code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections.abc import Sequence def lowercase_ ( __A : Sequence[float] , __A : bool = False ) -> float: """simple docstring""" if not arr: return 0 lowercase : List[str] =0 if allow_empty_subarrays else float('''-inf''' ) lowercase : str =0.0 for num in arr: lowercase : Optional[int] =max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase : Dict =max(_snake_case , _snake_case ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
94
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = (KDPMaDiscreteScheduler,) UpperCAmelCase : Any = 10 def lowerCAmelCase_ ( self : Dict , **_UpperCAmelCase : Optional[Any] ): _A = { 'num_train_timesteps': 1_100, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def lowerCAmelCase_ ( self : Any ): for timesteps in [10, 50, 100, 1_000]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A = self.scheduler_classes[0] _A = self.get_scheduler_config(prediction_type='v_prediction' ) _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0002 ) < 1E-3 def lowerCAmelCase_ ( self : Optional[Any] ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _A = self.dummy_model() _A = self.dummy_sample_deter * scheduler.init_noise_sigma _A = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 def lowerCAmelCase_ ( self : Any ): if torch_device == "mps": return _A = self.scheduler_classes[0] _A = self.get_scheduler_config() _A = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) _A = self.dummy_model() _A = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _A = model(_UpperCAmelCase , _UpperCAmelCase ) _A = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _A = output.prev_sample _A = torch.sum(torch.abs(_UpperCAmelCase ) ) _A = torch.mean(torch.abs(_UpperCAmelCase ) ) if str(_UpperCAmelCase ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1E-2 assert abs(result_mean.item() - 0.0266 ) < 1E-3
7
0
import requests _lowercase : Tuple = "YOUR API KEY" def _lowerCAmelCase ( UpperCamelCase__: str , UpperCamelCase__: str = giphy_api_key ) -> list: """simple docstring""" A = """+""".join(query.split() ) A = f'https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}' A = requests.get(_snake_case ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print("\n".join(get_gifs("space ship")))
641
"""simple docstring""" import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any]=10 ) -> Optional[int]: '''simple docstring''' _A = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def _snake_case ( _snake_case : Optional[Any] , _snake_case : Union[str, Any]=10 ) -> List[str]: '''simple docstring''' _A = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(_snake_case , 'schedule.bin' ) torch.save(scheduler.state_dict() , _snake_case ) _A = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def lowerCAmelCase_ ( self : int ): _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_UpperCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = Adafactor( params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_UpperCAmelCase , weight_decay=0.0 , relative_step=_UpperCAmelCase , scale_parameter=_UpperCAmelCase , warmup_init=_UpperCAmelCase , ) for _ in range(1_000 ): _A = criterion(_UpperCAmelCase , _UpperCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = nn.Linear(50 , 50 ) if is_torch_available() else None UpperCAmelCase : Tuple = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None UpperCAmelCase : Dict = 10 def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=None ): self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for a, b in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertAlmostEqual(_UpperCAmelCase , _UpperCAmelCase , delta=_UpperCAmelCase , msg=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): _A = {'num_warmup_steps': 2, 'num_training_steps': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _A = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'num_warmup_steps': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, 'num_cycles': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, 'power': 2.0, 'lr_end': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'num_warmup_steps': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _A , _A = data _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _A = unwrap_schedule(_UpperCAmelCase , self.num_steps ) self.assertListAlmostEqual( _UpperCAmelCase , _UpperCAmelCase , tol=1E-2 , msg=F'''failed for {scheduler_func} in normal scheduler''' , ) _A = scheduler_func(self.optimizer , **_UpperCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(_UpperCAmelCase ) # wrap to test picklability of the schedule _A = unwrap_and_save_reload_schedule(_UpperCAmelCase , self.num_steps ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase , msg=F'''failed for {scheduler_func} in save and reload''' ) class lowercase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ): _A = fn def __call__( self : Tuple , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : List[str] ): return self.fn(*_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Any ): _A = list(map(self , scheduler.lr_lambdas ) )
7
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin UpperCAmelCase_ : List[str] = random.Random() def _lowercase ( UpperCamelCase__ : Dict, UpperCamelCase__ : Tuple=1.0, UpperCamelCase__ : List[Any]=None, UpperCamelCase__ : Dict=None ): if rng is None: __A : int = global_rng __A : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowercase , __lowercase=7 , __lowercase=400 , __lowercase=2_000 , __lowercase=1 , __lowercase=0.0 , __lowercase=16_000 , __lowercase=True , __lowercase=True , ): """simple docstring""" __A : Dict = parent __A : List[Any] = batch_size __A : List[Any] = min_seq_length __A : Optional[int] = max_seq_length __A : List[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __A : Union[str, Any] = feature_size __A : str = padding_value __A : str = sampling_rate __A : Union[str, Any] = return_attention_mask __A : Union[str, Any] = do_normalize def snake_case__ ( self ): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def snake_case__ ( self , __lowercase=False , __lowercase=False ): """simple docstring""" def _flatten(__lowercase ): return list(itertools.chain(*_UpperCAmelCase ) ) if equal_length: __A : Any = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __A : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __A : int = [np.asarray(_UpperCAmelCase ) for x in speech_inputs] return speech_inputs class _lowerCamelCase ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' __lowercase : List[Any] = WavaVecaFeatureExtractor def snake_case__ ( self ): """simple docstring""" __A : Union[str, Any] = WavaVecaFeatureExtractionTester(self ) def snake_case__ ( self , __lowercase ): """simple docstring""" self.assertTrue(np.all(np.mean(_UpperCAmelCase , axis=0 ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(_UpperCAmelCase , axis=0 ) - 1 ) < 1E-3 ) ) def snake_case__ ( self ): """simple docstring""" __A : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __A : Any = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __A : List[Any] = [np.asarray(_UpperCAmelCase ) for speech_input in speech_inputs] # Test not batched input __A : Any = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values __A : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # Test batched __A : Union[str, Any] = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values __A : Optional[Any] = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __A : Optional[Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] __A : Optional[Any] = np.asarray(_UpperCAmelCase ) __A : int = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values __A : Dict = feat_extract(_UpperCAmelCase , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def snake_case__ ( self ): """simple docstring""" __A : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __A : Optional[Any] = ['longest', 'max_length', 'do_not_pad'] __A : int = [None, 1_600, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): __A : int = feat_extract(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np' ) __A : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1E-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def snake_case__ ( self ): """simple docstring""" __A : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : Optional[int] = range(800 , 1_400 , 200 ) __A : List[Any] = [floats_list((1, x) )[0] for x in lengths] __A : Dict = ['longest', 'max_length', 'do_not_pad'] __A : List[Any] = [None, 1_600, None] for max_length, padding in zip(_UpperCAmelCase , _UpperCAmelCase ): __A : Optional[int] = feat_extract(_UpperCAmelCase , max_length=_UpperCAmelCase , padding=_UpperCAmelCase ) __A : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def snake_case__ ( self ): """simple docstring""" __A : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : Union[str, Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __A : List[str] = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=1_000 , padding='max_length' , return_tensors='np' ) __A : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def snake_case__ ( self ): """simple docstring""" __A : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : Dict = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __A : List[str] = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=1_000 , padding='longest' , return_tensors='np' ) __A : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) __A : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __A : Dict = feat_extract( _UpperCAmelCase , truncation=_UpperCAmelCase , max_length=2_000 , padding='longest' , return_tensors='np' ) __A : Tuple = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) @require_torch def snake_case__ ( self ): """simple docstring""" import torch __A : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __A : Optional[int] = np.random.rand(100 ).astype(np.floataa ) __A : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __A : Optional[Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __A : Union[str, Any] = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def snake_case__ ( self ): """simple docstring""" for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: __A : int = WavaVecaConfig.from_pretrained(_UpperCAmelCase ) __A : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == 'layer' )
365
"""simple docstring""" import math def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def _snake_case ( _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' if ( not isinstance(_snake_case , (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
7
0
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort __magic_name__ : Any = logging.get_logger(__name__) __magic_name__ : List[str] = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class lowercase__ : """simple docstring""" def __init__( self , _A=None , **_A ): '''simple docstring''' logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) UpperCamelCase : Union[str, Any] = model UpperCamelCase : List[str] = kwargs.get("""model_save_dir""" , _UpperCAmelCase ) UpperCamelCase : List[str] = kwargs.get("""latest_model_name""" , _UpperCAmelCase ) def __call__( self , **_A ): '''simple docstring''' UpperCamelCase : Any = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def _a ( _A , _A=None , _A=None ): '''simple docstring''' if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) UpperCamelCase : str = """CPUExecutionProvider""" return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def _a ( self , _A , _A = None , **_A ): '''simple docstring''' UpperCamelCase : Any = file_name if file_name is not None else ONNX_WEIGHTS_NAME UpperCamelCase : int = self.model_save_dir.joinpath(self.latest_model_name ) UpperCamelCase : Tuple = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) UpperCamelCase : List[str] = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): UpperCamelCase : str = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def _a ( self , _A , **_A , ): '''simple docstring''' if os.path.isfile(_UpperCAmelCase ): logger.error(f"""Provided path ({save_directory}) should be a directory, not a file""" ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def _a ( cls , _A , _A = None , _A = None , _A = False , _A = None , _A = None , _A = None , _A = None , **_A , ): '''simple docstring''' UpperCamelCase : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): UpperCamelCase : Any = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) UpperCamelCase : Optional[int] = Path(_UpperCAmelCase ) # load model from hub else: # download model UpperCamelCase : Tuple = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) UpperCamelCase : str = Path(_UpperCAmelCase ).parent UpperCamelCase : Union[str, Any] = Path(_UpperCAmelCase ).name UpperCamelCase : Optional[Any] = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def _a ( cls , _A , _A = True , _A = None , _A = None , **_A , ): '''simple docstring''' UpperCamelCase : Any = None if len(str(_UpperCAmelCase ).split("""@""" ) ) == 2: UpperCamelCase , UpperCamelCase : Dict = model_id.split("""@""" ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
102
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = '''xmod''' def __init__( self : str , _UpperCAmelCase : Optional[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : int=12 , _UpperCAmelCase : List[str]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : List[str]=512 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : int=0 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : int=False , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=("en_XX",) , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Optional[Any] , ): super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout _A = pre_norm _A = adapter_reduction_factor _A = adapter_layer_norm _A = adapter_reuse_layer_norm _A = ln_before_adapter _A = list(_UpperCAmelCase ) _A = default_language class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Dict ): if self.task == "multiple-choice": _A = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _A = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a = logging.get_logger(__name__) a = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _A = model _A = kwargs.get('model_save_dir' , _UpperCAmelCase ) _A = kwargs.get('latest_model_name' , _UpperCAmelCase ) def __call__( self : Dict , **_UpperCAmelCase : List[Any] ): _A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _A = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME _A = self.model_save_dir.joinpath(self.latest_model_name ) _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _A = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ): if os.path.isfile(_UpperCAmelCase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): _A = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) _A = Path(_UpperCAmelCase ) # load model from hub else: # download model _A = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) _A = Path(_UpperCAmelCase ).parent _A = Path(_UpperCAmelCase ).name _A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ): _A = None if len(str(_UpperCAmelCase ).split('@' ) ) == 2: _A , _A = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def lowerCamelCase ( UpperCAmelCase__ : str ) -> YolosConfig: '''simple docstring''' SCREAMING_SNAKE_CASE__ :List[str] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: SCREAMING_SNAKE_CASE__ :List[Any] = 1_9_2 SCREAMING_SNAKE_CASE__ :Tuple = 7_6_8 SCREAMING_SNAKE_CASE__ :int = 1_2 SCREAMING_SNAKE_CASE__ :int = 3 SCREAMING_SNAKE_CASE__ :str = [8_0_0, 1_3_3_3] SCREAMING_SNAKE_CASE__ :Dict = False elif yolos_name == "yolos_s_dWr": SCREAMING_SNAKE_CASE__ :Optional[Any] = 3_3_0 SCREAMING_SNAKE_CASE__ :Any = 1_4 SCREAMING_SNAKE_CASE__ :Optional[int] = 6 SCREAMING_SNAKE_CASE__ :Union[str, Any] = 1_3_2_0 elif "yolos_s" in yolos_name: SCREAMING_SNAKE_CASE__ :int = 3_8_4 SCREAMING_SNAKE_CASE__ :Tuple = 1_5_3_6 SCREAMING_SNAKE_CASE__ :int = 1_2 SCREAMING_SNAKE_CASE__ :Optional[int] = 6 elif "yolos_b" in yolos_name: SCREAMING_SNAKE_CASE__ :Optional[int] = [8_0_0, 1_3_4_4] SCREAMING_SNAKE_CASE__ :Any = 9_1 SCREAMING_SNAKE_CASE__ :Tuple = 'huggingface/label-files' SCREAMING_SNAKE_CASE__ :Tuple = 'coco-detection-id2label.json' SCREAMING_SNAKE_CASE__ :int = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE__ :List[str] = {int(_snake_case ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE__ :Any = idalabel SCREAMING_SNAKE_CASE__ :Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase ( UpperCAmelCase__ : dict , UpperCAmelCase__ : YolosConfig , UpperCAmelCase__ : bool = False ) -> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE__ :List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) SCREAMING_SNAKE_CASE__ :Any = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE__ :int = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE__ :Tuple = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE__ :Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE__ :Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE__ :Tuple = in_proj_weight[-config.hidden_size :, :] SCREAMING_SNAKE_CASE__ :Optional[int] = in_proj_bias[-config.hidden_size :] def lowerCamelCase ( UpperCAmelCase__ : str ) -> str: '''simple docstring''' if "backbone" in name: SCREAMING_SNAKE_CASE__ :Tuple = name.replace('backbone' , 'vit' ) if "cls_token" in name: SCREAMING_SNAKE_CASE__ :Tuple = name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: SCREAMING_SNAKE_CASE__ :int = name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: SCREAMING_SNAKE_CASE__ :Union[str, Any] = name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: SCREAMING_SNAKE_CASE__ :Tuple = name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE__ :Any = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: SCREAMING_SNAKE_CASE__ :Tuple = name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: SCREAMING_SNAKE_CASE__ :Tuple = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: SCREAMING_SNAKE_CASE__ :Tuple = name.replace('attn' , 'attention.self' ) if "norm1" in name: SCREAMING_SNAKE_CASE__ :Optional[int] = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: SCREAMING_SNAKE_CASE__ :List[Any] = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE__ :Any = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE__ :int = name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: SCREAMING_SNAKE_CASE__ :List[Any] = name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: SCREAMING_SNAKE_CASE__ :str = name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: SCREAMING_SNAKE_CASE__ :Union[str, Any] = name.replace('vit.norm' , 'vit.layernorm' ) return name def lowerCamelCase ( UpperCAmelCase__ : dict , UpperCAmelCase__ : YolosForObjectDetection ) -> dict: '''simple docstring''' for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE__ :List[Any] = orig_state_dict.pop(_snake_case ) if "qkv" in key: SCREAMING_SNAKE_CASE__ :Any = key.split('.' ) SCREAMING_SNAKE_CASE__ :Optional[int] = int(key_split[2] ) SCREAMING_SNAKE_CASE__ :str = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: SCREAMING_SNAKE_CASE__ :List[Any] = val[:dim, :] SCREAMING_SNAKE_CASE__ :Tuple = val[ dim : dim * 2, : ] SCREAMING_SNAKE_CASE__ :Tuple = val[-dim:, :] else: SCREAMING_SNAKE_CASE__ :Any = val[:dim] SCREAMING_SNAKE_CASE__ :Union[str, Any] = val[dim : dim * 2] SCREAMING_SNAKE_CASE__ :List[str] = val[-dim:] else: SCREAMING_SNAKE_CASE__ :Tuple = val return orig_state_dict def lowerCamelCase ( ) -> torch.Tensor: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE__ :Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = get_yolos_config(_snake_case ) # load original state_dict SCREAMING_SNAKE_CASE__ :int = torch.load(_snake_case , map_location='cpu' )['model'] # load 🤗 model SCREAMING_SNAKE_CASE__ :Tuple = YolosForObjectDetection(_snake_case ) model.eval() SCREAMING_SNAKE_CASE__ :Optional[Any] = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by YolosImageProcessor SCREAMING_SNAKE_CASE__ :Optional[int] = 8_0_0 if yolos_name != 'yolos_ti' else 5_1_2 SCREAMING_SNAKE_CASE__ :int = YolosImageProcessor(format='coco_detection' , size=_snake_case ) SCREAMING_SNAKE_CASE__ :Any = image_processor(images=prepare_img() , return_tensors='pt' ) SCREAMING_SNAKE_CASE__ :Dict = model(**_snake_case ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :str = outputs.logits, outputs.pred_boxes SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :int = None, None if yolos_name == "yolos_ti": SCREAMING_SNAKE_CASE__ :int = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) SCREAMING_SNAKE_CASE__ :Optional[int] = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": SCREAMING_SNAKE_CASE__ :Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) SCREAMING_SNAKE_CASE__ :Dict = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": SCREAMING_SNAKE_CASE__ :Union[str, Any] = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": SCREAMING_SNAKE_CASE__ :str = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) SCREAMING_SNAKE_CASE__ :List[Any] = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": SCREAMING_SNAKE_CASE__ :str = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) SCREAMING_SNAKE_CASE__ :Any = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _snake_case , atol=1e-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: SCREAMING_SNAKE_CASE__ :Dict = { 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) SCREAMING_SNAKE_CASE__ :Any = model_mapping[yolos_name] image_processor.push_to_hub(_snake_case , organization='hustvl' ) model.push_to_hub(_snake_case , organization='hustvl' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCamelCase_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
209
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = '''speech_to_text''' UpperCAmelCase : List[Any] = ['''past_key_values'''] UpperCAmelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , _UpperCAmelCase : Union[str, Any]=10_000 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : int=2_048 , _UpperCAmelCase : Optional[Any]=4 , _UpperCAmelCase : List[str]=6 , _UpperCAmelCase : Tuple=2_048 , _UpperCAmelCase : str=4 , _UpperCAmelCase : int=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : List[Any]=256 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=0.0 , _UpperCAmelCase : Dict=0.0 , _UpperCAmelCase : str=0.02 , _UpperCAmelCase : Any=2 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Tuple=0 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[str]=6_000 , _UpperCAmelCase : Optional[Any]=1_024 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Any=(5, 5) , _UpperCAmelCase : int=1_024 , _UpperCAmelCase : str=80 , _UpperCAmelCase : Any=1 , **_UpperCAmelCase : Tuple , ): _A = vocab_size _A = d_model _A = encoder_ffn_dim _A = encoder_layers _A = encoder_attention_heads _A = decoder_ffn_dim _A = decoder_layers _A = decoder_attention_heads _A = dropout _A = attention_dropout _A = activation_dropout _A = activation_function _A = init_std _A = encoder_layerdrop _A = decoder_layerdrop _A = use_cache _A = encoder_layers _A = scale_embedding # scale factor will be sqrt(d_model) if True _A = max_source_positions _A = max_target_positions _A = num_conv_layers _A = list(_UpperCAmelCase ) _A = conv_channels _A = input_feat_per_channel _A = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'''but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ''' F'''`config.num_conv_layers = {self.num_conv_layers}`.''' ) super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
import math import os import sys def UpperCamelCase ( _UpperCAmelCase : str ) -> str: '''simple docstring''' _lowercase : Any = "" try: with open(_snake_case , "rb" ) as binary_file: _lowercase : List[str] = binary_file.read() for dat in data: _lowercase : str = f"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( _UpperCAmelCase : dict[str, str] , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : str ) -> None: '''simple docstring''' lexicon.pop(_snake_case ) _lowercase : str = last_match_id if math.loga(_snake_case ).is_integer(): for curr_key in lexicon: _lowercase : Union[str, Any] = "0" + lexicon[curr_key] _lowercase : Optional[Any] = bin(_snake_case )[2:] def UpperCamelCase ( _UpperCAmelCase : str ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = {"0": "0", "1": "1"} _lowercase , _lowercase : int = "", "" _lowercase : str = len(_snake_case ) for i in range(len(_snake_case ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowercase : Union[str, Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_snake_case , _snake_case , _snake_case , _snake_case ) index += 1 _lowercase : Dict = "" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _lowercase : str = lexicon[curr_string] result += last_match_id return result def UpperCamelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> str: '''simple docstring''' _lowercase : int = os.path.getsize(_snake_case ) _lowercase : List[Any] = bin(_snake_case )[2:] _lowercase : Dict = len(_snake_case ) return "0" * (length_length - 1) + file_length_binary + compressed def UpperCamelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None: '''simple docstring''' _lowercase : Any = 8 try: with open(_snake_case , "wb" ) as opened_file: _lowercase : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(_snake_case ) , _snake_case ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_snake_case , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def UpperCamelCase ( _UpperCAmelCase : str , _UpperCAmelCase : str ) -> None: '''simple docstring''' _lowercase : List[Any] = read_file_binary(_snake_case ) _lowercase : Dict = compress_data(_snake_case ) _lowercase : Dict = add_file_length(_snake_case , _snake_case ) write_file_binary(_snake_case , _snake_case ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
461
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = { '''configuration_trajectory_transformer''': [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TrajectoryTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TrajectoryTransformerModel''', '''TrajectoryTransformerPreTrainedModel''', '''load_tf_weights_in_trajectory_transformer''', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
565
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> int: '''simple docstring''' return int((input_a, input_a).count(1 ) != 0 ) def _snake_case ( ) -> None: '''simple docstring''' assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
7
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ : int = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys a__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
589
"""simple docstring""" import logging from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import arg_to_scheduler from transformers import TrainingArguments a = logging.getLogger(__name__) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[float] = field( default=0.0 , metadata={'''help''': '''The label smoothing epsilon to apply (if not zero).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to SortishSamler or not.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) UpperCAmelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''whether to use adafactor'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Encoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Decoder layer dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field(default=__lowerCAmelCase , metadata={'''help''': '''Dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[float] = field( default=__lowerCAmelCase , metadata={'''help''': '''Attention dropout probability. Goes into model.config.'''} ) UpperCAmelCase : Optional[str] = field( default='''linear''' , metadata={'''help''': f'''Which lr scheduler to use. Selected in {sorted(arg_to_scheduler.keys() )}'''} , )
7
0
from ...configuration_utils import PretrainedConfig class snake_case_ ( __lowerCAmelCase ): '''simple docstring''' lowerCamelCase = '''bert-generation''' def __init__( self : Optional[int] , __magic_name__ : Optional[int]=5_0358 , __magic_name__ : Optional[Any]=1024 , __magic_name__ : Optional[int]=24 , __magic_name__ : int=16 , __magic_name__ : List[Any]=4096 , __magic_name__ : List[Any]="gelu" , __magic_name__ : Union[str, Any]=0.1 , __magic_name__ : Tuple=0.1 , __magic_name__ : List[str]=512 , __magic_name__ : Union[str, Any]=0.02 , __magic_name__ : Optional[int]=1e-12 , __magic_name__ : Any=0 , __magic_name__ : Optional[int]=2 , __magic_name__ : str=1 , __magic_name__ : str="absolute" , __magic_name__ : int=True , **__magic_name__ : Union[str, Any] , ) -> List[Any]: super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowerCamelCase_ : Dict = vocab_size lowerCamelCase_ : str = hidden_size lowerCamelCase_ : Union[str, Any] = num_hidden_layers lowerCamelCase_ : List[str] = num_attention_heads lowerCamelCase_ : Optional[Any] = hidden_act lowerCamelCase_ : Any = intermediate_size lowerCamelCase_ : int = hidden_dropout_prob lowerCamelCase_ : List[Any] = attention_probs_dropout_prob lowerCamelCase_ : Tuple = max_position_embeddings lowerCamelCase_ : Tuple = initializer_range lowerCamelCase_ : int = layer_norm_eps lowerCamelCase_ : Optional[Any] = position_embedding_type lowerCamelCase_ : List[str] = use_cache
488
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule a = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
7
0
def lowerCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def lowerCamelCase_ ( ): """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
483
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : UNetaDModel UpperCAmelCase : KarrasVeScheduler def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ): _A = self.unet.config.sample_size _A = (batch_size, 3, img_size, img_size) _A = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _A = self.scheduler.schedule[t] _A = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _A = self.scheduler.step_correct( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , ) _A = step_output.prev_sample _A = (sample / 2 + 0.5).clamp(0 , 1 ) _A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
7
0
'''simple docstring''' from __future__ import annotations SCREAMING_SNAKE_CASE = list[list[int]] # assigning initial values to the grid SCREAMING_SNAKE_CASE = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution SCREAMING_SNAKE_CASE = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowercase_ ( __A : Matrix , __A : int , __A : int , __A : int ) -> bool: """simple docstring""" for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowercase_ ( __A : Matrix ) -> tuple[int, int] | None: """simple docstring""" for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowercase_ ( __A : Matrix ) -> Matrix | None: """simple docstring""" if location := find_empty_location(_snake_case ): lowercase , lowercase : Dict =location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 1_0 ): if is_safe(_snake_case , _snake_case , _snake_case , _snake_case ): lowercase : Any =digit if sudoku(_snake_case ) is not None: return grid lowercase : List[str] =0 return None def lowercase_ ( __A : Matrix ) -> None: """simple docstring""" for row in grid: for cell in row: print(_snake_case , end=''' ''' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') SCREAMING_SNAKE_CASE = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
94
"""simple docstring""" class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): _A = None _A = None _A = graph self._normalize_graph(_UpperCAmelCase , _UpperCAmelCase ) _A = len(_UpperCAmelCase ) _A = None def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict ): if sources is int: _A = [sources] if sinks is int: _A = [sinks] if len(_UpperCAmelCase ) == 0 or len(_UpperCAmelCase ) == 0: return _A = sources[0] _A = sinks[0] # make fake vertex if there are more # than one source or sink if len(_UpperCAmelCase ) > 1 or len(_UpperCAmelCase ) > 1: _A = 0 for i in sources: max_input_flow += sum(self.graph[i] ) _A = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: _A = max_input_flow _A = 0 _A = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: _A = max_input_flow _A = size - 1 def lowerCAmelCase_ ( self : Optional[Any] ): if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Union[str, Any] ): _A = algorithm(self ) class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : Union[str, Any] ): _A = flow_network _A = flow_network.verticesCount _A = flow_network.sourceIndex _A = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that _A = flow_network.graph _A = False def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: self._algorithm() _A = True def lowerCAmelCase_ ( self : int ): pass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , _UpperCAmelCase : Any ): super().__init__(_UpperCAmelCase ) # use this to save your result _A = -1 def lowerCAmelCase_ ( self : Optional[Any] ): if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : List[Any] ): super().__init__(_UpperCAmelCase ) _A = [[0] * self.verticies_count for i in range(self.verticies_count )] _A = [0] * self.verticies_count _A = [0] * self.verticies_count def lowerCAmelCase_ ( self : Dict ): _A = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule _A = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list _A = 0 while i < len(_UpperCAmelCase ): _A = vertices_list[i] _A = self.heights[vertex_index] self.process_vertex(_UpperCAmelCase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_UpperCAmelCase ) ) _A = 0 else: i += 1 _A = sum(self.preflow[self.source_index] ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Any ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_UpperCAmelCase , _UpperCAmelCase ) self.relabel(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple ): _A = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : int ): _A = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): _A = self.heights[to_index] if min_height is not None: _A = min_height + 1 if __name__ == "__main__": a = [0] a = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] a = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network a = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate a = flow_network.find_maximum_flow() print(F'''maximum flow is {maximum_flow}''')
7
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : List[str] = logging.get_logger(__name__) _lowercase : Optional[Any] = "▁" _lowercase : Any = {"vocab_file": "sentencepiece.bpe.model"} _lowercase : Any = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } _lowercase : Dict = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off _lowercase : str = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class _UpperCamelCase ( __lowerCAmelCase ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = [] lowerCAmelCase = [] def __init__( self , a__ , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=None , a__=None , a__=None , a__ = None , a__=None , a__=False , **a__ , ) -> Optional[int]: # Mask token behave like a normal word, i.e. include the space before it A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token A = {} if sp_model_kwargs is None else sp_model_kwargs A = legacy_behaviour super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_UpperCAmelCase , **_UpperCAmelCase , ) A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) A = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token A = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A = 1 A = len(self.sp_model ) A = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase ) } A = {v: k for k, v in self.lang_code_to_id.items()} A = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) A = src_lang if src_lang is not None else """eng_Latn""" A = self.lang_code_to_id[self._src_lang] A = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Tuple: A = self.__dict__.copy() A = None A = self.sp_model.serialized_model_proto() return state def __setstate__( self , a__ ) -> Any: A = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A = {} A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def _UpperCAmelCase ( self ) -> Tuple: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def _UpperCAmelCase ( self ) -> Optional[Any]: return self._src_lang @src_lang.setter def _UpperCAmelCase ( self , a__ ) -> List[str]: A = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _UpperCAmelCase ( self , a__ , a__ = None , a__ = False ) -> List[Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) A = [1] * len(self.prefix_tokens ) A = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def _UpperCAmelCase ( self , a__ , a__ = None ) -> Optional[Any]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _UpperCAmelCase ( self , a__ , a__ = None ) -> Optional[int]: A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self , a__ , a__ , a__ , a__ , **a__ ) -> int: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A = src_lang A = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) A = self.convert_tokens_to_ids(_UpperCAmelCase ) A = tgt_lang_id return inputs def _UpperCAmelCase ( self ) -> Optional[Any]: A = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self , a__ ) -> str: return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def _UpperCAmelCase ( self , a__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _UpperCAmelCase ( self , a__ ) -> int: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _UpperCAmelCase ( self , a__ ) -> List[str]: A = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def _UpperCAmelCase ( self , a__ , a__ = None ) -> List[Any]: if not os.path.isdir(_UpperCAmelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: A = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def _UpperCAmelCase ( self , a__ , a__ = "eng_Latn" , a__ = None , a__ = "fra_Latn" , **a__ , ) -> Optional[Any]: A = src_lang A = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: return self.set_src_lang_special_tokens(self.src_lang ) def _UpperCAmelCase ( self ) -> Tuple: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _UpperCAmelCase ( self , a__ ) -> List[Any]: A = self.lang_code_to_id[src_lang] if self.legacy_behaviour: A = [] A = [self.eos_token_id, self.cur_lang_code] else: A = [self.cur_lang_code] A = [self.eos_token_id] def _UpperCAmelCase ( self , a__ ) -> str: A = self.lang_code_to_id[lang] if self.legacy_behaviour: A = [] A = [self.eos_token_id, self.cur_lang_code] else: A = [self.cur_lang_code] A = [self.eos_token_id]
641
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = SpeechTaTokenizer UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[int] = True def lowerCAmelCase_ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing _A = SpeechTaTokenizer(_UpperCAmelCase ) _A = AddedToken('<mask>' , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) _A = mask_token tokenizer.add_special_tokens({'mask_token': mask_token} ) tokenizer.add_tokens(['<ctc_blank>'] ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple ): _A = 'this is a test' _A = 'this is a test' return input_text, output_text def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Dict=20 , _UpperCAmelCase : str=5 ): _A , _A = self.get_input_output_texts(_UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase ) return text, ids def lowerCAmelCase_ ( self : Optional[Any] ): _A = '<pad>' _A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-4] , 'œ' ) self.assertEqual(vocab_keys[-2] , '<mask>' ) self.assertEqual(vocab_keys[-1] , '<ctc_blank>' ) self.assertEqual(len(_UpperCAmelCase ) , 81 ) def lowerCAmelCase_ ( self : Optional[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def lowerCAmelCase_ ( self : Any ): _A = self.get_tokenizers(do_lower_case=_UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) _A = ['aaaaa bbbbbb', 'cccccccccdddddddd'] _A = tokenizer.add_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size + len(_UpperCAmelCase ) ) _A = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) _A = {'eos_token': '>>>>|||<||<<|<<', 'pad_token': '<<<<<|||>|>>>>|>'} _A = tokenizer.add_special_tokens(_UpperCAmelCase ) _A = tokenizer.vocab_size _A = len(_UpperCAmelCase ) self.assertNotEqual(_UpperCAmelCase , 0 ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , len(_UpperCAmelCase ) ) self.assertEqual(_UpperCAmelCase , all_size_a + len(_UpperCAmelCase ) ) _A = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l' , add_special_tokens=_UpperCAmelCase ) self.assertGreaterEqual(len(_UpperCAmelCase ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def lowerCAmelCase_ ( self : str ): pass def lowerCAmelCase_ ( self : Any ): pass def lowerCAmelCase_ ( self : Dict ): _A = self.get_tokenizer() _A = tokenizer.tokenize('This is a test' ) # fmt: off self.assertListEqual(_UpperCAmelCase , [SPIECE_UNDERLINE, 'T', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'a', SPIECE_UNDERLINE, 't', 'e', 's', 't'] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) _A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '92000', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) _A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) # fmt: off self.assertListEqual(_UpperCAmelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on _A = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase , [SPIECE_UNDERLINE, 'I', SPIECE_UNDERLINE, 'w', 'a', 's', SPIECE_UNDERLINE, 'b', 'o', 'r', 'n', SPIECE_UNDERLINE, 'i', 'n', SPIECE_UNDERLINE, '<unk>', ',', SPIECE_UNDERLINE, 'a', 'n', 'd', SPIECE_UNDERLINE, 't', 'h', 'i', 's', SPIECE_UNDERLINE, 'i', 's', SPIECE_UNDERLINE, 'f', 'a', 'l', 's', 'é', '.'] ) @slow def lowerCAmelCase_ ( self : List[Any] ): # Use custom sequence because this tokenizer does not handle numbers. _A = [ 'Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ' 'general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ' 'Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ' 'models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.', 'BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ' 'conditioning on both left and right context in all layers.', 'The quick brown fox jumps over the lazy dog.', ] # fmt: off _A = { 'input_ids': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase , model_name='microsoft/speecht5_asr' , revision='c5ef64c71905caeccde0e4462ef3f9077224c524' , sequences=_UpperCAmelCase , )
7
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : str = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class _lowerCamelCase ( __lowerCAmelCase ): '''simple docstring''' __lowercase : str = '''nllb-moe''' __lowercase : Optional[int] = ['''past_key_values'''] __lowercase : Union[str, Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , __lowercase=128_112 , __lowercase=1_024 , __lowercase=12 , __lowercase=4_096 , __lowercase=16 , __lowercase=12 , __lowercase=4_096 , __lowercase=16 , __lowercase=0.0_5 , __lowercase=0.0_5 , __lowercase=True , __lowercase=True , __lowercase="relu" , __lowercase=1_024 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0_2 , __lowercase=2 , __lowercase=True , __lowercase=False , __lowercase="float32" , __lowercase=False , __lowercase=128 , __lowercase=64 , __lowercase=4 , __lowercase=4 , __lowercase=0.0_0_1 , __lowercase=0.0_0_1 , __lowercase="all" , __lowercase=False , __lowercase=False , __lowercase=1.0 , __lowercase=0.2 , __lowercase=1 , __lowercase=0 , __lowercase=2 , __lowercase=False , **__lowercase , ): """simple docstring""" __A : Tuple = vocab_size __A : List[str] = max_position_embeddings __A : Union[str, Any] = d_model __A : int = encoder_ffn_dim __A : List[str] = encoder_layers __A : List[str] = encoder_attention_heads __A : str = decoder_ffn_dim __A : Any = decoder_layers __A : str = decoder_attention_heads __A : Tuple = dropout __A : str = attention_dropout __A : Tuple = activation_dropout __A : Union[str, Any] = activation_function __A : List[str] = init_std __A : Dict = encoder_layerdrop __A : Any = decoder_layerdrop __A : str = use_cache __A : Optional[int] = encoder_layers __A : int = scale_embedding # scale factor will be sqrt(d_model) if True __A : Any = router_z_loss_coef __A : List[Any] = router_aux_loss_coef __A : Union[str, Any] = decoder_sparse_step __A : Union[str, Any] = encoder_sparse_step __A : List[Any] = num_experts __A : Optional[int] = expert_capacity __A : Any = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}""" ) __A : Optional[Any] = router_dtype __A : Any = router_ignore_padding_tokens __A : Optional[int] = batch_prioritized_routing __A : Union[str, Any] = second_expert_policy __A : List[Any] = normalize_router_prob_before_dropping __A : int = moe_eval_capacity_token_fraction __A : List[Any] = moe_token_dropout __A : Tuple = output_router_logits super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , is_encoder_decoder=_UpperCAmelCase , decoder_start_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
365
"""simple docstring""" from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
7
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __magic_name__ : List[Any] = None __magic_name__ : Optional[int] = logging.get_logger(__name__) __magic_name__ : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} __magic_name__ : Tuple = { """vocab_file""": { """facebook/mbart-large-en-ro""": ( """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model""" ), """facebook/mbart-large-cc25""": ( """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/mbart-large-en-ro""": """https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json""", """facebook/mbart-large-cc25""": """https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json""", }, } __magic_name__ : Optional[int] = { """facebook/mbart-large-en-ro""": 1_0_2_4, """facebook/mbart-large-cc25""": 1_0_2_4, } # fmt: off __magic_name__ : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN"""] class lowercase__ ( __lowerCAmelCase ): """simple docstring""" __lowerCAmelCase : int = VOCAB_FILES_NAMES __lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase : Tuple = MBartTokenizer __lowerCAmelCase : List[int] = [] __lowerCAmelCase : List[int] = [] def __init__( self , _A=None , _A=None , _A="<s>" , _A="</s>" , _A="</s>" , _A="<s>" , _A="<unk>" , _A="<pad>" , _A="<mask>" , _A=None , _A=None , _A=None , **_A , ): '''simple docstring''' UpperCamelCase : List[Any] = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( vocab_file=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase : List[Any] = vocab_file UpperCamelCase : str = False if not self.vocab_file else True UpperCamelCase : Dict = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) UpperCamelCase : List[Any] = { lang_code: self.convert_tokens_to_ids(_UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase : Tuple = src_lang if src_lang is not None else """en_XX""" UpperCamelCase : Dict = self.convert_tokens_to_ids(self._src_lang ) UpperCamelCase : Tuple = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _a ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , _A , _A = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self , _A , _A = None ): '''simple docstring''' UpperCamelCase : Any = [self.sep_token_id] UpperCamelCase : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _a ( self , _A , _A , _A , _A , **_A ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) UpperCamelCase : str = src_lang UpperCamelCase : str = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase : Optional[Any] = self.convert_tokens_to_ids(_UpperCAmelCase ) UpperCamelCase : Optional[int] = tgt_lang_id return inputs def _a ( self , _A , _A = "en_XX" , _A = None , _A = "ro_RO" , **_A , ): '''simple docstring''' UpperCamelCase : str = src_lang UpperCamelCase : Dict = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def _a ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Optional[int] = self.convert_tokens_to_ids(_UpperCAmelCase ) UpperCamelCase : int = [] UpperCamelCase : List[str] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : int = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : Dict = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Dict = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self , _A ): '''simple docstring''' UpperCamelCase : Tuple = self.convert_tokens_to_ids(_UpperCAmelCase ) UpperCamelCase : List[str] = [] UpperCamelCase : Any = [self.eos_token_id, self.cur_lang_code] UpperCamelCase : Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) UpperCamelCase : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) UpperCamelCase : Tuple = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _a ( self , _A , _A = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return UpperCamelCase : Union[str, Any] = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
102
"""simple docstring""" import argparse a = '''docs/source/_static/js/custom.js''' def _snake_case ( _snake_case : Dict ) -> Any: '''simple docstring''' with open(_snake_case , encoding='utf-8' , newline='\n' ) as f: _A = f.readlines() _A = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 _A = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(_snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') a = parser.parse_args() update_custom_js(args.version)
7
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''vit_mae''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = decoder_num_attention_heads _A = decoder_hidden_size _A = decoder_num_hidden_layers _A = decoder_intermediate_size _A = mask_ratio _A = norm_pix_loss
7
0
'''simple docstring''' from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _SCREAMING_SNAKE_CASE( __lowerCAmelCase ): A_ : Dict = '''''' A_ : List[Any] = '''hf-legacy''' # "hf://"" is reserved for hffs def __init__( self : Optional[int] , UpperCamelCase_ : Optional[DatasetInfo] = None , UpperCamelCase_ : Optional[str] = None , **UpperCamelCase_ : Union[str, Any] , ) -> str: super().__init__(self , **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = repo_info SCREAMING_SNAKE_CASE__ :List[str] = token SCREAMING_SNAKE_CASE__ :str = None def __lowerCamelCase ( self : Union[str, Any] ) -> Tuple: if self.dir_cache is None: SCREAMING_SNAKE_CASE__ :List[Any] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes SCREAMING_SNAKE_CASE__ :Any = { 'name': hf_file.rfilename, 'size': None, 'type': 'file', } self.dir_cache.update( { str(_UpperCAmelCase ): {'name': str(_UpperCAmelCase ), 'size': None, 'type': 'directory'} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : str = "rb" , **UpperCamelCase_ : int , ) -> int: if not isinstance(self.repo_info , _UpperCAmelCase ): raise NotImplementedError(f'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) SCREAMING_SNAKE_CASE__ :Optional[Any] = hf_hub_url(self.repo_info.id , _UpperCAmelCase , revision=self.repo_info.sha ) return fsspec.open( _UpperCAmelCase , mode=_UpperCAmelCase , headers=get_authentication_headers_for_url(_UpperCAmelCase , use_auth_token=self.token ) , client_kwargs={'trust_env': True} , ).open() def __lowerCamelCase ( self : Any , UpperCamelCase_ : int , **UpperCamelCase_ : Optional[int] ) -> List[Any]: self._get_dirs() SCREAMING_SNAKE_CASE__ :int = self._strip_protocol(_UpperCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_UpperCAmelCase ) def __lowerCamelCase ( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict=False , **UpperCamelCase_ : Tuple ) -> Optional[Any]: self._get_dirs() SCREAMING_SNAKE_CASE__ :Tuple = PurePosixPath(path.strip('/' ) ) SCREAMING_SNAKE_CASE__ :Optional[Any] = {} for p, f in self.dir_cache.items(): SCREAMING_SNAKE_CASE__ :List[Any] = PurePosixPath(p.strip('/' ) ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = p.parent if root == path: SCREAMING_SNAKE_CASE__ :Dict = f SCREAMING_SNAKE_CASE__ :str = list(paths.values() ) if detail: return out else: return sorted(f['name'] for f in out )
209
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] a = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def _snake_case ( _snake_case : Optional[Any] ) -> str: '''simple docstring''' _A = torch.load(_snake_case , map_location='cpu' ) return sd def _snake_case ( _snake_case : Union[str, Any] , _snake_case : str , _snake_case : Tuple=rename_keys_prefix ) -> List[str]: '''simple docstring''' _A = OrderedDict() _A = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _A = key for name_pair in rename_keys_prefix: _A = new_key.replace(name_pair[0] , name_pair[1] ) _A = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _A = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def _snake_case ( _snake_case : List[str] , _snake_case : Dict ) -> Dict: '''simple docstring''' assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _A = 'pretraining' if "vcr" in checkpoint_path: _A = {'visual_embedding_dim': 5_12} elif "vqa_advanced" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} elif "vqa" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} elif "nlvr" in checkpoint_path: _A = {'visual_embedding_dim': 10_24} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: _A = {'visual_embedding_dim': 5_12} _A = 'multichoice' elif "vqa_advanced" in checkpoint_path: _A = {'visual_embedding_dim': 20_48} _A = 'vqa_advanced' elif "vqa" in checkpoint_path: _A = {'visual_embedding_dim': 20_48, 'num_labels': 31_29} _A = 'vqa' elif "nlvr" in checkpoint_path: _A = { 'visual_embedding_dim': 10_24, 'num_labels': 2, } _A = 'nlvr' _A = VisualBertConfig(**_snake_case ) # Load State Dict _A = load_state_dict(_snake_case ) _A = get_new_dict(_snake_case , _snake_case ) if model_type == "pretraining": _A = VisualBertForPreTraining(_snake_case ) elif model_type == "vqa": _A = VisualBertForQuestionAnswering(_snake_case ) elif model_type == "nlvr": _A = VisualBertForVisualReasoning(_snake_case ) elif model_type == "multichoice": _A = VisualBertForMultipleChoice(_snake_case ) model.load_state_dict(_snake_case ) # Save Checkpoints Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') a = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
7
0
def UpperCamelCase ( _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any]=False ) -> List[Any]: '''simple docstring''' if isinstance(_snake_case , _snake_case ) and isinstance(_snake_case , _snake_case ): _lowercase : List[Any] = len(set_a.intersection(_snake_case ) ) if alternative_union: _lowercase : List[str] = len(_snake_case ) + len(_snake_case ) else: _lowercase : Union[str, Any] = len(set_a.union(_snake_case ) ) return intersection / union if isinstance(_snake_case , (list, tuple) ) and isinstance(_snake_case , (list, tuple) ): _lowercase : List[str] = [element for element in set_a if element in set_b] if alternative_union: _lowercase : Any = len(_snake_case ) + len(_snake_case ) return len(_snake_case ) / union else: _lowercase : int = set_a + [element for element in set_b if element not in set_a] return len(_snake_case ) / len(_snake_case ) return len(_snake_case ) / len(_snake_case ) return None if __name__ == "__main__": UpperCamelCase_ : Optional[int] = {"""a""", """b""", """c""", """d""", """e"""} UpperCamelCase_ : Tuple = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
461
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' for param in module.parameters(): _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _A = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' _A = plt.imshow(_snake_case ) fig.axes.get_xaxis().set_visible(_snake_case ) fig.axes.get_yaxis().set_visible(_snake_case ) plt.show() def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = datetime.now() _A = current_time.strftime('%H:%M:%S' ) return timestamp
7
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = 0 # if input_string is "aba" than new_input_string become "a|b|a" lowerCAmelCase__ : Dict = """""" lowerCAmelCase__ : List[Any] = """""" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(_snake_case ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring lowerCAmelCase__ , lowerCAmelCase__ : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i lowerCAmelCase__ : Tuple = [1 for i in range(len(_snake_case ) )] # for each character in new_string find corresponding palindromic string lowerCAmelCase__ : int = 0 for j in range(len(_snake_case ) ): lowerCAmelCase__ : str = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(_snake_case ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 lowerCAmelCase__ : Dict = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: lowerCAmelCase__ : Union[str, Any] = j - k + 1 # noqa: E741 lowerCAmelCase__ : List[str] = j + k - 1 # update max_length and start position if max_length < length[j]: lowerCAmelCase__ : int = length[j] lowerCAmelCase__ : Optional[Any] = j # create that string lowerCAmelCase__ : List[str] = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
565
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] UpperCAmelCase : Optional[int] = '''ViTImageProcessor''' UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ): _A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) _A = kwargs.pop('feature_extractor' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ): if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: _A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None and images is not None: _A = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _A = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _A = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self : Tuple ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
7
0
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ ( __lowerCAmelCase ): UpperCamelCase : Dict = (PNDMScheduler,) UpperCamelCase : Any = (('''num_inference_steps''', 50),) def _lowerCamelCase ( self , **__magic_name__ ): """simple docstring""" _lowerCAmelCase = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.00_01, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**_UpperCAmelCase ) return config def _lowerCamelCase ( self , __magic_name__=0 , **__magic_name__ ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config(**_UpperCAmelCase ) _lowerCAmelCase = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_UpperCAmelCase ) new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCAmelCase = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self , __magic_name__=0 , **__magic_name__ ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_UpperCAmelCase ) _lowerCAmelCase = scheduler_class.from_pretrained(_UpperCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(_UpperCAmelCase ) # copy over dummy past residual (must be after setting timesteps) _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _lowerCAmelCase = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase = new_scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def _lowerCamelCase ( self , **__magic_name__ ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(**_UpperCAmelCase ) _lowerCAmelCase = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase = 1_0 _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_UpperCAmelCase ) for i, t in enumerate(scheduler.prk_timesteps ): _lowerCAmelCase = model(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _lowerCAmelCase = model(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase = scheduler.step_plms(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample return sample def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = dict(self.forward_default_kwargs ) _lowerCAmelCase = kwargs.pop('num_inference_steps' , _UpperCAmelCase ) for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_UpperCAmelCase ) _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_UpperCAmelCase , 'set_timesteps' ): scheduler.set_timesteps(_UpperCAmelCase ) elif num_inference_steps is not None and not hasattr(_UpperCAmelCase , 'set_timesteps' ): _lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _lowerCAmelCase = dummy_past_residuals[:] _lowerCAmelCase = scheduler.step_prk(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase = scheduler.step_prk(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _lowerCAmelCase = scheduler.step_plms(_UpperCAmelCase , 0 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample _lowerCAmelCase = scheduler.step_plms(_UpperCAmelCase , 1 , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _lowerCamelCase ( self ): """simple docstring""" for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def _lowerCamelCase ( self ): """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_UpperCAmelCase ) _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(steps_offset=1 ) _lowerCAmelCase = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def _lowerCamelCase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def _lowerCamelCase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def _lowerCamelCase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def _lowerCamelCase ( self ): """simple docstring""" for t in [1, 5, 1_0]: self.check_over_forward(time_step=_UpperCAmelCase ) def _lowerCamelCase ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=_UpperCAmelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = 2_7 for scheduler_class in self.scheduler_classes: _lowerCAmelCase = self.dummy_sample _lowerCAmelCase = 0.1 * sample _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(_UpperCAmelCase ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _lowerCAmelCase = scheduler.step_prk(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample def _lowerCamelCase ( self ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_UpperCAmelCase ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop() _lowerCAmelCase = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 1_98.13_18 ) < 1e-2 assert abs(result_mean.item() - 0.25_80 ) < 1e-3 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(prediction_type='v_prediction' ) _lowerCAmelCase = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 67.39_86 ) < 1e-2 assert abs(result_mean.item() - 0.08_78 ) < 1e-3 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) _lowerCAmelCase = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 2_30.03_99 ) < 1e-2 assert abs(result_mean.item() - 0.29_95 ) < 1e-3 def _lowerCamelCase ( self ): """simple docstring""" _lowerCAmelCase = self.full_loop(set_alpha_to_one=_UpperCAmelCase , beta_start=0.01 ) _lowerCAmelCase = torch.sum(torch.abs(_UpperCAmelCase ) ) _lowerCAmelCase = torch.mean(torch.abs(_UpperCAmelCase ) ) assert abs(result_sum.item() - 1_86.94_82 ) < 1e-2 assert abs(result_mean.item() - 0.24_34 ) < 1e-3
589
"""simple docstring""" import math from datetime import datetime, timedelta def _snake_case ( _snake_case : int ) -> datetime: '''simple docstring''' _A = year % 19 _A = year % 4 _A = year % 7 _A = math.floor(year / 1_00 ) _A = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _A = leap_day_inhibits / 4 _A = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _A = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _A = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _A = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(_snake_case , 4 , 18 ) else: return datetime(_snake_case , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): a = '''will be''' if year > datetime.now().year else '''was''' print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
7
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=True , ): '''simple docstring''' __A : str = parent __A : Dict = batch_size __A : str = num_channels __A : str = image_size __A : str = min_resolution __A : Tuple = max_resolution __A : List[str] = do_resize __A : Tuple = size_divisor __A : Union[str, Any] = do_rescale def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = GLPNImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = GLPNImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize')) self.assertTrue(hasattr(_UpperCAmelCase , 'size_divisor')) self.assertTrue(hasattr(_UpperCAmelCase , 'resample')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_rescale')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.image_processing_class(**self.image_processor_dict) # create random PIL images __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image) # Test not batched input (GLPNImageProcessor doesn't support batching) __A : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray) # Test not batched input (GLPNImageProcessor doesn't support batching) __A : int = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor) # Test not batched input (GLPNImageProcessor doesn't support batching) __A : Dict = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0)
8
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = FlaxAutoencoderKL @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = 4 __A : Union[str, Any] = 3 __A : Optional[int] = (32, 32) __A : Any = jax.random.PRNGKey(0) __A : Dict = jax.random.uniform(_UpperCAmelCase , ((batch_size, num_channels) + sizes)) return {"sample": image, "prng_key": prng_key} def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __A : Tuple = self.dummy_input return init_dict, inputs_dict
8
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : List[Any] = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lilt''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase="absolute" , _UpperCAmelCase=None , _UpperCAmelCase=4 , _UpperCAmelCase=1024 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : str = vocab_size __A : Any = hidden_size __A : Optional[int] = num_hidden_layers __A : List[Any] = num_attention_heads __A : Union[str, Any] = hidden_act __A : Union[str, Any] = intermediate_size __A : str = hidden_dropout_prob __A : str = attention_probs_dropout_prob __A : Any = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Union[str, Any] = layer_norm_eps __A : str = position_embedding_type __A : int = classifier_dropout __A : int = channel_shrink_ratio __A : int = max_ad_position_embeddings
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Optional[int]: __A : List[str] = 0 __A : Optional[int] = len(__snake_case ) for i in range(n - 1 ): for j in range(i + 1 , __snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def _lowerCAmelCase ( __snake_case : Tuple ) -> Optional[Any]: if len(__snake_case ) <= 1: return arr, 0 __A : List[Any] = len(__snake_case ) // 2 __A : int = arr[0:mid] __A : List[Any] = arr[mid:] __A ,__A : Optional[Any] = count_inversions_recursive(__snake_case ) __A ,__A : Any = count_inversions_recursive(__snake_case ) __A ,__A : str = _count_cross_inversions(__snake_case , __snake_case ) __A : int = inversion_p + inversions_q + cross_inversions return c, num_inversions def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] ) -> Tuple: __A : List[str] = [] __A : Optional[int] = 0 while i < len(__snake_case ) and j < len(__snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def _lowerCAmelCase ( ) -> Any: __A : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) __A : Tuple = count_inversions_bf(__snake_case ) __A ,__A : Optional[Any] = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ' , __snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() __A : str = count_inversions_bf(__snake_case ) __A ,__A : Any = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , __snake_case ) # an empty list should also have zero inversions __A : Union[str, Any] = [] __A : List[Any] = count_inversions_bf(__snake_case ) __A ,__A : List[Any] = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ' , __snake_case ) if __name__ == "__main__": main()
8
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __A : str = gray_code_sequence_string(__snake_case ) # # convert them to integers for i in range(len(__snake_case ) ): __A : Optional[int] = int(sequence[i] , 2 ) return sequence def _lowerCAmelCase ( __snake_case : int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __A : Tuple = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __A : List[Any] = gray_code_sequence_string(bit_count - 1 ) __A : List[str] = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __A : Union[str, Any] = '0' + smaller_sequence[i] sequence.append(__snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __A : str = '1' + smaller_sequence[i] sequence.append(__snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> int: __A : Union[str, Any] = SwinConfig(image_size=1_92 ) if "base" in model_name: __A : Any = 6 __A : Tuple = 1_28 __A : str = (2, 2, 18, 2) __A : Dict = (4, 8, 16, 32) elif "large" in model_name: __A : str = 12 __A : Tuple = 1_92 __A : str = (2, 2, 18, 2) __A : List[Any] = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) __A : int = window_size __A : Optional[int] = embed_dim __A : List[Any] = depths __A : Dict = num_heads return config def _lowerCAmelCase ( __snake_case : str ) -> Dict: if "encoder.mask_token" in name: __A : str = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: __A : Optional[int] = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: __A : str = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: __A : Optional[Any] = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: __A : str = name.replace('attn' , 'attention.self' ) if "norm1" in name: __A : Any = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __A : int = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __A : str = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __A : Dict = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __A : str = 'layernorm.weight' if name == "encoder.norm.bias": __A : List[Any] = 'layernorm.bias' if "decoder" in name: pass else: __A : List[str] = 'swin.' + name return name def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Any ) -> List[str]: for key in orig_state_dict.copy().keys(): __A : List[str] = orig_state_dict.pop(__snake_case ) if "attn_mask" in key: pass elif "qkv" in key: __A : Tuple = key.split('.' ) __A : List[str] = int(key_split[2] ) __A : Dict = int(key_split[4] ) __A : Union[str, Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __A : str = val[:dim, :] __A : Dict = val[ dim : dim * 2, : ] __A : Any = val[-dim:, :] else: __A : Tuple = val[ :dim ] __A : Any = val[ dim : dim * 2 ] __A : Union[str, Any] = val[ -dim: ] else: __A : Tuple = val return orig_state_dict def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : Optional[int] = torch.load(__snake_case , map_location='cpu' )['model'] __A : str = get_swin_config(__snake_case ) __A : str = SwinForMaskedImageModeling(__snake_case ) model.eval() __A : Tuple = convert_state_dict(__snake_case , __snake_case ) model.load_state_dict(__snake_case ) __A : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A : Optional[int] = ViTImageProcessor(size={'height': 1_92, 'width': 1_92} ) __A : Tuple = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) __A : List[Any] = image_processor(images=__snake_case , return_tensors='pt' ) with torch.no_grad(): __A : List[str] = model(**__snake_case ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__snake_case ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowercase__ : List[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
8
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
1
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = tempfile.mkdtemp() __A : int = 5 # Realm tok __A : str = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __A : Union[str, Any] = os.path.join(self.tmpdirname , 'realm_tokenizer') os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) __A : str = os.path.join(_UpperCAmelCase , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) __A : Optional[Any] = os.path.join(self.tmpdirname , 'realm_block_records') os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = RealmConfig(num_block_records=self.num_block_records) return config def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], }) return dataset def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ] , dtype=_UpperCAmelCase , ) return block_records def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.get_config() __A : Optional[int] = self.get_dummy_retriever() __A : Dict = retriever.tokenizer __A : Optional[int] = np.array([0, 3] , dtype='long') __A : int = tokenizer(['Test question']).input_ids __A : List[str] = tokenizer( ['the fourth'] , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ).input_ids __A : List[Any] = config.reader_seq_len __A ,__A ,__A ,__A : Any = retriever( _UpperCAmelCase , _UpperCAmelCase , answer_ids=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np') self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(len(_UpperCAmelCase) , 2) self.assertEqual(concat_inputs.input_ids.shape , (2, 10)) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10)) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10)) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10)) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1]) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.get_config() __A : List[Any] = self.get_dummy_retriever() __A : Union[str, Any] = retriever.tokenizer __A : Any = np.array([0, 3, 5] , dtype='long') __A : Tuple = tokenizer(['Test question']).input_ids __A : Any = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ).input_ids __A : Union[str, Any] = config.reader_seq_len __A ,__A ,__A ,__A : Dict = retriever( _UpperCAmelCase , _UpperCAmelCase , answer_ids=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors='np') self.assertEqual([False, True, True] , _UpperCAmelCase) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _UpperCAmelCase) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) # Test local path __A : str = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records')) self.assertEqual(retriever.block_records[0] , B'This is the first record') # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download') as mock_hf_hub_download: __A : int = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records') , _REALM_BLOCK_RECORDS_FILENAME) __A : int = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa') self.assertEqual(retriever.block_records[0] , B'This is the first record')
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase__ : Optional[int] = data_utils.TransfoXLTokenizer lowercase__ : str = data_utils.TransfoXLCorpus lowercase__ : Union[str, Any] = data_utils lowercase__ : int = data_utils def _lowerCAmelCase ( __snake_case : str , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : List[Any] ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__snake_case , 'rb' ) as fp: __A : Union[str, Any] = pickle.load(__snake_case , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __A : Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(f'Save vocabulary to {pytorch_vocab_dump_path}' ) __A : Optional[Any] = corpus.vocab.__dict__ torch.save(__snake_case , __snake_case ) __A : List[str] = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , __snake_case ) __A : Dict = pytorch_dump_folder_path + '/' + CORPUS_NAME print(f'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(__snake_case , __snake_case ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __A : Any = os.path.abspath(__snake_case ) __A : List[Any] = os.path.abspath(__snake_case ) print(f'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": __A : List[str] = TransfoXLConfig() else: __A : str = TransfoXLConfig.from_json_file(__snake_case ) print(f'Building PyTorch model from configuration: {config}' ) __A : Any = TransfoXLLMHeadModel(__snake_case ) __A : Optional[Any] = load_tf_weights_in_transfo_xl(__snake_case , __snake_case , __snake_case ) # Save pytorch-model __A : Dict = os.path.join(__snake_case , __snake_case ) __A : Optional[int] = os.path.join(__snake_case , __snake_case ) print(f'Save PyTorch model to {os.path.abspath(__snake_case )}' ) torch.save(model.state_dict() , __snake_case ) print(f'Save configuration file to {os.path.abspath(__snake_case )}' ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) lowercase__ : int = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
8
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
1
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
1
'''simple docstring''' import requests lowercase__ : List[Any] = '''https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=''' def _lowerCAmelCase ( __snake_case : str ) -> None: # fetching a list of articles in json format __A : Union[str, Any] = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(f'{i}.) {article["title"]}' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='''<Your BBC News API key goes here>''')
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=18 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , ): '''simple docstring''' __A : List[Any] = size if size is not None else {'height': 18, 'width': 18} __A : Tuple = parent __A : str = batch_size __A : Optional[int] = num_channels __A : str = image_size __A : List[str] = min_resolution __A : Optional[Any] = max_resolution __A : str = do_resize __A : Dict = size __A : Optional[Any] = apply_ocr def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = LayoutLMvaImageProcessor if is_pytesseract_available() else None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = LayoutLMvaImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize')) self.assertTrue(hasattr(_UpperCAmelCase , 'size')) self.assertTrue(hasattr(_UpperCAmelCase , 'apply_ocr')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 18, 'width': 18}) __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42) self.assertEqual(image_processor.size , {'height': 42, 'width': 42}) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image) # Test not batched input __A : int = image_processing(image_inputs[0] , return_tensors='pt') self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , _UpperCAmelCase) self.assertIsInstance(encoding.boxes , _UpperCAmelCase) # Test batched __A : str = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray) # Test not batched input __A : Optional[int] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __A : Any = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched __A : int = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset __A : str = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test') __A : List[Any] = Image.open(ds[0]['file']).convert('RGB') __A : Optional[int] = image_processing(_UpperCAmelCase , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __A : str = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 __A : Tuple = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _UpperCAmelCase) self.assertListEqual(encoding.boxes , _UpperCAmelCase) # with apply_OCR = False __A : str = LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase) __A : List[str] = image_processing(_UpperCAmelCase , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224))
8
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
1
'''simple docstring''' import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(_UpperCAmelCase): __A : Union[str, Any] = AutoConfig.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) __A : str = FlaxAutoModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(_UpperCAmelCase): __A : Any = AutoConfig.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = FlaxAutoModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : str = FlaxBertModel.from_pretrained(_UpperCAmelCase) __A : Dict = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX) @jax.jit def eval(**_UpperCAmelCase): return model(**_UpperCAmelCase) eval(**_UpperCAmelCase).block_until_ready() @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: __A : List[Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : int = FlaxRobertaModel.from_pretrained(_UpperCAmelCase) __A : List[str] = tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX) @jax.jit def eval(**_UpperCAmelCase): return model(**_UpperCAmelCase) eval(**_UpperCAmelCase).block_until_ready() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , 'bert-base is not a local folder and is not a valid model identifier'): __A : Union[str, Any] = FlaxAutoModel.from_pretrained('bert-base') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): __A : Union[str, Any] = FlaxAutoModel.from_pretrained(_UpperCAmelCase , revision='aaaaaa') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex( _UpperCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): __A : List[Any] = FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'Use `from_pt=True` to load this model'): __A : Tuple = FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only')
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
'''simple docstring''' from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : Any , __snake_case : int , __snake_case : Optional[int] ) -> Optional[int]: return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def _lowerCAmelCase ( __snake_case : np.ndarray , __snake_case : Optional[str] , __snake_case : Optional[str] ) -> int: __A : Any = to_pil_image(__snake_case ) __A ,__A : str = pil_image.size __A : Any = pytesseract.image_to_data(__snake_case , lang=__snake_case , output_type='dict' , config=__snake_case ) __A ,__A ,__A ,__A ,__A : Any = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates __A : Dict = [idx for idx, word in enumerate(__snake_case ) if not word.strip()] __A : Dict = [word for idx, word in enumerate(__snake_case ) if idx not in irrelevant_indices] __A : int = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] __A : Optional[Any] = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] __A : List[Any] = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] __A : int = [coord for idx, coord in enumerate(__snake_case ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __A : str = [] for x, y, w, h in zip(__snake_case , __snake_case , __snake_case , __snake_case ): __A : Dict = [x, y, x + w, y + h] actual_boxes.append(__snake_case ) # finally, normalize the bounding boxes __A : Tuple = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__snake_case , __snake_case , __snake_case ) ) assert len(__snake_case ) == len(__snake_case ), "Not as many words as there are bounding boxes" return words, normalized_boxes class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''pixel_values'''] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = "" , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : Union[str, Any] = size if size is not None else {'height': 224, 'width': 224} __A : Optional[Any] = get_size_dict(_UpperCAmelCase) __A : str = do_resize __A : List[str] = size __A : Any = resample __A : List[str] = do_rescale __A : Tuple = rescale_value __A : Tuple = do_normalize __A : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __A : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD __A : Dict = apply_ocr __A : Optional[Any] = ocr_lang __A : Optional[int] = tesseract_config def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = PILImageResampling.BILINEAR , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' __A : Union[str, Any] = get_size_dict(_UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}') __A : List[str] = (size['height'], size['width']) return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase=None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): '''simple docstring''' __A : int = do_resize if do_resize is not None else self.do_resize __A : Optional[Any] = size if size is not None else self.size __A : Optional[Any] = get_size_dict(_UpperCAmelCase) __A : Tuple = resample if resample is not None else self.resample __A : Tuple = do_rescale if do_rescale is not None else self.do_rescale __A : str = rescale_factor if rescale_factor is not None else self.rescale_factor __A : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __A : str = image_mean if image_mean is not None else self.image_mean __A : Optional[Any] = image_std if image_std is not None else self.image_std __A : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr __A : Optional[int] = ocr_lang if ocr_lang is not None else self.ocr_lang __A : Dict = tesseract_config if tesseract_config is not None else self.tesseract_config __A : Optional[int] = make_list_of_images(_UpperCAmelCase) if not valid_images(_UpperCAmelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.') # All transformations expect numpy arrays. __A : Any = [to_numpy_array(_UpperCAmelCase) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , 'pytesseract') __A : Optional[Any] = [] __A : Optional[Any] = [] for image in images: __A ,__A : int = apply_tesseract(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) words_batch.append(_UpperCAmelCase) boxes_batch.append(_UpperCAmelCase) if do_resize: __A : Optional[Any] = [self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase) for image in images] if do_rescale: __A : Optional[int] = [self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase) for image in images] if do_normalize: __A : Optional[int] = [self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase) for image in images] __A : List[str] = [to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase) for image in images] __A : str = BatchFeature(data={'pixel_values': images} , tensor_type=_UpperCAmelCase) if apply_ocr: __A : List[Any] = words_batch __A : Optional[Any] = boxes_batch return data
8
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
1
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Any , __snake_case : int , __snake_case : List[Any] ) -> str: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __A : List[Any] = TapasConfig.from_json_file(__snake_case ) # set absolute/relative position embeddings parameter __A : List[str] = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __A : int = TapasForQuestionAnswering(config=__snake_case ) elif task == "WTQ": # run_task_main.py hparams __A : Optional[Any] = 4 __A : Tuple = True # hparam_utils.py hparams __A : Optional[Any] = 0.664_694 __A : Any = 0.207_951 __A : int = 0.121_194 __A : Dict = True __A : Optional[Any] = True __A : Union[str, Any] = False __A : str = 0.0_352_513 __A : Union[str, Any] = TapasForQuestionAnswering(config=__snake_case ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __A : Optional[Any] = 4 __A : List[str] = False # hparam_utils.py hparams __A : Union[str, Any] = 36.4_519 __A : Optional[int] = 0.903_421 __A : Optional[Any] = 222.088 __A : Union[str, Any] = True __A : List[Any] = True __A : str = True __A : List[Any] = 0.763_141 __A : Any = TapasForQuestionAnswering(config=__snake_case ) elif task == "TABFACT": __A : int = TapasForSequenceClassification(config=__snake_case ) elif task == "MLM": __A : int = TapasForMaskedLM(config=__snake_case ) elif task == "INTERMEDIATE_PRETRAINING": __A : Tuple = TapasModel(config=__snake_case ) else: raise ValueError(f'Task {task} not supported.' ) print(f'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__snake_case , __snake_case , __snake_case ) # Save pytorch-model (weights and configuration) print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__snake_case ) # Save tokenizer files print(f'Save tokenizer files to {pytorch_dump_path}' ) __A : str = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=5_12 ) tokenizer.save_pretrained(__snake_case ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : list , __snake_case : int , __snake_case : int = 0 , __snake_case : int = 0 ) -> int: __A : List[Any] = right or len(__snake_case ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__snake_case , __snake_case , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
8
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''image_processor''', '''tokenizer'''] lowerCAmelCase = '''CLIPImageProcessor''' lowerCAmelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase): '''simple docstring''' __A : Dict = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) __A : Optional[Any] = kwargs.pop('feature_extractor') __A : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_UpperCAmelCase , _UpperCAmelCase) def __call__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: __A : int = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase) if images is not None: __A : Optional[int] = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase) if text is not None and images is not None: __A : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase) , tensor_type=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.tokenizer.model_input_names __A : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
8
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : list ) -> list: if len(__snake_case ) <= 1: return [tuple(__snake_case )] __A : Dict = [] def generate(__snake_case : int , __snake_case : list ): __A : Dict = [0] * n res.append(tuple(__snake_case ) ) __A : Dict = 0 while i < n: if c[i] < i: if i % 2 == 0: __A ,__A : Any = arr[i], arr[0] else: __A ,__A : int = arr[i], arr[c[i]] res.append(tuple(__snake_case ) ) c[i] += 1 __A : Union[str, Any] = 0 else: __A : Optional[int] = 0 i += 1 generate(len(__snake_case ) , __snake_case ) return res if __name__ == "__main__": lowercase__ : Union[str, Any] = input('''Enter numbers separated by a comma:\n''').strip() lowercase__ : List[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Dict ) -> Tuple: __A : Any = [0] * len(__snake_case ) __A : Dict = [] __A : List[Any] = [1] * len(__snake_case ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__snake_case ) ): if indegree[i] == 0: queue.append(__snake_case ) while queue: __A : Tuple = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __A : Any = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__snake_case ) print(max(__snake_case ) ) # Adjacency list of Graph lowercase__ : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
8
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
1
'''simple docstring''' import logging import os from .state import PartialState class SCREAMING_SNAKE_CASE (logging.LoggerAdapter ): @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase): '''simple docstring''' __A : Any = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.') __A : List[Any] = kwargs.pop('main_process_only' , _UpperCAmelCase) __A : str = kwargs.pop('in_order' , _UpperCAmelCase) if self.isEnabledFor(_UpperCAmelCase): if self._should_log(_UpperCAmelCase): __A ,__A : Dict = self.process(_UpperCAmelCase , _UpperCAmelCase) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase) elif in_order: __A : Tuple = PartialState() for i in range(state.num_processes): if i == state.process_index: __A ,__A : Union[str, Any] = self.process(_UpperCAmelCase , _UpperCAmelCase) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase) state.wait_for_everyone() def _lowerCAmelCase ( __snake_case : str , __snake_case : str = None ) -> str: if log_level is None: __A : List[Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , __snake_case ) __A : Dict = logging.getLogger(__snake_case ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__snake_case , {} )
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
1
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowercase__ : Union[str, Any] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='''relu''') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='''relu''')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_28, activation='''relu''')) classifier.add(layers.Dense(units=1, activation='''sigmoid''')) # Compiling the CNN classifier.compile( optimizer='''adam''', loss='''binary_crossentropy''', metrics=['''accuracy'''] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowercase__ : int = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_55, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowercase__ : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_55) lowercase__ : Optional[Any] = train_datagen.flow_from_directory( '''dataset/training_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) lowercase__ : List[str] = test_datagen.flow_from_directory( '''dataset/test_set''', target_size=(64, 64), batch_size=32, class_mode='''binary''' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('''cnn.h5''') # Part 3 - Making new predictions lowercase__ : Optional[Any] = tf.keras.preprocessing.image.load_img( '''dataset/single_prediction/image.png''', target_size=(64, 64) ) lowercase__ : Dict = tf.keras.preprocessing.image.img_to_array(test_image) lowercase__ : Dict = np.expand_dims(test_image, axis=0) lowercase__ : Tuple = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowercase__ : Tuple = '''Normal''' if result[0][0] == 1: lowercase__ : Optional[Any] = '''Abnormality detected'''
8
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Optional @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} ) lowerCAmelCase = field( default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size for training.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} ) lowerCAmelCase = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} ) lowerCAmelCase = field( default=1_0000 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} ) lowerCAmelCase = field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} ) lowerCAmelCase = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} ) lowerCAmelCase = field( default=750 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} ) lowerCAmelCase = field( default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} ) lowerCAmelCase = field(default=5_0000 , metadata={'''help''': '''Maximum number of training steps.'''} ) lowerCAmelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) lowerCAmelCase = field(default=1024 , metadata={'''help''': '''Sequence lengths used for training.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Training seed.'''} ) lowerCAmelCase = field( default=1024 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''If True the data is pretokenized.'''} ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} ) lowerCAmelCase = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} ) lowerCAmelCase = field( default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} ) lowerCAmelCase = field(default=1024 , metadata={'''help''': '''Length of sequences to be evaluated.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} ) lowerCAmelCase = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} ) lowerCAmelCase = field(default=256 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} ) lowerCAmelCase = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} ) lowerCAmelCase = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} ) lowerCAmelCase = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} ) lowerCAmelCase = field( default=200 , metadata={'''help''': '''Number of completions to generate for each sample.'''} ) lowerCAmelCase = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} ) lowerCAmelCase = field( default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} ) lowerCAmelCase = field( default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} ) lowerCAmelCase = field( default=-1 , metadata={ '''help''': ( '''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive''' ''' number corresponds to which GPU device id to run on.''' ) } , ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.''' } , ) lowerCAmelCase = field( default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} ) lowerCAmelCase = field( default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} ) lowerCAmelCase = field( default=10_0000 , metadata={'''help''': '''Number of files to save per JSON output file.'''} ) lowerCAmelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) lowerCAmelCase = field( default=1000 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=100 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} ) lowerCAmelCase = field( default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} ) lowerCAmelCase = field( default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field( default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} ) lowerCAmelCase = field( default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} ) lowerCAmelCase = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} ) lowerCAmelCase = field(default=20_0000 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} ) lowerCAmelCase = field( default=3_2768 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} ) lowerCAmelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} ) lowerCAmelCase = field( default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} ) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = field( default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} ) lowerCAmelCase = field( default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} ) lowerCAmelCase = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} ) lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
8
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
1
'''simple docstring''' import numpy as np import datasets lowercase__ : Optional[int] = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' lowercase__ : List[str] = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' lowercase__ : Tuple = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence') , id='X'), }) , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = np.array(_UpperCAmelCase) __A : Union[str, Any] = np.array(_UpperCAmelCase) # Assert that arrays are 2D if len(X.shape) != 2: raise ValueError('Expected `X` to be a 2D vector') if len(reference_distribution.shape) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector') if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension') # Get mahalanobis distance for each prediction __A : Union[str, Any] = X - np.mean(_UpperCAmelCase) __A : Tuple = np.cov(reference_distribution.T) try: __A : str = np.linalg.inv(_UpperCAmelCase) except np.linalg.LinAlgError: __A : List[Any] = np.linalg.pinv(_UpperCAmelCase) __A : int = np.dot(_UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = np.dot(_UpperCAmelCase , X_minus_mu.T).diagonal() return {"mahalanobis": mahal_dist}
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowercase__ : List[Any] = '''\ Text data. Second line of data.''' lowercase__ : List[Any] = '''file''' @pytest.fixture(scope='session' ) def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Any: __A : List[Any] = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') __A : Any = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: with open(os.path.join(tmpfs.local_root_dir , __snake_case ) , 'w' ) as f: f.write(__snake_case ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : List[str] ) -> int: __A : Union[str, Any] = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} __A : int = input_paths[compression_format] __A : Optional[Any] = tmp_path / 'cache' __A : List[str] = DownloadConfig(cache_dir=__snake_case , extract_compressed_file=__snake_case ) __A : List[str] = cached_path(__snake_case , download_config=__snake_case ) with open(__snake_case ) as f: __A : Tuple = f.read() with open(__snake_case ) as f: __A : Union[str, Any] = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] , __snake_case : int , __snake_case : Tuple ) -> int: __A : List[Any] = 'custom_cache' __A : Tuple = 'custom_extracted_dir' __A : Optional[Any] = tmp_path / 'custom_extracted_path' if default_extracted: __A : List[Any] = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , __snake_case ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(__snake_case ) ) __A : Optional[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __A : List[Any] = xz_file __A : Tuple = ( DownloadConfig(extract_compressed_file=__snake_case ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__snake_case ) ) __A : Tuple = cached_path(__snake_case , download_config=__snake_case ) assert Path(__snake_case ).parent.parts[-2:] == expected def _lowerCAmelCase ( __snake_case : Any ) -> Tuple: # absolute path __A : Any = str(Path(__snake_case ).resolve() ) assert cached_path(__snake_case ) == text_file # relative path __A : List[Any] = str(Path(__snake_case ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__snake_case ) == text_file def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Union[str, Any]: # absolute path __A : int = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(__snake_case ): cached_path(__snake_case ) # relative path __A : Union[str, Any] = './__missing_file__.txt' with pytest.raises(__snake_case ): cached_path(__snake_case ) def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Tuple: __A : List[Any] = get_from_cache(f'tmp://{tmpfs_file}' ) with open(__snake_case ) as f: __A : Dict = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _lowerCAmelCase ( ) -> Any: with pytest.raises(__snake_case ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _lowerCAmelCase ( __snake_case : Any ) -> Tuple: __A : Dict = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): http_get('https://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _lowerCAmelCase ( __snake_case : List[Any] ) -> str: __A : int = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): ftp_get('ftp://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Any: __A : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): fsspec_get('s3://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): fsspec_head('s3://huggingface.co' )
8
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
1
'''simple docstring''' import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Optional[int] = logging.get_logger() def _lowerCAmelCase ( __snake_case : int , __snake_case : str , __snake_case : LevitConfig , __snake_case : Path , __snake_case : bool = True ) -> int: print(f'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 1_28: if name[-1] == "S": __A : Tuple = timm.create_model('levit_128s' , pretrained=__snake_case ) else: __A : Any = timm.create_model('levit_128' , pretrained=__snake_case ) if hidden_sizes == 1_92: __A : Union[str, Any] = timm.create_model('levit_192' , pretrained=__snake_case ) if hidden_sizes == 2_56: __A : List[Any] = timm.create_model('levit_256' , pretrained=__snake_case ) if hidden_sizes == 3_84: __A : List[str] = timm.create_model('levit_384' , pretrained=__snake_case ) from_model.eval() __A : Tuple = LevitForImageClassificationWithTeacher(__snake_case ).eval() __A : List[Any] = OrderedDict() __A : int = from_model.state_dict() __A : List[Any] = list(from_model.state_dict().keys() ) __A : Optional[int] = list(our_model.state_dict().keys() ) print(len(__snake_case ) , len(__snake_case ) ) for i in range(len(__snake_case ) ): __A : Optional[int] = weights[og_keys[i]] our_model.load_state_dict(__snake_case ) __A : Tuple = torch.randn((2, 3, 2_24, 2_24) ) __A : Optional[int] = from_model(__snake_case ) __A : List[str] = our_model(__snake_case ).logits assert torch.allclose(__snake_case , __snake_case ), "The model logits don't match the original one." __A : List[Any] = name print(__snake_case ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) __A : Optional[int] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(f'Pushed {checkpoint_name}' ) def _lowerCAmelCase ( __snake_case : Path , __snake_case : str = None , __snake_case : bool = True ) -> List[str]: __A : Tuple = 'imagenet-1k-id2label.json' __A : List[str] = 10_00 __A : Any = (1, num_labels) __A : Dict = 'huggingface/label-files' __A : Optional[Any] = num_labels __A : str = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) __A : Union[str, Any] = {int(__snake_case ): v for k, v in idalabel.items()} __A : Tuple = idalabel __A : Dict = {v: k for k, v in idalabel.items()} __A : List[Any] = partial(__snake_case , num_labels=__snake_case , idalabel=__snake_case , labelaid=__snake_case ) __A : Optional[Any] = { 'levit-128S': 1_28, 'levit-128': 1_28, 'levit-192': 1_92, 'levit-256': 2_56, 'levit-384': 3_84, } __A : Optional[Any] = { 'levit-128S': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-128': ImageNetPreTrainedConfig( hidden_sizes=[1_28, 2_56, 3_84] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), 'levit-192': ImageNetPreTrainedConfig( hidden_sizes=[1_92, 2_88, 3_84] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-256': ImageNetPreTrainedConfig( hidden_sizes=[2_56, 3_84, 5_12] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), 'levit-384': ImageNetPreTrainedConfig( hidden_sizes=[3_84, 5_12, 7_68] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __snake_case , names_to_config[model_name] , __snake_case , __snake_case ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __snake_case , __snake_case , __snake_case , __snake_case ) return config, expected_shape if __name__ == "__main__": lowercase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help='''The name of the model you wish to convert, it must be one of the supported Levit* architecture,''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''levit-dump-folder/''', type=Path, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') parser.add_argument( '''--no-push_to_hub''', dest='''push_to_hub''', action='''store_false''', help='''Do not push model and image processor to the hub''', ) lowercase__ : Optional[Any] = parser.parse_args() lowercase__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
8
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
1
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger('''transformers.models.encodec''') lowercase__ : Dict = { '''quantizer.vq.layers.*._codebook.inited''': '''quantizer.layers.*.codebook.inited''', '''quantizer.vq.layers.*._codebook.cluster_size''': '''quantizer.layers.*.codebook.cluster_size''', '''quantizer.vq.layers.*._codebook.embed''': '''quantizer.layers.*.codebook.embed''', '''quantizer.vq.layers.*._codebook.embed_avg''': '''quantizer.layers.*.codebook.embed_avg''', } lowercase__ : Dict = { '''encoder.model.0.conv.conv''': '''encoder.layers.0.conv''', '''encoder.model.1.block.1.conv.conv''': '''encoder.layers.1.block.1.conv''', '''encoder.model.1.block.3.conv.conv''': '''encoder.layers.1.block.3.conv''', '''encoder.model.1.shortcut.conv.conv''': '''encoder.layers.1.shortcut.conv''', '''encoder.model.3.conv.conv''': '''encoder.layers.3.conv''', '''encoder.model.4.block.1.conv.conv''': '''encoder.layers.4.block.1.conv''', '''encoder.model.4.block.3.conv.conv''': '''encoder.layers.4.block.3.conv''', '''encoder.model.4.shortcut.conv.conv''': '''encoder.layers.4.shortcut.conv''', '''encoder.model.6.conv.conv''': '''encoder.layers.6.conv''', '''encoder.model.7.block.1.conv.conv''': '''encoder.layers.7.block.1.conv''', '''encoder.model.7.block.3.conv.conv''': '''encoder.layers.7.block.3.conv''', '''encoder.model.7.shortcut.conv.conv''': '''encoder.layers.7.shortcut.conv''', '''encoder.model.9.conv.conv''': '''encoder.layers.9.conv''', '''encoder.model.10.block.1.conv.conv''': '''encoder.layers.10.block.1.conv''', '''encoder.model.10.block.3.conv.conv''': '''encoder.layers.10.block.3.conv''', '''encoder.model.10.shortcut.conv.conv''': '''encoder.layers.10.shortcut.conv''', '''encoder.model.12.conv.conv''': '''encoder.layers.12.conv''', '''encoder.model.13.lstm''': '''encoder.layers.13.lstm''', '''encoder.model.15.conv.conv''': '''encoder.layers.15.conv''', } lowercase__ : Dict = { '''encoder.model.0.conv.norm''': '''encoder.layers.0.norm''', '''encoder.model.1.block.1.conv.norm''': '''encoder.layers.1.block.1.norm''', '''encoder.model.1.block.3.conv.norm''': '''encoder.layers.1.block.3.norm''', '''encoder.model.1.shortcut.conv.norm''': '''encoder.layers.1.shortcut.norm''', '''encoder.model.3.conv.norm''': '''encoder.layers.3.norm''', '''encoder.model.4.block.1.conv.norm''': '''encoder.layers.4.block.1.norm''', '''encoder.model.4.block.3.conv.norm''': '''encoder.layers.4.block.3.norm''', '''encoder.model.4.shortcut.conv.norm''': '''encoder.layers.4.shortcut.norm''', '''encoder.model.6.conv.norm''': '''encoder.layers.6.norm''', '''encoder.model.7.block.1.conv.norm''': '''encoder.layers.7.block.1.norm''', '''encoder.model.7.block.3.conv.norm''': '''encoder.layers.7.block.3.norm''', '''encoder.model.7.shortcut.conv.norm''': '''encoder.layers.7.shortcut.norm''', '''encoder.model.9.conv.norm''': '''encoder.layers.9.norm''', '''encoder.model.10.block.1.conv.norm''': '''encoder.layers.10.block.1.norm''', '''encoder.model.10.block.3.conv.norm''': '''encoder.layers.10.block.3.norm''', '''encoder.model.10.shortcut.conv.norm''': '''encoder.layers.10.shortcut.norm''', '''encoder.model.12.conv.norm''': '''encoder.layers.12.norm''', '''encoder.model.15.conv.norm''': '''encoder.layers.15.norm''', } lowercase__ : Optional[Any] = { '''decoder.model.0.conv.conv''': '''decoder.layers.0.conv''', '''decoder.model.1.lstm''': '''decoder.layers.1.lstm''', '''decoder.model.3.convtr.convtr''': '''decoder.layers.3.conv''', '''decoder.model.4.block.1.conv.conv''': '''decoder.layers.4.block.1.conv''', '''decoder.model.4.block.3.conv.conv''': '''decoder.layers.4.block.3.conv''', '''decoder.model.4.shortcut.conv.conv''': '''decoder.layers.4.shortcut.conv''', '''decoder.model.6.convtr.convtr''': '''decoder.layers.6.conv''', '''decoder.model.7.block.1.conv.conv''': '''decoder.layers.7.block.1.conv''', '''decoder.model.7.block.3.conv.conv''': '''decoder.layers.7.block.3.conv''', '''decoder.model.7.shortcut.conv.conv''': '''decoder.layers.7.shortcut.conv''', '''decoder.model.9.convtr.convtr''': '''decoder.layers.9.conv''', '''decoder.model.10.block.1.conv.conv''': '''decoder.layers.10.block.1.conv''', '''decoder.model.10.block.3.conv.conv''': '''decoder.layers.10.block.3.conv''', '''decoder.model.10.shortcut.conv.conv''': '''decoder.layers.10.shortcut.conv''', '''decoder.model.12.convtr.convtr''': '''decoder.layers.12.conv''', '''decoder.model.13.block.1.conv.conv''': '''decoder.layers.13.block.1.conv''', '''decoder.model.13.block.3.conv.conv''': '''decoder.layers.13.block.3.conv''', '''decoder.model.13.shortcut.conv.conv''': '''decoder.layers.13.shortcut.conv''', '''decoder.model.15.conv.conv''': '''decoder.layers.15.conv''', } lowercase__ : Any = { '''decoder.model.0.conv.norm''': '''decoder.layers.0.norm''', '''decoder.model.3.convtr.norm''': '''decoder.layers.3.norm''', '''decoder.model.4.block.1.conv.norm''': '''decoder.layers.4.block.1.norm''', '''decoder.model.4.block.3.conv.norm''': '''decoder.layers.4.block.3.norm''', '''decoder.model.4.shortcut.conv.norm''': '''decoder.layers.4.shortcut.norm''', '''decoder.model.6.convtr.norm''': '''decoder.layers.6.norm''', '''decoder.model.7.block.1.conv.norm''': '''decoder.layers.7.block.1.norm''', '''decoder.model.7.block.3.conv.norm''': '''decoder.layers.7.block.3.norm''', '''decoder.model.7.shortcut.conv.norm''': '''decoder.layers.7.shortcut.norm''', '''decoder.model.9.convtr.norm''': '''decoder.layers.9.norm''', '''decoder.model.10.block.1.conv.norm''': '''decoder.layers.10.block.1.norm''', '''decoder.model.10.block.3.conv.norm''': '''decoder.layers.10.block.3.norm''', '''decoder.model.10.shortcut.conv.norm''': '''decoder.layers.10.shortcut.norm''', '''decoder.model.12.convtr.norm''': '''decoder.layers.12.norm''', '''decoder.model.13.block.1.conv.norm''': '''decoder.layers.13.block.1.norm''', '''decoder.model.13.block.3.conv.norm''': '''decoder.layers.13.block.3.norm''', '''decoder.model.13.shortcut.conv.norm''': '''decoder.layers.13.shortcut.norm''', '''decoder.model.15.conv.norm''': '''decoder.layers.15.norm''', } lowercase__ : Tuple = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } lowercase__ : List[str] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } lowercase__ : Tuple = [] lowercase__ : Dict = [] def _lowerCAmelCase ( __snake_case : str , __snake_case : Any , __snake_case : int , __snake_case : Tuple , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : str = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : List[str] = value elif weight_type == "weight_g": __A : Dict = value elif weight_type == "weight_v": __A : Tuple = value elif weight_type == "bias": __A : Dict = value elif weight_type == "running_mean": __A : Any = value elif weight_type == "running_var": __A : str = value elif weight_type == "num_batches_tracked": __A : str = value elif weight_type == "weight_ih_l0": __A : Dict = value elif weight_type == "weight_hh_l0": __A : List[str] = value elif weight_type == "bias_ih_l0": __A : Dict = value elif weight_type == "bias_hh_l0": __A : Any = value elif weight_type == "weight_ih_l1": __A : Optional[Any] = value elif weight_type == "weight_hh_l1": __A : int = value elif weight_type == "bias_ih_l1": __A : Optional[int] = value elif weight_type == "bias_hh_l1": __A : Tuple = value else: __A : Union[str, Any] = value logger.info(f'{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Tuple ) -> List[Any]: for key in ignore_keys: if key.endswith('.*' ): if name.startswith(key[:-1] ): return True elif ".*." in key: __A ,__A : str = key.split('.*.' ) if prefix in name and suffix in name: return True elif key in name: return True return False def _lowerCAmelCase ( __snake_case : int , __snake_case : Tuple , __snake_case : Any ) -> str: __A : Optional[Any] = [] if model_name == "encodec_24khz" or "encodec_32khz": __A : Tuple = MAPPING_24K elif model_name == "encodec_48khz": __A : str = MAPPING_48K else: raise ValueError(f'Unsupported model: {model_name}' ) for name, value in orig_dict.items(): if should_ignore(__snake_case , __snake_case ): logger.info(f'{name} was ignored' ) continue __A : Optional[Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: __A ,__A : Dict = key.split('.*.' ) if prefix in name and suffix in name: __A : Any = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('embed' ) and name.endswith('embed_avg' ): continue __A : List[str] = True if "*" in mapped_key: __A : Optional[int] = name.split(__snake_case )[0].split('.' )[-2] __A : str = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : str = 'weight_g' elif "weight_v" in name: __A : int = 'weight_v' elif "weight_ih_l0" in name: __A : int = 'weight_ih_l0' elif "weight_hh_l0" in name: __A : List[Any] = 'weight_hh_l0' elif "bias_ih_l0" in name: __A : Optional[Any] = 'bias_ih_l0' elif "bias_hh_l0" in name: __A : int = 'bias_hh_l0' elif "weight_ih_l1" in name: __A : List[Any] = 'weight_ih_l1' elif "weight_hh_l1" in name: __A : Union[str, Any] = 'weight_hh_l1' elif "bias_ih_l1" in name: __A : Dict = 'bias_ih_l1' elif "bias_hh_l1" in name: __A : Union[str, Any] = 'bias_hh_l1' elif "bias" in name: __A : List[str] = 'bias' elif "weight" in name: __A : List[Any] = 'weight' elif "running_mean" in name: __A : List[Any] = 'running_mean' elif "running_var" in name: __A : int = 'running_var' elif "num_batches_tracked" in name: __A : Optional[int] = 'num_batches_tracked' else: __A : List[Any] = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Any , __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : str=None , __snake_case : str=None , ) -> Optional[Any]: if config_path is not None: __A : Dict = EncodecConfig.from_pretrained(__snake_case ) else: __A : List[Any] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": __A : Union[str, Any] = [8, 5, 4, 4] __A : Optional[int] = [2.2] __A : Optional[int] = 64 __A : List[str] = 3_20_00 __A : Tuple = 20_48 __A : Tuple = False __A : Optional[Any] = False __A : Optional[int] = False elif model_name == "encodec_48khz": __A : Optional[int] = [8, 5, 4, 2] __A : Any = [3.0, 6.0, 12.0, 24.0] __A : Dict = 4_80_00 __A : List[str] = 2 __A : Optional[int] = False __A : Any = 'time_group_norm' __A : Optional[int] = True __A : int = 1.0 __A : int = 0.01 else: raise ValueError(f'Unknown model name: {model_name}' ) __A : Union[str, Any] = EncodecModel(__snake_case ) __A : int = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(__snake_case ) __A : List[Any] = torch.load(__snake_case ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights __A : Dict = original_checkpoint['best_state'] recursively_load_weights(__snake_case , __snake_case , __snake_case ) model.save_pretrained(__snake_case ) if repo_id: print('Pushing to the hub...' ) feature_extractor.push_to_hub(__snake_case ) model.push_to_hub(__snake_case ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() parser.add_argument( '''--model''', default='''encodec_24khz''', type=str, help='''The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.''', ) parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) lowercase__ : str = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : def __init__( self): '''simple docstring''' __A : dict[str, TrieNode] = {} # Mapping from char to TrieNode __A : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for word in words: self.insert(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = self for char in word: if char not in curr.nodes: __A : Optional[Any] = TrieNode() __A : Any = curr.nodes[char] __A : str = True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = self for char in word: if char not in curr.nodes: return False __A : Optional[int] = curr.nodes[char] return curr.is_leaf def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' def _delete(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) -> bool: if index == len(_UpperCAmelCase): # If word does not exist if not curr.is_leaf: return False __A : Any = False return len(curr.nodes) == 0 __A : Dict = word[index] __A : Optional[Any] = curr.nodes.get(_UpperCAmelCase) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted __A : int = _delete(_UpperCAmelCase , _UpperCAmelCase , index + 1) if delete_curr: del curr.nodes[char] return len(curr.nodes) == 0 return delete_curr _delete(self , _UpperCAmelCase , 0) def _lowerCAmelCase ( __snake_case : TrieNode , __snake_case : str ) -> None: if node.is_leaf: print(__snake_case , end=' ' ) for key, value in node.nodes.items(): print_words(__snake_case , word + key ) def _lowerCAmelCase ( ) -> bool: __A : Tuple = 'banana bananas bandana band apple all beast'.split() __A : Optional[Any] = TrieNode() root.insert_many(__snake_case ) # print_words(root, "") assert all(root.find(__snake_case ) for word in words ) assert root.find('banana' ) assert not root.find('bandanas' ) assert not root.find('apps' ) assert root.find('apple' ) assert root.find('all' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def _lowerCAmelCase ( __snake_case : str , __snake_case : bool ) -> None: print(str(__snake_case ) , 'works!' if passes else 'doesn\'t work :(' ) def _lowerCAmelCase ( ) -> None: assert test_trie() def _lowerCAmelCase ( ) -> None: print_results('Testing trie functionality' , test_trie() ) if __name__ == "__main__": main()
8
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[Any] = parent __A : List[Any] = 13 __A : str = 7 __A : Optional[Any] = True __A : List[str] = True __A : Union[str, Any] = True __A : Dict = True __A : int = 99 __A : Optional[Any] = 32 __A : Tuple = 2 __A : str = 4 __A : str = 37 __A : List[str] = 'gelu' __A : str = 0.1 __A : List[Any] = 0.1 __A : Optional[Any] = 512 __A : Any = 16 __A : Optional[int] = 2 __A : Dict = 0.02 __A : Union[str, Any] = 3 __A : List[Any] = 4 __A : Dict = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : int = None if self.use_token_type_ids: __A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : str = None __A : str = None __A : Any = None if self.use_labels: __A : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : int = ids_tensor([self.batch_size] , self.num_choices) __A : Optional[int] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = TFRoFormerModel(config=_UpperCAmelCase) __A : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : List[Any] = [input_ids, input_mask] __A : str = model(_UpperCAmelCase) __A : Tuple = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = True __A : List[Any] = TFRoFormerForCausalLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Tuple = model(_UpperCAmelCase)['logits'] self.parent.assertListEqual( list(prediction_scores.numpy().shape) , [self.batch_size, self.seq_length, self.vocab_size]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = TFRoFormerForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = self.num_labels __A : Tuple = TFRoFormerForSequenceClassification(config=_UpperCAmelCase) __A : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = self.num_choices __A : List[str] = TFRoFormerForMultipleChoice(config=_UpperCAmelCase) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Dict = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Any = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : str = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : List[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = self.num_labels __A : List[Any] = TFRoFormerForTokenClassification(config=_UpperCAmelCase) __A : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFRoFormerForQuestionAnswering(config=_UpperCAmelCase) __A : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : List[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Optional[Any] = config_and_inputs __A : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = TFRoFormerModelTester(self) __A : Tuple = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFRoFormerModel.from_pretrained('junnyu/roformer_chinese_base') self.assertIsNotNone(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = TFRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Tuple = model(_UpperCAmelCase)[0] # TODO Replace vocab size __A : Tuple = 5_0000 __A : Any = [1, 6, vocab_size] self.assertEqual(output.shape , _UpperCAmelCase) print(output[:, :3, :3]) # TODO Replace values below with what was printed above. __A : int = tf.constant( [ [ [-0.12053341, -1.0264901, 0.29221946], [-1.5133783, 0.197433, 0.15190607], [-5.0135403, -3.900256, -0.84038764], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = 1E-4 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = tf.constant([[4, 10]]) __A : Optional[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6) __A : List[str] = emba(input_ids.shape) __A : int = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]]) tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , atol=self.tolerance) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ]) __A : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512) emba([2, 16, 512]) __A : Tuple = emba.weight[:3, :5] tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , atol=self.tolerance) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = 1E-4 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100 __A : Dict = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa) , shape=(2, 12, 16, 64)) / 100 __A : List[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64) __A : str = embed_positions([2, 16, 768])[None, None, :, :] __A ,__A : Tuple = TFRoFormerSelfAttention.apply_rotary_position_embeddings( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Dict = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ]) __A : Optional[int] = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ]) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _UpperCAmelCase , atol=self.tolerance) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _UpperCAmelCase , atol=self.tolerance)
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Optional[int] = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : List[str]=False ) -> Union[str, Any]: __A : int = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'vit.embeddings.cls_token'), ('patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __A : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : Optional[Any] , __snake_case : List[Any]=False ) -> str: for i in range(config.num_hidden_layers ): if base_model: __A : Union[str, Any] = '' else: __A : List[Any] = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A : Optional[int] = state_dict.pop(f'blocks.{i}.attn.qkv.weight' ) __A : str = state_dict.pop(f'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __A : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] __A : Union[str, Any] = in_proj_bias[: config.hidden_size] __A : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A : List[Any] = in_proj_weight[ -config.hidden_size :, : ] __A : Dict = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( __snake_case : List[Any] ) -> List[Any]: __A : Optional[int] = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Dict: __A : int = dct.pop(__snake_case ) __A : Optional[Any] = val def _lowerCAmelCase ( ) -> str: __A : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A : List[Any] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : Tuple ) -> List[str]: __A : str = ViTConfig() __A : Optional[int] = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": __A : Tuple = True __A : Union[str, Any] = int(vit_name[-12:-10] ) __A : Tuple = int(vit_name[-9:-6] ) else: __A : Optional[int] = 10_00 __A : Tuple = 'huggingface/label-files' __A : Dict = 'imagenet-1k-id2label.json' __A : Tuple = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) __A : List[str] = {int(__snake_case ): v for k, v in idalabel.items()} __A : str = idalabel __A : str = {v: k for k, v in idalabel.items()} __A : List[Any] = int(vit_name[-6:-4] ) __A : Any = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('tiny' ): __A : Any = 1_92 __A : Tuple = 7_68 __A : Any = 12 __A : Dict = 3 elif vit_name[9:].startswith('small' ): __A : Any = 3_84 __A : List[Any] = 15_36 __A : int = 12 __A : Union[str, Any] = 6 else: pass else: if vit_name[4:].startswith('small' ): __A : str = 7_68 __A : List[str] = 23_04 __A : Any = 8 __A : str = 8 elif vit_name[4:].startswith('base' ): pass elif vit_name[4:].startswith('large' ): __A : Any = 10_24 __A : List[Any] = 40_96 __A : Optional[int] = 24 __A : str = 16 elif vit_name[4:].startswith('huge' ): __A : str = 12_80 __A : Any = 51_20 __A : Union[str, Any] = 32 __A : List[Any] = 16 # load original model from timm __A : Optional[Any] = timm.create_model(__snake_case , pretrained=__snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys __A : str = timm_model.state_dict() if base_model: remove_classification_head_(__snake_case ) __A : Tuple = create_rename_keys(__snake_case , __snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_q_k_v(__snake_case , __snake_case , __snake_case ) # load HuggingFace model if vit_name[-5:] == "in21k": __A : str = ViTModel(__snake_case ).eval() else: __A : Optional[int] = ViTForImageClassification(__snake_case ).eval() model.load_state_dict(__snake_case ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: __A : Optional[int] = DeiTImageProcessor(size=config.image_size ) else: __A : Optional[Any] = ViTImageProcessor(size=config.image_size ) __A : List[str] = image_processor(images=prepare_img() , return_tensors='pt' ) __A : Tuple = encoding['pixel_values'] __A : Any = model(__snake_case ) if base_model: __A : str = timm_model.forward_features(__snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__snake_case , outputs.pooler_output , atol=1e-3 ) else: __A : int = timm_model(__snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__snake_case , outputs.logits , atol=1e-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase__ : Tuple = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
8
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
1
'''simple docstring''' import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): '''simple docstring''' super().__init__() __A : List[Any] = value_function __A : str = unet __A : Tuple = scheduler __A : List[Any] = env __A : List[str] = env.get_dataset() __A : List[str] = {} for key in self.data.keys(): try: __A : Optional[int] = self.data[key].mean() except: # noqa: E722 pass __A : str = {} for key in self.data.keys(): try: __A : Optional[int] = self.data[key].std() except: # noqa: E722 pass __A : Optional[Any] = env.observation_space.shape[0] __A : List[Any] = env.action_space.shape[0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if type(_UpperCAmelCase) is dict: return {k: self.to_torch(_UpperCAmelCase) for k, v in x_in.items()} elif torch.is_tensor(_UpperCAmelCase): return x_in.to(self.unet.device) return torch.tensor(_UpperCAmelCase , device=self.unet.device) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' for key, val in cond.items(): __A : List[Any] = val.clone() return x_in def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = x.shape[0] __A : Union[str, Any] = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model __A : str = torch.full((batch_size,) , _UpperCAmelCase , device=self.unet.device , dtype=torch.long) for _ in range(_UpperCAmelCase): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models __A : Optional[int] = self.value_function(x.permute(0 , 2 , 1) , _UpperCAmelCase).sample __A : int = torch.autograd.grad([y.sum()] , [x])[0] __A : Optional[Any] = self.scheduler._get_variance(_UpperCAmelCase) __A : int = torch.exp(0.5 * posterior_variance) __A : int = model_std * grad __A : Optional[Any] = 0 __A : List[str] = x.detach() __A : Tuple = x + scale * grad __A : Optional[Any] = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim) __A : int = self.unet(x.permute(0 , 2 , 1) , _UpperCAmelCase).sample.permute(0 , 2 , 1) # TODO: verify deprecation of this kwarg __A : int = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , predict_epsilon=_UpperCAmelCase)['prev_sample'] # apply conditions to the trajectory (set the initial state) __A : Optional[int] = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim) __A : Dict = self.to_torch(_UpperCAmelCase) return x, y def __call__( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1): '''simple docstring''' __A : str = self.normalize(_UpperCAmelCase , 'observations') __A : str = obs[None].repeat(_UpperCAmelCase , axis=0) __A : Any = {0: self.to_torch(_UpperCAmelCase)} __A : Any = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) __A : Tuple = randn_tensor(_UpperCAmelCase , device=self.unet.device) __A : Tuple = self.reset_xa(_UpperCAmelCase , _UpperCAmelCase , self.action_dim) __A : Tuple = self.to_torch(_UpperCAmelCase) # run the diffusion process __A ,__A : Any = self.run_diffusion(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # sort output trajectories by value __A : Any = y.argsort(0 , descending=_UpperCAmelCase).squeeze() __A : str = x[sorted_idx] __A : Dict = sorted_values[:, :, : self.action_dim] __A : Dict = actions.detach().cpu().numpy() __A : Dict = self.de_normalize(_UpperCAmelCase , key='actions') # select the action with the highest value if y is not None: __A : int = 0 else: # if we didn't run value guiding, select a random action __A : Any = np.random.randint(0 , _UpperCAmelCase) __A : str = denorm_actions[selected_index, 0] return denorm_actions
8
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
1
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase__ : List[str] = object() # For specifying empty leaf dict `{}` lowercase__ : str = object() def _lowerCAmelCase ( __snake_case : Any , __snake_case : Dict ) -> Optional[Any]: __A : List[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__snake_case ) - len(__snake_case ) + 1 ): __A : List[str] = [x.match(__snake_case ) for x, y in zip(__snake_case , ks[i:] )] if matches and all(__snake_case ): return True return False def _lowerCAmelCase ( __snake_case : Tuple ) -> Optional[Any]: def replace(__snake_case : int , __snake_case : Optional[Any] ): for rule, replacement in rules: if _match(__snake_case , __snake_case ): return replacement return val return replace def _lowerCAmelCase ( ) -> Dict: return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __snake_case )), (("transformer", "wte", "embedding"), P('mp' , __snake_case )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__snake_case , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __snake_case )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__snake_case , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __snake_case )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[str] = _get_partition_rules() __A : Dict = _replacement_rules(__snake_case ) __A : Dict = {k: _unmatched for k in flatten_dict(__snake_case )} __A : Union[str, Any] = {k: replace(__snake_case , __snake_case ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__snake_case ) )
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging lowercase__ : Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase=None , **_UpperCAmelCase): '''simple docstring''' warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , _UpperCAmelCase , ) super().__init__(args=_UpperCAmelCase , **_UpperCAmelCase)
8
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
1
'''simple docstring''' import argparse import os from pathlib import Path from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params lowercase__ : int = [ # replace left string with right string to get the relevant state_dict key (identical state dict to bart) ['''memory_attention''', '''encoder_attn'''], ['''attention''', '''attn'''], ['''/''', '''.'''], ['''.LayerNorm.gamma''', '''_layer_norm.weight'''], ['''.LayerNorm.beta''', '''_layer_norm.bias'''], ['''r.layer_''', '''r.layers.'''], ['''output_proj''', '''out_proj'''], ['''ffn.dense_1.''', '''fc2.'''], ['''ffn.dense.''', '''fc1.'''], ['''ffn_layer_norm''', '''final_layer_norm'''], ['''kernel''', '''weight'''], ['''encoder_layer_norm.''', '''encoder.layer_norm.'''], ['''decoder_layer_norm.''', '''decoder.layer_norm.'''], ['''embeddings.weights''', '''shared.weight'''], ] def _lowerCAmelCase ( __snake_case : Optional[int] ) -> int: for pegasus_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) return k def _lowerCAmelCase ( __snake_case : dict , __snake_case : dict ) -> PegasusForConditionalGeneration: __A : Dict = DEFAULTS.copy() cfg_kwargs.update(__snake_case ) __A : List[Any] = PegasusConfig(**__snake_case ) __A : Dict = PegasusForConditionalGeneration(__snake_case ) __A : Tuple = torch_model.model.state_dict() __A : int = {} for k, v in tf_weights.items(): __A : int = rename_state_dict_key(__snake_case ) if new_k not in sd: raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' ) if "dense" in k or "proj" in new_k: __A : int = v.T __A : Optional[int] = torch.tensor(__snake_case , dtype=sd[new_k].dtype ) assert v.shape == sd[new_k].shape, f'{new_k}, {k}, {v.shape}, {sd[new_k].shape}' # make sure embedding.padding_idx is respected __A : Optional[Any] = torch.zeros_like(mapping['shared.weight'][cfg.pad_token_id + 1] ) __A : Tuple = mapping['shared.weight'] __A : Dict = mapping['shared.weight'] __A : int = {k: torch.zeros_like(__snake_case ) for k, v in sd.items() if k.endswith('bias' ) and k not in mapping} mapping.update(**__snake_case ) __A ,__A : List[Any] = torch_model.model.load_state_dict(__snake_case , strict=__snake_case ) __A : int = [ k for k in missing if k not in ['encoder.embed_positions.weight', 'decoder.embed_positions.weight'] ] assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}' assert extra == [], f'no matches found for the following tf keys {extra}' return torch_model def _lowerCAmelCase ( __snake_case : List[Any]="./ckpt/aeslc/model.ckpt-32000" ) -> Dict: __A : str = tf.train.list_variables(__snake_case ) __A : List[Any] = {} __A : str = ['Adafactor', 'global_step'] for name, shape in tqdm(__snake_case , desc='converting tf checkpoint to dict' ): __A : Optional[int] = any(pat in name for pat in ignore_name ) if skip_key: continue __A : Tuple = tf.train.load_variable(__snake_case , __snake_case ) __A : Dict = array return tf_weights def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Tuple: # save tokenizer first __A : int = Path(__snake_case ).parent.name __A : int = task_specific_params[f'summarization_{dataset}']['max_position_embeddings'] __A : str = PegasusTokenizer.from_pretrained('sshleifer/pegasus' , model_max_length=__snake_case ) assert tok.model_max_length == desired_max_model_length tok.save_pretrained(__snake_case ) # convert model __A : Dict = get_tf_weights_as_numpy(__snake_case ) __A : List[str] = task_specific_params[f'summarization_{dataset}'] if dataset == "large": __A : str = task_specific_params __A : Any = convert_pegasus(__snake_case , __snake_case ) torch_model.save_pretrained(__snake_case ) __A : Optional[int] = torch_model.state_dict() sd.pop('model.decoder.embed_positions.weight' ) sd.pop('model.encoder.embed_positions.weight' ) torch.save(__snake_case , Path(__snake_case ) / 'pytorch_model.bin' ) if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('''tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase__ : Any = parser.parse_args() if args.save_dir is None: lowercase__ : Tuple = Path(args.tf_ckpt_path).parent.name lowercase__ : Any = os.path.join('''pegasus''', dataset) convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
'''simple docstring''' import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowercase__ : Union[str, Any] = get_tests_dir('''fixtures''') class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = mock.Mock() __A : int = 500 __A : Dict = {} __A : List[Any] = HTTPError __A : List[str] = {} # Download this model to make sure it's in the cache. __A : int = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2') # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : str = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2') # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json') @is_staging_test class SCREAMING_SNAKE_CASE (unittest.TestCase ): @classmethod def SCREAMING_SNAKE_CASE ( cls): '''simple docstring''' __A : Union[str, Any] = TOKEN HfFolder.save_token(_UpperCAmelCase) @classmethod def SCREAMING_SNAKE_CASE ( cls): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-feature-extractor') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor') except HTTPError: pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token) __A : List[Any] = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor') for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase)) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCAmelCase , repo_id='test-feature-extractor' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token) __A : Optional[int] = WavaVecaFeatureExtractor.from_pretrained(F'{USER}/test-feature-extractor') for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = WavaVecaFeatureExtractor.from_pretrained(_UpperCAmelCase) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token) __A : List[str] = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor') for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase)) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _UpperCAmelCase , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token) __A : Tuple = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org') for k, v in feature_extractor.__dict__.items(): self.assertEqual(_UpperCAmelCase , getattr(_UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' CustomFeatureExtractor.register_for_auto_class() __A : str = CustomFeatureExtractor.from_pretrained(_UpperCAmelCase) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) __A : Dict = AutoFeatureExtractor.from_pretrained( F'{USER}/test-dynamic-feature-extractor' , trust_remote_code=_UpperCAmelCase) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor')
8
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ : Any = { '''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''], '''configuration_data2vec_text''': [ '''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecTextConfig''', '''Data2VecTextOnnxConfig''', ], '''configuration_data2vec_vision''': [ '''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecVisionConfig''', '''Data2VecVisionOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecAudioForAudioFrameClassification''', '''Data2VecAudioForCTC''', '''Data2VecAudioForSequenceClassification''', '''Data2VecAudioForXVector''', '''Data2VecAudioModel''', '''Data2VecAudioPreTrainedModel''', ] lowercase__ : Any = [ '''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecTextForCausalLM''', '''Data2VecTextForMaskedLM''', '''Data2VecTextForMultipleChoice''', '''Data2VecTextForQuestionAnswering''', '''Data2VecTextForSequenceClassification''', '''Data2VecTextForTokenClassification''', '''Data2VecTextModel''', '''Data2VecTextPreTrainedModel''', ] lowercase__ : Dict = [ '''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Data2VecVisionForImageClassification''', '''Data2VecVisionForMaskedImageModeling''', '''Data2VecVisionForSemanticSegmentation''', '''Data2VecVisionModel''', '''Data2VecVisionPreTrainedModel''', ] if is_tf_available(): lowercase__ : Union[str, Any] = [ '''TFData2VecVisionForImageClassification''', '''TFData2VecVisionForSemanticSegmentation''', '''TFData2VecVisionModel''', '''TFData2VecVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys lowercase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowercase__ : List[Any] = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[str] = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
1
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : Optional[Any] = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } lowercase__ : Tuple = {'''allegro/herbert-base-cased''': 5_14} lowercase__ : List[Any] = {} class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = HerbertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase="</s>" , **_UpperCAmelCase , ): '''simple docstring''' super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , **_UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : List[str] = [self.cls_token_id] __A : Union[str, Any] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase)) + [1] return [1] + ([0] * len(_UpperCAmelCase)) + [1] + ([0] * len(_UpperCAmelCase)) + [1] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : int = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase) return tuple(_UpperCAmelCase)
8
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
1
'''simple docstring''' from __future__ import annotations import math def _lowerCAmelCase ( __snake_case : list , __snake_case : list ) -> list: if len(__snake_case ) != 2 or len(a[0] ) != 2 or len(__snake_case ) != 2 or len(b[0] ) != 2: raise Exception('Matrices are not 2x2' ) __A : Optional[int] = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def _lowerCAmelCase ( __snake_case : list , __snake_case : list ) -> List[str]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__snake_case ) ) ] def _lowerCAmelCase ( __snake_case : list , __snake_case : list ) -> Tuple: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__snake_case ) ) ] def _lowerCAmelCase ( __snake_case : list ) -> tuple[list, list, list, list]: if len(__snake_case ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('Odd matrices are not supported!' ) __A : Dict = len(__snake_case ) __A : Dict = matrix_length // 2 __A : str = [[a[i][j] for j in range(__snake_case , __snake_case )] for i in range(__snake_case )] __A : Dict = [ [a[i][j] for j in range(__snake_case , __snake_case )] for i in range(__snake_case , __snake_case ) ] __A : int = [[a[i][j] for j in range(__snake_case )] for i in range(__snake_case )] __A : int = [[a[i][j] for j in range(__snake_case )] for i in range(__snake_case , __snake_case )] return top_left, top_right, bot_left, bot_right def _lowerCAmelCase ( __snake_case : list ) -> tuple[int, int]: return len(__snake_case ), len(matrix[0] ) def _lowerCAmelCase ( __snake_case : list ) -> None: print('\n'.join(str(__snake_case ) for line in matrix ) ) def _lowerCAmelCase ( __snake_case : list , __snake_case : list ) -> list: if matrix_dimensions(__snake_case ) == (2, 2): return default_matrix_multiplication(__snake_case , __snake_case ) __A ,__A ,__A ,__A : Any = split_matrix(__snake_case ) __A ,__A ,__A ,__A : int = split_matrix(__snake_case ) __A : Union[str, Any] = actual_strassen(__snake_case , matrix_subtraction(__snake_case , __snake_case ) ) __A : str = actual_strassen(matrix_addition(__snake_case , __snake_case ) , __snake_case ) __A : Tuple = actual_strassen(matrix_addition(__snake_case , __snake_case ) , __snake_case ) __A : List[Any] = actual_strassen(__snake_case , matrix_subtraction(__snake_case , __snake_case ) ) __A : Any = actual_strassen(matrix_addition(__snake_case , __snake_case ) , matrix_addition(__snake_case , __snake_case ) ) __A : Optional[int] = actual_strassen(matrix_subtraction(__snake_case , __snake_case ) , matrix_addition(__snake_case , __snake_case ) ) __A : Optional[int] = actual_strassen(matrix_subtraction(__snake_case , __snake_case ) , matrix_addition(__snake_case , __snake_case ) ) __A : str = matrix_addition(matrix_subtraction(matrix_addition(__snake_case , __snake_case ) , __snake_case ) , __snake_case ) __A : int = matrix_addition(__snake_case , __snake_case ) __A : Optional[Any] = matrix_addition(__snake_case , __snake_case ) __A : List[Any] = matrix_subtraction(matrix_subtraction(matrix_addition(__snake_case , __snake_case ) , __snake_case ) , __snake_case ) # construct the new matrix from our 4 quadrants __A : Union[str, Any] = [] for i in range(len(__snake_case ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__snake_case ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def _lowerCAmelCase ( __snake_case : list , __snake_case : list ) -> list: if matrix_dimensions(__snake_case )[1] != matrix_dimensions(__snake_case )[0]: __A : Union[str, Any] = ( 'Unable to multiply these matrices, please check the dimensions.\n' f'Matrix A: {matrixa}\n' f'Matrix B: {matrixa}' ) raise Exception(__snake_case ) __A : Optional[int] = matrix_dimensions(__snake_case ) __A : Tuple = matrix_dimensions(__snake_case ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __A : Union[str, Any] = max(*__snake_case , *__snake_case ) __A : Any = int(math.pow(2 , math.ceil(math.loga(__snake_case ) ) ) ) __A : Any = matrixa __A : str = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __snake_case ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __snake_case ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __snake_case ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __A : Any = actual_strassen(__snake_case , __snake_case ) # Removing the additional zeros for i in range(0 , __snake_case ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __snake_case ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowercase__ : Any = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowercase__ : Tuple = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ : List[Any] = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = field(default_factory=a__ ) lowerCAmelCase = field(default_factory=a__ ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = len(list(m.modules())) == 1 or isinstance(_UpperCAmelCase , nn.Convad) or isinstance(_UpperCAmelCase , nn.BatchNormad) if has_not_submodules: self.traced.append(_UpperCAmelCase) def __call__( self , _UpperCAmelCase): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(_UpperCAmelCase) [x.remove() for x in self.handles] return self @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return list(filter(lambda _UpperCAmelCase: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = 42 lowerCAmelCase = 1 lowerCAmelCase = field(default_factory=a__ ) lowerCAmelCase = field(default_factory=a__ ) lowerCAmelCase = True def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = Tracker(self.dest)(_UpperCAmelCase).parametrized __A : Any = Tracker(self.src)(_UpperCAmelCase).parametrized __A : int = list(filter(lambda _UpperCAmelCase: type(_UpperCAmelCase) not in self.src_skip , _UpperCAmelCase)) __A : Tuple = list(filter(lambda _UpperCAmelCase: type(_UpperCAmelCase) not in self.dest_skip , _UpperCAmelCase)) if len(_UpperCAmelCase) != len(_UpperCAmelCase) and self.raise_if_mismatch: raise Exception( F'Numbers of operations are different. Source module has {len(_UpperCAmelCase)} operations while' F' destination module has {len(_UpperCAmelCase)}.') for dest_m, src_m in zip(_UpperCAmelCase , _UpperCAmelCase): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}') class SCREAMING_SNAKE_CASE (nn.Module ): def __init__( self , _UpperCAmelCase): '''simple docstring''' super().__init__() __A : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('conv1', model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block'), F'Unexpected layer name {k}' __A : Union[str, Any] = len(_UpperCAmelCase) + 1 feature_blocks.append((F'res{block_index}', v)) __A : List[str] = nn.ModuleDict(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return get_trunk_forward_outputs( _UpperCAmelCase , out_feat_keys=_UpperCAmelCase , feature_blocks=self._feature_blocks , ) class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = x.split('-') return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self , _UpperCAmelCase): '''simple docstring''' if x not in self: __A : Dict = self.convert_name_to_timm(_UpperCAmelCase) __A : Union[str, Any] = partial(lambda: (timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase).eval(), None)) else: __A : Tuple = super().__getitem__(_UpperCAmelCase) return val class SCREAMING_SNAKE_CASE (a__ ): def __getitem__( self , _UpperCAmelCase): '''simple docstring''' if "seer" in x and "in1k" not in x: __A : Union[str, Any] = RegNetModel else: __A : Union[str, Any] = RegNetForImageClassification return val def _lowerCAmelCase ( __snake_case : str , __snake_case : Tuple , __snake_case : List[Tuple[str, str]] ) -> Optional[int]: for from_key, to_key in keys: __A : Optional[int] = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def _lowerCAmelCase ( __snake_case : str , __snake_case : Callable[[], nn.Module] , __snake_case : Callable[[], nn.Module] , __snake_case : RegNetConfig , __snake_case : Path , __snake_case : bool = True , ) -> Any: print(f'Converting {name}...' ) with torch.no_grad(): __A ,__A : Dict = from_model_func() __A : Optional[int] = our_model_func(__snake_case ).eval() __A : Optional[int] = ModuleTransfer(src=__snake_case , dest=__snake_case , raise_if_mismatch=__snake_case ) __A : int = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(__snake_case ) if from_state_dict is not None: __A : int = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __A : str = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] __A : Tuple = manually_copy_vissl_head(__snake_case , our_model.state_dict() , __snake_case ) our_model.load_state_dict(__snake_case ) __A : Tuple = our_model(__snake_case , output_hidden_states=__snake_case ) __A : Optional[int] = ( our_outputs.logits if isinstance(__snake_case , __snake_case ) else our_outputs.last_hidden_state ) __A : Union[str, Any] = from_model(__snake_case ) __A : int = from_output[-1] if type(__snake_case ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __A : List[Any] = our_outputs.hidden_states[-1] assert torch.allclose(__snake_case , __snake_case ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=__snake_case , ) __A : List[Any] = 2_24 if 'seer' not in name else 3_84 # we can use the convnext one __A : List[str] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=__snake_case ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=__snake_case , ) print(f'Pushed {name}' ) def _lowerCAmelCase ( __snake_case : Path , __snake_case : str = None , __snake_case : bool = True ) -> Any: __A : List[Any] = 'imagenet-1k-id2label.json' __A : int = 10_00 __A : int = (1, num_labels) __A : Dict = 'huggingface/label-files' __A : Dict = num_labels __A : List[Any] = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type='dataset' ) ) , 'r' ) ) __A : Optional[Any] = {int(__snake_case ): v for k, v in idalabel.items()} __A : Optional[Any] = idalabel __A : Tuple = {v: k for k, v in idalabel.items()} __A : Optional[Any] = partial(__snake_case , num_labels=__snake_case , idalabel=__snake_case , labelaid=__snake_case ) __A : Union[str, Any] = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 1_60, 3_84] , groups_width=16 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 2_40, 5_28] , groups_width=24 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 1_28, 2_88, 6_72] , groups_width=16 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 1_68, 4_08, 9_12] , groups_width=24 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 1_92, 4_32, 10_08] , groups_width=48 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 2_40, 5_60, 13_60] , groups_width=40 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 3_92, 7_84, 16_24] , groups_width=56 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 2_40, 7_20, 19_20] , groups_width=1_20 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[2_56, 5_12, 8_96, 20_48] , groups_width=1_28 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[3_36, 6_72, 13_44, 25_20] , groups_width=1_68 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 1_04, 2_08, 4_40] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 1_12, 2_56, 6_08] , groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 1_28, 3_20, 7_68] , groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 1_20, 3_36, 8_88] , groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 2_16, 5_76, 15_12] , groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[1_28, 1_92, 5_12, 10_88] , groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[1_44, 2_88, 5_76, 12_96] , groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 4_48, 8_96, 20_16] , groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[2_24, 4_48, 12_32, 30_24] , groups_width=1_12 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), } __A : List[Any] = NameToOurModelFuncMap() __A : List[str] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__snake_case : str , __snake_case : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __A : Tuple = torch.hub.load_state_dict_from_url(__snake_case , model_dir=str(__snake_case ) , map_location='cpu' ) __A : Dict = model_func() # check if we have a head, if yes add it __A : List[Any] = files['classy_state_dict']['base_model']['model'] __A : Optional[int] = model_state_dict['trunk'] model.load_state_dict(__snake_case ) return model.eval(), model_state_dict["heads"] # pretrained __A : int = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A : Optional[Any] = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A : int = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __A : Any = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __A : Dict = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A : List[str] = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __A : Optional[int] = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __A : int = partial( __snake_case , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __snake_case , __snake_case , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __snake_case , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __snake_case , __snake_case , __snake_case , ) return config, expected_shape if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) lowercase__ : Optional[int] = parser.parse_args() lowercase__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
8
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : Any = { '''configuration_roformer''': ['''ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoFormerConfig''', '''RoFormerOnnxConfig'''], '''tokenization_roformer''': ['''RoFormerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = ['''RoFormerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ '''ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoFormerForCausalLM''', '''RoFormerForMaskedLM''', '''RoFormerForMultipleChoice''', '''RoFormerForQuestionAnswering''', '''RoFormerForSequenceClassification''', '''RoFormerForTokenClassification''', '''RoFormerLayer''', '''RoFormerModel''', '''RoFormerPreTrainedModel''', '''load_tf_weights_in_roformer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRoFormerForCausalLM''', '''TFRoFormerForMaskedLM''', '''TFRoFormerForMultipleChoice''', '''TFRoFormerForQuestionAnswering''', '''TFRoFormerForSequenceClassification''', '''TFRoFormerForTokenClassification''', '''TFRoFormerLayer''', '''TFRoFormerModel''', '''TFRoFormerPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Any = [ '''FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxRoFormerForMaskedLM''', '''FlaxRoFormerForMultipleChoice''', '''FlaxRoFormerForQuestionAnswering''', '''FlaxRoFormerForSequenceClassification''', '''FlaxRoFormerForTokenClassification''', '''FlaxRoFormerModel''', '''FlaxRoFormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
1
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = mock.Mock() __A : List[Any] = 500 __A : Optional[int] = {} __A : str = HTTPError __A : Any = {} # Download this model to make sure it's in the cache. __A : Tuple = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Optional[Any] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert') # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = mock.Mock() __A : Union[str, Any] = 500 __A : Any = {} __A : Tuple = HTTPError __A : Tuple = {} # Download this model to make sure it's in the cache. __A : Optional[int] = GPTaTokenizerFast.from_pretrained('gpt2') # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : str = GPTaTokenizerFast.from_pretrained('gpt2') # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' try: __A : Any = tempfile.mktemp() with open(_UpperCAmelCase , 'wb') as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , _UpperCAmelCase) __A : Tuple = AlbertTokenizer.from_pretrained(_UpperCAmelCase) finally: os.remove(_UpperCAmelCase) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json'): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb') as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , _UpperCAmelCase) __A : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2') # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model') @is_staging_test class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''bla''', '''blou'''] @classmethod def SCREAMING_SNAKE_CASE ( cls): '''simple docstring''' __A : List[Any] = TOKEN HfFolder.save_token(_UpperCAmelCase) @classmethod def SCREAMING_SNAKE_CASE ( cls): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='test-tokenizer') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer') except HTTPError: pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Dict = os.path.join(_UpperCAmelCase , 'vocab.txt') with open(_UpperCAmelCase , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __A : Optional[Any] = BertTokenizer(_UpperCAmelCase) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token) __A : Dict = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_UpperCAmelCase , repo_id='test-tokenizer' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token) __A : Any = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Optional[int] = os.path.join(_UpperCAmelCase , 'vocab.txt') with open(_UpperCAmelCase , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __A : List[Any] = BertTokenizer(_UpperCAmelCase) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token) __A : List[Any] = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _UpperCAmelCase , repo_id='valid_org/test-tokenizer-org' , push_to_hub=_UpperCAmelCase , use_auth_token=self._token) __A : str = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org') self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab) @require_tokenizers def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __A : str = os.path.join(_UpperCAmelCase , 'vocab.txt') with open(_UpperCAmelCase , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __A : Any = CustomTokenizer(_UpperCAmelCase) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) __A : List[Any] = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=_UpperCAmelCase) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __A : List[str] = os.path.join(_UpperCAmelCase , 'vocab.txt') with open(_UpperCAmelCase , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens])) __A : Tuple = BertTokenizerFast.from_pretrained(_UpperCAmelCase) bert_tokenizer.save_pretrained(_UpperCAmelCase) __A : Any = CustomTokenizerFast.from_pretrained(_UpperCAmelCase) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token) __A : Tuple = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=_UpperCAmelCase) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast') __A : Union[str, Any] = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=_UpperCAmelCase , trust_remote_code=_UpperCAmelCase) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer') class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = Trie() trie.add('Hello 友達') self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}}) trie.add('Hello') trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}}) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS] This is a extra_id_100']) trie.add('[CLS]') trie.add('extra_id_1') trie.add('extra_id_100') self.assertEqual(trie.split('[CLS] This is a extra_id_100') , ['[CLS]', ' This is a ', 'extra_id_100']) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = Trie() trie.add('A') self.assertEqual(trie.split('ABC') , ['A', 'BC']) self.assertEqual(trie.split('BCA') , ['BC', 'A']) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = Trie() trie.add('TOKEN]') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = Trie() trie.add('A') trie.add('P') trie.add('[SPECIAL_TOKEN]') self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]') , ['This is something ', '[SPECIAL_TOKEN]']) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = Trie() trie.add('AB') trie.add('B') trie.add('C') self.assertEqual(trie.split('ABC') , ['AB', 'C']) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = Trie() trie.add('ABC') trie.add('B') trie.add('CD') self.assertEqual(trie.split('ABCD') , ['ABC', 'D']) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = Trie() __A : Optional[int] = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3]) self.assertEqual(_UpperCAmelCase , ['AB', 'C'])
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
8
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = Rectangle(height=0.5 , width=0.5) __A : Tuple = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) __A : Dict = Rectangle(height=0.25 , width=0.25) __A : str = [mem.copy() for i in range(6)] __A : Union[str, Any] = [mem.copy() for i in range(6)] __A : int = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : Dict = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : List[str] = VGroup(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : Any = Text('CPU' , font_size=24) __A : Any = Group(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase) cpu.move_to([-2.5, -0.5, 0]) self.add(_UpperCAmelCase) __A : Any = [mem.copy() for i in range(4)] __A : Optional[Any] = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : Any = Text('GPU' , font_size=24) __A : int = Group(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase) gpu.move_to([-1, -1, 0]) self.add(_UpperCAmelCase) __A : Optional[Any] = [mem.copy() for i in range(6)] __A : List[Any] = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : Dict = Text('Model' , font_size=24) __A : int = Group(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase) model.move_to([3, -1.0, 0]) self.add(_UpperCAmelCase) __A : int = [] __A : Union[str, Any] = [] for i, rect in enumerate(_UpperCAmelCase): __A : List[str] = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8) target.move_to(_UpperCAmelCase) model_arr.append(_UpperCAmelCase) __A : Dict = Rectangle(height=0.46 , width=0.46).set_stroke(width=0.0).set_fill(_UpperCAmelCase , opacity=0.8) cpu_target.move_to(cpu_left_col_base[i]) model_cpu_arr.append(_UpperCAmelCase) self.add(*_UpperCAmelCase , *_UpperCAmelCase) __A : str = [meta_mem.copy() for i in range(6)] __A : Optional[Any] = [meta_mem.copy() for i in range(6)] __A : Optional[int] = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : Any = VGroup(*_UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : List[Any] = VGroup(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0) __A : List[Any] = Text('Disk' , font_size=24) __A : int = Group(_UpperCAmelCase , _UpperCAmelCase).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase) disk.move_to([-4, -1.25, 0]) self.add(_UpperCAmelCase , _UpperCAmelCase) __A : List[Any] = Square(side_length=2.2) key.move_to([-5, 2, 0]) __A : Dict = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(_UpperCAmelCase , _UpperCAmelCase) __A : Dict = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left()) self.add(_UpperCAmelCase) __A : Union[str, Any] = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(_UpperCAmelCase)) __A : Dict = Square(0.3) input.set_fill(_UpperCAmelCase , opacity=1.0) input.set_stroke(width=0.0) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5) self.play(Write(_UpperCAmelCase)) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02) self.play(MoveToTarget(_UpperCAmelCase)) self.play(FadeOut(_UpperCAmelCase)) __A : Dict = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0]) __A : List[str] = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(_UpperCAmelCase , run_time=3)) __A : Optional[Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase) , ) self.play(MoveToTarget(model_cpu_arr[0])) __A : List[Any] = a.copy() for i in range(6): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02) __A : List[Any] = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5) , MoveToTarget(_UpperCAmelCase , run_time=0.5) , FadeIn(_UpperCAmelCase , run_time=0.5) , lag_ratio=0.2) self.play(_UpperCAmelCase) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i]) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0]) if i >= 1: __A : Union[str, Any] = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i]) , MoveToTarget(model_cpu_arr[i + 1]) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1]) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase) , ) self.play(MoveToTarget(model_cpu_arr[i])) __A : str = a_c __A : Union[str, Any] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5) self.play( FadeOut(_UpperCAmelCase) , FadeOut(_UpperCAmelCase , run_time=0.5) , ) __A : Optional[Any] = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24) step_a.move_to([2, 2, 0]) self.play(Write(_UpperCAmelCase , run_time=3) , MoveToTarget(_UpperCAmelCase)) self.wait()
8
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowercase__ : Tuple = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE : lowerCAmelCase = 42 lowerCAmelCase = None @staticmethod def SCREAMING_SNAKE_CASE ( ): '''simple docstring''' raise NotImplementedError def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' raise NotImplementedError def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' raise NotImplementedError def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if not self.is_available(): raise RuntimeError( F'You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.') @classmethod def SCREAMING_SNAKE_CASE ( cls): '''simple docstring''' return F'`pip install {cls.pip_package or cls.name}`' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''optuna''' @staticmethod def SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return is_optuna_available() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return run_hp_search_optuna(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return default_hp_space_optuna(_UpperCAmelCase) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''ray''' lowerCAmelCase = '''\'ray[tune]\'''' @staticmethod def SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return is_ray_available() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return run_hp_search_ray(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return default_hp_space_ray(_UpperCAmelCase) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''sigopt''' @staticmethod def SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return is_sigopt_available() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return run_hp_search_sigopt(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return default_hp_space_sigopt(_UpperCAmelCase) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''wandb''' @staticmethod def SCREAMING_SNAKE_CASE ( ): '''simple docstring''' return is_wandb_available() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return run_hp_search_wandb(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return default_hp_space_wandb(_UpperCAmelCase) lowercase__ : Any = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def _lowerCAmelCase ( ) -> str: __A : Union[str, Any] = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(__snake_case ) > 0: __A : int = available_backends[0].name if len(__snake_case ) > 1: logger.info( f'{len(__snake_case )} hyperparameter search backends available. Using {name} as the default.' ) return name raise RuntimeError( 'No hyperparameter search backend available.\n' + '\n'.join( f' - To install {backend.name} run {backend.pip_install()}' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
8
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
1
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE (a__ ): pass class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : Any = data __A : Node | None = None def __iter__( self): '''simple docstring''' __A : Dict = self __A : List[Any] = [] while node: if node in visited: raise ContainsLoopError visited.append(_UpperCAmelCase) yield node.data __A : Optional[int] = node.next_node @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' try: list(self) return False except ContainsLoopError: return True if __name__ == "__main__": lowercase__ : Tuple = Node(1) lowercase__ : Optional[Any] = Node(2) lowercase__ : Union[str, Any] = Node(3) lowercase__ : Union[str, Any] = Node(4) print(root_node.has_loop) # False lowercase__ : int = root_node.next_node print(root_node.has_loop) # True lowercase__ : Optional[int] = Node(5) lowercase__ : List[str] = Node(6) lowercase__ : Tuple = Node(5) lowercase__ : Dict = Node(6) print(root_node.has_loop) # False lowercase__ : List[Any] = Node(1) print(root_node.has_loop) # False
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase__ : int = { '''configuration_mega''': ['''MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MegaConfig''', '''MegaOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ '''MEGA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MegaForCausalLM''', '''MegaForMaskedLM''', '''MegaForMultipleChoice''', '''MegaForQuestionAnswering''', '''MegaForSequenceClassification''', '''MegaForTokenClassification''', '''MegaModel''', '''MegaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''xlm''' lowerCAmelCase = { '''hidden_size''': '''emb_dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', '''n_words''': '''vocab_size''', # For backward compatibility } def __init__( self , _UpperCAmelCase=3_0145 , _UpperCAmelCase=2048 , _UpperCAmelCase=12 , _UpperCAmelCase=16 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=1 , _UpperCAmelCase=True , _UpperCAmelCase=512 , _UpperCAmelCase=2048**-0.5 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=5 , _UpperCAmelCase=True , _UpperCAmelCase="first" , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=0.1 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=0 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase=0 , **_UpperCAmelCase , ): '''simple docstring''' __A : int = vocab_size __A : Optional[int] = emb_dim __A : Any = n_layers __A : Optional[Any] = n_heads __A : Optional[Any] = dropout __A : Optional[int] = attention_dropout __A : List[str] = gelu_activation __A : Any = sinusoidal_embeddings __A : List[Any] = causal __A : Any = asm __A : int = n_langs __A : List[Any] = use_lang_emb __A : Tuple = layer_norm_eps __A : Any = bos_index __A : Any = eos_index __A : Optional[Any] = pad_index __A : int = unk_index __A : List[Any] = mask_index __A : List[str] = is_encoder __A : Dict = max_position_embeddings __A : Any = embed_init_std __A : Tuple = init_std __A : Any = summary_type __A : Dict = summary_use_proj __A : Dict = summary_activation __A : Dict = summary_proj_to_labels __A : List[Any] = summary_first_dropout __A : str = start_n_top __A : Any = end_n_top __A : Tuple = mask_token_id __A : Tuple = lang_id if "n_words" in kwargs: __A : Dict = kwargs['n_words'] super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , **_UpperCAmelCase) class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.task == "multiple-choice": __A : List[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : List[str] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ])
8
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class SCREAMING_SNAKE_CASE (unittest.TestCase ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase=7 , _UpperCAmelCase=3 , _UpperCAmelCase=30 , _UpperCAmelCase=400 , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=True , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=[0.5, 0.5, 0.5] , _UpperCAmelCase=True , _UpperCAmelCase=1 / 255 , _UpperCAmelCase=True , ): '''simple docstring''' __A : int = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __A : List[Any] = parent __A : Optional[Any] = batch_size __A : Tuple = num_channels __A : str = min_resolution __A : List[Any] = max_resolution __A : int = do_resize __A : Any = size __A : int = do_normalize __A : Union[str, Any] = image_mean __A : List[str] = image_std __A : Dict = do_rescale __A : List[str] = rescale_factor __A : Union[str, Any] = do_pad def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' if not batched: __A : str = image_inputs[0] if isinstance(_UpperCAmelCase , Image.Image): __A ,__A : Tuple = image.size else: __A ,__A : int = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size['shortest_edge'] * h / w) __A : int = self.size['shortest_edge'] elif w > h: __A : List[Any] = self.size['shortest_edge'] __A : Dict = int(self.size['shortest_edge'] * w / h) else: __A : Tuple = self.size['shortest_edge'] __A : List[Any] = self.size['shortest_edge'] else: __A : List[Any] = [] for image in image_inputs: __A ,__A : Union[str, Any] = self.get_expected_values([image]) expected_values.append((expected_height, expected_width)) __A : Union[str, Any] = max(_UpperCAmelCase , key=lambda _UpperCAmelCase: item[0])[0] __A : Optional[int] = max(_UpperCAmelCase , key=lambda _UpperCAmelCase: item[1])[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = YolosImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = YolosImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_UpperCAmelCase , 'image_mean')) self.assertTrue(hasattr(_UpperCAmelCase , 'image_std')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_normalize')) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize')) self.assertTrue(hasattr(_UpperCAmelCase , 'size')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333}) self.assertEqual(image_processor.do_pad , _UpperCAmelCase) __A : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_UpperCAmelCase) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84}) self.assertEqual(image_processor.do_pad , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image) # Test not batched input __A : Dict = image_processing(image_inputs[0] , return_tensors='pt').pixel_values __A ,__A : List[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A ,__A : str = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase) __A : List[Any] = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt').pixel_values __A ,__A : Tuple = self.image_processor_tester.get_expected_values(_UpperCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Optional[Any] = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values __A ,__A : List[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor) # Test not batched input __A : Any = image_processing(image_inputs[0] , return_tensors='pt').pixel_values __A ,__A : int = self.image_processor_tester.get_expected_values(_UpperCAmelCase) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Any = image_processing(_UpperCAmelCase , return_tensors='pt').pixel_values __A ,__A : Optional[Any] = self.image_processor_tester.get_expected_values(_UpperCAmelCase , batched=_UpperCAmelCase) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.image_processing_class(**self.image_processor_dict) __A : Dict = self.image_processing_class(do_resize=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_rescale=_UpperCAmelCase) # create random PyTorch tensors __A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor) # Test whether the method "pad" and calling the image processor return the same tensors __A : Any = image_processing_a.pad(_UpperCAmelCase , return_tensors='pt') __A : Optional[int] = image_processing_a(_UpperCAmelCase , return_tensors='pt') self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4)) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r') as f: __A : int = json.loads(f.read()) __A : Any = {'image_id': 3_9769, 'annotations': target} # encode them __A : int = YolosImageProcessor.from_pretrained('hustvl/yolos-small') __A : str = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , return_tensors='pt') # verify pixel values __A : List[Any] = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase) __A : List[str] = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4)) # verify area __A : Union[str, Any] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase)) # verify boxes __A : Tuple = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase) __A : Optional[int] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1e-3)) # verify image_id __A : Union[str, Any] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase)) # verify is_crowd __A : List[str] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase)) # verify class_labels __A : int = torch.tensor([75, 75, 63, 65, 17, 17]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase)) # verify orig_size __A : Union[str, Any] = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase)) # verify size __A : List[str] = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase)) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r') as f: __A : Any = json.loads(f.read()) __A : Optional[int] = {'file_name': '000000039769.png', 'image_id': 3_9769, 'segments_info': target} __A : Dict = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic') # encode them __A : List[Any] = YolosImageProcessor(format='coco_panoptic') __A : Optional[int] = image_processing(images=_UpperCAmelCase , annotations=_UpperCAmelCase , masks_path=_UpperCAmelCase , return_tensors='pt') # verify pixel values __A : str = torch.Size([1, 3, 800, 1066]) self.assertEqual(encoding['pixel_values'].shape , _UpperCAmelCase) __A : int = torch.tensor([0.2796, 0.3138, 0.3481]) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _UpperCAmelCase , atol=1e-4)) # verify area __A : Union[str, Any] = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147]) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _UpperCAmelCase)) # verify boxes __A : Optional[Any] = torch.Size([6, 4]) self.assertEqual(encoding['labels'][0]['boxes'].shape , _UpperCAmelCase) __A : Union[str, Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625]) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _UpperCAmelCase , atol=1e-3)) # verify image_id __A : Union[str, Any] = torch.tensor([3_9769]) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _UpperCAmelCase)) # verify is_crowd __A : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0]) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _UpperCAmelCase)) # verify class_labels __A : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93]) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _UpperCAmelCase)) # verify masks __A : Tuple = 82_2873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _UpperCAmelCase) # verify orig_size __A : str = torch.tensor([480, 640]) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _UpperCAmelCase)) # verify size __A : int = torch.tensor([800, 1066]) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _UpperCAmelCase))
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
1
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class SCREAMING_SNAKE_CASE (a__ ): # to overwrite at feature extractactor specific tests lowerCAmelCase = None lowerCAmelCase = None @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(_UpperCAmelCase , 'feature_size')) self.assertTrue(hasattr(_UpperCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(_UpperCAmelCase , 'padding_value')) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.feat_extract_tester.prepare_inputs_for_common() __A : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict) __A : Optional[Any] = feat_extract.model_input_names[0] __A : Optional[Any] = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(_UpperCAmelCase) == len(_UpperCAmelCase) for x, y in zip(_UpperCAmelCase , processed_features[input_name]))) __A : List[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase) __A : Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='np') __A : Dict = processed_features[input_name] if len(batch_features_input.shape) < 3: __A : str = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase) __A : Tuple = self.feature_extraction_class(**self.feat_extract_dict) __A : Dict = feat_extract.model_input_names[0] __A : Optional[Any] = BatchFeature({input_name: speech_inputs} , tensor_type='pt') __A : Tuple = processed_features[input_name] if len(batch_features_input.shape) < 3: __A : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.feat_extract_tester.prepare_inputs_for_common(equal_length=_UpperCAmelCase) __A : str = self.feature_extraction_class(**self.feat_extract_dict) __A : Dict = feat_extract.model_input_names[0] __A : int = BatchFeature({input_name: speech_inputs} , tensor_type='tf') __A : Tuple = processed_features[input_name] if len(batch_features_input.shape) < 3: __A : List[str] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=False): '''simple docstring''' def _inputs_have_equal_length(_UpperCAmelCase): __A : str = len(input[0]) for input_slice in input[1:]: if len(_UpperCAmelCase) != length: return False return True def _inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase): if len(_UpperCAmelCase) != len(_UpperCAmelCase): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase): if not np.allclose(np.asarray(_UpperCAmelCase) , np.asarray(_UpperCAmelCase) , atol=1e-3): return False return True __A : str = self.feature_extraction_class(**self.feat_extract_dict) __A : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase) __A : Optional[Any] = feat_extract.model_input_names[0] __A : Tuple = BatchFeature({input_name: speech_inputs}) __A : str = self.feat_extract_tester.seq_length_diff __A : Tuple = self.feat_extract_tester.max_seq_length + pad_diff __A : Union[str, Any] = self.feat_extract_tester.min_seq_length __A : Union[str, Any] = self.feat_extract_tester.batch_size __A : Any = self.feat_extract_tester.feature_size # test padding for List[int] + numpy __A : str = feat_extract.pad(_UpperCAmelCase , padding=_UpperCAmelCase) __A : Optional[Any] = input_a[input_name] __A : List[Any] = feat_extract.pad(_UpperCAmelCase , padding='longest') __A : Optional[int] = input_a[input_name] __A : Optional[Any] = feat_extract.pad(_UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) __A : List[str] = input_a[input_name] __A : Tuple = feat_extract.pad(_UpperCAmelCase , padding='longest' , return_tensors='np') __A : List[str] = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(_UpperCAmelCase): feat_extract.pad(_UpperCAmelCase , padding='max_length')[input_name] __A : Any = feat_extract.pad( _UpperCAmelCase , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='np') __A : str = input_a[input_name] self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase)) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase)) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase)) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy __A : Dict = feat_extract.pad(_UpperCAmelCase , pad_to_multiple_of=10) __A : Optional[int] = input_a[input_name] __A : Any = feat_extract.pad(_UpperCAmelCase , padding='longest' , pad_to_multiple_of=10) __A : Optional[Any] = input_a[input_name] __A : List[str] = feat_extract.pad( _UpperCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=_UpperCAmelCase) __A : Optional[int] = input_a[input_name] __A : Optional[Any] = feat_extract.pad( _UpperCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=_UpperCAmelCase , return_tensors='np' , ) __A : str = input_a[input_name] self.assertTrue(all(len(_UpperCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(_UpperCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct __A : int = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1e-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1e-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1e-3) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=False): '''simple docstring''' def _inputs_have_equal_length(_UpperCAmelCase): __A : Optional[Any] = len(input[0]) for input_slice in input[1:]: if len(_UpperCAmelCase) != length: return False return True def _inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase): if len(_UpperCAmelCase) != len(_UpperCAmelCase): return False for input_slice_a, input_slice_a in zip(_UpperCAmelCase , _UpperCAmelCase): if not np.allclose(np.asarray(_UpperCAmelCase) , np.asarray(_UpperCAmelCase) , atol=1e-3): return False return True __A : str = self.feature_extraction_class(**self.feat_extract_dict) __A : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common(numpify=_UpperCAmelCase) __A : Optional[int] = feat_extract.model_input_names[0] __A : Union[str, Any] = BatchFeature({input_name: speech_inputs}) # truncate to smallest __A : Tuple = feat_extract.pad( _UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=_UpperCAmelCase) __A : Tuple = input_a[input_name] __A : int = feat_extract.pad(_UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) __A : int = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase)) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase)) # truncate to smallest with np __A : Tuple = feat_extract.pad( _UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=_UpperCAmelCase , ) __A : List[Any] = input_a[input_name] __A : Tuple = feat_extract.pad( _UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') __A : Any = input_a[input_name] self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase)) # truncate to middle __A : str = feat_extract.pad( _UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=_UpperCAmelCase , return_tensors='np' , ) __A : List[str] = input_a[input_name] __A : Optional[Any] = feat_extract.pad( _UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=_UpperCAmelCase) __A : Any = input_a[input_name] __A : Any = feat_extract.pad( _UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') __A : Tuple = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase)) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase)) self.assertTrue(_inputs_are_equal(_UpperCAmelCase , _UpperCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase): feat_extract.pad(_UpperCAmelCase , truncation=_UpperCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase): feat_extract.pad(_UpperCAmelCase , padding='longest' , truncation=_UpperCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(_UpperCAmelCase): feat_extract.pad(_UpperCAmelCase , padding='longest' , truncation=_UpperCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(_UpperCAmelCase): feat_extract.pad(_UpperCAmelCase , padding='max_length' , truncation=_UpperCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy __A : int = 12 __A : Optional[Any] = feat_extract.pad( _UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=_UpperCAmelCase , truncation=_UpperCAmelCase , ) __A : str = input_a[input_name] __A : Union[str, Any] = feat_extract.pad( _UpperCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=_UpperCAmelCase , ) __A : Optional[Any] = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of __A : List[str] = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: __A : Optional[Any] = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(_UpperCAmelCase)) self.assertFalse(_inputs_have_equal_length(_UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self._check_padding(numpify=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self._check_padding(numpify=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self._check_truncation(numpify=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self._check_truncation(numpify=_UpperCAmelCase) @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.feature_extraction_class(**self.feat_extract_dict) __A : int = self.feat_extract_tester.prepare_inputs_for_common() __A : Union[str, Any] = feat_extract.model_input_names[0] __A : str = BatchFeature({input_name: speech_inputs}) __A : int = feat_extract.pad(_UpperCAmelCase , padding='longest' , return_tensors='np')[input_name] __A : Optional[int] = feat_extract.pad(_UpperCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1e-2) @require_tf def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict) __A : Tuple = self.feat_extract_tester.prepare_inputs_for_common() __A : Optional[Any] = feat_extract.model_input_names[0] __A : Union[str, Any] = BatchFeature({input_name: speech_inputs}) __A : Optional[Any] = feat_extract.pad(_UpperCAmelCase , padding='longest' , return_tensors='np')[input_name] __A : str = feat_extract.pad(_UpperCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1e-2) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.feat_extract_dict __A : List[str] = True __A : List[Any] = self.feature_extraction_class(**_UpperCAmelCase) __A : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common() __A : Optional[Any] = [len(_UpperCAmelCase) for x in speech_inputs] __A : Optional[Any] = feat_extract.model_input_names[0] __A : Optional[Any] = BatchFeature({input_name: speech_inputs}) __A : List[str] = feat_extract.pad(_UpperCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , _UpperCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.feat_extract_dict __A : Optional[int] = True __A : List[str] = self.feature_extraction_class(**_UpperCAmelCase) __A : Union[str, Any] = self.feat_extract_tester.prepare_inputs_for_common() __A : str = [len(_UpperCAmelCase) for x in speech_inputs] __A : Optional[Any] = feat_extract.model_input_names[0] __A : List[Any] = BatchFeature({input_name: speech_inputs}) __A : Dict = min(_UpperCAmelCase) __A : List[str] = feat_extract.pad( _UpperCAmelCase , padding='max_length' , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , return_tensors='np') self.assertIn('attention_mask' , _UpperCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from __future__ import annotations import numpy as np def _lowerCAmelCase ( __snake_case : list[float] ) -> Optional[int]: return np.maximum(0 , __snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
8
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
1
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil lowercase__ : str = 1_00 lowercase__ : Tuple = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowercase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=1_00 ) def _lowerCAmelCase ( __snake_case : int ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __A : set[int] = set() __A : int __A : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def _lowerCAmelCase ( __snake_case : int = 50_00 ) -> int | None: for number_to_partition in range(1 , __snake_case ): if len(partition(__snake_case ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : list ) -> list: __A : Dict = False while is_sorted is False: # Until all the indices are traversed keep looping __A : int = True for i in range(0 , len(__snake_case ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __A ,__A : List[Any] = input_list[i + 1], input_list[i] # swapping if elements not in order __A : int = False for i in range(1 , len(__snake_case ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __A ,__A : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order __A : str = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowercase__ : Dict = [int(x) for x in input().split()] # inputing elements of the list in one line lowercase__ : Union[str, Any] = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
'''simple docstring''' import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : str = 16 lowercase__ : Optional[int] = 32 def _lowerCAmelCase ( __snake_case : Accelerator , __snake_case : int = 16 ) -> Any: __A : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) __A : str = load_dataset('glue' , 'mrpc' ) def tokenize_function(__snake_case : str ): # max_length=None => use the model max length (it's actually the default) __A : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__snake_case , max_length=__snake_case ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __A : int = datasets.map( __snake_case , batched=__snake_case , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __A : Optional[int] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__snake_case : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. __A : Optional[int] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __A : int = 16 elif accelerator.mixed_precision != "no": __A : Optional[int] = 8 else: __A : Any = None return tokenizer.pad( __snake_case , padding='longest' , max_length=__snake_case , pad_to_multiple_of=__snake_case , return_tensors='pt' , ) # Instantiate dataloaders. __A : str = DataLoader( tokenized_datasets['train'] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) __A : Optional[Any] = DataLoader( tokenized_datasets['validation'] , shuffle=__snake_case , collate_fn=__snake_case , batch_size=__snake_case ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Tuple = mocked_dataloaders # noqa: F811 def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : int ) -> Optional[Any]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __snake_case ) == "1": __A : List[str] = 2 # Initialize accelerator __A : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __A : Any = config['lr'] __A : Any = int(config['num_epochs'] ) __A : List[str] = int(config['seed'] ) __A : List[str] = int(config['batch_size'] ) __A : Dict = evaluate.load('glue' , 'mrpc' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=__snake_case ) def inner_training_loop(__snake_case : int ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(__snake_case ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __A : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__snake_case ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __A : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer __A : Optional[int] = AdamW(params=model.parameters() , lr=__snake_case ) __A ,__A : Tuple = get_dataloaders(__snake_case , __snake_case ) # Instantiate scheduler __A : Tuple = get_linear_schedule_with_warmup( optimizer=__snake_case , num_warmup_steps=1_00 , num_training_steps=(len(__snake_case ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __A ,__A ,__A ,__A ,__A : List[Any] = accelerator.prepare( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) # Now we train the model for epoch in range(__snake_case ): model.train() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __A : str = model(**__snake_case ) __A : Union[str, Any] = outputs.loss accelerator.backward(__snake_case ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__snake_case ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __A : Tuple = model(**__snake_case ) __A : List[Any] = outputs.logits.argmax(dim=-1 ) __A ,__A : Any = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__snake_case , references=__snake_case , ) __A : int = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , __snake_case ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def _lowerCAmelCase ( ) -> Tuple: __A : Tuple = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__snake_case , default=__snake_case , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __A : Optional[Any] = parser.parse_args() __A : Union[str, Any] = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__snake_case , __snake_case ) if __name__ == "__main__": main()
8
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
1
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = inspect.getfile(accelerate.test_utils) __A : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_script.py']) __A : Union[str, Any] = os.path.sep.join(inspect.getfile(self.__class__).split(os.path.sep)[:-1]) @require_tpu def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = F'\n {self.test_dir}/xla_spawn.py\n --num_cores 8\n {self.test_file_path}\n '.split() __A : Optional[int] = [sys.executable] + distributed_args execute_subprocess_async(_UpperCAmelCase , env=os.environ.copy())
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : float , __snake_case : int ) -> float: if digit_amount > 0: return round(number - int(__snake_case ) , __snake_case ) return number - int(__snake_case ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
8
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
1
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE : @staticmethod def SCREAMING_SNAKE_CASE ( *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' pass def _lowerCAmelCase ( __snake_case : Tuple ) -> Union[str, Any]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowercase__ : List[Any] = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): lowerCAmelCase = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Dict = pipeline( 'document-question-answering' , model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Optional[int] = INVOICE_URL __A : Any = list(zip(*apply_tesseract(load_image(_UpperCAmelCase) , _UpperCAmelCase , ''))) __A : Tuple = 'What is the placebo?' __A : List[Any] = [ { 'image': load_image(_UpperCAmelCase), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = dqa_pipeline(_UpperCAmelCase , top_k=2) self.assertEqual( _UpperCAmelCase , [ [ {'score': ANY(_UpperCAmelCase), 'answer': ANY(_UpperCAmelCase), 'start': ANY(_UpperCAmelCase), 'end': ANY(_UpperCAmelCase)}, {'score': ANY(_UpperCAmelCase), 'answer': ANY(_UpperCAmelCase), 'start': ANY(_UpperCAmelCase), 'end': ANY(_UpperCAmelCase)}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2') __A : Any = INVOICE_URL __A : List[str] = 'How many cats are there?' __A : Union[str, Any] = [ {'score': 0.0001, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0001, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] __A : Optional[Any] = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2) self.assertEqual(nested_simplify(_UpperCAmelCase , decimals=4) , _UpperCAmelCase) __A : Union[str, Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2) self.assertEqual(nested_simplify(_UpperCAmelCase , decimals=4) , _UpperCAmelCase) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __A : List[Any] = './tests/fixtures/tests_samples/COCO/000000039769.png' __A : List[str] = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2) self.assertEqual(_UpperCAmelCase , []) # We can optionnally pass directly the words and bounding boxes __A : Tuple = './tests/fixtures/tests_samples/COCO/000000039769.png' __A : str = [] __A : str = [] __A : Any = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , words=_UpperCAmelCase , boxes=_UpperCAmelCase , top_k=2) self.assertEqual(_UpperCAmelCase , []) @slow @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) __A : Optional[Any] = INVOICE_URL __A : int = 'What is the invoice number?' __A : Tuple = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.9944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0009, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __A : Union[str, Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.9944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0009, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __A : Optional[Any] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ [ {'score': 0.9944, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0009, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) __A : Optional[int] = INVOICE_URL __A : List[str] = 'What is the invoice number?' __A : List[str] = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.9974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __A : Tuple = dqa_pipeline({'image': image, 'question': question} , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.9974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __A : List[str] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ [ {'score': 0.9974, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9948, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_UpperCAmelCase) __A : List[Any] = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_UpperCAmelCase , revision='3dc6de3' , ) __A : Tuple = INVOICE_URL __A : List[Any] = 'What is the invoice number?' __A : Dict = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) __A : List[Any] = dqa_pipeline({'image': image, 'question': question} , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) __A : Optional[int] = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ [ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) __A : Tuple = list(zip(*apply_tesseract(load_image(_UpperCAmelCase) , _UpperCAmelCase , ''))) # This model should also work if `image` is set to None __A : Union[str, Any] = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.4251, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0819, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_UpperCAmelCase) __A : Dict = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_UpperCAmelCase , revision='3dc6de3' , max_seq_len=50 , ) __A : str = INVOICE_URL __A : List[Any] = 'What is the invoice number?' __A : Tuple = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.9999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __A : Any = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ [ {'score': 0.9999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) __A : Tuple = list(zip(*apply_tesseract(load_image(_UpperCAmelCase) , _UpperCAmelCase , ''))) # This model should also work if `image` is set to None __A : Any = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2) self.assertEqual( nested_simplify(_UpperCAmelCase , decimals=4) , [ {'score': 0.9999, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9998, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa') , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) __A : int = INVOICE_URL __A : Union[str, Any] = 'What is the invoice number?' __A : List[Any] = dqa_pipeline(image=_UpperCAmelCase , question=_UpperCAmelCase , top_k=2) self.assertEqual(nested_simplify(_UpperCAmelCase , decimals=4) , [{'answer': 'us-001'}]) @require_tf @unittest.skip('Document question answering not implemented in TF') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Optional[Any]: # noqa: E741 __A : Tuple = len(__snake_case ) __A : Optional[int] = 0 __A : str = [0] * n __A : int = [False] * n __A : Tuple = [False] * n def dfs(__snake_case : List[str] , __snake_case : List[Any] , __snake_case : Optional[Any] , __snake_case : int ): if parent == root: out_edge_count += 1 __A : str = True __A : Tuple = at for to in l[at]: if to == parent: pass elif not visited[to]: __A : Optional[int] = dfs(__snake_case , __snake_case , __snake_case , __snake_case ) __A : int = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __A : Tuple = True # AP found via cycle if at == low[to]: __A : Optional[Any] = True else: __A : Any = min(low[at] , __snake_case ) return out_edge_count for i in range(__snake_case ): if not visited[i]: __A : Tuple = 0 __A : List[Any] = dfs(__snake_case , __snake_case , -1 , __snake_case ) __A : Union[str, Any] = out_edge_count > 1 for x in range(len(__snake_case ) ): if is_art[x] is True: print(__snake_case ) # Adjacency list of graph lowercase__ : Tuple = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
8
1
'''simple docstring''' # limitations under the License. from typing import Optional, Tuple, Union import torch from diffusers import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase) @torch.no_grad() def __call__( self , _UpperCAmelCase = 1 , _UpperCAmelCase = None , _UpperCAmelCase = 50 , _UpperCAmelCase = "pil" , _UpperCAmelCase = True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = torch.randn( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_UpperCAmelCase , ) __A : Union[str, Any] = image.to(self.device) # set step values self.scheduler.set_timesteps(_UpperCAmelCase) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output __A : Union[str, Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __A : List[str] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase).prev_sample __A : Tuple = (image / 2 + 0.5).clamp(0 , 1) __A : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": __A : Dict = self.numpy_to_pil(_UpperCAmelCase) if not return_dict: return (image,), "This is a local test" return ImagePipelineOutput(images=_UpperCAmelCase), "This is a local test"
8
'''simple docstring''' import argparse import torch # Step 1. clone https://github.com/microsoft/unilm # Step 2. git checkout to https://github.com/microsoft/unilm/commit/b94ec76c36f02fb2b0bf0dcb0b8554a2185173cd # Step 3. cd unilm # Step 4. ln -s $(realpath wavlm/modules.py) ./ # create simlink # import classes from unilm.wavlm.WavLM import WavLM as WavLMOrig from unilm.wavlm.WavLM import WavLMConfig as WavLMConfigOrig from transformers import WavLMConfig, WavLMModel, logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : int = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn.grep_linear''': '''encoder.layers.*.attention.gru_rel_pos_linear''', '''self_attn.relative_attention_bias''': '''encoder.layers.*.attention.rel_attn_embed''', '''self_attn.grep_a''': '''encoder.layers.*.attention.gru_rel_pos_const''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } lowercase__ : Dict = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _lowerCAmelCase ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Any , __snake_case : List[str] ) -> Union[str, Any]: for attribute in key.split('.' ): __A : int = getattr(__snake_case , __snake_case ) if weight_type is not None: __A : Optional[int] = getattr(__snake_case , __snake_case ).shape else: __A : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": __A : Tuple = value elif weight_type == "weight_g": __A : Union[str, Any] = value elif weight_type == "weight_v": __A : Optional[Any] = value elif weight_type == "bias": __A : Optional[int] = value else: __A : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _lowerCAmelCase ( __snake_case : Any , __snake_case : List[str] ) -> List[Any]: __A : Optional[Any] = [] __A : Any = fairseq_model.state_dict() __A : Union[str, Any] = hf_model.feature_extractor for name, value in fairseq_dict.items(): __A : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( __snake_case , __snake_case , __snake_case , __snake_case , hf_model.config.feat_extract_norm == 'group' , ) __A : Optional[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __A : int = True if "*" in mapped_key: __A : Any = name.split(__snake_case )[0].split('.' )[-2] __A : List[Any] = mapped_key.replace('*' , __snake_case ) if "weight_g" in name: __A : Optional[Any] = 'weight_g' elif "weight_v" in name: __A : Union[str, Any] = 'weight_v' elif "bias" in name and "relative_attention_bias" not in name: __A : Optional[Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __A : Tuple = 'weight' else: __A : Dict = None set_recursively(__snake_case , __snake_case , __snake_case , __snake_case , __snake_case ) continue if not is_used: unused_weights.append(__snake_case ) logger.warning(f'Unused weights: {unused_weights}' ) def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[Any] , __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Optional[int] ) -> int: __A : int = full_name.split('conv_layers.' )[-1] __A : List[str] = name.split('.' ) __A : Optional[int] = int(items[0] ) __A : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __A : Optional[int] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __A : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __A : Dict = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __A : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__snake_case ) @torch.no_grad() def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Tuple=None ) -> Any: # load the pre-trained checkpoints __A : List[str] = torch.load(__snake_case ) __A : Dict = WavLMConfigOrig(checkpoint['cfg'] ) __A : Optional[int] = WavLMOrig(__snake_case ) model.load_state_dict(checkpoint['model'] ) model.eval() if config_path is not None: __A : List[Any] = WavLMConfig.from_pretrained(__snake_case ) else: __A : Dict = WavLMConfig() __A : Optional[Any] = WavLMModel(__snake_case ) recursively_load_weights(__snake_case , __snake_case ) hf_wavlm.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowercase__ : Any = parser.parse_args() convert_wavlm_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
8
1
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> str | Literal[False]: __A : Optional[int] = list(__snake_case ) __A : int = list(__snake_case ) __A : List[str] = 0 for i in range(len(__snake_case ) ): if lista[i] != lista[i]: count += 1 __A : Tuple = '_' if count > 1: return False else: return "".join(__snake_case ) def _lowerCAmelCase ( __snake_case : list[str] ) -> list[str]: __A : List[str] = [] while True: __A : Optional[int] = ['$'] * len(__snake_case ) __A : Dict = [] for i in range(len(__snake_case ) ): for j in range(i + 1 , len(__snake_case ) ): __A : Any = compare_string(binary[i] , binary[j] ) if k is False: __A : List[str] = '*' __A : List[str] = '*' temp.append('X' ) for i in range(len(__snake_case ) ): if checka[i] == "$": pi.append(binary[i] ) if len(__snake_case ) == 0: return pi __A : Union[str, Any] = list(set(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int , __snake_case : Sequence[float] ) -> list[str]: __A : Optional[int] = [] for minterm in minterms: __A : Tuple = '' for _ in range(__snake_case ): __A : int = str(minterm % 2 ) + string minterm //= 2 temp.append(__snake_case ) return temp def _lowerCAmelCase ( __snake_case : str , __snake_case : str , __snake_case : int ) -> bool: __A : str = list(__snake_case ) __A : List[Any] = list(__snake_case ) __A : List[Any] = 0 for i in range(len(__snake_case ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _lowerCAmelCase ( __snake_case : list[list[int]] , __snake_case : list[str] ) -> list[str]: __A : List[str] = [] __A : Any = [0] * len(__snake_case ) for i in range(len(chart[0] ) ): __A : List[str] = 0 __A : int = -1 for j in range(len(__snake_case ) ): if chart[j][i] == 1: count += 1 __A : Any = j if count == 1: __A : Dict = 1 for i in range(len(__snake_case ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(__snake_case ) ): __A : Optional[Any] = 0 temp.append(prime_implicants[i] ) while True: __A : List[str] = 0 __A : Optional[Any] = -1 __A : Tuple = 0 for i in range(len(__snake_case ) ): __A : Optional[Any] = chart[i].count(1 ) if count_n > max_n: __A : List[Any] = count_n __A : List[str] = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(__snake_case ) ): __A : Dict = 0 def _lowerCAmelCase ( __snake_case : list[str] , __snake_case : list[str] ) -> list[list[int]]: __A : Union[str, Any] = [[0 for x in range(len(__snake_case ) )] for x in range(len(__snake_case ) )] for i in range(len(__snake_case ) ): __A : Optional[int] = prime_implicants[i].count('_' ) for j in range(len(__snake_case ) ): if is_for_table(prime_implicants[i] , binary[j] , __snake_case ): __A : int = 1 return chart def _lowerCAmelCase ( ) -> None: __A : Optional[Any] = int(input('Enter the no. of variables\n' ) ) __A : Optional[int] = [ float(__snake_case ) for x in input( 'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split() ] __A : Optional[Any] = decimal_to_binary(__snake_case , __snake_case ) __A : Dict = check(__snake_case ) print('Prime Implicants are:' ) print(__snake_case ) __A : List[Any] = prime_implicant_chart(__snake_case , __snake_case ) __A : Tuple = selection(__snake_case , __snake_case ) print('Essential Prime Implicants are:' ) print(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
8
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 6_5536 , _UpperCAmelCase = None , _UpperCAmelCase = 2 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0 , _UpperCAmelCase = "fourier" , _UpperCAmelCase = True , _UpperCAmelCase = False , _UpperCAmelCase = 0.0 , _UpperCAmelCase = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _UpperCAmelCase = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _UpperCAmelCase = "UNetMidBlock1D" , _UpperCAmelCase = None , _UpperCAmelCase = (32, 32, 64) , _UpperCAmelCase = None , _UpperCAmelCase = 8 , _UpperCAmelCase = 1 , _UpperCAmelCase = False , ): '''simple docstring''' super().__init__() __A : Dict = sample_size # time if time_embedding_type == "fourier": __A : int = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=_UpperCAmelCase , log=_UpperCAmelCase , flip_sin_to_cos=_UpperCAmelCase) __A : Any = 2 * block_out_channels[0] elif time_embedding_type == "positional": __A : List[str] = Timesteps( block_out_channels[0] , flip_sin_to_cos=_UpperCAmelCase , downscale_freq_shift=_UpperCAmelCase) __A : List[str] = block_out_channels[0] if use_timestep_embedding: __A : Optional[Any] = block_out_channels[0] * 4 __A : Optional[int] = TimestepEmbedding( in_channels=_UpperCAmelCase , time_embed_dim=_UpperCAmelCase , act_fn=_UpperCAmelCase , out_dim=block_out_channels[0] , ) __A : Dict = nn.ModuleList([]) __A : Dict = None __A : Tuple = nn.ModuleList([]) __A : Tuple = None # down __A : Any = in_channels for i, down_block_type in enumerate(_UpperCAmelCase): __A : Tuple = output_channel __A : Optional[Any] = block_out_channels[i] if i == 0: input_channel += extra_in_channels __A : List[str] = i == len(_UpperCAmelCase) - 1 __A : int = get_down_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(_UpperCAmelCase) # mid __A : str = get_mid_block( _UpperCAmelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_UpperCAmelCase , add_downsample=_UpperCAmelCase , ) # up __A : Optional[int] = list(reversed(_UpperCAmelCase)) __A : Optional[int] = reversed_block_out_channels[0] if out_block_type is None: __A : str = out_channels else: __A : List[Any] = block_out_channels[0] for i, up_block_type in enumerate(_UpperCAmelCase): __A : Optional[Any] = output_channel __A : Optional[Any] = ( reversed_block_out_channels[i + 1] if i < len(_UpperCAmelCase) - 1 else final_upsample_channels ) __A : Dict = i == len(_UpperCAmelCase) - 1 __A : str = get_up_block( _UpperCAmelCase , num_layers=_UpperCAmelCase , in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(_UpperCAmelCase) __A : Optional[int] = output_channel # out __A : str = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) __A : Optional[Any] = get_out_block( out_block_type=_UpperCAmelCase , num_groups_out=_UpperCAmelCase , embed_dim=block_out_channels[0] , out_channels=_UpperCAmelCase , act_fn=_UpperCAmelCase , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): '''simple docstring''' __A : Any = timestep if not torch.is_tensor(_UpperCAmelCase): __A : Any = torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(_UpperCAmelCase) and len(timesteps.shape) == 0: __A : Any = timesteps[None].to(sample.device) __A : List[Any] = self.time_proj(_UpperCAmelCase) if self.config.use_timestep_embedding: __A : Dict = self.time_mlp(_UpperCAmelCase) else: __A : Dict = timestep_embed[..., None] __A : Tuple = timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) __A : List[Any] = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down __A : int = () for downsample_block in self.down_blocks: __A ,__A : int = downsample_block(hidden_states=_UpperCAmelCase , temb=_UpperCAmelCase) down_block_res_samples += res_samples # 3. mid if self.mid_block: __A : Optional[int] = self.mid_block(_UpperCAmelCase , _UpperCAmelCase) # 4. up for i, upsample_block in enumerate(self.up_blocks): __A : Any = down_block_res_samples[-1:] __A : Optional[int] = down_block_res_samples[:-1] __A : Any = upsample_block(_UpperCAmelCase , res_hidden_states_tuple=_UpperCAmelCase , temb=_UpperCAmelCase) # 5. post-process if self.out_block: __A : Dict = self.out_block(_UpperCAmelCase , _UpperCAmelCase) if not return_dict: return (sample,) return UNetaDOutput(sample=_UpperCAmelCase)
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : int = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : int = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : List[Any] = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> int: if len(__snake_case ) != len(__snake_case ): raise ValueError('String lengths must match!' ) __A : Optional[Any] = 0 for chara, chara in zip(__snake_case , __snake_case ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : Optional[Any] = { '''vocab_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-ctx_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-ctx_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowercase__ : int = { '''vocab_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-question_encoder-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-question_encoder-multiset-base''': ( '''https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json''' ), }, } lowercase__ : Tuple = { '''vocab_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''facebook/dpr-reader-single-nq-base''': ( '''https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json''' ), '''facebook/dpr-reader-multiset-base''': ( '''https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json''' ), }, } lowercase__ : Any = { '''facebook/dpr-ctx_encoder-single-nq-base''': 5_12, '''facebook/dpr-ctx_encoder-multiset-base''': 5_12, } lowercase__ : int = { '''facebook/dpr-question_encoder-single-nq-base''': 5_12, '''facebook/dpr-question_encoder-multiset-base''': 5_12, } lowercase__ : Tuple = { '''facebook/dpr-reader-single-nq-base''': 5_12, '''facebook/dpr-reader-multiset-base''': 5_12, } lowercase__ : Union[str, Any] = { '''facebook/dpr-ctx_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-ctx_encoder-multiset-base''': {'''do_lower_case''': True}, } lowercase__ : Any = { '''facebook/dpr-question_encoder-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-question_encoder-multiset-base''': {'''do_lower_case''': True}, } lowercase__ : Optional[Any] = { '''facebook/dpr-reader-single-nq-base''': {'''do_lower_case''': True}, '''facebook/dpr-reader-multiset-base''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = DPRContextEncoderTokenizer class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = DPRQuestionEncoderTokenizer lowercase__ : Union[str, Any] = collections.namedtuple( '''DPRSpanPrediction''', ['''span_score''', '''relevance_score''', '''doc_id''', '''start_index''', '''end_index''', '''text'''] ) lowercase__ : List[Any] = collections.namedtuple('''DPRReaderOutput''', ['''start_logits''', '''end_logits''', '''relevance_logits''']) lowercase__ : Tuple = r''' Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `\'tf\'`: Return TensorFlow `tf.constant` objects. - `\'pt\'`: Return PyTorch `torch.Tensor` objects. - `\'np\'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer\'s default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. ''' @add_start_docstrings(a__ ) class SCREAMING_SNAKE_CASE : def __call__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: __A : List[str] = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) __A : Optional[int] = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase) else [titles] __A : Optional[int] = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase) else [texts] __A : Union[str, Any] = len(_UpperCAmelCase) __A : Any = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase) else [questions] * n_passages assert len(_UpperCAmelCase) == len( _UpperCAmelCase), F'There should be as many titles than texts but got {len(_UpperCAmelCase)} titles and {len(_UpperCAmelCase)} texts.' __A : Union[str, Any] = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase)['input_ids'] __A : Optional[int] = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase)['input_ids'] __A : List[str] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase) ] } if return_attention_mask is not False: __A : Any = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) __A : List[Any] = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = 16 , _UpperCAmelCase = 64 , _UpperCAmelCase = 4 , ): '''simple docstring''' __A : int = reader_input['input_ids'] __A ,__A ,__A : Optional[Any] = reader_output[:3] __A : str = len(_UpperCAmelCase) __A : Any = sorted(range(_UpperCAmelCase) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__) __A : List[DPRReaderOutput] = [] for doc_id in sorted_docs: __A : Union[str, Any] = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence __A : Tuple = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: __A : int = sequence_ids.index(self.pad_token_id) else: __A : Optional[int] = len(_UpperCAmelCase) __A : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(_UpperCAmelCase) >= num_spans: break return nbest_spans_predictions[:num_spans] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): '''simple docstring''' __A : List[str] = [] for start_index, start_score in enumerate(_UpperCAmelCase): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) __A : Any = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase: x[1] , reverse=_UpperCAmelCase) __A : List[str] = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' __A : int = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(_UpperCAmelCase) == top_spans: break return chosen_span_intervals @add_end_docstrings(a__ ) class SCREAMING_SNAKE_CASE (a__ , a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = READER_PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = READER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = DPRReaderTokenizer
8
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : str , __snake_case : str ) -> Union[str, Any]: __A : int = RobertaPreLayerNormConfig.from_pretrained( __snake_case , architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __A : Tuple = torch.load(hf_hub_download(repo_id=__snake_case , filename='pytorch_model.bin' ) ) __A : str = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __A : Dict = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __A : str = tensor_value __A : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=__snake_case , config=__snake_case , state_dict=__snake_case ) model.save_pretrained(__snake_case ) # convert tokenizer __A : List[Any] = AutoTokenizer.from_pretrained(__snake_case ) tokenizer.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
8
1
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int = 10_00 ) -> int: __A : Tuple = -1 __A : Tuple = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __A : Optional[int] = (n * n - 2 * a * n) // (2 * n - 2 * a) __A : Optional[int] = n - a - b if c * c == (a * a + b * b): __A : Optional[Any] = a * b * c if candidate >= product: __A : List[str] = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase__ : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = field(default=a__ , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) lowerCAmelCase = field( default=a__ , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) lowerCAmelCase = field( default=a__ , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = v.to_dict() return d
8
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = set_counts __A : Optional[int] = max(_UpperCAmelCase) __A : int = len(_UpperCAmelCase) __A : str = [1] * num_sets __A : int = list(range(_UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = self.get_parent(_UpperCAmelCase) __A : Union[str, Any] = self.get_parent(_UpperCAmelCase) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __A : Dict = 0 __A : Optional[int] = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __A : List[Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __A : Dict = 0 __A : Dict = src_parent __A : List[Any] = self.set_counts[src_parent] __A : Any = max(self.max_set , _UpperCAmelCase) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set __A : List[str] = self.get_parent(self.parents[disj_set]) return self.parents[disj_set]
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''lxmert''' lowerCAmelCase = {} def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=9500 , _UpperCAmelCase=1600 , _UpperCAmelCase=400 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=9 , _UpperCAmelCase=5 , _UpperCAmelCase=5 , _UpperCAmelCase=2048 , _UpperCAmelCase=4 , _UpperCAmelCase=6.67 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' __A : Tuple = vocab_size __A : int = hidden_size __A : str = num_attention_heads __A : Tuple = hidden_act __A : int = intermediate_size __A : str = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : Tuple = type_vocab_size __A : Optional[int] = initializer_range __A : Any = layer_norm_eps __A : Optional[Any] = num_qa_labels __A : Optional[int] = num_object_labels __A : Any = num_attr_labels __A : Union[str, Any] = l_layers __A : Optional[int] = x_layers __A : List[Any] = r_layers __A : Tuple = visual_feat_dim __A : Tuple = visual_pos_dim __A : Optional[int] = visual_loss_normalizer __A : int = task_matched __A : List[Any] = task_mask_lm __A : Optional[Any] = task_obj_predict __A : str = task_qa __A : List[Any] = visual_obj_loss __A : Optional[Any] = visual_attr_loss __A : Union[str, Any] = visual_feat_loss __A : Union[str, Any] = {'vision': r_layers, 'cross_encoder': x_layers, 'language': l_layers} super().__init__(**_UpperCAmelCase)
8
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : int = logging.get_logger(__name__) lowercase__ : Union[str, Any] = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''table-transformer''' lowerCAmelCase = ['''past_key_values'''] lowerCAmelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , _UpperCAmelCase=True , _UpperCAmelCase=None , _UpperCAmelCase=3 , _UpperCAmelCase=100 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=6 , _UpperCAmelCase=2048 , _UpperCAmelCase=8 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase="relu" , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase="sine" , _UpperCAmelCase="resnet50" , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=1 , _UpperCAmelCase=5 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , **_UpperCAmelCase , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') __A : int = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Any = backbone_config.get('model_type') __A : int = CONFIG_MAPPING[backbone_model_type] __A : str = config_class.from_dict(_UpperCAmelCase) # set timm attributes to None __A ,__A ,__A : Optional[Any] = None, None, None __A : str = use_timm_backbone __A : Optional[Any] = backbone_config __A : Dict = num_channels __A : Optional[int] = num_queries __A : Optional[int] = d_model __A : Tuple = encoder_ffn_dim __A : str = encoder_layers __A : Optional[int] = encoder_attention_heads __A : Dict = decoder_ffn_dim __A : Tuple = decoder_layers __A : Union[str, Any] = decoder_attention_heads __A : Tuple = dropout __A : Optional[int] = attention_dropout __A : Union[str, Any] = activation_dropout __A : Optional[int] = activation_function __A : Optional[Any] = init_std __A : Tuple = init_xavier_std __A : Tuple = encoder_layerdrop __A : List[str] = decoder_layerdrop __A : Optional[Any] = encoder_layers __A : Optional[int] = auxiliary_loss __A : Any = position_embedding_type __A : Optional[int] = backbone __A : Any = use_pretrained_backbone __A : Tuple = dilation # Hungarian matcher __A : int = class_cost __A : List[Any] = bbox_cost __A : Any = giou_cost # Loss coefficients __A : Optional[int] = mask_loss_coefficient __A : Dict = dice_loss_coefficient __A : Dict = bbox_loss_coefficient __A : int = giou_loss_coefficient __A : int = eos_coefficient super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.d_model class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return 1e-5 @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return 12
8
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = SMALL_MODEL_IDENTIFIER __A : Optional[Any] = 'pt' __A : Optional[int] = 'tf' def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = AutoModel.from_pretrained(self.test_model) model_pt.save_pretrained(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Any = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase) model_tf.save_pretrained(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = 'mock_framework' # Framework provided - return whatever the user provides __A : int = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase) __A : List[str] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase) __A : str = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase) __A : str = FeaturesManager.determine_framework(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , self.framework_pt) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase) __A : Union[str, Any] = FeaturesManager.determine_framework(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , self.framework_tf) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_UpperCAmelCase): __A : Tuple = FeaturesManager.determine_framework(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase): __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_pt) # PyTorch not in environment -> use TensorFlow __A : int = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_torch_available' , _UpperCAmelCase): __A : Any = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_tf) # Both in environment -> use PyTorch __A : List[Any] = MagicMock(return_value=_UpperCAmelCase) __A : Tuple = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase): __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_pt) # Both not in environment -> raise error __A : Tuple = MagicMock(return_value=_UpperCAmelCase) __A : Tuple = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase): with self.assertRaises(_UpperCAmelCase): __A : Optional[int] = FeaturesManager.determine_framework(self.test_model)
8
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : int ) -> tuple[float, list[float]]: __A : int = list(range(len(__snake_case ) ) ) __A : Optional[Any] = [v / w for v, w in zip(__snake_case , __snake_case )] index.sort(key=lambda __snake_case : ratio[i] , reverse=__snake_case ) __A : float = 0 __A : list[float] = [0] * len(__snake_case ) for i in index: if weight[i] <= capacity: __A : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: __A : List[Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class SCREAMING_SNAKE_CASE (a__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCAmelCase = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCAmelCase = Features({'''text''': Value('''string''' )} ) lowerCAmelCase = Features({'''summary''': Value('''string''' )} ) lowerCAmelCase = "text" lowerCAmelCase = "summary" @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
8
'''simple docstring''' from __future__ import annotations import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : int = size # approximate the overall size of segment tree with given value __A : Optional[Any] = [0 for i in range(0 , 4 * size)] # create array to store lazy update __A : Optional[Any] = [0 for i in range(0 , 4 * size)] __A : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' return idx * 2 + 1 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if left_element == right_element: __A : List[Any] = a[left_element - 1] else: __A : List[str] = (left_element + right_element) // 2 self.build(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.build(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase) __A : Any = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Optional[Any] = self.lazy[idx] __A : Optional[Any] = False if left_element != right_element: __A : List[Any] = self.lazy[idx] __A : Dict = self.lazy[idx] __A : Tuple = True __A : Union[str, Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __A : Optional[int] = val if left_element != right_element: __A : Tuple = val __A : Any = val __A : Tuple = True __A : Union[str, Any] = True return True __A : str = (left_element + right_element) // 2 self.update(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) self.update(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : int = max( self.segment_tree[self.left(_UpperCAmelCase)] , self.segment_tree[self.right(_UpperCAmelCase)]) return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if self.flag[idx] is True: __A : Union[str, Any] = self.lazy[idx] __A : List[str] = False if left_element != right_element: __A : Union[str, Any] = self.lazy[idx] __A : Optional[int] = self.lazy[idx] __A : str = True __A : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __A : Any = (left_element + right_element) // 2 __A : int = self.query(self.left(_UpperCAmelCase) , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : Union[str, Any] = self.query(self.right(_UpperCAmelCase) , mid + 1 , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return max(_UpperCAmelCase , _UpperCAmelCase) def __str__( self): '''simple docstring''' return str([self.query(1 , 1 , self.size , _UpperCAmelCase , _UpperCAmelCase) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowercase__ : Union[str, Any] = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowercase__ : str = 15 lowercase__ : List[Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
8
1
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase__ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''input_features''', '''attention_mask'''] def __init__( self , _UpperCAmelCase=80 , _UpperCAmelCase=1_6000 , _UpperCAmelCase=80 , _UpperCAmelCase=0.0 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase) __A : str = num_mel_bins __A : Optional[Any] = do_ceptral_normalize __A : Optional[Any] = normalize_means __A : int = normalize_vars __A : int = True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , ): '''simple docstring''' __A : Any = waveform * (2**15) # Kaldi compliance: 16-bit signed integers __A : Union[str, Any] = torch.from_numpy(_UpperCAmelCase).unsqueeze(0) __A : List[str] = ta_kaldi.fbank(_UpperCAmelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate) return features.numpy() @staticmethod def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = 0.0 , ): '''simple docstring''' if normalize_means: __A : Any = x[:input_length].mean(axis=0) __A : Dict = np.subtract(_UpperCAmelCase , _UpperCAmelCase) if normalize_vars: __A : Optional[Any] = x[:input_length].std(axis=0) __A : List[Any] = np.divide(_UpperCAmelCase , _UpperCAmelCase) if input_length < x.shape[0]: __A : Dict = padding_value # make sure array is in float32 __A : List[str] = x.astype(np.floataa) return x def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Union[str, Any] = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(_UpperCAmelCase , _UpperCAmelCase , self.normalize_means , self.normalize_vars , self.padding_value) for x, n in zip(_UpperCAmelCase , _UpperCAmelCase) ] def __call__( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , **_UpperCAmelCase , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.') else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') __A : Tuple = isinstance(_UpperCAmelCase , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}') __A : Any = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __A : Union[str, Any] = [np.asarray(_UpperCAmelCase , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray): __A : Any = np.asarray(_UpperCAmelCase , dtype=np.floataa) elif isinstance(_UpperCAmelCase , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __A : Optional[Any] = raw_speech.astype(np.floataa) # always return batch if not is_batched: __A : Tuple = [raw_speech] # extract fbank features __A : Union[str, Any] = [self._extract_fbank_features(_UpperCAmelCase) for waveform in raw_speech] # convert into correct format for padding __A : int = BatchFeature({'input_features': features}) __A : List[Any] = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) # make sure list is in array format __A : Optional[int] = padded_inputs.get('input_features') if isinstance(input_features[0] , _UpperCAmelCase): __A : Tuple = [np.asarray(_UpperCAmelCase , dtype=np.floataa) for feature in input_features] __A : Any = padded_inputs.get('attention_mask') if attention_mask is not None: __A : Union[str, Any] = [np.asarray(_UpperCAmelCase , dtype=np.intaa) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: __A : int = ( np.array(_UpperCAmelCase , dtype=np.intaa) if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase) is not PaddingStrategy.DO_NOT_PAD else None ) __A : Optional[int] = self.normalize( padded_inputs['input_features'] , attention_mask=_UpperCAmelCase) if return_tensors is not None: __A : Optional[Any] = padded_inputs.convert_to_tensors(_UpperCAmelCase) return padded_inputs
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int , __snake_case : int , __snake_case : int ) -> float: __A : Dict = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def _lowerCAmelCase ( ) -> Union[str, Any]: print(sum_of_series(1 , 1 , 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , ): '''simple docstring''' __A : List[str] = parent __A : Optional[Any] = 13 __A : Tuple = 7 __A : List[Any] = True __A : int = True __A : int = False __A : Dict = True __A : List[str] = 99 __A : Optional[Any] = 32 __A : Dict = 2 __A : Optional[Any] = 4 __A : Tuple = 37 __A : List[str] = 'gelu' __A : Optional[int] = 0.1 __A : Dict = 0.1 __A : List[str] = 512 __A : Optional[Any] = 16 __A : Optional[int] = 2 __A : Optional[int] = 0.02 __A : Dict = 3 __A : Dict = 4 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : int = None if self.use_input_mask: __A : Tuple = random_attention_mask([self.batch_size, self.seq_length]) __A : Any = None __A : List[str] = None __A : Any = None if self.use_labels: __A : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : int = ids_tensor([self.batch_size] , self.num_choices) __A : Optional[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFDistilBertModel(config=_UpperCAmelCase) __A : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} __A : str = model(_UpperCAmelCase) __A : Any = [input_ids, input_mask] __A : Tuple = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = TFDistilBertForMaskedLM(config=_UpperCAmelCase) __A : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = TFDistilBertForQuestionAnswering(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = self.num_labels __A : Dict = TFDistilBertForSequenceClassification(_UpperCAmelCase) __A : Dict = {'input_ids': input_ids, 'attention_mask': input_mask} __A : Any = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = self.num_choices __A : List[str] = TFDistilBertForMultipleChoice(_UpperCAmelCase) __A : Optional[int] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[str] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Any = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } __A : Tuple = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_labels __A : List[str] = TFDistilBertForTokenClassification(_UpperCAmelCase) __A : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.prepare_config_and_inputs() ((__A) ,(__A) ,(__A) ,(__A) ,(__A) ,(__A)) : Optional[Any] = config_and_inputs __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) lowerCAmelCase = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = TFDistilBertModelTester(self) __A : Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , dim=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]): __A : Optional[int] = TFDistilBertModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = TFDistilBertModel.from_pretrained('distilbert-base-uncased') __A : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Dict = model(_UpperCAmelCase)[0] __A : Optional[int] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Optional[int] = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Optional[int] = parent __A : str = 13 __A : List[Any] = 7 __A : List[str] = True __A : str = True __A : Optional[Any] = True __A : int = True __A : Dict = 99 __A : Dict = 384 __A : Any = 2 __A : int = 4 __A : Optional[Any] = 37 __A : Optional[int] = 'gelu' __A : Dict = 0.1 __A : Optional[int] = 0.1 __A : Any = 512 __A : int = 16 __A : List[str] = 2 __A : str = 0.02 __A : Any = 3 __A : str = 4 __A : Union[str, Any] = 128 __A : int = 2 __A : List[Any] = 9 __A : List[Any] = 1 __A : List[Any] = None def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : str = None if self.use_input_mask: __A : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_token_type_ids: __A : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __A : Optional[int] = None __A : List[str] = None __A : Dict = None if self.use_labels: __A : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = ids_tensor([self.batch_size] , self.num_choices) __A : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = TFConvBertModel(config=_UpperCAmelCase) __A : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __A : Tuple = [input_ids, input_mask] __A : Any = model(_UpperCAmelCase) __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = TFConvBertForMaskedLM(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : str = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = self.num_labels __A : Any = TFConvBertForSequenceClassification(config=_UpperCAmelCase) __A : Optional[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = self.num_choices __A : List[str] = TFConvBertForMultipleChoice(config=_UpperCAmelCase) __A : int = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : List[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1) , (1, self.num_choices, 1)) __A : int = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __A : Optional[Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.num_labels __A : List[Any] = TFConvBertForTokenClassification(config=_UpperCAmelCase) __A : str = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : int = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = TFConvBertForQuestionAnswering(config=_UpperCAmelCase) __A : Any = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __A : Union[str, Any] = model(_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.prepare_config_and_inputs() ( ( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) ,( __A ) , ) : Union[str, Any] = config_and_inputs __A : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = TFConvBertModelTester(self) __A : str = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __A : List[str] = True __A : List[str] = True if hasattr(_UpperCAmelCase , 'use_cache'): __A : List[Any] = True __A : str = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : Union[str, Any] = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) for model_class in self.all_model_classes: __A : List[str] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase) __A : Optional[int] = model_class(_UpperCAmelCase) __A : Optional[Any] = len(model(_UpperCAmelCase)) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase) __A : Union[str, Any] = os.path.join(_UpperCAmelCase , 'saved_model' , '1') __A : Tuple = tf.keras.models.load_model(_UpperCAmelCase) __A : str = model(_UpperCAmelCase) if self.is_encoder_decoder: __A : Optional[int] = outputs['encoder_hidden_states'] __A : str = outputs['encoder_attentions'] else: __A : List[Any] = outputs['hidden_states'] __A : Optional[Any] = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) __A : str = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) self.assertListEqual( list(output_hidden_states[0].shape[-2:]) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(output_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') self.assertIsNotNone(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Any = True __A : str = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length) __A : Any = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length) __A : int = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) __A : Tuple = getattr(self.model_tester , 'key_length' , _UpperCAmelCase) def check_decoder_attentions_output(_UpperCAmelCase): __A : List[str] = len(_UpperCAmelCase) self.assertEqual(out_len % 2 , 0) __A : Any = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase): __A : str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __A : Dict = True __A : Any = False __A : str = model_class(_UpperCAmelCase) __A : List[str] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : List[str] = len(_UpperCAmelCase) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) if self.is_encoder_decoder: __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_decoder_attentions_output(_UpperCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __A : int = True __A : Tuple = model_class(_UpperCAmelCase) __A : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) # Check attention is always last and order is fine __A : Any = True __A : str = True __A : Union[str, Any] = model_class(_UpperCAmelCase) __A : Union[str, Any] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase)) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase) check_encoder_attentions_output(_UpperCAmelCase) @require_tf class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = TFConvBertModel.from_pretrained('YituTech/conv-bert-base') __A : str = tf.constant([[0, 1, 2, 3, 4, 5]]) __A : Optional[int] = model(_UpperCAmelCase)[0] __A : List[Any] = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase) __A : Tuple = tf.constant( [ [ [-0.03475493, -0.4686034, -0.30638832], [0.22637248, -0.26988646, -0.7423424], [0.10324868, -0.45013508, -0.58280784], ] ]) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4)
8
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class SCREAMING_SNAKE_CASE (a__ , a__ , a__ , unittest.TestCase ): lowerCAmelCase = StableUnCLIPImgaImgPipeline lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCAmelCase = frozenset([] ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 32 __A : List[str] = embedder_hidden_size # image encoding components __A : List[Any] = CLIPImageProcessor(crop_size=32 , size=32) torch.manual_seed(0) __A : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_UpperCAmelCase , projection_dim=_UpperCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) __A : Union[str, Any] = StableUnCLIPImageNormalizer(embedding_dim=_UpperCAmelCase) __A : Dict = DDPMScheduler(beta_schedule='squaredcos_cap_v2') torch.manual_seed(0) __A : List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') torch.manual_seed(0) __A : Union[str, Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_UpperCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )) torch.manual_seed(0) __A : Dict = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_UpperCAmelCase , layers_per_block=1 , upcast_attention=_UpperCAmelCase , use_linear_projection=_UpperCAmelCase , ) torch.manual_seed(0) __A : Union[str, Any] = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=_UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0) __A : Any = AutoencoderKL() __A : List[str] = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=0 , _UpperCAmelCase=True): '''simple docstring''' if str(_UpperCAmelCase).startswith('mps'): __A : Tuple = torch.manual_seed(_UpperCAmelCase) else: __A : Any = torch.Generator(device=_UpperCAmelCase).manual_seed(_UpperCAmelCase) __A : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(_UpperCAmelCase)).to(_UpperCAmelCase) if pil_image: __A : List[Any] = input_image * 0.5 + 0.5 __A : Dict = input_image.clamp(0 , 1) __A : Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() __A : Tuple = DiffusionPipeline.numpy_to_pil(_UpperCAmelCase)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator __A : Union[str, Any] = self.get_dummy_components() __A : Dict = StableUnCLIPImgaImgPipeline(**_UpperCAmelCase) __A : Dict = sd_pipe.to(_UpperCAmelCase) sd_pipe.set_progress_bar_config(disable=_UpperCAmelCase) __A : Dict = self.get_dummy_inputs(_UpperCAmelCase) inputs.update({'image_embeds': None}) __A : Any = sd_pipe(**_UpperCAmelCase).images __A : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __A : List[Any] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=_UpperCAmelCase) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_UpperCAmelCase) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') __A : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy') __A : Any = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __A : Optional[Any] = torch.Generator(device='cpu').manual_seed(0) __A : Dict = pipe(_UpperCAmelCase , 'anime turle' , generator=_UpperCAmelCase , output_type='np') __A : Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') __A : List[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy') __A : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa) pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __A : str = torch.Generator(device='cpu').manual_seed(0) __A : Any = pipe(_UpperCAmelCase , 'anime turle' , generator=_UpperCAmelCase , output_type='np') __A : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __A : Optional[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa) __A : int = pipe.to(_UpperCAmelCase) pipe.set_progress_bar_config(disable=_UpperCAmelCase) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __A : Optional[int] = pipe( _UpperCAmelCase , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) __A : Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
8
'''simple docstring''' import argparse import os import re lowercase__ : Optional[int] = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ : Dict = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ : Tuple = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ : str = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ : str = re.compile(r'''\[([^\]]+)\]''') def _lowerCAmelCase ( __snake_case : str ) -> Tuple: __A : List[Any] = _re_indent.search(__snake_case ) return "" if search is None else search.groups()[0] def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : str="" , __snake_case : Any=None , __snake_case : List[Any]=None ) -> Optional[int]: __A : Tuple = 0 __A : Optional[int] = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__snake_case ): index += 1 __A : Optional[int] = ['\n'.join(lines[:index] )] else: __A : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __A : Tuple = [lines[index]] index += 1 while index < len(__snake_case ) and (end_prompt is None or not lines[index].startswith(__snake_case )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__snake_case ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__snake_case ) ) if index < len(__snake_case ) - 1: __A : Union[str, Any] = [lines[index + 1]] index += 1 else: __A : Union[str, Any] = [] else: blocks.append('\n'.join(__snake_case ) ) __A : Optional[Any] = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__snake_case ) > 0: blocks.append('\n'.join(__snake_case ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__snake_case ): blocks.append('\n'.join(lines[index:] ) ) return blocks def _lowerCAmelCase ( __snake_case : List[Any] ) -> int: def _inner(__snake_case : List[Any] ): return key(__snake_case ).lower().replace('_' , '' ) return _inner def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any=None ) -> List[Any]: # If no key is provided, we use a noop. def noop(__snake_case : List[Any] ): return x if key is None: __A : Optional[Any] = noop # Constants are all uppercase, they go first. __A : str = [obj for obj in objects if key(__snake_case ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __A : List[str] = [obj for obj in objects if key(__snake_case )[0].isupper() and not key(__snake_case ).isupper()] # Functions begin with a lowercase, they go last. __A : str = [obj for obj in objects if not key(__snake_case )[0].isupper()] __A : Tuple = ignore_underscore(__snake_case ) return sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) + sorted(__snake_case , key=__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(__snake_case : Tuple ): __A : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' __A : int = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Dict = keys[:-1] return "[" + ", ".join([f'"{k}"' for k in sort_objects(__snake_case )] ) + "]" __A : List[Any] = import_statement.split('\n' ) if len(__snake_case ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __A : Optional[int] = 2 if lines[1].strip() == '[' else 1 __A : Any = [(i, _re_strip_line.search(__snake_case ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __A : Optional[int] = sort_objects(__snake_case , key=lambda __snake_case : x[1] ) __A : Any = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__snake_case ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __A : Union[str, Any] = _re_bracket_content.sub(_replace , lines[1] ) else: __A : Dict = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __A : Tuple = keys[:-1] __A : List[Any] = get_indent(lines[1] ) + ', '.join([f'"{k}"' for k in sort_objects(__snake_case )] ) return "\n".join(__snake_case ) else: # Finally we have to deal with imports fitting on one line __A : Optional[Any] = _re_bracket_content.sub(_replace , __snake_case ) return import_statement def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : List[Any]=True ) -> Optional[Any]: with open(__snake_case , 'r' ) as f: __A : Dict = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __A : str = split_code_in_indented_blocks( __snake_case , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__snake_case ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __A : Tuple = main_blocks[block_idx] __A : int = block.split('\n' ) # Get to the start of the imports. __A : Tuple = 0 while line_idx < len(__snake_case ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __A : Optional[int] = len(__snake_case ) else: line_idx += 1 if line_idx >= len(__snake_case ): continue # Ignore beginning and last line: they don't contain anything. __A : Dict = '\n'.join(block_lines[line_idx:-1] ) __A : int = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __A : Optional[int] = split_code_in_indented_blocks(__snake_case , indent_level=__snake_case ) # We have two categories of import key: list or _import_structure[key].append/extend __A : Any = _re_direct_key if '_import_structure' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __A : Dict = [(pattern.search(__snake_case ).groups()[0] if pattern.search(__snake_case ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __A : Optional[Any] = [(i, key) for i, key in enumerate(__snake_case ) if key is not None] __A : Tuple = [x[0] for x in sorted(__snake_case , key=lambda __snake_case : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __A : str = 0 __A : Any = [] for i in range(len(__snake_case ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __A : str = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__snake_case ) count += 1 # And we put our main block back together with its first and last line. __A : int = '\n'.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__snake_case ): if check_only: return True else: print(f'Overwriting {file}.' ) with open(__snake_case , 'w' ) as f: f.write('\n'.join(__snake_case ) ) def _lowerCAmelCase ( __snake_case : int=True ) -> Optional[Any]: __A : Tuple = [] for root, _, files in os.walk(__snake_case ): if "__init__.py" in files: __A : List[Any] = sort_imports(os.path.join(__snake_case , '__init__.py' ) , check_only=__snake_case ) if result: __A : Dict = [os.path.join(__snake_case , '__init__.py' )] if len(__snake_case ) > 0: raise ValueError(f'Would overwrite {len(__snake_case )} files, run `make style`.' ) if __name__ == "__main__": lowercase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ : Union[str, Any] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
8
1
'''simple docstring''' import sys lowercase__ : int = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def _lowerCAmelCase ( __snake_case : str ) -> int: __A : Dict = 1 for digit in s: product *= int(__snake_case ) return product def _lowerCAmelCase ( __snake_case : str = N ) -> int: __A : List[Any] = -sys.maxsize - 1 __A : str = n[:13] __A : Any = 13 while cur_index < len(__snake_case ) - 13: if int(n[cur_index] ) >= int(substr[0] ): __A : Dict = substr[1:] + n[cur_index] cur_index += 1 else: __A : Tuple = max(__snake_case , str_eval(__snake_case ) ) __A : int = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(f"""{solution() = }""")
8
'''simple docstring''' def _lowerCAmelCase ( __snake_case : int ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') lowercase__ : int = int(input('''Enter number: ''').strip()) print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
8
1
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowercase__ : int = logging.get_logger(__name__) @add_end_docstrings(a__ ) class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' super().__init__(*_UpperCAmelCase , **_UpperCAmelCase) requires_backends(self , 'vision') self.check_model_type(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' return super().__call__(_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return {}, {}, {} def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = load_image(_UpperCAmelCase) __A : Optional[int] = image.size __A : Union[str, Any] = self.image_processor(images=_UpperCAmelCase , return_tensors=self.framework) return model_inputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Any = self.model(**_UpperCAmelCase) return model_outputs def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[str] = model_outputs.predicted_depth __A : Optional[int] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1) , size=self.image_size[::-1] , mode='bicubic' , align_corners=_UpperCAmelCase) __A : List[str] = prediction.squeeze().cpu().numpy() __A : Tuple = (output * 255 / np.max(_UpperCAmelCase)).astype('uint8') __A : int = Image.fromarray(_UpperCAmelCase) __A : Union[str, Any] = {} __A : Tuple = predicted_depth __A : List[str] = depth return output_dict
8
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
1
'''simple docstring''' import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( 'kwargs, expected' , [ ({'num_shards': 0, 'max_num_jobs': 1}, []), ({'num_shards': 10, 'max_num_jobs': 1}, [range(10 )]), ({'num_shards': 10, 'max_num_jobs': 10}, [range(__snake_case , i + 1 ) for i in range(10 )]), ({'num_shards': 1, 'max_num_jobs': 10}, [range(1 )]), ({'num_shards': 10, 'max_num_jobs': 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({'num_shards': 3, 'max_num_jobs': 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : Any ) -> Any: __A : Optional[int] = _distribute_shards(**__snake_case ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, max_num_jobs, expected' , [ ({'foo': 0}, 10, [{'foo': 0}]), ({'shards': [0, 1, 2, 3]}, 1, [{'shards': [0, 1, 2, 3]}]), ({'shards': [0, 1, 2, 3]}, 4, [{'shards': [0]}, {'shards': [1]}, {'shards': [2]}, {'shards': [3]}]), ({'shards': [0, 1]}, 4, [{'shards': [0]}, {'shards': [1]}]), ({'shards': [0, 1, 2, 3]}, 2, [{'shards': [0, 1]}, {'shards': [2, 3]}]), ] , ) def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Optional[int] ) -> List[str]: __A : List[str] = _split_gen_kwargs(__snake_case , __snake_case ) assert out == expected @pytest.mark.parametrize( 'gen_kwargs, expected' , [ ({'foo': 0}, 1), ({'shards': [0]}, 1), ({'shards': [0, 1, 2, 3]}, 4), ({'shards': [0, 1, 2, 3], 'foo': 0}, 4), ({'shards': [0, 1, 2, 3], 'other': (0, 1)}, 4), ({'shards': [0, 1, 2, 3], 'shards2': [0, 1]}, RuntimeError), ] , ) def _lowerCAmelCase ( __snake_case : Dict , __snake_case : List[Any] ) -> Optional[Any]: if expected is RuntimeError: with pytest.raises(__snake_case ): _number_of_shards_in_gen_kwargs(__snake_case ) else: __A : Optional[Any] = _number_of_shards_in_gen_kwargs(__snake_case ) assert out == expected
8
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None): '''simple docstring''' __A : List[Any] = list(poly_a or [0])[:] __A : Optional[int] = list(poly_b or [0])[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __A : Union[str, Any] = len(self.polyA) while self.polyB[-1] == 0: self.polyB.pop() __A : Optional[int] = len(self.polyB) # Add 0 to make lengths equal a power of 2 __A : Optional[Any] = int( 2 ** np.ceil(np.loga(len(self.polyA) + len(self.polyB) - 1))) while len(self.polyA) < self.c_max_length: self.polyA.append(0) while len(self.polyB) < self.c_max_length: self.polyB.append(0) # A complex root used for the fourier transform __A : str = complex(mpmath.root(x=1 , n=self.c_max_length , k=1)) # The product __A : Tuple = self.__multiply() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[int] = [[x] for x in self.polyA] if which == 'A' else [[x] for x in self.polyB] # Corner case if len(_UpperCAmelCase) <= 1: return dft[0] # __A : Dict = self.c_max_length // 2 while next_ncol > 0: __A : Optional[Any] = [[] for i in range(_UpperCAmelCase)] __A : Tuple = self.root**next_ncol # First half of next step __A : Optional[Any] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j]) current_root *= root # Second half of next step __A : List[str] = 1 for j in range(self.c_max_length // (next_ncol * 2)): for i in range(_UpperCAmelCase): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j]) current_root *= root # Update __A : Optional[int] = new_dft __A : Tuple = next_ncol // 2 return dft[0] def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.__dft('A') __A : Optional[Any] = self.__dft('B') __A : str = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length)]] del dft_a del dft_b # Corner Case if len(inverce_c[0]) <= 1: return inverce_c[0] # Inverse DFT __A : Dict = 2 while next_ncol <= self.c_max_length: __A : Optional[int] = [[] for i in range(_UpperCAmelCase)] __A : Any = self.root ** (next_ncol // 2) __A : Tuple = 1 # First half of next step for j in range(self.c_max_length // next_ncol): for i in range(next_ncol // 2): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root)) current_root *= root # Update __A : int = new_inverse_c next_ncol *= 2 # Unpack __A : Optional[int] = [round(x[0].real , 8) + round(x[0].imag , 8) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self): '''simple docstring''' __A : int = 'A = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyA[: self.len_A])) __A : Optional[Any] = 'B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.polyB[: self.len_B])) __A : str = 'A*B = ' + ' + '.join( F'{coef}*x^{i}' for coef, i in enumerate(self.product)) return F'{a}\n{b}\n{c}' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ : int = { '''configuration_m2m_100''': ['''M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''M2M100Config''', '''M2M100OnnxConfig'''], '''tokenization_m2m_100''': ['''M2M100Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ '''M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST''', '''M2M100ForConditionalGeneration''', '''M2M100Model''', '''M2M100PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowercase__ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=[30, 30] , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=10 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=8 , _UpperCAmelCase=10 , ): '''simple docstring''' __A : Union[str, Any] = parent __A : Tuple = batch_size __A : List[str] = image_size __A : Dict = patch_size __A : Optional[Any] = num_channels __A : Tuple = is_training __A : Dict = use_labels __A : List[Any] = hidden_size __A : Tuple = num_hidden_layers __A : int = num_attention_heads __A : Optional[int] = intermediate_size __A : Tuple = hidden_act __A : Any = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : List[Any] = type_sequence_label_size __A : List[Any] = initializer_range __A : Optional[int] = num_labels __A : List[Any] = scope __A : Any = n_targets __A : Union[str, Any] = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __A : List[str] = (image_size[1] // patch_size) * (image_size[0] // patch_size) __A : int = num_patches + 1 + self.num_detection_tokens def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]]) __A : Tuple = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __A : List[Any] = [] for i in range(self.batch_size): __A : Optional[int] = {} __A : Union[str, Any] = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCAmelCase) __A : str = torch.rand(self.n_targets , 4 , device=_UpperCAmelCase) labels.append(_UpperCAmelCase) __A : Any = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Dict = model(_UpperCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = YolosForObjectDetection(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : str = model(pixel_values=_UpperCAmelCase) __A : List[str] = model(_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) __A : Union[str, Any] = model(pixel_values=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1)) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.prepare_config_and_inputs() __A ,__A ,__A : Tuple = config_and_inputs __A : Tuple = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , unittest.TestCase ): lowerCAmelCase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowerCAmelCase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[Any] = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __A : Any = [] for i in range(self.model_tester.batch_size): __A : Tuple = {} __A : Tuple = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCAmelCase , dtype=torch.long) __A : Optional[Any] = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCAmelCase , dtype=torch.float) labels.append(_UpperCAmelCase) __A : str = labels return inputs_dict def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = YolosModelTester(self) __A : Dict = ConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase , hidden_size=37) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : Tuple = model_class(_UpperCAmelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) __A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[Any] = model_class(_UpperCAmelCase) __A : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A : int = [*signature.parameters.keys()] __A : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A : Dict = self.model_tester.prepare_config_and_inputs_for_common() __A : Optional[int] = True # in YOLOS, the seq_len is different __A : Dict = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __A : Dict = True __A : Dict = False __A : Union[str, Any] = True __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : Any = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] __A : List[Any] = True __A : List[str] = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __A : str = len(_UpperCAmelCase) # Check attention is always last and order is fine __A : Dict = True __A : Dict = True __A : Dict = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Union[str, Any] = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCAmelCase)) __A : Optional[Any] = outputs.attentions self.assertEqual(len(_UpperCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' def check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): __A : Tuple = model_class(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() with torch.no_grad(): __A : List[str] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase)) __A : Optional[Any] = outputs.hidden_states __A : List[str] = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1) self.assertEqual(len(_UpperCAmelCase) , _UpperCAmelCase) # YOLOS has a different seq_length __A : Dict = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) __A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A : List[str] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __A : Optional[int] = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCAmelCase) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[Any] = YolosModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) def _lowerCAmelCase ( ) -> int: __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small') if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = YolosForObjectDetection.from_pretrained('hustvl/yolos-small').to(_UpperCAmelCase) __A : Any = self.default_image_processor __A : str = prepare_img() __A : int = image_processor(images=_UpperCAmelCase , return_tensors='pt').to(_UpperCAmelCase) # forward pass with torch.no_grad(): __A : str = model(inputs.pixel_values) # verify outputs __A : Tuple = torch.Size((1, 100, 92)) self.assertEqual(outputs.logits.shape , _UpperCAmelCase) __A : Dict = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=_UpperCAmelCase , ) __A : int = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=_UpperCAmelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCAmelCase , atol=1e-4)) # verify postprocessing __A : List[str] = image_processor.post_process_object_detection( _UpperCAmelCase , threshold=0.3 , target_sizes=[image.size[::-1]])[0] __A : Optional[int] = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861]).to(_UpperCAmelCase) __A : Union[str, Any] = [75, 75, 17, 63, 17] __A : Any = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495]).to(_UpperCAmelCase) self.assertEqual(len(results['scores']) , 5) self.assertTrue(torch.allclose(results['scores'] , _UpperCAmelCase , atol=1e-4)) self.assertSequenceEqual(results['labels'].tolist() , _UpperCAmelCase) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCAmelCase))
8
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase__ : Any = '''pt''' elif is_tf_available(): lowercase__ : Tuple = '''tf''' else: lowercase__ : Union[str, Any] = '''jax''' class SCREAMING_SNAKE_CASE (a__ , unittest.TestCase ): lowerCAmelCase = ByTaTokenizer lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' super().setUp() __A : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname) @cached_property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small') def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=20 , _UpperCAmelCase=5): '''simple docstring''' __A : Optional[Any] = [] for i in range(len(_UpperCAmelCase)): try: __A : Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCAmelCase) except UnicodeDecodeError: pass toks.append((i, tok)) __A : List[str] = list(filter(lambda _UpperCAmelCase: re.match(R'^[ a-zA-Z]+$' , t[1]) , _UpperCAmelCase)) __A : Optional[Any] = list(filter(lambda _UpperCAmelCase: [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCAmelCase) , _UpperCAmelCase)) if max_length is not None and len(_UpperCAmelCase) > max_length: __A : Optional[int] = toks[:max_length] if min_length is not None and len(_UpperCAmelCase) < min_length and len(_UpperCAmelCase) > 0: while len(_UpperCAmelCase) < min_length: __A : Tuple = toks + toks # toks_str = [t[1] for t in toks] __A : Tuple = [t[0] for t in toks] # Ensure consistency __A : Optional[Any] = tokenizer.decode(_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase) if " " not in output_txt and len(_UpperCAmelCase) > 1: __A : Union[str, Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCAmelCase) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCAmelCase) ) if with_prefix_space: __A : Dict = ' ' + output_txt __A : int = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) return output_txt, output_ids def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.ta_base_tokenizer __A : Tuple = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>']) __A : List[Any] = tokenizer(['hi', 'I went to the gym', '']) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids']) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.ta_base_tokenizer __A : Any = 'Unicode €.' __A : Union[str, Any] = tokenizer(_UpperCAmelCase) __A : Optional[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase) # decoding __A : List[str] = tokenizer.decode(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , 'Unicode €.</s>') __A : Any = tokenizer('e è é ê ë') __A : List[str] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , _UpperCAmelCase) # decoding __A : Optional[int] = tokenizer.decode(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , 'e è é ê ë</s>') # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë')) , 'e è é ê ë</s>') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.ta_base_tokenizer __A : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __A : Tuple = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on __A : str = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) if FRAMEWORK != "jax": __A : Optional[Any] = list(batch.input_ids.numpy()[0]) else: __A : str = list(batch.input_ids.tolist()[0]) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual((2, 37) , batch.input_ids.shape) self.assertEqual((2, 37) , batch.attention_mask.shape) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.ta_base_tokenizer __A : str = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __A : Tuple = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , return_tensors=_UpperCAmelCase) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCAmelCase) self.assertIn('attention_mask' , _UpperCAmelCase) self.assertNotIn('decoder_input_ids' , _UpperCAmelCase) self.assertNotIn('decoder_attention_mask' , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = self.ta_base_tokenizer __A : Any = [ 'Summary of the text.', 'Another summary.', ] __A : Optional[Any] = tokenizer( text_target=_UpperCAmelCase , max_length=32 , padding='max_length' , truncation=_UpperCAmelCase , return_tensors=_UpperCAmelCase) self.assertEqual(32 , targets['input_ids'].shape[1]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.ta_base_tokenizer __A : Optional[Any] = ['A long paragraph for summarization. </s>'] __A : Dict = ['Summary of the text. </s>'] # fmt: off __A : str = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] __A : List[str] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on __A : Any = tokenizer(_UpperCAmelCase , text_target=_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , batch['input_ids'][0]) self.assertEqual(_UpperCAmelCase , batch['labels'][0]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): self.assertNotEqual(tokenizer.model_max_length , 42) # Now let's start the test __A : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): # Isolate this from the other tests because we save additional tokens/etc __A : Dict = tempfile.mkdtemp() __A : Dict = ' He is very happy, UNwant\u00E9d,running' __A : List[str] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) tokenizer.save_pretrained(_UpperCAmelCase) __A : Optional[Any] = tokenizer.__class__.from_pretrained(_UpperCAmelCase) __A : Dict = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) shutil.rmtree(_UpperCAmelCase) __A : List[Any] = self.get_tokenizers(model_max_length=42) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): # Isolate this from the other tests because we save additional tokens/etc __A : List[str] = tempfile.mkdtemp() __A : str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam']) __A : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token') tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens}) __A : Union[str, Any] = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) tokenizer.save_pretrained(_UpperCAmelCase) __A : Dict = tokenizer.__class__.from_pretrained(_UpperCAmelCase) __A : Optional[Any] = after_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens) self.assertEqual(after_tokenizer.model_max_length , 42) __A : str = tokenizer.__class__.from_pretrained(_UpperCAmelCase , model_max_length=43) self.assertEqual(tokenizer.model_max_length , 43) shutil.rmtree(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase) with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json') , encoding='utf-8') as json_file: __A : Tuple = json.load(_UpperCAmelCase) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json') , encoding='utf-8') as json_file: __A : List[Any] = json.load(_UpperCAmelCase) __A : str = [F'<extra_id_{i}>' for i in range(125)] __A : Union[str, Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] __A : List[Any] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCAmelCase , 'special_tokens_map.json') , 'w' , encoding='utf-8') as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase) with open(os.path.join(_UpperCAmelCase , 'tokenizer_config.json') , 'w' , encoding='utf-8') as outfile: json.dump(_UpperCAmelCase , _UpperCAmelCase) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __A : Any = tokenizer_class.from_pretrained( _UpperCAmelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'])) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __A : Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCAmelCase)] __A : int = tokenizer_class.from_pretrained( _UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'])) , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer())) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer())) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCAmelCase) __A : Optional[Any] = tokenizer_class.from_pretrained(_UpperCAmelCase) self.assertTrue(tokenizer.decode([255]) == '') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.get_tokenizers(fast=_UpperCAmelCase , do_lower_case=_UpperCAmelCase) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): __A : List[str] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __A : Tuple = tokenizer.convert_tokens_to_string(_UpperCAmelCase) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}'): __A : Tuple = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __A : Optional[int] = 0 __A : List[Any] = tokenizer.convert_ids_to_tokens( _UpperCAmelCase , skip_special_tokens=_UpperCAmelCase) for attr in attributes_list: setattr(_UpperCAmelCase , attr + '_id' , _UpperCAmelCase) self.assertEqual(getattr(_UpperCAmelCase , _UpperCAmelCase) , _UpperCAmelCase) self.assertEqual(getattr(_UpperCAmelCase , attr + '_id') , _UpperCAmelCase) setattr(_UpperCAmelCase , attr + '_id' , _UpperCAmelCase) self.assertEqual(getattr(_UpperCAmelCase , _UpperCAmelCase) , _UpperCAmelCase) self.assertEqual(getattr(_UpperCAmelCase , attr + '_id') , _UpperCAmelCase) setattr(_UpperCAmelCase , 'additional_special_tokens_ids' , []) self.assertListEqual(getattr(_UpperCAmelCase , 'additional_special_tokens') , []) self.assertListEqual(getattr(_UpperCAmelCase , 'additional_special_tokens_ids') , []) setattr(_UpperCAmelCase , 'additional_special_tokens_ids' , [token_id_to_test_setters]) self.assertListEqual(getattr(_UpperCAmelCase , 'additional_special_tokens') , [token_to_test_setters]) self.assertListEqual(getattr(_UpperCAmelCase , 'additional_special_tokens_ids') , [token_id_to_test_setters])
8
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: lowercase__ : Optional[int] = None lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ : List[str] = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } lowercase__ : Dict = { '''camembert-base''': 5_12, } lowercase__ : str = '''▁''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = ['''input_ids''', '''attention_mask'''] lowerCAmelCase = CamembertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **_UpperCAmelCase , ): '''simple docstring''' __A : int = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) __A : List[str] = vocab_file __A : Optional[int] = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A : Optional[Any] = [self.cls_token_id] __A : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' __A : Optional[int] = [self.sep_token_id] __A : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_UpperCAmelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return __A : List[Any] = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase): copyfile(self.vocab_file , _UpperCAmelCase) return (out_vocab_file,)
8
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Dict = { '''microsoft/swin-tiny-patch4-window7-224''': ( '''https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json''' ), # See all Swin models at https://huggingface.co/models?filter=swin } class SCREAMING_SNAKE_CASE (a__ , a__ ): lowerCAmelCase = '''swin''' lowerCAmelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self , _UpperCAmelCase=224 , _UpperCAmelCase=4 , _UpperCAmelCase=3 , _UpperCAmelCase=96 , _UpperCAmelCase=[2, 2, 6, 2] , _UpperCAmelCase=[3, 6, 12, 24] , _UpperCAmelCase=7 , _UpperCAmelCase=4.0 , _UpperCAmelCase=True , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase="gelu" , _UpperCAmelCase=False , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-5 , _UpperCAmelCase=32 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : str = image_size __A : Dict = patch_size __A : Union[str, Any] = num_channels __A : str = embed_dim __A : List[str] = depths __A : List[Any] = len(_UpperCAmelCase) __A : Optional[int] = num_heads __A : Tuple = window_size __A : Union[str, Any] = mlp_ratio __A : List[str] = qkv_bias __A : Dict = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : Any = drop_path_rate __A : List[str] = hidden_act __A : str = use_absolute_embeddings __A : Union[str, Any] = layer_norm_eps __A : str = initializer_range __A : int = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __A : Dict = int(embed_dim * 2 ** (len(_UpperCAmelCase) - 1)) __A : Any = ['stem'] + [F'stage{idx}' for idx in range(1 , len(_UpperCAmelCase) + 1)] __A ,__A : str = get_aligned_output_features_output_indices( out_features=_UpperCAmelCase , out_indices=_UpperCAmelCase , stage_names=self.stage_names) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = version.parse('''1.11''' ) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return 1e-4
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = val __A : Tuple = None __A : Any = None def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.val: if val < self.val: if self.left is None: __A : Union[str, Any] = Node(_UpperCAmelCase) else: self.left.insert(_UpperCAmelCase) elif val > self.val: if self.right is None: __A : Dict = Node(_UpperCAmelCase) else: self.right.insert(_UpperCAmelCase) else: __A : str = val def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : int ) -> Union[str, Any]: # Recursive traversal if root: inorder(root.left , __snake_case ) res.append(root.val ) inorder(root.right , __snake_case ) def _lowerCAmelCase ( __snake_case : List[str] ) -> Union[str, Any]: # Build BST if len(__snake_case ) == 0: return arr __A : List[str] = Node(arr[0] ) for i in range(1 , len(__snake_case ) ): root.insert(arr[i] ) # Traverse BST in order. __A : Tuple = [] inorder(__snake_case , __snake_case ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
8
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def _lowerCAmelCase ( __snake_case : str , __snake_case : str , **__snake_case : List[Any] ) -> Any: __A : Optional[Any] = AutoConfig.from_pretrained(__snake_case , **__snake_case ) __A : int = AutoModelForSeqaSeqLM.from_config(__snake_case ) model.save_pretrained(__snake_case ) AutoTokenizer.from_pretrained(__snake_case ).save_pretrained(__snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
8
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : str = { '''configuration_rembert''': ['''REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RemBertConfig''', '''RemBertOnnxConfig'''] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = ['''RemBertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = ['''RemBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ '''REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RemBertForCausalLM''', '''RemBertForMaskedLM''', '''RemBertForMultipleChoice''', '''RemBertForQuestionAnswering''', '''RemBertForSequenceClassification''', '''RemBertForTokenClassification''', '''RemBertLayer''', '''RemBertModel''', '''RemBertPreTrainedModel''', '''load_tf_weights_in_rembert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Tuple = [ '''TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRemBertForCausalLM''', '''TFRemBertForMaskedLM''', '''TFRemBertForMultipleChoice''', '''TFRemBertForQuestionAnswering''', '''TFRemBertForSequenceClassification''', '''TFRemBertForTokenClassification''', '''TFRemBertLayer''', '''TFRemBertModel''', '''TFRemBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys lowercase__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
'''simple docstring''' from ...configuration_utils import PretrainedConfig lowercase__ : Any = { '''google/tapas-base-finetuned-sqa''': ( '''https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wtq''': ( '''https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json''' ), '''google/tapas-base-finetuned-wikisql-supervised''': ( '''https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json''' ), '''google/tapas-base-finetuned-tabfact''': ( '''https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''tapas''' def __init__( self , _UpperCAmelCase=3_0522 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=1024 , _UpperCAmelCase=[3, 256, 256, 2, 256, 256, 10] , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=0 , _UpperCAmelCase=10.0 , _UpperCAmelCase=0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=1.0 , _UpperCAmelCase=1.0 , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase="ratio" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=64 , _UpperCAmelCase=32 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) __A : Dict = vocab_size __A : Tuple = hidden_size __A : Any = num_hidden_layers __A : int = num_attention_heads __A : Tuple = hidden_act __A : Tuple = intermediate_size __A : List[Any] = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : List[str] = max_position_embeddings __A : Optional[int] = type_vocab_sizes __A : str = initializer_range __A : List[str] = layer_norm_eps # Fine-tuning task hyperparameters __A : List[str] = positive_label_weight __A : List[Any] = num_aggregation_labels __A : Optional[Any] = aggregation_loss_weight __A : Tuple = use_answer_as_supervision __A : List[str] = answer_loss_importance __A : Any = use_normalized_answer_loss __A : Any = huber_loss_delta __A : Union[str, Any] = temperature __A : Tuple = aggregation_temperature __A : Optional[Any] = use_gumbel_for_cells __A : List[str] = use_gumbel_for_aggregation __A : Tuple = average_approximation_function __A : List[str] = cell_selection_preference __A : Dict = answer_loss_cutoff __A : Union[str, Any] = max_num_rows __A : Optional[Any] = max_num_columns __A : int = average_logits_per_cell __A : Optional[Any] = select_one_column __A : int = allow_empty_column_selection __A : List[Any] = init_cell_selection_weights_to_zero __A : int = reset_position_index_per_cell __A : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters __A : Optional[Any] = aggregation_labels __A : List[str] = no_aggregation_label_index if isinstance(self.aggregation_labels , _UpperCAmelCase): __A : Optional[Any] = {int(_UpperCAmelCase): v for k, v in aggregation_labels.items()}
8
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = 42 class SCREAMING_SNAKE_CASE (a__ , a__ ): @register_to_config def __init__( self , _UpperCAmelCase = 3 , _UpperCAmelCase = 3 , _UpperCAmelCase = ("DownEncoderBlock2D",) , _UpperCAmelCase = ("UpDecoderBlock2D",) , _UpperCAmelCase = (64,) , _UpperCAmelCase = 1 , _UpperCAmelCase = "silu" , _UpperCAmelCase = 3 , _UpperCAmelCase = 32 , _UpperCAmelCase = 256 , _UpperCAmelCase = 32 , _UpperCAmelCase = None , _UpperCAmelCase = 0.18215 , _UpperCAmelCase = "group" , ): '''simple docstring''' super().__init__() # pass init params to Encoder __A : Optional[int] = Encoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , down_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , double_z=_UpperCAmelCase , ) __A : Dict = vq_embed_dim if vq_embed_dim is not None else latent_channels __A : Union[str, Any] = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1) __A : List[Any] = VectorQuantizer(_UpperCAmelCase , _UpperCAmelCase , beta=0.25 , remap=_UpperCAmelCase , sane_index_shape=_UpperCAmelCase) __A : Dict = nn.Convad(_UpperCAmelCase , _UpperCAmelCase , 1) # pass init params to Decoder __A : Any = Decoder( in_channels=_UpperCAmelCase , out_channels=_UpperCAmelCase , up_block_types=_UpperCAmelCase , block_out_channels=_UpperCAmelCase , layers_per_block=_UpperCAmelCase , act_fn=_UpperCAmelCase , norm_num_groups=_UpperCAmelCase , norm_type=_UpperCAmelCase , ) @apply_forward_hook def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = True): '''simple docstring''' __A : Optional[int] = self.encoder(_UpperCAmelCase) __A : str = self.quant_conv(_UpperCAmelCase) if not return_dict: return (h,) return VQEncoderOutput(latents=_UpperCAmelCase) @apply_forward_hook def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = True): '''simple docstring''' if not force_not_quantize: __A ,__A ,__A : Dict = self.quantize(_UpperCAmelCase) else: __A : int = h __A : List[Any] = self.post_quant_conv(_UpperCAmelCase) __A : Union[str, Any] = self.decoder(_UpperCAmelCase , quant if self.config.norm_type == 'spatial' else None) if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = True): '''simple docstring''' __A : Any = sample __A : Optional[int] = self.encode(_UpperCAmelCase).latents __A : Union[str, Any] = self.decode(_UpperCAmelCase).sample if not return_dict: return (dec,) return DecoderOutput(sample=_UpperCAmelCase)
8
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=sys.maxsize): '''simple docstring''' __A : Union[str, Any] = 'bilinear' __A : int = max_size __A : Optional[Any] = short_edge_length def __call__( self , _UpperCAmelCase): '''simple docstring''' __A : int = [] for img in imgs: __A ,__A : Dict = img.shape[:2] # later: provide list and randomly choose index for resize __A : List[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __A : Tuple = size * 1.0 / min(_UpperCAmelCase , _UpperCAmelCase) if h < w: __A ,__A : Optional[Any] = size, scale * w else: __A ,__A : Optional[Any] = scale * h, size if max(_UpperCAmelCase , _UpperCAmelCase) > self.max_size: __A : Tuple = self.max_size * 1.0 / max(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = newh * scale __A : Dict = neww * scale __A : Dict = int(neww + 0.5) __A : Optional[int] = int(newh + 0.5) if img.dtype == np.uinta: __A : int = Image.fromarray(_UpperCAmelCase) __A : Optional[int] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __A : Dict = np.asarray(_UpperCAmelCase) else: __A : Optional[Any] = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __A : Dict = nn.functional.interpolate( _UpperCAmelCase , (newh, neww) , mode=self.interp_method , align_corners=_UpperCAmelCase).squeeze(0) img_augs.append(_UpperCAmelCase) return img_augs class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __A : List[Any] = cfg.INPUT.FORMAT __A : Dict = cfg.SIZE_DIVISIBILITY __A : str = cfg.PAD_VALUE __A : Union[str, Any] = cfg.INPUT.MAX_SIZE_TEST __A : int = cfg.MODEL.DEVICE __A : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : Union[str, Any] = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __A : int = lambda _UpperCAmelCase: (x - self.pixel_mean) / self.pixel_std def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = tuple(max(_UpperCAmelCase) for s in zip(*[img.shape for img in images])) __A : Dict = [im.shape[-2:] for im in images] __A : Optional[int] = [ nn.functional.pad( _UpperCAmelCase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_UpperCAmelCase , _UpperCAmelCase) ] return torch.stack(_UpperCAmelCase), torch.tensor(_UpperCAmelCase) def __call__( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' with torch.no_grad(): if not isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [images] if single_image: assert len(_UpperCAmelCase) == 1 for i in range(len(_UpperCAmelCase)): if isinstance(images[i] , torch.Tensor): images.insert(_UpperCAmelCase , images.pop(_UpperCAmelCase).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _UpperCAmelCase , torch.as_tensor(img_tensorize(images.pop(_UpperCAmelCase) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __A : str = torch.tensor([im.shape[:2] for im in images]) __A : List[str] = self.aug(_UpperCAmelCase) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __A : Any = [self.normalizer(_UpperCAmelCase) for x in images] # now pad them to do the following operations __A ,__A : Any = self.pad(_UpperCAmelCase) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __A : str = torch.true_divide(_UpperCAmelCase , _UpperCAmelCase) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( __snake_case : Dict , __snake_case : str ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : Tuple[int, int] ) -> int: assert torch.isfinite(__snake_case ).all(), "Box tensor contains infinite or NaN!" __A ,__A : int = box_size tensor[:, 0].clamp_(min=0 , max=__snake_case ) tensor[:, 1].clamp_(min=0 , max=__snake_case ) tensor[:, 2].clamp_(min=0 , max=__snake_case ) tensor[:, 3].clamp_(min=0 , max=__snake_case )
8
1