autoregressive prediction we will perform
SCREAMING_SNAKE_CASE__ = 10 # defined by the RL environment, may be normalized
SCREAMING_SNAKE_CASE__ = DecisionTransformerModel.from_pretrained("""edbeeching/decision-transformer-gym-hopper-expert""" )
SCREAMING_SNAKE_CASE__ = model.to(__A )
SCREAMING_SNAKE_CASE__ = model.config
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = torch.randn(1 , 1 , config.state_dim ).to(device=__A , dtype=torch.floataa ) # env.reset()
SCREAMING_SNAKE_CASE__ = torch.tensor(
[[0.2_4_2_7_9_3, -0.2_8_6_9_3_0_7_4, 0.8_7_4_2_6_1_3], [0.6_7_8_1_5_2_7_4, -0.0_8_1_0_1_0_8_5, -0.1_2_9_5_2_1_4_7]] , device=__A )
SCREAMING_SNAKE_CASE__ = torch.tensor(__A , device=__A , dtype=torch.floataa ).reshape(1 , 1 , 1 )
SCREAMING_SNAKE_CASE__ = state
SCREAMING_SNAKE_CASE__ = torch.zeros(1 , 0 , config.act_dim , device=__A , dtype=torch.floataa )
SCREAMING_SNAKE_CASE__ = torch.zeros(1 , 0 , device=__A , dtype=torch.floataa )
SCREAMING_SNAKE_CASE__ = torch.tensor(0 , device=__A , dtype=torch.long ).reshape(1 , 1 )
for step in range(__A ):
SCREAMING_SNAKE_CASE__ = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=__A )] , dim=1 )
SCREAMING_SNAKE_CASE__ = torch.cat([rewards, torch.zeros(1 , 1 , device=__A )] , dim=1 )
SCREAMING_SNAKE_CASE__ = torch.ones(1 , states.shape[1] ).to(dtype=torch.long , device=states.device )
with torch.no_grad():
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model(
states=__A , actions=__A , rewards=__A , returns_to_go=__A , timesteps=__A , attention_mask=__A , return_dict=__A , )
self.assertEqual(action_pred.shape , actions.shape )
self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1E-4 ) )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = ( # env.step(action)
torch.randn(1 , 1 , config.state_dim ).to(device=__A , dtype=torch.floataa ),
1.0,
False,
{},
)
SCREAMING_SNAKE_CASE__ = action_pred[0, -1]
SCREAMING_SNAKE_CASE__ = torch.cat([states, state] , dim=1 )
SCREAMING_SNAKE_CASE__ = returns_to_go[0, -1] - reward
SCREAMING_SNAKE_CASE__ = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1 )] , dim=1 )
SCREAMING_SNAKE_CASE__ = torch.cat(
[timesteps, torch.ones((1, 1) , device=__A , dtype=torch.long ) * (step + 1)] , dim=1 ) | 6 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = model.config
SCREAMING_SNAKE_CASE__ = DonutSwinConfig(
image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=128 , )
SCREAMING_SNAKE_CASE__ = MBartConfig(
is_decoder=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , add_cross_attention=UpperCamelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len(
model.decoder.tokenizer ) , scale_embedding=UpperCamelCase__ , add_final_layer_norm=UpperCamelCase__ , )
return encoder_config, decoder_config
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
if "encoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""encoder.model""" , """encoder""" )
if "decoder.model" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""decoder.model""" , """decoder""" )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""patch_embed.norm""" , """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
SCREAMING_SNAKE_CASE__ = """encoder.""" + name
if "attn.proj" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name and "mask" not in name:
SCREAMING_SNAKE_CASE__ = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE__ = name.replace("""mlp.fc2""" , """output.dense""" )
if name == "encoder.norm.weight":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
SCREAMING_SNAKE_CASE__ = """encoder.layernorm.bias"""
return name
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: Optional[int] ):
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE__ = orig_state_dict.pop(UpperCamelCase__ )
if "qkv" in key:
SCREAMING_SNAKE_CASE__ = key.split(""".""" )
SCREAMING_SNAKE_CASE__ = int(key_split[3] )
SCREAMING_SNAKE_CASE__ = int(key_split[5] )
SCREAMING_SNAKE_CASE__ = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
SCREAMING_SNAKE_CASE__ = val[:dim, :]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE__ = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE__ = val[:dim]
SCREAMING_SNAKE_CASE__ = val[dim : dim * 2]
SCREAMING_SNAKE_CASE__ = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
SCREAMING_SNAKE_CASE__ = val
return orig_state_dict
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int=None , UpperCamelCase__: str=False ):
# load original model
SCREAMING_SNAKE_CASE__ = DonutModel.from_pretrained(UpperCamelCase__ ).eval()
# load HuggingFace model
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_configs(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutSwinModel(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = MBartForCausalLM(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = VisionEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ )
model.eval()
SCREAMING_SNAKE_CASE__ = original_model.state_dict()
SCREAMING_SNAKE_CASE__ = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ )
model.load_state_dict(UpperCamelCase__ )
# verify results on scanned document
SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/example-documents""" )
SCREAMING_SNAKE_CASE__ = dataset["""test"""][0]["""image"""].convert("""RGB""" )
SCREAMING_SNAKE_CASE__ = XLMRobertaTokenizerFast.from_pretrained(UpperCamelCase__ , from_slow=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] )
SCREAMING_SNAKE_CASE__ = DonutProcessor(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = processor(UpperCamelCase__ , return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
SCREAMING_SNAKE_CASE__ = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
SCREAMING_SNAKE_CASE__ = """When is the coffee break?"""
SCREAMING_SNAKE_CASE__ = task_prompt.replace("""{user_input}""" , UpperCamelCase__ )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
SCREAMING_SNAKE_CASE__ = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
SCREAMING_SNAKE_CASE__ = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
SCREAMING_SNAKE_CASE__ = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
SCREAMING_SNAKE_CASE__ = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
SCREAMING_SNAKE_CASE__ = """hello world"""
else:
raise ValueError("""Model name not supported""" )
SCREAMING_SNAKE_CASE__ = original_model.decoder.tokenizer(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , return_tensors="""pt""" )[
"""input_ids"""
]
SCREAMING_SNAKE_CASE__ = original_model.encoder.model.patch_embed(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = model.encoder.embeddings(UpperCamelCase__ )
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
# verify encoder hidden states
SCREAMING_SNAKE_CASE__ = original_model.encoder(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = model.encoder(UpperCamelCase__ ).last_hidden_state
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-2 )
# verify decoder hidden states
SCREAMING_SNAKE_CASE__ = original_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).logits
SCREAMING_SNAKE_CASE__ = model(UpperCamelCase__ , decoder_input_ids=UpperCamelCase__ ).logits
assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(UpperCamelCase__ )
processor.save_pretrained(UpperCamelCase__ )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1] , commit_message="""Update model""" )
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='naver-clova-ix/donut-base-finetuned-docvqa',
required=False,
type=str,
help='Name of the original model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
required=False,
type=str,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether or not to push the converted model and processor to the 🤗 hub.',
)
_lowerCamelCase = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 6 | 1 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] ):
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = set({"""(""", """[""", """{"""} )
SCREAMING_SNAKE_CASE__ = set({""")""", """]""", """}"""} )
SCREAMING_SNAKE_CASE__ = {"""{""": """}""", """[""": """]""", """(""": """)"""}
for i in range(len(UpperCamelCase__ ) ):
if s[i] in open_brackets:
stack.append(s[i] )
elif s[i] in closed_brackets and (
len(UpperCamelCase__ ) == 0 or (len(UpperCamelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i])
):
return False
return len(UpperCamelCase__ ) == 0
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = input("""Enter sequence of brackets: """ )
if is_balanced(UpperCamelCase__ ):
print(UpperCamelCase__ , """is balanced""" )
else:
print(UpperCamelCase__ , """is not balanced""" )
if __name__ == "__main__":
main() | 6 |
import gc
import unittest
import numpy as np
import torch
from diffusers import StableDiffusionKDiffusionPipeline
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Union[str, Any] ) -> List[str]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self :Any ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_euler""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe([prompt] , generator=__A , guidance_scale=9.0 , num_inference_steps=20 , output_type="""np""" )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" )
SCREAMING_SNAKE_CASE__ = sd_pipe.to(__A )
sd_pipe.set_progress_bar_config(disable=__A )
sd_pipe.set_scheduler("""sample_dpmpp_2m""" )
SCREAMING_SNAKE_CASE__ = """A painting of a squirrel eating a burger"""
SCREAMING_SNAKE_CASE__ = torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = sd_pipe(
[prompt] , generator=__A , guidance_scale=7.5 , num_inference_steps=15 , output_type="""np""" , use_karras_sigmas=__A , )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
SCREAMING_SNAKE_CASE__ = np.array(
[0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 | 6 | 1 |
# Logistic Regression from scratch
# In[62]:
# In[63]:
# importing all the required libraries
import numpy as np
from matplotlib import pyplot as plt
from sklearn import datasets
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] ):
return 1 / (1 + np.exp(-z ))
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Tuple ):
return (-y * np.log(UpperCamelCase__ ) - (1 - y) * np.log(1 - h )).mean()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Tuple ):
SCREAMING_SNAKE_CASE__ = np.dot(UpperCamelCase__ , UpperCamelCase__ )
return np.sum(y * scores - np.log(1 + np.exp(UpperCamelCase__ ) ) )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Any , UpperCamelCase__: Optional[Any]=70_000 ):
SCREAMING_SNAKE_CASE__ = np.zeros(x.shape[1] )
for iterations in range(UpperCamelCase__ ):
SCREAMING_SNAKE_CASE__ = np.dot(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = sigmoid_function(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = np.dot(x.T , h - y ) / y.size
SCREAMING_SNAKE_CASE__ = theta - alpha * gradient # updating the weights
SCREAMING_SNAKE_CASE__ = np.dot(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = sigmoid_function(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cost_function(UpperCamelCase__ , UpperCamelCase__ )
if iterations % 100 == 0:
print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations
return theta
# In[68]:
if __name__ == "__main__":
_lowerCamelCase = datasets.load_iris()
_lowerCamelCase = iris.data[:, :2]
_lowerCamelCase = (iris.target != 0) * 1
_lowerCamelCase = 0.1
_lowerCamelCase = logistic_reg(alpha, x, y, max_iterations=70000)
print('theta: ', theta) # printing the theta i.e our weights vector
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
return sigmoid_function(
np.dot(UpperCamelCase__ , UpperCamelCase__ ) ) # predicting the value of probability from the logistic regression algorithm
plt.figure(figsize=(10, 6))
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0')
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1')
((_lowerCamelCase) , (_lowerCamelCase)) = (x[:, 0].min(), x[:, 0].max())
((_lowerCamelCase) , (_lowerCamelCase)) = (x[:, 1].min(), x[:, 1].max())
((_lowerCamelCase) , (_lowerCamelCase)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max))
_lowerCamelCase = np.c_[xxa.ravel(), xxa.ravel()]
_lowerCamelCase = predict_prob(grid).reshape(xxa.shape)
plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black')
plt.legend()
plt.show() | 6 |
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int = 600_851_475_143 ):
try:
SCREAMING_SNAKE_CASE__ = int(UpperCamelCase__ )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = 2
while i * i <= n:
while n % i == 0:
SCREAMING_SNAKE_CASE__ = i
n //= i
i += 1
if n > 1:
SCREAMING_SNAKE_CASE__ = n
return int(UpperCamelCase__ )
if __name__ == "__main__":
print(F'''{solution() = }''') | 6 | 1 |
import os
from argparse import ArgumentParser
from typing import List
import torch.utils.data
from datasets import Dataset, IterableDataset
from datasets.distributed import split_dataset_by_node
_lowerCamelCase = 4
_lowerCamelCase = 3
class UpperCamelCase_ ( UpperCamelCase__ ):
pass
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] ):
for shard in shards:
for i in range(UpperCamelCase__ ):
yield {"i": i, "shard": shard}
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = int(os.environ["""RANK"""] )
SCREAMING_SNAKE_CASE__ = int(os.environ["""WORLD_SIZE"""] )
SCREAMING_SNAKE_CASE__ = ArgumentParser()
parser.add_argument("""--streaming""" , type=UpperCamelCase__ )
parser.add_argument("""--local_rank""" , type=UpperCamelCase__ )
parser.add_argument("""--num_workers""" , type=UpperCamelCase__ , default=0 )
SCREAMING_SNAKE_CASE__ = parser.parse_args()
SCREAMING_SNAKE_CASE__ = args.streaming
SCREAMING_SNAKE_CASE__ = args.num_workers
SCREAMING_SNAKE_CASE__ = {"""shards""": [f'''shard_{shard_idx}''' for shard_idx in range(UpperCamelCase__ )]}
SCREAMING_SNAKE_CASE__ = IterableDataset.from_generator(UpperCamelCase__ , gen_kwargs=UpperCamelCase__ )
if not streaming:
SCREAMING_SNAKE_CASE__ = Dataset.from_list(list(UpperCamelCase__ ) )
SCREAMING_SNAKE_CASE__ = split_dataset_by_node(UpperCamelCase__ , rank=UpperCamelCase__ , world_size=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = torch.utils.data.DataLoader(UpperCamelCase__ , num_workers=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = NUM_SHARDS * NUM_ITEMS_PER_SHARD
SCREAMING_SNAKE_CASE__ = full_size // world_size
expected_local_size += int(rank < (full_size % world_size) )
SCREAMING_SNAKE_CASE__ = sum(1 for _ in dataloader )
if local_size != expected_local_size:
raise FailedTestError(f'''local_size {local_size} != expected_local_size {expected_local_size}''' )
if __name__ == "__main__":
main() | 6 |
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :Tuple ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :List[str] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
"""unet/diffusion_pytorch_model.bin""",
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
self.assertTrue(is_safetensors_compatible(__A ) )
def _snake_case ( self :Optional[Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.bin""",
"""safety_checker/model.safetensors""",
"""vae/diffusion_pytorch_model.bin""",
"""vae/diffusion_pytorch_model.safetensors""",
"""text_encoder/pytorch_model.bin""",
# Removed: 'text_encoder/model.safetensors',
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
self.assertFalse(is_safetensors_compatible(__A ) )
def _snake_case ( self :Tuple ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Any ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""unet/diffusion_pytorch_model.bin""",
"""unet/diffusion_pytorch_model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :List[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
"""unet/diffusion_pytorch_model.fp16.bin""",
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :str ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.fp16.bin""",
"""text_encoder/model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Optional[int] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""text_encoder/pytorch_model.bin""",
"""text_encoder/model.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertTrue(is_safetensors_compatible(__A , variant=__A ) )
def _snake_case ( self :Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""safety_checker/pytorch_model.fp16.bin""",
"""safety_checker/model.fp16.safetensors""",
"""vae/diffusion_pytorch_model.fp16.bin""",
"""vae/diffusion_pytorch_model.fp16.safetensors""",
"""text_encoder/pytorch_model.fp16.bin""",
# 'text_encoder/model.fp16.safetensors',
"""unet/diffusion_pytorch_model.fp16.bin""",
"""unet/diffusion_pytorch_model.fp16.safetensors""",
]
SCREAMING_SNAKE_CASE__ = """fp16"""
self.assertFalse(is_safetensors_compatible(__A , variant=__A ) ) | 6 | 1 |
import argparse
import datetime
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = {
"""0""": """Sunday""",
"""1""": """Monday""",
"""2""": """Tuesday""",
"""3""": """Wednesday""",
"""4""": """Thursday""",
"""5""": """Friday""",
"""6""": """Saturday""",
}
SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(UpperCamelCase__ ) < 11:
raise ValueError("""Must be 10 characters long""" )
# Get month
SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("""Month must be between 1 - 12""" )
SCREAMING_SNAKE_CASE__ = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get day
SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("""Date must be between 1 - 31""" )
# Get second separator
SCREAMING_SNAKE_CASE__ = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get year
SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8_500:
raise ValueError(
"""Year out of range. There has to be some sort of limit...right?""" )
# Get datetime obj for validation
SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) )
# Start math
if m <= 2:
SCREAMING_SNAKE_CASE__ = y - 1
SCREAMING_SNAKE_CASE__ = m + 12
# maths var
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] )
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] )
SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 )
SCREAMING_SNAKE_CASE__ = int(c / 4 )
SCREAMING_SNAKE_CASE__ = int(k / 4 )
SCREAMING_SNAKE_CASE__ = int(d + k )
SCREAMING_SNAKE_CASE__ = int(t + u + v + x )
SCREAMING_SNAKE_CASE__ = int(z - (2 * c) )
SCREAMING_SNAKE_CASE__ = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" )
# Response
SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
_lowerCamelCase = parser.parse_args()
zeller(args.date_input) | 6 |
import argparse
import datetime
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str ):
SCREAMING_SNAKE_CASE__ = {
"""0""": """Sunday""",
"""1""": """Monday""",
"""2""": """Tuesday""",
"""3""": """Wednesday""",
"""4""": """Thursday""",
"""5""": """Friday""",
"""6""": """Saturday""",
}
SCREAMING_SNAKE_CASE__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(UpperCamelCase__ ) < 11:
raise ValueError("""Must be 10 characters long""" )
# Get month
SCREAMING_SNAKE_CASE__ = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("""Month must be between 1 - 12""" )
SCREAMING_SNAKE_CASE__ = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get day
SCREAMING_SNAKE_CASE__ = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("""Date must be between 1 - 31""" )
# Get second separator
SCREAMING_SNAKE_CASE__ = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get year
SCREAMING_SNAKE_CASE__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8_500:
raise ValueError(
"""Year out of range. There has to be some sort of limit...right?""" )
# Get datetime obj for validation
SCREAMING_SNAKE_CASE__ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) )
# Start math
if m <= 2:
SCREAMING_SNAKE_CASE__ = y - 1
SCREAMING_SNAKE_CASE__ = m + 12
# maths var
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[:2] )
SCREAMING_SNAKE_CASE__ = int(str(UpperCamelCase__ )[2:] )
SCREAMING_SNAKE_CASE__ = int(2.6 * m - 5.3_9 )
SCREAMING_SNAKE_CASE__ = int(c / 4 )
SCREAMING_SNAKE_CASE__ = int(k / 4 )
SCREAMING_SNAKE_CASE__ = int(d + k )
SCREAMING_SNAKE_CASE__ = int(t + u + v + x )
SCREAMING_SNAKE_CASE__ = int(z - (2 * c) )
SCREAMING_SNAKE_CASE__ = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" )
# Response
SCREAMING_SNAKE_CASE__ = f'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!'''
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
_lowerCamelCase = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
_lowerCamelCase = parser.parse_args()
zeller(args.date_input) | 6 | 1 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "encoder-decoder"
lowerCamelCase_ = True
def __init__( self :Optional[int] , **__A :str ) -> int:
"""simple docstring"""
super().__init__(**__A )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
SCREAMING_SNAKE_CASE__ = kwargs.pop("""encoder""" )
SCREAMING_SNAKE_CASE__ = encoder_config.pop("""model_type""" )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""decoder""" )
SCREAMING_SNAKE_CASE__ = decoder_config.pop("""model_type""" )
from ..auto.configuration_auto import AutoConfig
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = AutoConfig.for_model(__A , **__A )
SCREAMING_SNAKE_CASE__ = True
@classmethod
def _snake_case ( cls :str , __A :PretrainedConfig , __A :PretrainedConfig , **__A :List[str] ) -> PretrainedConfig:
"""simple docstring"""
logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" )
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__A )
def _snake_case ( self :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE__ = self.encoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.decoder.to_dict()
SCREAMING_SNAKE_CASE__ = self.__class__.model_type
return output | 6 |
import argparse
import logging
import pickle
from collections import Counter
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO
)
_lowerCamelCase = logging.getLogger(__name__)
if __name__ == "__main__":
_lowerCamelCase = argparse.ArgumentParser(
description='Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)'
)
parser.add_argument(
'--data_file', type=str, default='data/dump.bert-base-uncased.pickle', help='The binarized dataset.'
)
parser.add_argument(
'--token_counts_dump', type=str, default='data/token_counts.bert-base-uncased.pickle', help='The dump file.'
)
parser.add_argument('--vocab_size', default=30522, type=int)
_lowerCamelCase = parser.parse_args()
logger.info(F'''Loading data from {args.data_file}''')
with open(args.data_file, 'rb') as fp:
_lowerCamelCase = pickle.load(fp)
logger.info('Counting occurrences for MLM.')
_lowerCamelCase = Counter()
for tk_ids in data:
counter.update(tk_ids)
_lowerCamelCase = [0] * args.vocab_size
for k, v in counter.items():
_lowerCamelCase = v
logger.info(F'''Dump to {args.token_counts_dump}''')
with open(args.token_counts_dump, 'wb') as handle:
pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL) | 6 | 1 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "OwlViTImageProcessor"
lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __A , )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" )
SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__A , __A )
def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple:
"""simple docstring"""
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )):
SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )]
elif isinstance(__A , __A ) and isinstance(text[0] , __A ):
SCREAMING_SNAKE_CASE__ = []
# Maximum number of queries across batch
SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__A ) != max_num_queries:
SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A ))
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )
encodings.append(__A )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = input_ids
SCREAMING_SNAKE_CASE__ = attention_mask
if query_images is not None:
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = self.image_processor(
__A , return_tensors=__A , **__A ).pixel_values
SCREAMING_SNAKE_CASE__ = query_pixel_values
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]:
"""simple docstring"""
return self.image_processor.post_process(*__A , **__A )
def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor.post_process_object_detection(*__A , **__A )
def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any:
"""simple docstring"""
return self.image_processor.post_process_image_guided_detection(*__A , **__A )
def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :List[Any] ) -> Optional[int]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , )
return self.image_processor_class
@property
def _snake_case ( self :Any ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , )
return self.image_processor | 6 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
_lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['SpeechEncoderDecoderModel']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = ['FlaxSpeechEncoderDecoderModel']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
_lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 6 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModelWithProjection,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import (
DiffusionPipeline,
UnCLIPImageVariationPipeline,
UnCLIPScheduler,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps
from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class UpperCamelCase_ ( UpperCamelCase__ , unittest.TestCase ):
lowerCamelCase_ = UnCLIPImageVariationPipeline
lowerCamelCase_ = IMAGE_VARIATION_PARAMS - {"height", "width", "guidance_scale"}
lowerCamelCase_ = IMAGE_VARIATION_BATCH_PARAMS
lowerCamelCase_ = [
"generator",
"return_dict",
"decoder_num_inference_steps",
"super_res_num_inference_steps",
]
lowerCamelCase_ = False
@property
def _snake_case ( self :List[str] ) -> Tuple:
"""simple docstring"""
return 32
@property
def _snake_case ( self :List[Any] ) -> Tuple:
"""simple docstring"""
return 32
@property
def _snake_case ( self :Optional[int] ) -> Optional[Any]:
"""simple docstring"""
return self.time_input_dim
@property
def _snake_case ( self :List[str] ) -> Dict:
"""simple docstring"""
return self.time_input_dim * 4
@property
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
return 100
@property
def _snake_case ( self :int ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def _snake_case ( self :int ) -> Dict:
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModelWithProjection(__A )
@property
def _snake_case ( self :Union[str, Any] ) -> Any:
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = CLIPVisionConfig(
hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )
return CLIPVisionModelWithProjection(__A )
@property
def _snake_case ( self :List[str] ) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = {
"""clip_embeddings_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""cross_attention_dim""": self.cross_attention_dim,
}
SCREAMING_SNAKE_CASE__ = UnCLIPTextProjModel(**__A )
return model
@property
def _snake_case ( self :Union[str, Any] ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = {
"""sample_size""": 32,
# RGB in channels
"""in_channels""": 3,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 6,
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": """identity""",
}
SCREAMING_SNAKE_CASE__ = UNetaDConditionModel(**__A )
return model
@property
def _snake_case ( self :List[str] ) -> Dict:
"""simple docstring"""
return {
"sample_size": 64,
"layers_per_block": 1,
"down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"),
"up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"),
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"in_channels": 6,
"out_channels": 3,
}
@property
def _snake_case ( self :Tuple ) -> Tuple:
"""simple docstring"""
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE__ = UNetaDModel(**self.dummy_super_res_kwargs )
return model
@property
def _snake_case ( self :Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
torch.manual_seed(1 )
SCREAMING_SNAKE_CASE__ = UNetaDModel(**self.dummy_super_res_kwargs )
return model
def _snake_case ( self :str ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.dummy_decoder
SCREAMING_SNAKE_CASE__ = self.dummy_text_proj
SCREAMING_SNAKE_CASE__ = self.dummy_text_encoder
SCREAMING_SNAKE_CASE__ = self.dummy_tokenizer
SCREAMING_SNAKE_CASE__ = self.dummy_super_res_first
SCREAMING_SNAKE_CASE__ = self.dummy_super_res_last
SCREAMING_SNAKE_CASE__ = UnCLIPScheduler(
variance_type="""learned_range""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , )
SCREAMING_SNAKE_CASE__ = UnCLIPScheduler(
variance_type="""fixed_small_log""" , prediction_type="""epsilon""" , num_train_timesteps=1000 , )
SCREAMING_SNAKE_CASE__ = CLIPImageProcessor(crop_size=32 , size=32 )
SCREAMING_SNAKE_CASE__ = self.dummy_image_encoder
return {
"decoder": decoder,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"text_proj": text_proj,
"feature_extractor": feature_extractor,
"image_encoder": image_encoder,
"super_res_first": super_res_first,
"super_res_last": super_res_last,
"decoder_scheduler": decoder_scheduler,
"super_res_scheduler": super_res_scheduler,
}
def _snake_case ( self :Union[str, Any] , __A :Optional[int] , __A :List[str]=0 , __A :str=True ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(__A ) ).to(__A )
if str(__A ).startswith("""mps""" ):
SCREAMING_SNAKE_CASE__ = torch.manual_seed(__A )
else:
SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(__A )
if pil_image:
SCREAMING_SNAKE_CASE__ = input_image * 0.5 + 0.5
SCREAMING_SNAKE_CASE__ = input_image.clamp(0 , 1 )
SCREAMING_SNAKE_CASE__ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
SCREAMING_SNAKE_CASE__ = DiffusionPipeline.numpy_to_pil(__A )[0]
return {
"image": input_image,
"generator": generator,
"decoder_num_inference_steps": 2,
"super_res_num_inference_steps": 2,
"output_type": "np",
}
def _snake_case ( self :str ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """cpu"""
SCREAMING_SNAKE_CASE__ = self.get_dummy_components()
SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A )
SCREAMING_SNAKE_CASE__ = pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A )
SCREAMING_SNAKE_CASE__ = pipe(**__A )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A )
SCREAMING_SNAKE_CASE__ = pipe(
**__A , return_dict=__A , )[0]
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE__ = np.array(
[
0.9_9_9_7,
0.0_0_0_2,
0.9_9_9_7,
0.9_9_9_7,
0.9_9_6_9,
0.0_0_2_3,
0.9_9_9_7,
0.9_9_6_9,
0.9_9_7_0,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :List[Any] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """cpu"""
SCREAMING_SNAKE_CASE__ = self.get_dummy_components()
SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A )
SCREAMING_SNAKE_CASE__ = pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A )
SCREAMING_SNAKE_CASE__ = pipe(**__A )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A )
SCREAMING_SNAKE_CASE__ = pipe(
**__A , return_dict=__A , )[0]
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
SCREAMING_SNAKE_CASE__ = np.array([0.9_9_9_7, 0.0_0_0_3, 0.9_9_9_7, 0.9_9_9_7, 0.9_9_7_0, 0.0_0_2_4, 0.9_9_9_7, 0.9_9_7_1, 0.9_9_7_1] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :List[Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = """cpu"""
SCREAMING_SNAKE_CASE__ = self.get_dummy_components()
SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A )
SCREAMING_SNAKE_CASE__ = pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A )
SCREAMING_SNAKE_CASE__ = [
pipeline_inputs["""image"""],
pipeline_inputs["""image"""],
]
SCREAMING_SNAKE_CASE__ = pipe(**__A )
SCREAMING_SNAKE_CASE__ = output.images
SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A )
SCREAMING_SNAKE_CASE__ = [
tuple_pipeline_inputs["""image"""],
tuple_pipeline_inputs["""image"""],
]
SCREAMING_SNAKE_CASE__ = pipe(
**__A , return_dict=__A , )[0]
SCREAMING_SNAKE_CASE__ = image[0, -3:, -3:, -1]
SCREAMING_SNAKE_CASE__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (2, 64, 64, 3)
SCREAMING_SNAKE_CASE__ = np.array(
[
0.9_9_9_7,
0.9_9_8_9,
0.0_0_0_8,
0.0_0_2_1,
0.9_9_6_0,
0.0_0_1_8,
0.0_0_1_4,
0.0_0_0_2,
0.9_9_3_3,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = torch.device("""cpu""" )
class UpperCamelCase_ :
lowerCamelCase_ = 1
SCREAMING_SNAKE_CASE__ = self.get_dummy_components()
SCREAMING_SNAKE_CASE__ = self.pipeline_class(**__A )
SCREAMING_SNAKE_CASE__ = pipe.to(__A )
pipe.set_progress_bar_config(disable=__A )
SCREAMING_SNAKE_CASE__ = torch.Generator(device=__A ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ = pipe.decoder.dtype
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = (
batch_size,
pipe.decoder.config.in_channels,
pipe.decoder.config.sample_size,
pipe.decoder.config.sample_size,
)
SCREAMING_SNAKE_CASE__ = pipe.prepare_latents(
__A , dtype=__A , device=__A , generator=__A , latents=__A , scheduler=DummyScheduler() )
SCREAMING_SNAKE_CASE__ = (
batch_size,
pipe.super_res_first.config.in_channels // 2,
pipe.super_res_first.config.sample_size,
pipe.super_res_first.config.sample_size,
)
SCREAMING_SNAKE_CASE__ = pipe.prepare_latents(
__A , dtype=__A , device=__A , generator=__A , latents=__A , scheduler=DummyScheduler() )
SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A )
SCREAMING_SNAKE_CASE__ = pipe(
**__A , decoder_latents=__A , super_res_latents=__A ).images
SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(__A , pil_image=__A )
# Don't pass image, instead pass embedding
SCREAMING_SNAKE_CASE__ = pipeline_inputs.pop("""image""" )
SCREAMING_SNAKE_CASE__ = pipe.image_encoder(__A ).image_embeds
SCREAMING_SNAKE_CASE__ = pipe(
**__A , decoder_latents=__A , super_res_latents=__A , image_embeddings=__A , ).images
# make sure passing text embeddings manually is identical
assert np.abs(img_out_a - img_out_a ).max() < 1E-4
@skip_mps
def _snake_case ( self :Any ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = torch_device == """cpu"""
# Check is relaxed because there is not a torch 2.0 sliced attention added kv processor
SCREAMING_SNAKE_CASE__ = 1E-2
self._test_attention_slicing_forward_pass(
test_max_difference=__A , expected_max_diff=__A )
@skip_mps
def _snake_case ( self :Optional[int] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = torch_device == """cpu"""
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = [
"""decoder_num_inference_steps""",
"""super_res_num_inference_steps""",
]
self._test_inference_batch_single_identical(
test_max_difference=__A , relax_max_difference=__A , additional_params_copy_to_batched_inputs=__A , )
def _snake_case ( self :Tuple ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [
"""decoder_num_inference_steps""",
"""super_res_num_inference_steps""",
]
if torch_device == "mps":
# TODO: MPS errors with larger batch sizes
SCREAMING_SNAKE_CASE__ = [2, 3]
self._test_inference_batch_consistent(
batch_sizes=__A , additional_params_copy_to_batched_inputs=__A , )
else:
self._test_inference_batch_consistent(
additional_params_copy_to_batched_inputs=__A )
@skip_mps
def _snake_case ( self :Optional[int] ) -> List[str]:
"""simple docstring"""
return super().test_dict_tuple_outputs_equivalent()
@skip_mps
def _snake_case ( self :str ) -> int:
"""simple docstring"""
return super().test_save_load_local()
@skip_mps
def _snake_case ( self :str ) -> Optional[Any]:
"""simple docstring"""
return super().test_save_load_optional_components()
@slow
@require_torch_gpu
class UpperCamelCase_ ( unittest.TestCase ):
def _snake_case ( self :List[str] ) -> Any:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self :int ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png""" )
SCREAMING_SNAKE_CASE__ = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/unclip/karlo_v1_alpha_cat_variation_fp16.npy""" )
SCREAMING_SNAKE_CASE__ = UnCLIPImageVariationPipeline.from_pretrained(
"""kakaobrain/karlo-v1-alpha-image-variations""" , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE__ = pipeline.to(__A )
pipeline.set_progress_bar_config(disable=__A )
SCREAMING_SNAKE_CASE__ = torch.Generator(device="""cpu""" ).manual_seed(0 )
SCREAMING_SNAKE_CASE__ = pipeline(
__A , generator=__A , output_type="""np""" , )
SCREAMING_SNAKE_CASE__ = output.images[0]
assert image.shape == (256, 256, 3)
assert_mean_pixel_difference(__A , __A , 15 ) | 6 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = ["image_processor", "tokenizer"]
lowerCamelCase_ = "OwlViTImageProcessor"
lowerCamelCase_ = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self :Optional[Any] , __A :int=None , __A :Optional[int]=None , **__A :str ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __A , )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" )
SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__A , __A )
def __call__( self :str , __A :Dict=None , __A :List[str]=None , __A :str=None , __A :Optional[int]="max_length" , __A :Tuple="np" , **__A :int ) -> Tuple:
"""simple docstring"""
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )):
SCREAMING_SNAKE_CASE__ = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )]
elif isinstance(__A , __A ) and isinstance(text[0] , __A ):
SCREAMING_SNAKE_CASE__ = []
# Maximum number of queries across batch
SCREAMING_SNAKE_CASE__ = max([len(__A ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__A ) != max_num_queries:
SCREAMING_SNAKE_CASE__ = t + [""" """] * (max_num_queries - len(__A ))
SCREAMING_SNAKE_CASE__ = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )
encodings.append(__A )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
SCREAMING_SNAKE_CASE__ = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
SCREAMING_SNAKE_CASE__ = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = input_ids
SCREAMING_SNAKE_CASE__ = attention_mask
if query_images is not None:
SCREAMING_SNAKE_CASE__ = BatchEncoding()
SCREAMING_SNAKE_CASE__ = self.image_processor(
__A , return_tensors=__A , **__A ).pixel_values
SCREAMING_SNAKE_CASE__ = query_pixel_values
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
SCREAMING_SNAKE_CASE__ = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def _snake_case ( self :List[Any] , *__A :Dict , **__A :Dict ) -> Optional[int]:
"""simple docstring"""
return self.image_processor.post_process(*__A , **__A )
def _snake_case ( self :Optional[int] , *__A :Dict , **__A :List[str] ) -> Optional[Any]:
"""simple docstring"""
return self.image_processor.post_process_object_detection(*__A , **__A )
def _snake_case ( self :str , *__A :List[str] , **__A :Union[str, Any] ) -> Any:
"""simple docstring"""
return self.image_processor.post_process_image_guided_detection(*__A , **__A )
def _snake_case ( self :Dict , *__A :List[str] , **__A :List[str] ) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*__A , **__A )
def _snake_case ( self :Dict , *__A :Dict , **__A :List[str] ) -> str:
"""simple docstring"""
return self.tokenizer.decode(*__A , **__A )
@property
def _snake_case ( self :List[Any] ) -> Optional[int]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , )
return self.image_processor_class
@property
def _snake_case ( self :Any ) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , )
return self.image_processor | 6 | 1 |
import itertools
import random
import unittest
import numpy as np
from transformers import is_speech_available
from transformers.testing_utils import require_torch, require_torchaudio
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import SpeechaTextFeatureExtractor
_lowerCamelCase = random.Random()
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any]=1.0 , UpperCamelCase__: str=None , UpperCamelCase__: int=None ):
if rng is None:
SCREAMING_SNAKE_CASE__ = global_rng
SCREAMING_SNAKE_CASE__ = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class UpperCamelCase_ ( unittest.TestCase ):
def __init__( self :Optional[Any] , __A :str , __A :int=7 , __A :Optional[Any]=400 , __A :Tuple=2000 , __A :Any=24 , __A :Optional[Any]=24 , __A :List[str]=0.0 , __A :Optional[int]=1_6000 , __A :Dict=True , __A :List[Any]=True , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = min_seq_length
SCREAMING_SNAKE_CASE__ = max_seq_length
SCREAMING_SNAKE_CASE__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
SCREAMING_SNAKE_CASE__ = feature_size
SCREAMING_SNAKE_CASE__ = num_mel_bins
SCREAMING_SNAKE_CASE__ = padding_value
SCREAMING_SNAKE_CASE__ = sampling_rate
SCREAMING_SNAKE_CASE__ = return_attention_mask
SCREAMING_SNAKE_CASE__ = do_normalize
def _snake_case ( self :Tuple ) -> Optional[int]:
"""simple docstring"""
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def _snake_case ( self :List[str] , __A :str=False , __A :Any=False ) -> Any:
"""simple docstring"""
def _flatten(__A :Tuple ):
return list(itertools.chain(*__A ) )
if equal_length:
SCREAMING_SNAKE_CASE__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
SCREAMING_SNAKE_CASE__ = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
SCREAMING_SNAKE_CASE__ = [np.asarray(__A ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class UpperCamelCase_ ( UpperCamelCase__ , unittest.TestCase ):
lowerCamelCase_ = SpeechaTextFeatureExtractor if is_speech_available() else None
def _snake_case ( self :Tuple ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = SpeechaTextFeatureExtractionTester(self )
def _snake_case ( self :Dict , __A :Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
self.assertTrue(np.all(np.mean(__A , axis=0 ) < 1E-3 ) )
self.assertTrue(np.all(np.abs(np.var(__A , axis=0 ) - 1 ) < 1E-3 ) )
def _snake_case ( self :Optional[Any] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = [np.asarray(__A ) for speech_input in speech_inputs]
# Test feature size
SCREAMING_SNAKE_CASE__ = feature_extractor(__A , padding=__A , return_tensors="""np""" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size )
# Test not batched input
SCREAMING_SNAKE_CASE__ = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features
SCREAMING_SNAKE_CASE__ = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features
self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) )
# Test batched
SCREAMING_SNAKE_CASE__ = feature_extractor(__A , return_tensors="""np""" ).input_features
SCREAMING_SNAKE_CASE__ = feature_extractor(__A , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(__A , __A ):
self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) )
# Test 2-D numpy arrays are batched.
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in (800, 800, 800)]
SCREAMING_SNAKE_CASE__ = np.asarray(__A )
SCREAMING_SNAKE_CASE__ = feature_extractor(__A , return_tensors="""np""" ).input_features
SCREAMING_SNAKE_CASE__ = feature_extractor(__A , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(__A , __A ):
self.assertTrue(np.allclose(__A , __A , atol=1E-3 ) )
def _snake_case ( self :Dict ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = ["""longest""", """max_length""", """do_not_pad"""]
SCREAMING_SNAKE_CASE__ = [None, 16, None]
for max_length, padding in zip(__A , __A ):
SCREAMING_SNAKE_CASE__ = feature_extractor(
__A , padding=__A , max_length=__A , return_attention_mask=__A )
SCREAMING_SNAKE_CASE__ = inputs.input_features
SCREAMING_SNAKE_CASE__ = inputs.attention_mask
SCREAMING_SNAKE_CASE__ = [np.sum(__A ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def _snake_case ( self :Tuple ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = ["""longest""", """max_length""", """do_not_pad"""]
SCREAMING_SNAKE_CASE__ = [None, 16, None]
for max_length, padding in zip(__A , __A ):
SCREAMING_SNAKE_CASE__ = feature_extractor(
__A , max_length=__A , padding=__A , return_tensors="""np""" , return_attention_mask=__A )
SCREAMING_SNAKE_CASE__ = inputs.input_features
SCREAMING_SNAKE_CASE__ = inputs.attention_mask
SCREAMING_SNAKE_CASE__ = [np.sum(__A ) for x in attention_mask]
self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] )
self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] )
self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1E-6 )
self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] )
def _snake_case ( self :Union[str, Any] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = feature_extractor(
__A , padding="""max_length""" , max_length=4 , truncation=__A , return_tensors="""np""" , return_attention_mask=__A , )
SCREAMING_SNAKE_CASE__ = inputs.input_features
SCREAMING_SNAKE_CASE__ = inputs.attention_mask
SCREAMING_SNAKE_CASE__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1] )
self._check_zero_mean_unit_variance(input_features[2] )
def _snake_case ( self :Optional[Any] ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = feature_extractor(
__A , padding="""longest""" , max_length=4 , truncation=__A , return_tensors="""np""" , return_attention_mask=__A , )
SCREAMING_SNAKE_CASE__ = inputs.input_features
SCREAMING_SNAKE_CASE__ = inputs.attention_mask
SCREAMING_SNAKE_CASE__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 4, 24) )
SCREAMING_SNAKE_CASE__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
SCREAMING_SNAKE_CASE__ = feature_extractor(
__A , padding="""longest""" , max_length=16 , truncation=__A , return_tensors="""np""" , return_attention_mask=__A , )
SCREAMING_SNAKE_CASE__ = inputs.input_features
SCREAMING_SNAKE_CASE__ = inputs.attention_mask
SCREAMING_SNAKE_CASE__ = np.sum(attention_mask == 1 , axis=1 )
self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] )
self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] )
self._check_zero_mean_unit_variance(input_features[2] )
# make sure that if max_length < longest -> then pad to max_length
self.assertEqual(input_features.shape , (3, 6, 24) )
def _snake_case ( self :Any ) -> Union[str, Any]:
"""simple docstring"""
import torch
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = np.random.rand(100 , 32 ).astype(np.floataa )
SCREAMING_SNAKE_CASE__ = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
SCREAMING_SNAKE_CASE__ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
SCREAMING_SNAKE_CASE__ = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def _snake_case ( self :Union[str, Any] , __A :Union[str, Any] ) -> Tuple:
"""simple docstring"""
from datasets import load_dataset
SCREAMING_SNAKE_CASE__ = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
SCREAMING_SNAKE_CASE__ = ds.sort("""id""" ).select(range(__A ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def _snake_case ( self :Dict ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = np.array([
-1.5_7_4_5, -1.7_7_1_3, -1.7_0_2_0, -1.6_0_6_9, -1.2_2_5_0, -1.1_1_0_5, -0.9_0_7_2, -0.8_2_4_1,
-1.2_3_1_0, -0.8_0_9_8, -0.3_3_2_0, -0.4_1_0_1, -0.7_9_8_5, -0.4_9_9_6, -0.8_2_1_3, -0.9_1_2_8,
-1.0_4_2_0, -1.1_2_8_6, -1.0_4_4_0, -0.7_9_9_9, -0.8_4_0_5, -1.2_2_7_5, -1.5_4_4_3, -1.4_6_2_5,
] )
# fmt: on
SCREAMING_SNAKE_CASE__ = self._load_datasamples(1 )
SCREAMING_SNAKE_CASE__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
SCREAMING_SNAKE_CASE__ = feature_extractor(__A , return_tensors="""pt""" ).input_features
self.assertEquals(input_features.shape , (1, 584, 24) )
self.assertTrue(np.allclose(input_features[0, 0, :30] , __A , atol=1E-4 ) ) | 6 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
class UpperCamelCase_ ( UpperCamelCase__ , UpperCamelCase__ ):
@register_to_config
def __init__( self :Union[str, Any] , __A :int = 3 , __A :int = 3 , __A :Tuple[str] = ("DownEncoderBlock2D",) , __A :Tuple[str] = ("UpDecoderBlock2D",) , __A :Tuple[int] = (64,) , __A :int = 1 , __A :str = "silu" , __A :int = 3 , __A :int = 32 , __A :int = 256 , __A :int = 32 , __A :Optional[int] = None , __A :float = 0.1_8_2_1_5 , __A :str = "group" , ) -> Any:
"""simple docstring"""
super().__init__()
# pass init params to Encoder
SCREAMING_SNAKE_CASE__ = Encoder(
in_channels=__A , out_channels=__A , down_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , double_z=__A , )
SCREAMING_SNAKE_CASE__ = vq_embed_dim if vq_embed_dim is not None else latent_channels
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
SCREAMING_SNAKE_CASE__ = VectorQuantizer(__A , __A , beta=0.2_5 , remap=__A , sane_index_shape=__A )
SCREAMING_SNAKE_CASE__ = nn.Convad(__A , __A , 1 )
# pass init params to Decoder
SCREAMING_SNAKE_CASE__ = Decoder(
in_channels=__A , out_channels=__A , up_block_types=__A , block_out_channels=__A , layers_per_block=__A , act_fn=__A , norm_num_groups=__A , norm_type=__A , )
@apply_forward_hook
def _snake_case ( self :Union[str, Any] , __A :torch.FloatTensor , __A :bool = True ) -> VQEncoderOutput:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.encoder(__A )
SCREAMING_SNAKE_CASE__ = self.quant_conv(__A )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=__A )
@apply_forward_hook
def _snake_case ( self :Tuple , __A :torch.FloatTensor , __A :bool = False , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
if not force_not_quantize:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.quantize(__A )
else:
SCREAMING_SNAKE_CASE__ = h
SCREAMING_SNAKE_CASE__ = self.post_quant_conv(__A )
SCREAMING_SNAKE_CASE__ = self.decoder(__A , quant if self.config.norm_type == """spatial""" else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A )
def _snake_case ( self :int , __A :torch.FloatTensor , __A :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = sample
SCREAMING_SNAKE_CASE__ = self.encode(__A ).latents
SCREAMING_SNAKE_CASE__ = self.decode(__A ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=__A ) | 6 | 1 |
def SCREAMING_SNAKE_CASE__ ( ):
return [list(range(1_000 - i , -1_000 - i , -1 ) ) for i in range(1_000 )]
_lowerCamelCase = generate_large_matrix()
_lowerCamelCase = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] ):
assert all(row == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for row in grid )
assert all(list(UpperCamelCase__ ) == sorted(UpperCamelCase__ , reverse=UpperCamelCase__ ) for col in zip(*UpperCamelCase__ ) )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[int] ):
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = len(UpperCamelCase__ ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
SCREAMING_SNAKE_CASE__ = (left + right) // 2
SCREAMING_SNAKE_CASE__ = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
SCREAMING_SNAKE_CASE__ = mid + 1
else:
SCREAMING_SNAKE_CASE__ = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(UpperCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] ):
SCREAMING_SNAKE_CASE__ = 0
SCREAMING_SNAKE_CASE__ = len(grid[0] )
for i in range(len(UpperCamelCase__ ) ):
SCREAMING_SNAKE_CASE__ = find_negative_index(grid[i][:bound] )
total += bound
return (len(UpperCamelCase__ ) * len(grid[0] )) - total
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] ):
return len([number for row in grid for number in row if number < 0] )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: list[list[int]] ):
SCREAMING_SNAKE_CASE__ = 0
for row in grid:
for i, number in enumerate(UpperCamelCase__ ):
if number < 0:
total += len(UpperCamelCase__ ) - i
break
return total
def SCREAMING_SNAKE_CASE__ ( ):
from timeit import timeit
print("""Running benchmarks""" )
SCREAMING_SNAKE_CASE__ = (
"""from __main__ import count_negatives_binary_search, """
"""count_negatives_brute_force, count_negatives_brute_force_with_break, grid"""
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
SCREAMING_SNAKE_CASE__ = timeit(f'''{func}(grid=grid)''' , setup=UpperCamelCase__ , number=500 )
print(f'''{func}() took {time:0.4f} seconds''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark() | 6 |
import json
import os
from dataclasses import dataclass
from functools import partial
from typing import Callable
import flax.linen as nn
import jax
import jax.numpy as jnp
import joblib
import optax
import wandb
from flax import jax_utils, struct, traverse_util
from flax.serialization import from_bytes, to_bytes
from flax.training import train_state
from flax.training.common_utils import shard
from tqdm.auto import tqdm
from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering
from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = 42
lowerCamelCase_ = jnp.floataa
lowerCamelCase_ = True
def _snake_case ( self :Tuple ) -> Optional[Any]:
"""simple docstring"""
super().setup()
SCREAMING_SNAKE_CASE__ = nn.Dense(5 , dtype=self.dtype )
def __call__( self :List[Any] , *__A :int , **__A :Optional[Any] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = super().__call__(*__A , **__A )
SCREAMING_SNAKE_CASE__ = self.cls(outputs[2] )
return outputs[:2] + (cls_out,)
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = FlaxBigBirdForNaturalQuestionsModule
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Tuple , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ):
def cross_entropy(UpperCamelCase__: List[str] , UpperCamelCase__: List[str] , UpperCamelCase__: List[str]=None ):
SCREAMING_SNAKE_CASE__ = logits.shape[-1]
SCREAMING_SNAKE_CASE__ = (labels[..., None] == jnp.arange(UpperCamelCase__ )[None]).astype("""f4""" )
SCREAMING_SNAKE_CASE__ = jax.nn.log_softmax(UpperCamelCase__ , axis=-1 )
SCREAMING_SNAKE_CASE__ = -jnp.sum(labels * logits , axis=-1 )
if reduction is not None:
SCREAMING_SNAKE_CASE__ = reduction(UpperCamelCase__ )
return loss
SCREAMING_SNAKE_CASE__ = partial(UpperCamelCase__ , reduction=jnp.mean )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = cross_entropy(UpperCamelCase__ , UpperCamelCase__ )
return (start_loss + end_loss + pooled_loss) / 3
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = "google/bigbird-roberta-base"
lowerCamelCase_ = 30_00
lowerCamelCase_ = 1_05_00
lowerCamelCase_ = 1_28
lowerCamelCase_ = 3
lowerCamelCase_ = 1
lowerCamelCase_ = 5
# tx_args
lowerCamelCase_ = 3e-5
lowerCamelCase_ = 0.0
lowerCamelCase_ = 2_00_00
lowerCamelCase_ = 0.0095
lowerCamelCase_ = "bigbird-roberta-natural-questions"
lowerCamelCase_ = "training-expt"
lowerCamelCase_ = "data/nq-training.jsonl"
lowerCamelCase_ = "data/nq-validation.jsonl"
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
os.makedirs(self.base_dir , exist_ok=__A )
SCREAMING_SNAKE_CASE__ = os.path.join(self.base_dir , self.save_dir )
SCREAMING_SNAKE_CASE__ = self.batch_size_per_device * jax.device_count()
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 40_96 # no dynamic padding on TPUs
def __call__( self :Optional[Any] , __A :Optional[int] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.collate_fn(__A )
SCREAMING_SNAKE_CASE__ = jax.tree_util.tree_map(__A , __A )
return batch
def _snake_case ( self :List[Any] , __A :Union[str, Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.fetch_inputs(features["""input_ids"""] )
SCREAMING_SNAKE_CASE__ = {
"""input_ids""": jnp.array(__A , dtype=jnp.intaa ),
"""attention_mask""": jnp.array(__A , dtype=jnp.intaa ),
"""start_labels""": jnp.array(features["""start_token"""] , dtype=jnp.intaa ),
"""end_labels""": jnp.array(features["""end_token"""] , dtype=jnp.intaa ),
"""pooled_labels""": jnp.array(features["""category"""] , dtype=jnp.intaa ),
}
return batch
def _snake_case ( self :Tuple , __A :list ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [self._fetch_inputs(__A ) for ids in input_ids]
return zip(*__A )
def _snake_case ( self :List[str] , __A :list ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = [1 for _ in range(len(__A ) )]
while len(__A ) < self.max_length:
input_ids.append(self.pad_id )
attention_mask.append(0 )
return input_ids, attention_mask
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any]=None ):
if seed is not None:
SCREAMING_SNAKE_CASE__ = dataset.shuffle(seed=UpperCamelCase__ )
for i in range(len(UpperCamelCase__ ) // batch_size ):
SCREAMING_SNAKE_CASE__ = dataset[i * batch_size : (i + 1) * batch_size]
yield dict(UpperCamelCase__ )
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Dict , UpperCamelCase__: Optional[int] , **UpperCamelCase__: Optional[int] ):
def loss_fn(UpperCamelCase__: List[Any] ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=UpperCamelCase__ , dropout_rng=UpperCamelCase__ , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
return state.loss_fn(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = jax.random.split(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.value_and_grad(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = grad_fn(state.params )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean(UpperCamelCase__ , """batch""" )
SCREAMING_SNAKE_CASE__ = state.apply_gradients(grads=UpperCamelCase__ )
return state, metrics, new_drp_rng
@partial(jax.pmap , axis_name="""batch""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Optional[Any] , **UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""start_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""end_labels""" )
SCREAMING_SNAKE_CASE__ = model_inputs.pop("""pooled_labels""" )
SCREAMING_SNAKE_CASE__ = state.apply_fn(**UpperCamelCase__ , params=state.params , train=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs
SCREAMING_SNAKE_CASE__ = state.loss_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = jax.lax.pmean({"""loss""": loss} , axis_name="""batch""" )
return metrics
class UpperCamelCase_ ( train_state.TrainState ):
lowerCamelCase_ = struct.field(pytree_node=UpperCamelCase__ )
@dataclass
class UpperCamelCase_ :
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = 42
lowerCamelCase_ = None
def _snake_case ( self :List[Any] , __A :str , __A :str , __A :str , __A :Tuple=None ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = model.params
SCREAMING_SNAKE_CASE__ = TrainState.create(
apply_fn=model.__call__ , params=__A , tx=__A , loss_fn=__A , )
if ckpt_dir is not None:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = restore_checkpoint(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""lr""": args.lr,
"""init_lr""": args.init_lr,
"""warmup_steps""": args.warmup_steps,
"""num_train_steps""": num_train_steps,
"""weight_decay""": args.weight_decay,
}
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = build_tx(**__A )
SCREAMING_SNAKE_CASE__ = train_state.TrainState(
step=__A , apply_fn=model.__call__ , params=__A , tx=__A , opt_state=__A , )
SCREAMING_SNAKE_CASE__ = args
SCREAMING_SNAKE_CASE__ = data_collator
SCREAMING_SNAKE_CASE__ = lr
SCREAMING_SNAKE_CASE__ = params
SCREAMING_SNAKE_CASE__ = jax_utils.replicate(__A )
return state
def _snake_case ( self :Optional[Any] , __A :Optional[int] , __A :int , __A :int ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = self.args
SCREAMING_SNAKE_CASE__ = len(__A ) // args.batch_size
SCREAMING_SNAKE_CASE__ = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE__ = jax.random.split(__A , jax.device_count() )
for epoch in range(args.max_epochs ):
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , args.batch_size , seed=__A )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc=f'''Running EPOCH-{epoch}''' ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.train_step_fn(__A , __A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
if i % args.logging_steps == 0:
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(state.step )
SCREAMING_SNAKE_CASE__ = running_loss.item() / i
SCREAMING_SNAKE_CASE__ = self.scheduler_fn(state_step - 1 )
SCREAMING_SNAKE_CASE__ = self.evaluate(__A , __A )
SCREAMING_SNAKE_CASE__ = {
"""step""": state_step.item(),
"""eval_loss""": eval_loss.item(),
"""tr_loss""": tr_loss,
"""lr""": lr.item(),
}
tqdm.write(str(__A ) )
self.logger.log(__A , commit=__A )
if i % args.save_steps == 0:
self.save_checkpoint(args.save_dir + f'''-e{epoch}-s{i}''' , state=__A )
def _snake_case ( self :List[str] , __A :Dict , __A :str ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = get_batched_dataset(__A , self.args.batch_size )
SCREAMING_SNAKE_CASE__ = len(__A ) // self.args.batch_size
SCREAMING_SNAKE_CASE__ = jnp.array(0 , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE__ = 0
for batch in tqdm(__A , total=__A , desc="""Evaluating ... """ ):
SCREAMING_SNAKE_CASE__ = self.data_collator(__A )
SCREAMING_SNAKE_CASE__ = self.val_step_fn(__A , **__A )
running_loss += jax_utils.unreplicate(metrics["""loss"""] )
i += 1
return running_loss / i
def _snake_case ( self :List[Any] , __A :Any , __A :Dict ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = jax_utils.unreplicate(__A )
print(f'''SAVING CHECKPOINT IN {save_dir}''' , end=""" ... """ )
self.model_save_fn(__A , params=state.params )
with open(os.path.join(__A , """opt_state.msgpack""" ) , """wb""" ) as f:
f.write(to_bytes(state.opt_state ) )
joblib.dump(self.args , os.path.join(__A , """args.joblib""" ) )
joblib.dump(self.data_collator , os.path.join(__A , """data_collator.joblib""" ) )
with open(os.path.join(__A , """training_state.json""" ) , """w""" ) as f:
json.dump({"""step""": state.step.item()} , __A )
print("""DONE""" )
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Optional[Any] ):
print(f'''RESTORING CHECKPOINT FROM {save_dir}''' , end=""" ... """ )
with open(os.path.join(UpperCamelCase__ , """flax_model.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.params , f.read() )
with open(os.path.join(UpperCamelCase__ , """opt_state.msgpack""" ) , """rb""" ) as f:
SCREAMING_SNAKE_CASE__ = from_bytes(state.opt_state , f.read() )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """args.joblib""" ) )
SCREAMING_SNAKE_CASE__ = joblib.load(os.path.join(UpperCamelCase__ , """data_collator.joblib""" ) )
with open(os.path.join(UpperCamelCase__ , """training_state.json""" ) , """r""" ) as f:
SCREAMING_SNAKE_CASE__ = json.load(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = training_state["""step"""]
print("""DONE""" )
return params, opt_state, step, args, data_collator
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: int , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: Dict ):
SCREAMING_SNAKE_CASE__ = num_train_steps - warmup_steps
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=UpperCamelCase__ , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.linear_schedule(init_value=UpperCamelCase__ , end_value=1e-7 , transition_steps=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] )
return lr
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: List[str] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple , UpperCamelCase__: Tuple ):
def weight_decay_mask(UpperCamelCase__: Any ):
SCREAMING_SNAKE_CASE__ = traverse_util.flatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = {k: (v[-1] != """bias""" and v[-2:] != ("""LayerNorm""", """scale""")) for k, v in params.items()}
return traverse_util.unflatten_dict(UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = scheduler_fn(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = optax.adamw(learning_rate=UpperCamelCase__ , weight_decay=UpperCamelCase__ , mask=UpperCamelCase__ )
return tx, lr | 6 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.