code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin, SchedulerOutput
@dataclass
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
lowercase__ = 42
lowercase__ = 42
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase ):
lowercase__ = 1
@register_to_config
def __init__( self , __UpperCamelCase = 2000 , __UpperCamelCase = 0.1_5 , __UpperCamelCase = 0.0_1 , __UpperCamelCase = 1348.0 , __UpperCamelCase = 1E-5 , __UpperCamelCase = 1 , ):
'''simple docstring'''
__a : Any = sigma_max
# setable values
__a : List[str] = None
self.set_sigmas(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ):
'''simple docstring'''
return sample
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None ):
'''simple docstring'''
__a : str = sampling_eps if sampling_eps is not None else self.config.sampling_eps
__a : List[Any] = torch.linspace(1 , __UpperCamelCase , __UpperCamelCase , device=__UpperCamelCase )
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None ):
'''simple docstring'''
__a : Union[str, Any] = sigma_min if sigma_min is not None else self.config.sigma_min
__a : Dict = sigma_max if sigma_max is not None else self.config.sigma_max
__a : Optional[Any] = sampling_eps if sampling_eps is not None else self.config.sampling_eps
if self.timesteps is None:
self.set_timesteps(__UpperCamelCase , __UpperCamelCase )
__a : Optional[int] = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps)
__a : Union[str, Any] = torch.exp(torch.linspace(math.log(__UpperCamelCase ) , math.log(__UpperCamelCase ) , __UpperCamelCase ) )
__a : Dict = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] )
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ):
'''simple docstring'''
return torch.where(
timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , )
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
__a : Union[str, Any] = timestep * torch.ones(
sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0])
__a : Tuple = (timestep * (len(self.timesteps ) - 1)).long()
# mps requires indices to be in the same device, so we use cpu as is the default with cuda
__a : Tuple = timesteps.to(self.discrete_sigmas.device )
__a : Dict = self.discrete_sigmas[timesteps].to(sample.device )
__a : Dict = self.get_adjacent_sigma(__UpperCamelCase , __UpperCamelCase ).to(sample.device )
__a : Optional[int] = torch.zeros_like(__UpperCamelCase )
__a : Union[str, Any] = (sigma**2 - adjacent_sigma**2) ** 0.5
# equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x)
# also equation 47 shows the analog from SDE models to ancestral sampling methods
__a : Dict = diffusion.flatten()
while len(diffusion.shape ) < len(sample.shape ):
__a : Tuple = diffusion.unsqueeze(-1 )
__a : Any = drift - diffusion**2 * model_output
# equation 6: sample noise for the diffusion term of
__a : Any = randn_tensor(
sample.shape , layout=sample.layout , generator=__UpperCamelCase , device=sample.device , dtype=sample.dtype )
__a : Union[str, Any] = sample - drift # subtract because `dt` is a small negative timestep
# TODO is the variable diffusion the correct scaling term for the noise?
__a : int = prev_sample_mean + diffusion * noise # add impact of diffusion field g
if not return_dict:
return (prev_sample, prev_sample_mean)
return SdeVeOutput(prev_sample=__UpperCamelCase , prev_sample_mean=__UpperCamelCase )
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True , ):
'''simple docstring'''
if self.timesteps is None:
raise ValueError(
"""`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" )
# For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z"
# sample noise for correction
__a : Any = randn_tensor(sample.shape , layout=sample.layout , generator=__UpperCamelCase ).to(sample.device )
# compute step size from the model_output, the noise, and the snr
__a : Any = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean()
__a : Optional[int] = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean()
__a : Any = (self.config.snr * noise_norm / grad_norm) ** 2 * 2
__a : List[Any] = step_size * torch.ones(sample.shape[0] ).to(sample.device )
# self.repeat_scalar(step_size, sample.shape[0])
# compute corrected sample: model_output term and noise term
__a : int = step_size.flatten()
while len(step_size.shape ) < len(sample.shape ):
__a : Union[str, Any] = step_size.unsqueeze(-1 )
__a : Any = sample + step_size * model_output
__a : List[Any] = prev_sample_mean + ((step_size * 2) ** 0.5) * noise
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=__UpperCamelCase )
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ):
'''simple docstring'''
__a : Dict = timesteps.to(original_samples.device )
__a : str = self.discrete_sigmas.to(original_samples.device )[timesteps]
__a : Tuple = (
noise * sigmas[:, None, None, None]
if noise is not None
else torch.randn_like(__UpperCamelCase ) * sigmas[:, None, None, None]
)
__a : Any = noise + original_samples
return noisy_samples
def __len__( self ):
'''simple docstring'''
return self.config.num_train_timesteps | 715 |
'''simple docstring'''
import qiskit
def _snake_case ( lowercase , lowercase ) -> qiskit.result.counts.Counts:
__a : Any = qiskit.Aer.get_backend("""aer_simulator""" )
# Create a Quantum Circuit acting on the q register
__a : str = qiskit.QuantumCircuit(lowercase , lowercase )
# Map the quantum measurement to the classical bits
circuit.measure([0] , [0] )
# Execute the circuit on the simulator
__a : Any = qiskit.execute(lowercase , lowercase , shots=1_0_0_0 )
# Return the histogram data of the results of the experiment.
return job.result().get_counts(lowercase )
if __name__ == "__main__":
print(f'''Total count for various states are: {single_qubit_measure(1, 1)}''') | 697 | 0 |
'''simple docstring'''
import pytest
__SCREAMING_SNAKE_CASE : Any = '__dummy_dataset1__'
__SCREAMING_SNAKE_CASE : List[Any] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n'
@pytest.fixture
def _snake_case ( ) -> Tuple:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def _snake_case ( ) -> Optional[Any]:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def _snake_case ( lowercase , lowercase , lowercase ) -> List[Any]:
__a : Dict = dataset_loading_script_name
__a : Any = tmp_path / """datasets""" / script_name
script_dir.mkdir(parents=lowercase )
__a : Union[str, Any] = script_dir / F"""{script_name}.py"""
with open(lowercase , """w""" ) as f:
f.write(lowercase )
return str(lowercase ) | 716 |
'''simple docstring'''
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
__SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__)
__SCREAMING_SNAKE_CASE : Any = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k',
'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v',
'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q',
'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u',
'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v',
'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out',
'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos',
'self_attn.rotary_emb': 'encoder.embed_positions',
'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm',
'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1',
'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2',
'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv',
'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm',
'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm',
'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense',
'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense',
'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm',
'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense',
'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense',
'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
__SCREAMING_SNAKE_CASE : Optional[Any] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]:
for attribute in key.split(""".""" ):
__a : str = getattr(lowercase , lowercase )
if weight_type is not None:
__a : Dict = getattr(lowercase , lowercase ).shape
else:
__a : Dict = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""" )
if weight_type == "weight":
__a : Any = value
elif weight_type == "weight_g":
__a : int = value
elif weight_type == "weight_v":
__a : int = value
elif weight_type == "bias":
__a : List[Any] = value
elif weight_type == "running_mean":
__a : Union[str, Any] = value
elif weight_type == "running_var":
__a : Tuple = value
elif weight_type == "num_batches_tracked":
__a : Optional[int] = value
elif weight_type == "inv_freq":
__a : List[str] = value
else:
__a : List[str] = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" )
def _snake_case ( lowercase , lowercase , lowercase ) -> Dict:
__a : Dict = []
__a : Dict = fairseq_model.state_dict()
__a : Tuple = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
__a : int = False
if "conv_layers" in name:
load_conv_layer(
lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == """group""" , )
__a : List[Any] = True
else:
for key, mapped_key in MAPPING.items():
__a : Optional[int] = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
__a : str = True
if "*" in mapped_key:
__a : Optional[int] = name.split(lowercase )[0].split(""".""" )[-2]
__a : List[Any] = mapped_key.replace("""*""" , lowercase )
if "pos_bias_u" in name:
__a : Union[str, Any] = None
elif "pos_bias_v" in name:
__a : List[Any] = None
elif "weight_g" in name:
__a : List[Any] = """weight_g"""
elif "weight_v" in name:
__a : List[Any] = """weight_v"""
elif "bias" in name:
__a : Optional[int] = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__a : str = """weight"""
elif "running_mean" in name:
__a : List[str] = """running_mean"""
elif "inv_freq" in name:
__a : Dict = """inv_freq"""
elif "running_var" in name:
__a : Union[str, Any] = """running_var"""
elif "num_batches_tracked" in name:
__a : int = """num_batches_tracked"""
else:
__a : Optional[int] = None
set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase )
continue
if not is_used:
unused_weights.append(lowercase )
logger.warning(F"""Unused weights: {unused_weights}""" )
def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[str]:
__a : Optional[Any] = full_name.split("""conv_layers.""" )[-1]
__a : Union[str, Any] = name.split(""".""" )
__a : Optional[Any] = int(items[0] )
__a : int = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" )
__a : Dict = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" )
__a : str = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" )
__a : Dict = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" )
__a : Union[str, Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" )
else:
unused_weights.append(lowercase )
@torch.no_grad()
def _snake_case ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> Optional[Any]:
if config_path is not None:
__a : Any = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act="""swish""" )
else:
__a : Optional[int] = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
__a : Optional[Any] = """rotary"""
if is_finetuned:
if dict_path:
__a : List[Any] = Dictionary.load(lowercase )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__a : int = target_dict.pad_index
__a : List[str] = target_dict.bos_index
__a : str = target_dict.eos_index
__a : Dict = len(target_dict.symbols )
__a : Any = os.path.join(lowercase , """vocab.json""" )
if not os.path.isdir(lowercase ):
logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowercase ) )
return
os.makedirs(lowercase , exist_ok=lowercase )
__a : Dict = target_dict.indices
# fairseq has the <pad> and <s> switched
__a : Optional[Any] = 0
__a : List[Any] = 1
with open(lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle:
json.dump(lowercase , lowercase )
__a : int = WavaVecaCTCTokenizer(
lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowercase , )
__a : Optional[int] = True if config.feat_extract_norm == """layer""" else False
__a : Dict = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , )
__a : str = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase )
processor.save_pretrained(lowercase )
__a : List[str] = WavaVecaConformerForCTC(lowercase )
else:
__a : Optional[int] = WavaVecaConformerForPreTraining(lowercase )
if is_finetuned:
__a , __a , __a : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
else:
__a : Optional[int] = argparse.Namespace(task="""audio_pretraining""" )
__a : Tuple = fairseq.tasks.setup_task(lowercase )
__a , __a , __a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase )
__a : Any = model[0].eval()
recursively_load_weights(lowercase , lowercase , not is_finetuned )
hf_wavavec.save_pretrained(lowercase )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not'
)
__SCREAMING_SNAKE_CASE : int = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
) | 697 | 0 |
'''simple docstring'''
import math
def _snake_case ( lowercase ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def _snake_case ( lowercase = 1_0_0_0_1 ) -> int:
try:
__a : Union[str, Any] = int(lowercase )
except (TypeError, ValueError):
raise TypeError("""Parameter nth must be int or castable to int.""" ) from None
if nth <= 0:
raise ValueError("""Parameter nth must be greater than or equal to one.""" )
__a : list[int] = []
__a : List[str] = 2
while len(lowercase ) < nth:
if is_prime(lowercase ):
primes.append(lowercase )
num += 1
else:
num += 1
return primes[len(lowercase ) - 1]
if __name__ == "__main__":
print(f'''{solution() = }''') | 717 |
'''simple docstring'''
import warnings
from functools import wraps
from typing import Callable
def _snake_case ( lowercase ) -> Callable:
@wraps(lowercase )
def _inner_fn(*lowercase , **lowercase ):
warnings.warn(
(F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , lowercase , )
return fn(*lowercase , **lowercase )
return _inner_fn | 697 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def _snake_case ( lowercase , lowercase , lowercase ) -> Any:
# Construct model
if gpta_config_file == "":
__a : Dict = GPTaConfig()
else:
__a : Optional[Any] = GPTaConfig.from_json_file(lowercase )
__a : Union[str, Any] = GPTaModel(lowercase )
# Load weights from numpy
load_tf_weights_in_gpta(lowercase , lowercase , lowercase )
# Save pytorch-model
__a : Optional[int] = pytorch_dump_folder_path + """/""" + WEIGHTS_NAME
__a : Dict = pytorch_dump_folder_path + """/""" + CONFIG_NAME
print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" )
torch.save(model.state_dict() , lowercase )
print(F"""Save configuration file to {pytorch_config_dump_path}""" )
with open(lowercase , """w""" , encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
__SCREAMING_SNAKE_CASE : Dict = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path) | 718 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
__SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
lowercase__ = ["input_features", "attention_mask"]
def __init__( self , __UpperCamelCase=80 , __UpperCamelCase=1_6000 , __UpperCamelCase=0.0 , __UpperCamelCase=10 , __UpperCamelCase=25 , __UpperCamelCase="hamming_window" , __UpperCamelCase=3_2_7_6_8.0 , __UpperCamelCase=0.9_7 , __UpperCamelCase=1.0 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=False , **__UpperCamelCase , ):
'''simple docstring'''
super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase )
__a : List[str] = feature_size
__a : List[str] = sampling_rate
__a : int = padding_value
__a : Any = hop_length
__a : int = win_length
__a : Tuple = frame_signal_scale
__a : Union[str, Any] = preemphasis_coeff
__a : List[str] = mel_floor
__a : Union[str, Any] = normalize_means
__a : Optional[Any] = normalize_vars
__a : Optional[Any] = win_function
__a : Union[str, Any] = return_attention_mask
__a : List[Any] = win_length * sampling_rate // 1000
__a : List[Any] = hop_length * sampling_rate // 1000
__a : Optional[Any] = optimal_fft_length(self.sample_size )
__a : Any = (self.n_fft // 2) + 1
def __lowerCamelCase ( self , __UpperCamelCase ):
'''simple docstring'''
if self.win_function == "hamming_window":
__a : str = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCamelCase )
else:
__a : Dict = window_function(window_length=self.sample_size , name=self.win_function )
__a : Optional[Any] = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , )
__a : Any = spectrogram(
one_waveform * self.frame_signal_scale , window=__UpperCamelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__UpperCamelCase , preemphasis=self.preemphasis_coeff , mel_filters=__UpperCamelCase , mel_floor=self.mel_floor , log_mel="""log""" , )
return msfc_features.T
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
'''simple docstring'''
if self.normalize_means:
__a : int = x[:input_length].mean(axis=0 )
__a : str = np.subtract(__UpperCamelCase , __UpperCamelCase )
if self.normalize_vars:
__a : Dict = x[:input_length].std(axis=0 )
__a : Dict = np.divide(__UpperCamelCase , __UpperCamelCase )
if input_length < x.shape[0]:
__a : Union[str, Any] = padding_value
# make sure array is in float32
__a : Any = x.astype(np.floataa )
return x
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ):
'''simple docstring'''
__a : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(__UpperCamelCase , __UpperCamelCase , self.padding_value ) for x, n in zip(__UpperCamelCase , __UpperCamelCase )]
def __call__( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of"""
f""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"""
f""" {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
"""It is strongly recommended to pass the ``sampling_rate`` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
__a : Tuple = isinstance(__UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
__a : Tuple = is_batched_numpy or (
isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
__a : Tuple = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ):
__a : List[str] = np.asarray(__UpperCamelCase , dtype=np.floataa )
elif isinstance(__UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
__a : str = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
__a : Any = [raw_speech]
# extract fbank features
__a : str = [self._extract_mfsc_features(__UpperCamelCase ) for one_waveform in raw_speech]
# convert into correct format for padding
__a : Optional[Any] = BatchFeature({"""input_features""": features} )
__a : Any = self.pad(
__UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , )
# make sure list is in array format
__a : int = padded_inputs.get("""input_features""" )
if isinstance(input_features[0] , __UpperCamelCase ):
__a : Union[str, Any] = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for feature in input_features]
__a : List[str] = padded_inputs.get("""attention_mask""" )
if attention_mask is not None:
__a : Optional[int] = [np.asarray(__UpperCamelCase , dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
__a : Optional[Any] = (
np.array(__UpperCamelCase , dtype=np.intaa )
if self._get_padding_strategies(__UpperCamelCase , max_length=__UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
__a : int = self.normalize(
padded_inputs["""input_features"""] , attention_mask=__UpperCamelCase )
if return_tensors is not None:
__a : List[Any] = padded_inputs.convert_to_tensors(__UpperCamelCase )
return padded_inputs | 697 | 0 |
'''simple docstring'''
from typing import Dict, Optional
import numpy as np
import datasets
__SCREAMING_SNAKE_CASE : List[str] = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n'
__SCREAMING_SNAKE_CASE : Tuple = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n'
__SCREAMING_SNAKE_CASE : int = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}'
def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase = None , lowercase = False , ) -> Any:
if label_map is not None:
for old_id, new_id in label_map.items():
__a : List[str] = new_id
# turn into Numpy arrays
__a : Any = np.array(lowercase )
__a : str = np.array(lowercase )
if reduce_labels:
__a : Tuple = 2_5_5
__a : Optional[int] = label - 1
__a : Union[str, Any] = 2_5_5
__a : Union[str, Any] = label != ignore_index
__a : Any = np.not_equal(lowercase , lowercase )
__a : Optional[Any] = pred_label[mask]
__a : Optional[int] = np.array(lowercase )[mask]
__a : Any = pred_label[pred_label == label]
__a : Optional[Any] = np.histogram(lowercase , bins=lowercase , range=(0, num_labels - 1) )[0]
__a : Tuple = np.histogram(lowercase , bins=lowercase , range=(0, num_labels - 1) )[0]
__a : str = np.histogram(lowercase , bins=lowercase , range=(0, num_labels - 1) )[0]
__a : str = area_pred_label + area_label - area_intersect
return area_intersect, area_union, area_pred_label, area_label
def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase = None , lowercase = False , ) -> Tuple:
__a : List[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__a : Optional[Any] = np.zeros((num_labels,) , dtype=np.floataa )
__a : int = np.zeros((num_labels,) , dtype=np.floataa )
__a : str = np.zeros((num_labels,) , dtype=np.floataa )
for result, gt_seg_map in zip(lowercase , lowercase ):
__a : str = intersect_and_union(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
total_area_intersect += area_intersect
total_area_union += area_union
total_area_pred_label += area_pred_label
total_area_label += area_label
return total_area_intersect, total_area_union, total_area_pred_label, total_area_label
def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase = None , lowercase = None , lowercase = False , ) -> str:
__a : Dict = total_intersect_and_union(
lowercase , lowercase , lowercase , lowercase , lowercase , lowercase )
# compute metrics
__a : Tuple = {}
__a : str = total_area_intersect.sum() / total_area_label.sum()
__a : str = total_area_intersect / total_area_union
__a : Optional[Any] = total_area_intersect / total_area_label
__a : List[str] = np.nanmean(lowercase )
__a : str = np.nanmean(lowercase )
__a : Optional[Any] = all_acc
__a : List[str] = iou
__a : Any = acc
if nan_to_num is not None:
__a : List[Any] = {metric: np.nan_to_num(lowercase , nan=lowercase ) for metric, metric_value in metrics.items()}
return metrics
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
def __lowerCamelCase ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
# 1st Seq - height dim, 2nd - width dim
{
"""predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ),
"""references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ),
} ) , reference_urls=[
"""https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py"""
] , )
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , ):
'''simple docstring'''
__a : Any = mean_iou(
results=__UpperCamelCase , gt_seg_maps=__UpperCamelCase , num_labels=__UpperCamelCase , ignore_index=__UpperCamelCase , nan_to_num=__UpperCamelCase , label_map=__UpperCamelCase , reduce_labels=__UpperCamelCase , )
return iou_result | 719 |
'''simple docstring'''
__SCREAMING_SNAKE_CASE : int = 9.80_665
def _snake_case ( lowercase , lowercase , lowercase = g ) -> float:
if fluid_density <= 0:
raise ValueError("""Impossible fluid density""" )
if volume < 0:
raise ValueError("""Impossible Object volume""" )
if gravity <= 0:
raise ValueError("""Impossible Gravity""" )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod() | 697 | 0 |
import inspect
import tempfile
import unittest
from huggingface_hub import hf_hub_download
from transformers import is_torch_available
from transformers.testing_utils import is_flaky, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
__SCREAMING_SNAKE_CASE : str = 1E-4
if is_torch_available():
import torch
from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel
from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder
@require_torch
class SCREAMING_SNAKE_CASE__ :
def __init__( self , __UpperCamelCase , __UpperCamelCase=16 , __UpperCamelCase=13 , __UpperCamelCase=7 , __UpperCamelCase=14 , __UpperCamelCase=10 , __UpperCamelCase=19 , __UpperCamelCase=5 , __UpperCamelCase=4 , __UpperCamelCase=True , __UpperCamelCase=16 , __UpperCamelCase=2 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=[1, 2, 3, 4, 5] , __UpperCamelCase=25 , __UpperCamelCase=5 , ):
'''simple docstring'''
__a : Union[str, Any] = d_model
__a : int = parent
__a : Tuple = batch_size
__a : Tuple = prediction_length
__a : Optional[Any] = context_length
__a : str = cardinality
__a : int = num_time_features
__a : Any = lags_sequence
__a : List[Any] = embedding_dimension
__a : str = is_training
__a : Optional[Any] = hidden_size
__a : List[Any] = num_hidden_layers
__a : Dict = num_attention_heads
__a : int = intermediate_size
__a : Any = hidden_act
__a : str = hidden_dropout_prob
__a : Union[str, Any] = attention_probs_dropout_prob
__a : Dict = context_length
__a : Union[str, Any] = prediction_length + label_length
__a : Union[str, Any] = label_length
__a : Tuple = moving_average
__a : Tuple = autocorrelation_factor
def __lowerCamelCase ( self ):
'''simple docstring'''
return AutoformerConfig(
d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , )
def __lowerCamelCase ( self , __UpperCamelCase ):
'''simple docstring'''
__a : List[Any] = config.context_length + max(config.lags_sequence )
__a : int = ids_tensor([self.batch_size, 1] , config.cardinality[0] )
__a : Optional[Any] = floats_tensor([self.batch_size, _past_length, config.num_time_features] )
__a : List[Any] = floats_tensor([self.batch_size, _past_length] )
__a : Dict = floats_tensor([self.batch_size, _past_length] ) > 0.5
# decoder inputs
__a : int = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] )
__a : Optional[Any] = floats_tensor([self.batch_size, config.prediction_length] )
__a : Any = {
"""past_values""": past_values,
"""static_categorical_features""": static_categorical_features,
"""past_time_features""": past_time_features,
"""past_observed_mask""": past_observed_mask,
"""future_time_features""": future_time_features,
"""future_values""": future_values,
}
return inputs_dict
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Tuple = self.get_config()
__a : Tuple = self.prepare_autoformer_inputs_dict(__UpperCamelCase )
return config, inputs_dict
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : List[str] = self.prepare_config_and_inputs()
return config, inputs_dict
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ):
'''simple docstring'''
__a : Optional[Any] = AutoformerModel(config=__UpperCamelCase ).to(__UpperCamelCase ).eval()
__a : Union[str, Any] = model(**__UpperCamelCase )
__a : int = outputs.encoder_last_hidden_state
__a : Optional[int] = outputs.last_hidden_state
with tempfile.TemporaryDirectory() as tmpdirname:
__a : List[str] = model.get_encoder()
encoder.save_pretrained(__UpperCamelCase )
__a : Dict = AutoformerEncoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase )
__a : Optional[int] = model.create_network_inputs(**__UpperCamelCase )
__a : str = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] )
__a : Optional[int] = torch.cat(
(transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , )
__a : Optional[int] = encoder(inputs_embeds=__UpperCamelCase )[0]
self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 )
__a : Optional[int] = (
torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 )
.unsqueeze(1 )
.repeat(1 , config.prediction_length , 1 )
)
__a : Optional[Any] = torch.zeros(
[transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , )
__a : Tuple = torch.cat(
(
torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
__a : Dict = torch.cat(
(
torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ),
feature[:, config.context_length - config.label_length :, ...],
) , dim=-1 , )
with tempfile.TemporaryDirectory() as tmpdirname:
__a : List[Any] = model.get_decoder()
decoder.save_pretrained(__UpperCamelCase )
__a : List[str] = AutoformerDecoder.from_pretrained(__UpperCamelCase ).to(__UpperCamelCase )
__a : Dict = decoder(
trend=__UpperCamelCase , inputs_embeds=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , )[0]
self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 )
@require_torch
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ):
lowercase__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else ()
lowercase__ = (AutoformerForPrediction,) if is_torch_available() else ()
lowercase__ = {"feature-extraction": AutoformerModel} if is_torch_available() else {}
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : List[Any] = AutoformerModelTester(self )
__a : Optional[int] = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase )
def __lowerCamelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
__a : Any = model_class(__UpperCamelCase )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__UpperCamelCase )
__a : str = model_class.from_pretrained(__UpperCamelCase , output_loading_info=__UpperCamelCase )
self.assertEqual(info["""missing_keys"""] , [] )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_encoder_decoder_model_standalone(*__UpperCamelCase )
@unittest.skip(reason="""Model has no tokens embeddings""" )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Union[str, Any] = inspect.signature(getattr(__UpperCamelCase , """forward""" ) )
# The main input is the name of the argument after `self`
__a : Any = list(model_signature.parameters.keys() )[1]
self.assertEqual(AutoformerModel.main_input_name , __UpperCamelCase )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a : Tuple = model_class(__UpperCamelCase )
__a : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a : Union[str, Any] = [*signature.parameters.keys()]
__a : Dict = [
"""past_values""",
"""past_time_features""",
"""past_observed_mask""",
"""static_categorical_features""",
"""static_real_features""",
"""future_values""",
"""future_time_features""",
]
if model.__class__.__name__ in ["AutoformerForPrediction"]:
expected_arg_names.append("""future_observed_mask""" )
expected_arg_names.extend(
[
"""decoder_attention_mask""",
"""head_mask""",
"""decoder_head_mask""",
"""cross_attn_head_mask""",
"""encoder_outputs""",
"""past_key_values""",
"""output_hidden_states""",
"""output_attentions""",
"""use_cache""",
"""return_dict""",
] )
self.assertListEqual(arg_names[: len(__UpperCamelCase )] , __UpperCamelCase )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__a : Any = True
__a : List[str] = getattr(self.model_tester , """seq_length""" , __UpperCamelCase )
__a : Optional[int] = getattr(self.model_tester , """decoder_seq_length""" , __UpperCamelCase )
__a : Tuple = getattr(self.model_tester , """encoder_seq_length""" , __UpperCamelCase )
__a : Dict = getattr(self.model_tester , """d_model""" , __UpperCamelCase )
__a : List[str] = getattr(self.model_tester , """num_attention_heads""" , __UpperCamelCase )
__a : Any = d_model // num_attention_heads
for model_class in self.all_model_classes:
__a : List[str] = True
__a : str = False
__a : Tuple = True
__a : Dict = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
__a : int = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
__a : Any = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__a : Optional[int] = True
__a : Union[str, Any] = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
__a : List[str] = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
__a : Any = outputs.encoder_attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
__a : List[Any] = len(__UpperCamelCase )
__a : str = 7
if "last_hidden_state" in outputs:
correct_outlen += 1
if "trend" in outputs:
correct_outlen += 1
if "past_key_values" in outputs:
correct_outlen += 1 # past_key_values have been returned
if "loss" in outputs:
correct_outlen += 1
if "params" in outputs:
correct_outlen += 1
self.assertEqual(__UpperCamelCase , __UpperCamelCase )
# decoder attentions
__a : int = outputs.decoder_attentions
self.assertIsInstance(__UpperCamelCase , (list, tuple) )
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# cross attentions
__a : Union[str, Any] = outputs.cross_attentions
self.assertIsInstance(__UpperCamelCase , (list, tuple) )
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , )
# Check attention is always last and order is fine
__a : Union[str, Any] = True
__a : List[str] = True
__a : Union[str, Any] = model_class(__UpperCamelCase )
model.to(__UpperCamelCase )
model.eval()
with torch.no_grad():
__a : str = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
self.assertEqual(out_len + 2 , len(__UpperCamelCase ) )
__a : List[str] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(__UpperCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , )
@is_flaky()
def __lowerCamelCase ( self ):
'''simple docstring'''
super().test_retain_grad_hidden_states_attentions()
def _snake_case ( lowercase="train-batch.pt" ) -> List[str]:
__a : Union[str, Any] = hf_hub_download(repo_id="""hf-internal-testing/tourism-monthly-batch""" , filename=lowercase , repo_type="""dataset""" )
__a : str = torch.load(lowercase , map_location=lowercase )
return batch
@require_torch
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Any = AutoformerModel.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__UpperCamelCase )
__a : Dict = prepare_batch()
with torch.no_grad():
__a : List[str] = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , future_values=batch["""future_values"""] , future_time_features=batch["""future_time_features"""] , )[0]
__a : Dict = torch.Size(
(64, model.config.prediction_length + model.config.label_length, model.config.feature_size) )
self.assertEqual(output.shape , __UpperCamelCase )
__a : List[Any] = torch.tensor(
[[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=__UpperCamelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : int = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__UpperCamelCase )
__a : List[str] = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__a : int = model(
past_values=batch["""past_values"""] , past_time_features=batch["""past_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , static_categorical_features=batch["""static_categorical_features"""] , ).encoder_last_hidden_state
__a : Any = torch.Size((64, model.config.context_length, model.config.d_model) )
self.assertEqual(output.shape , __UpperCamelCase )
__a : Optional[Any] = torch.tensor(
[[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=__UpperCamelCase )
self.assertTrue(torch.allclose(output[0, :3, :3] , __UpperCamelCase , atol=__UpperCamelCase ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Optional[Any] = AutoformerForPrediction.from_pretrained("""huggingface/autoformer-tourism-monthly""" ).to(__UpperCamelCase )
__a : Dict = prepare_batch("""val-batch.pt""" )
with torch.no_grad():
__a : int = model.generate(
static_categorical_features=batch["""static_categorical_features"""] , past_time_features=batch["""past_time_features"""] , past_values=batch["""past_values"""] , future_time_features=batch["""future_time_features"""] , past_observed_mask=batch["""past_observed_mask"""] , )
__a : List[str] = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) )
self.assertEqual(outputs.sequences.shape , __UpperCamelCase )
__a : Union[str, Any] = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=__UpperCamelCase )
__a : Union[str, Any] = outputs.sequences.mean(dim=1 )
self.assertTrue(torch.allclose(mean_prediction[0, -3:] , __UpperCamelCase , rtol=1E-1 ) ) | 720 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __init__( self , __UpperCamelCase , __UpperCamelCase=7 , __UpperCamelCase=3 , __UpperCamelCase=30 , __UpperCamelCase=400 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=True , __UpperCamelCase=1 / 255 , __UpperCamelCase=True , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=[0.5, 0.5, 0.5] , __UpperCamelCase=True , ):
'''simple docstring'''
__a : List[Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333}
__a : Dict = parent
__a : Union[str, Any] = batch_size
__a : Optional[int] = num_channels
__a : Dict = min_resolution
__a : List[Any] = max_resolution
__a : int = do_resize
__a : str = size
__a : Optional[Any] = do_rescale
__a : Optional[Any] = rescale_factor
__a : str = do_normalize
__a : Any = image_mean
__a : Optional[Any] = image_std
__a : Dict = do_pad
def __lowerCamelCase ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_pad": self.do_pad,
}
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=False ):
'''simple docstring'''
if not batched:
__a : Union[str, Any] = image_inputs[0]
if isinstance(__UpperCamelCase , Image.Image ):
__a , __a : Tuple = image.size
else:
__a , __a : Tuple = image.shape[1], image.shape[2]
if w < h:
__a : Optional[int] = int(self.size["""shortest_edge"""] * h / w )
__a : Tuple = self.size["""shortest_edge"""]
elif w > h:
__a : Optional[Any] = self.size["""shortest_edge"""]
__a : Any = int(self.size["""shortest_edge"""] * w / h )
else:
__a : Any = self.size["""shortest_edge"""]
__a : Optional[int] = self.size["""shortest_edge"""]
else:
__a : Any = []
for image in image_inputs:
__a , __a : Any = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__a : List[Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[0] )[0]
__a : Optional[Any] = max(__UpperCamelCase , key=lambda __UpperCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , unittest.TestCase ):
lowercase__ = DetrImageProcessor if is_vision_available() else None
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : str = DetrImageProcessingTester(self )
@property
def __lowerCamelCase ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Optional[int] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """image_std""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """do_rescale""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """rescale_factor""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """size""" ) )
self.assertTrue(hasattr(__UpperCamelCase , """do_pad""" ) )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} )
self.assertEqual(image_processor.do_pad , __UpperCamelCase )
__a : List[Any] = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=__UpperCamelCase )
self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} )
self.assertEqual(image_processor.do_pad , __UpperCamelCase )
def __lowerCamelCase ( self ):
'''simple docstring'''
pass
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase , Image.Image )
# Test not batched input
__a : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__a , __a : Optional[int] = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase )
__a : Any = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , numpify=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase , np.ndarray )
# Test not batched input
__a : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__a : List[str] = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values
__a , __a : str = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCamelCase , torchify=__UpperCamelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCamelCase , torch.Tensor )
# Test not batched input
__a : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__a : List[str] = image_processing(__UpperCamelCase , return_tensors="""pt""" ).pixel_values
__a , __a : Any = self.image_processor_tester.get_expected_values(__UpperCamelCase , batched=__UpperCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f:
__a : Dict = json.loads(f.read() )
__a : Optional[int] = {"""image_id""": 3_9769, """annotations""": target}
# encode them
__a : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50""" )
__a : Tuple = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , return_tensors="""pt""" )
# verify pixel values
__a : Union[str, Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase )
__a : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) )
# verify area
__a : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) )
# verify boxes
__a : Optional[int] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase )
__a : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1E-3 ) )
# verify image_id
__a : Union[str, Any] = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) )
# verify is_crowd
__a : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) )
# verify class_labels
__a : Any = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) )
# verify orig_size
__a : Any = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) )
# verify size
__a : str = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) )
@slow
def __lowerCamelCase ( self ):
'''simple docstring'''
__a : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f:
__a : Tuple = json.loads(f.read() )
__a : str = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target}
__a : int = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" )
# encode them
__a : List[str] = DetrImageProcessor.from_pretrained("""facebook/detr-resnet-50-panoptic""" )
__a : Tuple = image_processing(images=__UpperCamelCase , annotations=__UpperCamelCase , masks_path=__UpperCamelCase , return_tensors="""pt""" )
# verify pixel values
__a : List[str] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding["""pixel_values"""].shape , __UpperCamelCase )
__a : Any = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] )
self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __UpperCamelCase , atol=1E-4 ) )
# verify area
__a : Optional[Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __UpperCamelCase ) )
# verify boxes
__a : Optional[Any] = torch.Size([6, 4] )
self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __UpperCamelCase )
__a : List[str] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __UpperCamelCase , atol=1E-3 ) )
# verify image_id
__a : List[str] = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __UpperCamelCase ) )
# verify is_crowd
__a : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __UpperCamelCase ) )
# verify class_labels
__a : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __UpperCamelCase ) )
# verify masks
__a : Union[str, Any] = 82_2873
self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __UpperCamelCase )
# verify orig_size
__a : str = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __UpperCamelCase ) )
# verify size
__a : List[Any] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __UpperCamelCase ) ) | 697 | 0 |
'''simple docstring'''
def _snake_case ( lowercase = 4_0_0_0_0_0_0 ) -> int:
__a : int = [0, 1]
__a : int = 0
while fib[i] <= n:
fib.append(fib[i] + fib[i + 1] )
if fib[i + 2] > n:
break
i += 1
__a : Dict = 0
for j in range(len(lowercase ) - 1 ):
if fib[j] % 2 == 0:
total += fib[j]
return total
if __name__ == "__main__":
print(f'''{solution() = }''') | 721 |
'''simple docstring'''
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
__SCREAMING_SNAKE_CASE : Optional[int] = trt.Logger(trt.Logger.WARNING)
__SCREAMING_SNAKE_CASE : Tuple = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
__SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__)
__SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--onnx_model_path',
default=None,
type=str,
required=True,
help='Path to ONNX model: ',
)
parser.add_argument(
'--output_dir',
default=None,
type=str,
required=True,
help='The output directory where the model checkpoints and predictions will be written.',
)
# Other parameters
parser.add_argument(
'--tokenizer_name',
default='',
type=str,
required=True,
help='Pretrained tokenizer name or path if not the same as model_name',
)
parser.add_argument(
'--version_2_with_negative',
action='store_true',
help='If true, the SQuAD examples contain some that do not have an answer.',
)
parser.add_argument(
'--null_score_diff_threshold',
type=float,
default=0.0,
help='If null_score - best_non_null is greater than the threshold predict null.',
)
parser.add_argument(
'--max_seq_length',
default=384,
type=int,
help=(
'The maximum total input sequence length after WordPiece tokenization. Sequences '
'longer than this will be truncated, and sequences shorter than this will be padded.'
),
)
parser.add_argument(
'--doc_stride',
default=128,
type=int,
help='When splitting up a long document into chunks, how much stride to take between chunks.',
)
parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.')
parser.add_argument(
'--n_best_size',
default=20,
type=int,
help='The total number of n-best predictions to generate in the nbest_predictions.json output file.',
)
parser.add_argument(
'--max_answer_length',
default=30,
type=int,
help=(
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
),
)
parser.add_argument('--seed', type=int, default=42, help='random seed for initialization')
parser.add_argument(
'--dataset_name',
type=str,
default=None,
required=True,
help='The name of the dataset to use (via the datasets library).',
)
parser.add_argument(
'--dataset_config_name',
type=str,
default=None,
help='The configuration name of the dataset to use (via the datasets library).',
)
parser.add_argument(
'--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.'
)
parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets')
parser.add_argument(
'--fp16',
action='store_true',
help='Whether to use 16-bit (mixed) precision instead of 32-bit',
)
parser.add_argument(
'--int8',
action='store_true',
help='Whether to use INT8',
)
__SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
if args.tokenizer_name:
__SCREAMING_SNAKE_CASE : str = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
'You are instantiating a new tokenizer from scratch. This is not supported by this script.'
'You can do it from another script, save it, and load it from here, using --tokenizer_name.'
)
logger.info('Training/evaluation parameters %s', args)
__SCREAMING_SNAKE_CASE : List[Any] = args.per_device_eval_batch_size
__SCREAMING_SNAKE_CASE : int = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
__SCREAMING_SNAKE_CASE : Optional[Any] = True
__SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-fp32.engine'
if args.fpaa:
__SCREAMING_SNAKE_CASE : Dict = 'temp_engine/bert-fp16.engine'
if args.inta:
__SCREAMING_SNAKE_CASE : Tuple = 'temp_engine/bert-int8.engine'
# import ONNX file
if not os.path.exists('temp_engine'):
os.makedirs('temp_engine')
__SCREAMING_SNAKE_CASE : Optional[Any] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, 'rb') as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
__SCREAMING_SNAKE_CASE : List[Any] = [network.get_input(i) for i in range(network.num_inputs)]
__SCREAMING_SNAKE_CASE : List[Any] = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
__SCREAMING_SNAKE_CASE : Tuple = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
__SCREAMING_SNAKE_CASE : Dict = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
__SCREAMING_SNAKE_CASE : Union[str, Any] = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, 'wb') as f:
f.write(engine.serialize())
def _snake_case ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]:
__a : Dict = np.asarray(inputs["""input_ids"""] , dtype=np.intaa )
__a : List[Any] = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa )
__a : str = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowercase )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowercase )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowercase )
# start time
__a : Optional[Any] = time.time()
# Run inference
context.execute_async(
bindings=[int(lowercase ) for d_inp in d_inputs] + [int(lowercase ), int(lowercase )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase )
cuda.memcpy_dtoh_async(lowercase , lowercase , lowercase )
# Synchronize the stream and take time
stream.synchronize()
# end time
__a : str = time.time()
__a : Any = end_time - start_time
__a : Optional[int] = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
__SCREAMING_SNAKE_CASE : Optional[Any] = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__SCREAMING_SNAKE_CASE : List[str] = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError('Evaluation requires a dataset name')
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
__SCREAMING_SNAKE_CASE : int = raw_datasets['validation'].column_names
__SCREAMING_SNAKE_CASE : Tuple = 'question' if 'question' in column_names else column_names[0]
__SCREAMING_SNAKE_CASE : List[Any] = 'context' if 'context' in column_names else column_names[1]
__SCREAMING_SNAKE_CASE : Tuple = 'answers' if 'answers' in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
__SCREAMING_SNAKE_CASE : Tuple = tokenizer.padding_side == 'right'
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'''The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the'''
f'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.'''
)
__SCREAMING_SNAKE_CASE : Dict = min(args.max_seq_length, tokenizer.model_max_length)
def _snake_case ( lowercase ) -> Tuple:
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
# left whitespace
__a : Optional[Any] = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
__a : Optional[int] = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowercase , stride=args.doc_stride , return_overflowing_tokens=lowercase , return_offsets_mapping=lowercase , padding="""max_length""" , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
__a : Optional[Any] = tokenized_examples.pop("""overflow_to_sample_mapping""" )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
__a : Optional[Any] = []
for i in range(len(tokenized_examples["""input_ids"""] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
__a : Dict = tokenized_examples.sequence_ids(lowercase )
__a : Optional[Any] = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
__a : Union[str, Any] = sample_mapping[i]
tokenized_examples["example_id"].append(examples["""id"""][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
__a : int = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] )
]
return tokenized_examples
__SCREAMING_SNAKE_CASE : int = raw_datasets['validation']
# Validation Feature Creation
__SCREAMING_SNAKE_CASE : Union[str, Any] = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc='Running tokenizer on validation dataset',
)
__SCREAMING_SNAKE_CASE : List[Any] = default_data_collator
__SCREAMING_SNAKE_CASE : Union[str, Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping'])
__SCREAMING_SNAKE_CASE : List[str] = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def _snake_case ( lowercase , lowercase , lowercase , lowercase="eval" ) -> Any:
# Post-processing: we match the start logits and end logits to answers in the original context.
__a : List[str] = postprocess_qa_predictions(
examples=lowercase , features=lowercase , predictions=lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowercase , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
__a : List[str] = [
{"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items()
]
else:
__a : List[str] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()]
__a : Optional[Any] = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=lowercase , label_ids=lowercase )
__SCREAMING_SNAKE_CASE : List[Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad')
# Evaluation!
logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path)
with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def _snake_case ( lowercase ) -> Optional[int]:
return trt.volume(engine.get_binding_shape(lowercase ) ) * engine.get_binding_dtype(lowercase ).itemsize
# Allocate device memory for inputs and outputs.
__SCREAMING_SNAKE_CASE : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
__SCREAMING_SNAKE_CASE : str = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
__SCREAMING_SNAKE_CASE : Union[str, Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
__SCREAMING_SNAKE_CASE : str = cuda.mem_alloc(h_outputa.nbytes)
__SCREAMING_SNAKE_CASE : Tuple = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
__SCREAMING_SNAKE_CASE : Tuple = cuda.Stream()
# Evaluation
logger.info('***** Running Evaluation *****')
logger.info(f''' Num examples = {len(eval_dataset)}''')
logger.info(f''' Batch size = {args.per_device_eval_batch_size}''')
__SCREAMING_SNAKE_CASE : Union[str, Any] = 0.0
__SCREAMING_SNAKE_CASE : str = 0
__SCREAMING_SNAKE_CASE : str = timeit.default_timer()
__SCREAMING_SNAKE_CASE : Dict = None
for step, batch in enumerate(eval_dataloader):
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = outputs
__SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(start_logits)
__SCREAMING_SNAKE_CASE : Tuple = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
__SCREAMING_SNAKE_CASE : Optional[int] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
__SCREAMING_SNAKE_CASE : Dict = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
__SCREAMING_SNAKE_CASE : List[str] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
__SCREAMING_SNAKE_CASE : List[str] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
__SCREAMING_SNAKE_CASE : Tuple = nested_truncate(all_preds, len(eval_dataset))
__SCREAMING_SNAKE_CASE : str = timeit.default_timer() - start_time
logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter))
logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000))
logger.info('Total Number of Inference = %d', niter)
__SCREAMING_SNAKE_CASE : Optional[int] = post_processing_function(eval_examples, eval_dataset, all_preds)
__SCREAMING_SNAKE_CASE : List[Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(f'''Evaluation metrics: {eval_metric}''') | 697 | 0 |
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : Union[str, Any] = {'vocab_file': 'spiece.model'}
__A : Union[str, Any] = {
'vocab_file': {
't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model',
't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model',
't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model',
}
}
# TODO(PVP) - this should be removed in Transformers v5
__A : Any = {
't5-small': 5_1_2,
't5-base': 5_1_2,
't5-large': 5_1_2,
't5-3b': 5_1_2,
't5-11b': 5_1_2,
}
__A : Tuple = '▁'
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Tuple="<unk>" , __lowerCamelCase : int="<pad>" , __lowerCamelCase : Dict=100 , __lowerCamelCase : str=None , __lowerCamelCase : Optional[Dict[str, Any]] = None , __lowerCamelCase : str=True , **__lowerCamelCase : Optional[Any] , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
SCREAMING_SNAKE_CASE = [f"<extra_id_{i}>" for i in range(__lowerCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
SCREAMING_SNAKE_CASE = len(set(filter(lambda __lowerCamelCase : bool("extra_id" in str(__lowerCamelCase ) ) , __lowerCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"
" tokens" )
if legacy:
logger.warning_once(
f"You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to"
" read the related pull request available at https://github.com/huggingface/transformers/pull/24565" )
SCREAMING_SNAKE_CASE = legacy
SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , extra_ids=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=__lowerCamelCase , **__lowerCamelCase , )
SCREAMING_SNAKE_CASE = vocab_file
SCREAMING_SNAKE_CASE = extra_ids
SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__lowerCamelCase )
@staticmethod
def _snake_case ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ):
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
SCREAMING_SNAKE_CASE = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"This tokenizer was incorrectly instantiated with a model max length of"
f" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"
" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"
f" {pretrained_model_name_or_path} automatically truncating your input to"
f" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
f" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"
" instantiate this tokenizer with `model_max_length` set to your preferred value." , __lowerCamelCase , )
return max_model_length
@property
def _snake_case ( self : List[Any] ):
return self.sp_model.get_piece_size() + self._extra_ids
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(__lowerCamelCase )) + [1]
return ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1]
def _snake_case ( self : Any ):
return list(
set(filter(lambda __lowerCamelCase : bool(re.search(r"<extra_id_\d+>" , __lowerCamelCase ) ) is not None , self.additional_special_tokens ) ) )
def _snake_case ( self : Tuple ):
return [self._convert_token_to_id(__lowerCamelCase ) for token in self.get_sentinel_tokens()]
def _snake_case ( self : List[str] , __lowerCamelCase : List[int] ):
if len(__lowerCamelCase ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated"
" eos tokens being added." )
return token_ids
else:
return token_ids + [self.eos_token_id]
def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def _snake_case ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = self._add_eos_if_not_present(__lowerCamelCase )
if token_ids_a is None:
return token_ids_a
else:
SCREAMING_SNAKE_CASE = self._add_eos_if_not_present(__lowerCamelCase )
return token_ids_a + token_ids_a
def __getstate__( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.__dict__.copy()
SCREAMING_SNAKE_CASE = None
return state
def __setstate__( self : Optional[int] , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self : Dict , __lowerCamelCase : "TextInput" , **__lowerCamelCase : List[str] ):
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
SCREAMING_SNAKE_CASE = SPIECE_UNDERLINE + text.replace(__lowerCamelCase , " " )
return super().tokenize(__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Any , **__lowerCamelCase : str ):
if not self.legacy:
SCREAMING_SNAKE_CASE = text.startswith(__lowerCamelCase )
if is_first:
SCREAMING_SNAKE_CASE = text[1:]
SCREAMING_SNAKE_CASE = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase )
if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] ):
if token.startswith("<extra_id_" ):
SCREAMING_SNAKE_CASE = re.match(r"<extra_id_(\d+)>" , __lowerCamelCase )
SCREAMING_SNAKE_CASE = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(__lowerCamelCase )
def _snake_case ( self : int , __lowerCamelCase : Dict ):
if index < self.sp_model.get_piece_size():
SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(__lowerCamelCase )
else:
SCREAMING_SNAKE_CASE = f"<extra_id_{self.vocab_size - 1 - index}>"
return token
def _snake_case ( self : Optional[int] , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = ""
SCREAMING_SNAKE_CASE = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__lowerCamelCase ) + token
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = []
else:
current_sub_tokens.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = False
out_string += self.sp_model.decode(__lowerCamelCase )
return out_string.strip()
def _snake_case ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCamelCase , "wb" ) as fi:
SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(__lowerCamelCase )
return (out_vocab_file,) | 698 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A : Optional[int] = logging.get_logger(__name__)
__A : List[str] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : Tuple = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
__A : Dict = {'facebook/blenderbot-3B': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __a ( ):
SCREAMING_SNAKE_CASE = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
SCREAMING_SNAKE_CASE = bs[:]
SCREAMING_SNAKE_CASE = 0
for b in range(2**8 ):
if b not in bs:
bs.append(A__ )
cs.append(2**8 + n )
n += 1
SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs]
return dict(zip(A__ , A__ ) )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = set()
SCREAMING_SNAKE_CASE = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
SCREAMING_SNAKE_CASE = char
return pairs
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ):
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()}
SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding
SCREAMING_SNAKE_CASE = bytes_to_unicode()
SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1]
SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges]
SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _snake_case ( self : Dict ):
return len(self.encoder )
def _snake_case ( self : int ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ):
if token in self.cache:
return self.cache[token]
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while i < len(__lowerCamelCase ):
try:
SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
SCREAMING_SNAKE_CASE = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = new_word
if len(__lowerCamelCase ) == 1:
break
else:
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = word
return word
def _snake_case ( self : str , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for token in re.findall(self.pat , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : List[str] , __lowerCamelCase : str ):
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ):
return self.decoder.get(__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
SCREAMING_SNAKE_CASE = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
SCREAMING_SNAKE_CASE = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
SCREAMING_SNAKE_CASE = " " + text
return (text, kwargs)
def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ):
SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." )
return input_ids | 698 | 1 |
__A : Tuple = 'Tobias Carryer'
from time import time
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple=int(time() ) ): # noqa: B008
SCREAMING_SNAKE_CASE = multiplier
SCREAMING_SNAKE_CASE = increment
SCREAMING_SNAKE_CASE = modulo
SCREAMING_SNAKE_CASE = seed
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = (self.multiplier * self.seed + self.increment) % self.modulo
return self.seed
if __name__ == "__main__":
# Show the LCG in action.
__A : Any = LinearCongruentialGenerator(1_6_6_4_5_2_5, 1_0_1_3_9_0_4_2_2_3, 2 << 3_1)
while True:
print(lcg.next_number()) | 698 |
from __future__ import annotations
from cmath import sqrt
def __a ( A__ : int , A__ : int , A__ : int ):
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
SCREAMING_SNAKE_CASE = b * b - 4 * a * c
SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a)
SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def __a ( ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main() | 698 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[str] = logging.get_logger(__name__)
__A : Optional[Any] = {
'facebook/dpr-ctx_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-single-nq-base': (
'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-reader-single-nq-base': (
'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json'
),
'facebook/dpr-ctx_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-question_encoder-multiset-base': (
'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json'
),
'facebook/dpr-reader-multiset-base': (
'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json'
),
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "dpr"
def __init__( self : List[str] , __lowerCamelCase : List[Any]=30522 , __lowerCamelCase : Optional[Any]=768 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : int=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=512 , __lowerCamelCase : str=2 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : Tuple=1e-12 , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]="absolute" , __lowerCamelCase : int = 0 , **__lowerCamelCase : Optional[Any] , ):
super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = type_vocab_size
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = projection_dim
SCREAMING_SNAKE_CASE = position_embedding_type | 698 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text | 698 | 1 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__A : str = abspath(join(dirname(__file__), 'src'))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='ignore', category=FutureWarning)
def __a ( A__ : Any ):
config.addinivalue_line(
"markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" )
config.addinivalue_line(
"markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" )
config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" )
config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" )
config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" )
config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" )
def __a ( A__ : Union[str, Any] ):
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(A__ )
def __a ( A__ : List[Any] ):
from transformers.testing_utils import pytest_terminal_summary_main
SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("--make-reports" )
if make_reports:
pytest_terminal_summary_main(A__ , id=A__ )
def __a ( A__ : Dict , A__ : List[str] ):
# If no tests are collected, pytest exists with code 5, which makes the CI fail.
if exitstatus == 5:
SCREAMING_SNAKE_CASE = 0
# Doctest custom flag to ignore output.
__A : List[str] = doctest.register_optionflag('IGNORE_RESULT')
__A : Any = doctest.OutputChecker
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
__A : Tuple = CustomOutputChecker
__A : Union[str, Any] = HfDoctestModule
__A : Tuple = HfDocTestParser | 698 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 1 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__A : List[Any] = logging.get_logger(__name__)
def __a ( A__ : Tuple ):
if isinstance(A__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(A__ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(A__ ):
return [[videos]]
raise ValueError(F"Could not make batched video from {videos}" )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = ["pixel_values"]
def __init__( self : str , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , **__lowerCamelCase : List[str] , ):
super().__init__(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = size if size is not None else {"shortest_edge": 224}
SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase )
SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 224, "width": 224}
SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , param_name="crop_size" )
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = do_center_crop
SCREAMING_SNAKE_CASE = crop_size
SCREAMING_SNAKE_CASE = resample
SCREAMING_SNAKE_CASE = do_rescale
SCREAMING_SNAKE_CASE = rescale_factor
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
SCREAMING_SNAKE_CASE = image_std if image_std is not None else IMAGENET_STANDARD_STD
def _snake_case ( self : List[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[Any] , ):
SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase )
if "shortest_edge" in size:
SCREAMING_SNAKE_CASE = get_resize_output_image_size(__lowerCamelCase , size["shortest_edge"] , default_to_square=__lowerCamelCase )
elif "height" in size and "width" in size:
SCREAMING_SNAKE_CASE = (size["height"], size["width"])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : str , ):
SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(__lowerCamelCase , size=(size["height"], size["width"]) , data_format=__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : List[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : List[str] , ):
return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : str , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ):
return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : int , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , ):
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
SCREAMING_SNAKE_CASE = to_numpy_array(__lowerCamelCase )
if do_resize:
SCREAMING_SNAKE_CASE = self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase )
if do_center_crop:
SCREAMING_SNAKE_CASE = self.center_crop(__lowerCamelCase , size=__lowerCamelCase )
if do_rescale:
SCREAMING_SNAKE_CASE = self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase )
if do_normalize:
SCREAMING_SNAKE_CASE = self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase )
SCREAMING_SNAKE_CASE = to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase )
return image
def _snake_case ( self : List[Any] , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase : List[str] , ):
SCREAMING_SNAKE_CASE = do_resize if do_resize is not None else self.do_resize
SCREAMING_SNAKE_CASE = resample if resample is not None else self.resample
SCREAMING_SNAKE_CASE = do_center_crop if do_center_crop is not None else self.do_center_crop
SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale
SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor
SCREAMING_SNAKE_CASE = do_normalize if do_normalize is not None else self.do_normalize
SCREAMING_SNAKE_CASE = image_mean if image_mean is not None else self.image_mean
SCREAMING_SNAKE_CASE = image_std if image_std is not None else self.image_std
SCREAMING_SNAKE_CASE = size if size is not None else self.size
SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase )
SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else self.crop_size
SCREAMING_SNAKE_CASE = get_size_dict(__lowerCamelCase , param_name="crop_size" )
if not valid_images(__lowerCamelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
SCREAMING_SNAKE_CASE = make_batched(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [
[
self._preprocess_image(
image=__lowerCamelCase , do_resize=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , do_center_crop=__lowerCamelCase , crop_size=__lowerCamelCase , do_rescale=__lowerCamelCase , rescale_factor=__lowerCamelCase , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , data_format=__lowerCamelCase , )
for img in video
]
for video in videos
]
SCREAMING_SNAKE_CASE = {"pixel_values": videos}
return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) | 698 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__A : Optional[Any] = datasets.load_iris()
__A : Optional[Any] = np.array(data['data'])
__A : Optional[int] = np.array(data['target'])
__A : Union[str, Any] = data['target_names']
__A , __A , __A , __A : Optional[int] = train_test_split(X, y)
def __a ( A__ : Optional[int] , A__ : Dict ):
return np.linalg.norm(np.array(A__ ) - np.array(A__ ) )
def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ):
SCREAMING_SNAKE_CASE = zip(A__ , A__ )
# List of distances of all points from the point to be classified
SCREAMING_SNAKE_CASE = []
for data_point in data:
SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) | 698 | 1 |
import math
def __a ( A__ : int ):
assert isinstance(A__ , A__ ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
SCREAMING_SNAKE_CASE = range(3 , int(math.sqrt(A__ ) + 1 ) , 2 )
return not any(not number % i for i in odd_numbers )
def __a ( A__ : Optional[int] , A__ : List[Any]=1 , **A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = factor * value
SCREAMING_SNAKE_CASE = value
while not is_prime(A__ ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1 , **A__ )
return value | 698 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Dict = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "resnet"
lowerCamelCase__ = ["basic", "bottleneck"]
def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ):
super().__init__(**__lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embedding_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = downsample_in_first_stage
SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : Optional[int] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : Optional[int] ):
return 1e-3 | 698 | 1 |
import random
from typing import Any
def __a ( A__ : list ):
for _ in range(len(A__ ) ):
SCREAMING_SNAKE_CASE = random.randint(0 , len(A__ ) - 1 )
SCREAMING_SNAKE_CASE = random.randint(0 , len(A__ ) - 1 )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = data[b], data[a]
return data
if __name__ == "__main__":
__A : Tuple = [0, 1, 2, 3, 4, 5, 6, 7]
__A : Union[str, Any] = ['python', 'says', 'hello', '!']
print('Fisher-Yates Shuffle:')
print('List', integers, strings)
print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings)) | 698 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__A : str = logging.get_logger(__name__)
__A : Optional[Any] = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "imagegpt"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_positions
SCREAMING_SNAKE_CASE = n_embd
SCREAMING_SNAKE_CASE = n_layer
SCREAMING_SNAKE_CASE = n_head
SCREAMING_SNAKE_CASE = n_inner
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_pdrop
SCREAMING_SNAKE_CASE = embd_pdrop
SCREAMING_SNAKE_CASE = attn_pdrop
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = scale_attn_weights
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx
SCREAMING_SNAKE_CASE = reorder_and_upcast_attn
SCREAMING_SNAKE_CASE = tie_word_embeddings
super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ):
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ):
SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return inputs | 698 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : List[Any] = logging.get_logger(__name__)
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "timm_backbone"
def __init__( self : List[str] , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[str]=None , **__lowerCamelCase : Tuple , ):
super().__init__(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = backbone
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = features_only
SCREAMING_SNAKE_CASE = use_pretrained_backbone
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = out_indices if out_indices is not None else (-1,) | 698 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@slow
@require_torch
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" )
SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size
SCREAMING_SNAKE_CASE = tokenizer.sep_token_id
SCREAMING_SNAKE_CASE = tokenizer.cls_token_id
SCREAMING_SNAKE_CASE = 128
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) )
SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) )
SCREAMING_SNAKE_CASE = 4
def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 )
SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 )
SCREAMING_SNAKE_CASE = inputs.input_ids
SCREAMING_SNAKE_CASE = inputs.attention_mask
SCREAMING_SNAKE_CASE = outputs.input_ids
SCREAMING_SNAKE_CASE = outputs.input_ids.copy()
SCREAMING_SNAKE_CASE = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
SCREAMING_SNAKE_CASE = outputs.attention_mask
assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids )
assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = pred.label_ids
SCREAMING_SNAKE_CASE = pred.predictions
# all unnecessary tokens are removed
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase )
return {"accuracy": accuracy}
# map train dataset
SCREAMING_SNAKE_CASE = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
SCREAMING_SNAKE_CASE = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments(
output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
SCREAMING_SNAKE_CASE = SeqaSeqTrainer(
model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , )
# start training
trainer.train() | 698 | 1 |
import os
import random
import sys
from . import cryptomath_module as cryptomath
from . import rabin_miller
__A : int = 3
def __a ( A__ : int ):
print("Generating primitive root of p" )
while True:
SCREAMING_SNAKE_CASE = random.randrange(3 , A__ )
if pow(A__ , 2 , A__ ) == 1:
continue
if pow(A__ , A__ , A__ ) == 1:
continue
return g
def __a ( A__ : int ):
print("Generating prime p..." )
SCREAMING_SNAKE_CASE = rabin_miller.generate_large_prime(A__ ) # select large prime number.
SCREAMING_SNAKE_CASE = primitive_root(A__ ) # one primitive root on modulo p.
SCREAMING_SNAKE_CASE = random.randrange(3 , A__ ) # private_key -> have to be greater than 2 for safety.
SCREAMING_SNAKE_CASE = cryptomath.find_mod_inverse(pow(A__ , A__ , A__ ) , A__ )
SCREAMING_SNAKE_CASE = (key_size, e_a, e_a, p)
SCREAMING_SNAKE_CASE = (key_size, d)
return public_key, private_key
def __a ( A__ : str , A__ : int ):
if os.path.exists(F"{name}_pubkey.txt" ) or os.path.exists(F"{name}_privkey.txt" ):
print("\nWARNING:" )
print(
F"\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n"
"Use a different name or delete these files and re-run this program." )
sys.exit()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_key(A__ )
print(F"\nWriting public key to file {name}_pubkey.txt..." )
with open(F"{name}_pubkey.txt" , "w" ) as fo:
fo.write(F"{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}" )
print(F"Writing private key to file {name}_privkey.txt..." )
with open(F"{name}_privkey.txt" , "w" ) as fo:
fo.write(F"{private_key[0]},{private_key[1]}" )
def __a ( ):
print("Making key files..." )
make_key_files("elgamal" , 2048 )
print("Key files generation successful" )
if __name__ == "__main__":
main() | 698 |
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = kernel_size
SCREAMING_SNAKE_CASE = stride
SCREAMING_SNAKE_CASE = padding
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = key_dim
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = attention_ratio
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = initializer_range
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ):
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = LevitModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _snake_case ( self : Any ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self : Any ):
return
@unittest.skip(reason="Levit does not use inputs_embeds" )
def _snake_case ( self : Union[str, Any] ):
pass
@unittest.skip(reason="Levit does not support input and output embeddings" )
def _snake_case ( self : Tuple ):
pass
@unittest.skip(reason="Levit does not output attentions" )
def _snake_case ( self : Tuple ):
pass
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _snake_case ( self : int ):
pass
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ):
SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__lowerCamelCase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__lowerCamelCase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE = problem_type["title"]
SCREAMING_SNAKE_CASE = problem_type["num_labels"]
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list:
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def _snake_case ( self : List[Any] ):
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __a ( ):
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Dict ):
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) | 698 | 1 |
import argparse
import os
import re
import torch
from flax.traverse_util import flatten_dict
from tax import checkpoints
from transformers import (
AutoTokenizer,
PixaStructConfig,
PixaStructForConditionalGeneration,
PixaStructImageProcessor,
PixaStructProcessor,
PixaStructTextConfig,
PixaStructVisionConfig,
)
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = checkpoints.load_tax_checkpoint(A__ )
SCREAMING_SNAKE_CASE = flatten_dict(A__ )
return flax_params
def __a ( A__ : Union[str, Any] ):
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = {
"token_embedder": "embeddings",
"encoder_norm": "layernorm",
"kernel": "weight",
".out": ".output",
"scale": "weight",
"embedders_0.pos_embedding": "row_embedder.weight",
"embedders_1.pos_embedding": "column_embedder.weight",
}
SCREAMING_SNAKE_CASE = {
"query": "attention.query",
"key": "attention.key",
"value": "attention.value",
"output.dense": "output",
"encoder_decoder_attention.o": "encoder_decoder_attention.attention.o",
"pre_self_attention_layer_norm": "self_attention.layer_norm",
"pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm",
"mlp.": "mlp.DenseReluDense.",
"pre_mlp_layer_norm": "mlp.layer_norm",
"self_attention.o": "self_attention.attention.o",
"decoder.embeddings.embedding": "decoder.embed_tokens.weight",
"decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight",
"decoder.decoder_norm.weight": "decoder.final_layer_norm.weight",
"decoder.logits_dense.weight": "decoder.lm_head.weight",
}
for key in flax_dict.keys():
if "target" in key:
# remove the first prefix from the key
SCREAMING_SNAKE_CASE = ".".join(key[1:] )
# rename the key
for old, new in CONVERSION_MAPPING.items():
SCREAMING_SNAKE_CASE = new_key.replace(A__ , A__ )
if "decoder" in new_key:
for old, new in DECODER_CONVERSION_MAPPING.items():
SCREAMING_SNAKE_CASE = new_key.replace(A__ , A__ )
if "layers" in new_key and "decoder" not in new_key:
# use regex to replace the layer number
SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"layer.\1" , A__ )
SCREAMING_SNAKE_CASE = new_key.replace("encoder" , "encoder.encoder" )
elif "layers" in new_key and "decoder" in new_key:
# use regex to replace the layer number
SCREAMING_SNAKE_CASE = re.sub(R"layers_(\d+)" , R"layer.\1" , A__ )
SCREAMING_SNAKE_CASE = flax_dict[key]
SCREAMING_SNAKE_CASE = {}
# convert converted_dict into torch format
for key in converted_dict.keys():
if ("embed_tokens" not in key) and ("embedder" not in key):
SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key].T )
else:
SCREAMING_SNAKE_CASE = torch.from_numpy(converted_dict[key] )
return converted_torch_dict
def __a ( A__ : Any , A__ : List[Any] , A__ : Any=False , A__ : Tuple=False ):
SCREAMING_SNAKE_CASE = get_flax_param(A__ )
if not use_large:
SCREAMING_SNAKE_CASE = PixaStructVisionConfig()
SCREAMING_SNAKE_CASE = PixaStructTextConfig()
else:
SCREAMING_SNAKE_CASE = PixaStructVisionConfig(
hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 )
SCREAMING_SNAKE_CASE = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 )
SCREAMING_SNAKE_CASE = PixaStructConfig(
vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=A__ )
SCREAMING_SNAKE_CASE = PixaStructForConditionalGeneration(A__ )
SCREAMING_SNAKE_CASE = rename_and_convert_flax_params(A__ )
model.load_state_dict(A__ )
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer" )
SCREAMING_SNAKE_CASE = PixaStructImageProcessor()
SCREAMING_SNAKE_CASE = PixaStructProcessor(image_processor=A__ , tokenizer=A__ )
if use_large:
SCREAMING_SNAKE_CASE = 4096
SCREAMING_SNAKE_CASE = True
# mkdir if needed
os.makedirs(A__ , exist_ok=A__ )
model.save_pretrained(A__ )
processor.save_pretrained(A__ )
print("Model saved in {}".format(A__ ) )
if __name__ == "__main__":
__A : Optional[int] = argparse.ArgumentParser()
parser.add_argument('--t5x_checkpoint_path', default=None, type=str, help='Path to the original T5x checkpoint.')
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--use_large', action='store_true', help='Use large model.')
parser.add_argument('--is_vqa', action='store_true', help='Use large model.')
__A : int = parser.parse_args()
convert_pixastruct_original_pytorch_checkpoint_to_hf(
args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
) | 698 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
return None
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ):
return None
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = [
# (model_name, model_kwargs)
("bert-base-cased", {}),
("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : Optional[int] ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t" ) as vocab_file:
vocab_file.write("\n".join(__lowerCamelCase ) )
vocab_file.flush()
SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) )
model.save_pretrained(__lowerCamelCase )
self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase )
@require_tf
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
@require_torch
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
return path
except Exception as e:
self.fail(__lowerCamelCase )
@require_torch
@require_tokenizers
@slow
def _snake_case ( self : Dict ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" )
@require_tf
@require_tokenizers
@slow
def _snake_case ( self : int ):
from transformers import TFBertModel
SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" )
def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase )
# Assert all variables are present
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase )
self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} )
self.assertDictEqual(shapes["output_1"] , {0: "batch"} )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"]
SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__lowerCamelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["input_ids"] )
self.assertEqual(ordered_input_names[0] , "input_ids" )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" )
self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() ) | 698 | 1 |
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = (UnCLIPScheduler,)
def _snake_case ( self : Union[str, Any] , **__lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = {
"num_train_timesteps": 1000,
"variance_type": "fixed_small_log",
"clip_sample": True,
"clip_sample_range": 1.0,
"prediction_type": "epsilon",
}
config.update(**__lowerCamelCase )
return config
def _snake_case ( self : Any ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=__lowerCamelCase )
def _snake_case ( self : List[str] ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=__lowerCamelCase )
def _snake_case ( self : Optional[int] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__lowerCamelCase )
def _snake_case ( self : str ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=__lowerCamelCase )
def _snake_case ( self : List[Any] ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=__lowerCamelCase )
def _snake_case ( self : Union[str, Any] ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=__lowerCamelCase , prev_timestep=__lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config(variance_type="fixed_small_log" )
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.00_00e-10 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config(variance_type="learned_range" )
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = 0.5
assert scheduler._get_variance(1 , predicted_variance=__lowerCamelCase ) - -10.1_712_790 < 1e-5
assert scheduler._get_variance(487 , predicted_variance=__lowerCamelCase ) - -5.7_998_052 < 1e-5
assert scheduler._get_variance(999 , predicted_variance=__lowerCamelCase ) - -0.0_010_011 < 1e-5
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config()
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler.timesteps
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter
SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
for i, t in enumerate(__lowerCamelCase ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase )
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample
SCREAMING_SNAKE_CASE = pred_prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2
assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config()
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(25 )
SCREAMING_SNAKE_CASE = scheduler.timesteps
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter
SCREAMING_SNAKE_CASE = torch.manual_seed(0 )
for i, t in enumerate(__lowerCamelCase ):
# 1. predict noise residual
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase )
if i + 1 == timesteps.shape[0]:
SCREAMING_SNAKE_CASE = None
else:
SCREAMING_SNAKE_CASE = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
SCREAMING_SNAKE_CASE = scheduler.step(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , prev_timestep=__lowerCamelCase , generator=__lowerCamelCase ).prev_sample
SCREAMING_SNAKE_CASE = pred_prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2
assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3
def _snake_case ( self : Dict ):
pass
def _snake_case ( self : int ):
pass | 698 |
from manim import *
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
rect.set_stroke(__lowerCamelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 )
self.add(__lowerCamelCase )
cpu_targs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
SCREAMING_SNAKE_CASE = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
SCREAMING_SNAKE_CASE = MarkupText(
f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) )
self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 )
target.move_to(__lowerCamelCase )
first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) )
self.play(*__lowerCamelCase )
self.play(*__lowerCamelCase )
self.wait() | 698 | 1 |
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEncoder,
BertModel,
BertPreTrainedModel,
)
__A : Optional[int] = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Tuple=None ):
SCREAMING_SNAKE_CASE = self.layer[current_layer](__lowerCamelCase , __lowerCamelCase , head_mask[current_layer] )
SCREAMING_SNAKE_CASE = layer_outputs[0]
return hidden_states
@add_start_docstrings(
"The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __snake_case , )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Any ):
super().__init__(__lowerCamelCase )
SCREAMING_SNAKE_CASE = BertEncoderWithPabee(__lowerCamelCase )
self.init_weights()
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
def _snake_case ( self : List[Any] , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = threshold
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = patience
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.inference_layers_num / self.inference_instances_num
SCREAMING_SNAKE_CASE = (
f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="
f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"
)
print(__lowerCamelCase )
@add_start_docstrings_to_model_forward(__lowerCamelCase )
def _snake_case ( self : List[str] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=False , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" )
elif input_ids is not None:
SCREAMING_SNAKE_CASE = input_ids.size()
elif inputs_embeds is not None:
SCREAMING_SNAKE_CASE = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds" )
SCREAMING_SNAKE_CASE = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
SCREAMING_SNAKE_CASE = torch.ones(__lowerCamelCase , device=__lowerCamelCase )
if token_type_ids is None:
SCREAMING_SNAKE_CASE = torch.zeros(__lowerCamelCase , dtype=torch.long , device=__lowerCamelCase )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
SCREAMING_SNAKE_CASE = self.get_extended_attention_mask(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = encoder_hidden_states.size()
SCREAMING_SNAKE_CASE = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
SCREAMING_SNAKE_CASE = torch.ones(__lowerCamelCase , device=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.invert_attention_mask(__lowerCamelCase )
else:
SCREAMING_SNAKE_CASE = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
SCREAMING_SNAKE_CASE = self.get_head_mask(__lowerCamelCase , self.config.num_hidden_layers )
SCREAMING_SNAKE_CASE = self.embeddings(
input_ids=__lowerCamelCase , position_ids=__lowerCamelCase , token_type_ids=__lowerCamelCase , inputs_embeds=__lowerCamelCase )
SCREAMING_SNAKE_CASE = embedding_output
if self.training:
SCREAMING_SNAKE_CASE = []
for i in range(self.config.num_hidden_layers ):
SCREAMING_SNAKE_CASE = self.encoder.adaptive_forward(
__lowerCamelCase , current_layer=__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.pooler(__lowerCamelCase )
SCREAMING_SNAKE_CASE = output_layers[i](output_dropout(__lowerCamelCase ) )
res.append(__lowerCamelCase )
elif self.patience == 0: # Use all layers for inference
SCREAMING_SNAKE_CASE = self.encoder(
__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = self.pooler(encoder_outputs[0] )
SCREAMING_SNAKE_CASE = [output_layers[self.config.num_hidden_layers - 1](__lowerCamelCase )]
else:
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = 0
for i in range(self.config.num_hidden_layers ):
calculated_layer_num += 1
SCREAMING_SNAKE_CASE = self.encoder.adaptive_forward(
__lowerCamelCase , current_layer=__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.pooler(__lowerCamelCase )
SCREAMING_SNAKE_CASE = output_layers[i](__lowerCamelCase )
if regression:
SCREAMING_SNAKE_CASE = logits.detach()
if patient_result is not None:
SCREAMING_SNAKE_CASE = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold:
patient_counter += 1
else:
SCREAMING_SNAKE_CASE = 0
else:
SCREAMING_SNAKE_CASE = logits.detach().argmax(dim=1 )
if patient_result is not None:
SCREAMING_SNAKE_CASE = patient_result.detach().argmax(dim=1 )
if (patient_result is not None) and torch.all(labels.eq(__lowerCamelCase ) ):
patient_counter += 1
else:
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = logits
if patient_counter == self.patience:
break
SCREAMING_SNAKE_CASE = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __snake_case , )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : List[Any] , __lowerCamelCase : Any ):
super().__init__(__lowerCamelCase )
SCREAMING_SNAKE_CASE = config.num_labels
SCREAMING_SNAKE_CASE = BertModelWithPabee(__lowerCamelCase )
SCREAMING_SNAKE_CASE = nn.Dropout(config.hidden_dropout_prob )
SCREAMING_SNAKE_CASE = nn.ModuleList(
[nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] )
self.init_weights()
@add_start_docstrings_to_model_forward(__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : str=None , ):
SCREAMING_SNAKE_CASE = self.bert(
input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , position_ids=__lowerCamelCase , head_mask=__lowerCamelCase , inputs_embeds=__lowerCamelCase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , )
SCREAMING_SNAKE_CASE = (logits[-1],)
if labels is not None:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = 0
for ix, logits_item in enumerate(__lowerCamelCase ):
if self.num_labels == 1:
# We are doing regression
SCREAMING_SNAKE_CASE = MSELoss()
SCREAMING_SNAKE_CASE = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) )
else:
SCREAMING_SNAKE_CASE = CrossEntropyLoss()
SCREAMING_SNAKE_CASE = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) )
if total_loss is None:
SCREAMING_SNAKE_CASE = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
SCREAMING_SNAKE_CASE = (total_loss / total_weights,) + outputs
return outputs | 698 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ):
pass
@is_pipeline_test
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCamelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@require_tf
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@slow
@require_torch
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , ) | 698 | 1 |
from random import randint
from tempfile import TemporaryFile
import numpy as np
def __a ( A__ : List[Any] , A__ : List[Any] , A__ : Any ):
SCREAMING_SNAKE_CASE = 0
if start < end:
SCREAMING_SNAKE_CASE = randint(A__ , A__ )
SCREAMING_SNAKE_CASE = a[end]
SCREAMING_SNAKE_CASE = a[pivot]
SCREAMING_SNAKE_CASE = temp
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = _in_place_partition(A__ , A__ , A__ )
count += _in_place_quick_sort(A__ , A__ , p - 1 )
count += _in_place_quick_sort(A__ , p + 1 , A__ )
return count
def __a ( A__ : List[Any] , A__ : Any , A__ : Tuple ):
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = randint(A__ , A__ )
SCREAMING_SNAKE_CASE = a[end]
SCREAMING_SNAKE_CASE = a[pivot]
SCREAMING_SNAKE_CASE = temp
SCREAMING_SNAKE_CASE = start - 1
for index in range(A__ , A__ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
SCREAMING_SNAKE_CASE = new_pivot_index + 1
SCREAMING_SNAKE_CASE = a[new_pivot_index]
SCREAMING_SNAKE_CASE = a[index]
SCREAMING_SNAKE_CASE = temp
SCREAMING_SNAKE_CASE = a[new_pivot_index + 1]
SCREAMING_SNAKE_CASE = a[end]
SCREAMING_SNAKE_CASE = temp
return new_pivot_index + 1, count
__A : int = TemporaryFile()
__A : List[str] = 1_0_0 # 1000 elements are to be sorted
__A , __A : List[str] = 0, 1 # mean and standard deviation
__A : Tuple = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print('The array is')
print(X)
outfile.seek(0) # using the same array
__A : Optional[int] = np.load(outfile)
__A : Union[str, Any] = len(M) - 1
__A : List[str] = _in_place_quick_sort(M, 0, r)
print(
'No of Comparisons for 100 elements selected from a standard normal distribution'
'is :'
)
print(z) | 698 |
__A : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0217_6634e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355_818,
}
def __a ( A__ : str , A__ : str , A__ : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
SCREAMING_SNAKE_CASE = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(A__ )}"
)
raise ValueError(A__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@slow
@require_torch
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" )
SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size
SCREAMING_SNAKE_CASE = tokenizer.sep_token_id
SCREAMING_SNAKE_CASE = tokenizer.cls_token_id
SCREAMING_SNAKE_CASE = 128
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) )
SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) )
SCREAMING_SNAKE_CASE = 4
def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 )
SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 )
SCREAMING_SNAKE_CASE = inputs.input_ids
SCREAMING_SNAKE_CASE = inputs.attention_mask
SCREAMING_SNAKE_CASE = outputs.input_ids
SCREAMING_SNAKE_CASE = outputs.input_ids.copy()
SCREAMING_SNAKE_CASE = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
SCREAMING_SNAKE_CASE = outputs.attention_mask
assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids )
assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = pred.label_ids
SCREAMING_SNAKE_CASE = pred.predictions
# all unnecessary tokens are removed
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase )
return {"accuracy": accuracy}
# map train dataset
SCREAMING_SNAKE_CASE = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
SCREAMING_SNAKE_CASE = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments(
output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
SCREAMING_SNAKE_CASE = SeqaSeqTrainer(
model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , )
# start training
trainer.train() | 698 |
from collections import deque
from .hash_table import HashTable
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.values[key]
def _snake_case ( self : Union[str, Any] ):
return (
sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ):
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0
):
return key
return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase ) | 698 | 1 |
from math import pi
def __a ( A__ : int , A__ : int ):
return 2 * pi * radius * (angle / 360)
if __name__ == "__main__":
print(arc_length(9_0, 1_0)) | 698 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "gpt_neo"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_layers
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = window_size
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_dropout
SCREAMING_SNAKE_CASE = embed_dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = classifier_dropout
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
SCREAMING_SNAKE_CASE = attention_types
SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
@staticmethod
def _snake_case ( __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ):
import torch
SCREAMING_SNAKE_CASE = input.size()
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = shape[dimension]
SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ )
SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1
SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE = [slice(A__ )] * rank
SCREAMING_SNAKE_CASE = indices
SCREAMING_SNAKE_CASE = input[s]
SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(A__ )
def __a ( A__ : Union[str, Any] , A__ : Optional[int] ):
import torch
SCREAMING_SNAKE_CASE = torch.arange(1 , A__ )
SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ )
SCREAMING_SNAKE_CASE = remainders == 0
SCREAMING_SNAKE_CASE = candidates[divisor_indices]
SCREAMING_SNAKE_CASE = torch.max(A__ )
return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _snake_case ( self : Optional[int] ):
return self._config.num_heads
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE = seqlen + 2
SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE = common_inputs["attention_mask"]
if self.use_past:
SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype
SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
return ordered_inputs
@property
def _snake_case ( self : Optional[int] ):
return 13 | 698 | 1 |
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
__A : str = 'scheduler_config.json'
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = 1
lowerCamelCase__ = 2
lowerCamelCase__ = 3
lowerCamelCase__ = 4
lowerCamelCase__ = 5
lowerCamelCase__ = 6
lowerCamelCase__ = 7
lowerCamelCase__ = 8
lowerCamelCase__ = 9
lowerCamelCase__ = 1_0
lowerCamelCase__ = 1_1
lowerCamelCase__ = 1_2
lowerCamelCase__ = 1_3
lowerCamelCase__ = 1_4
@dataclass
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = 42
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowerCamelCase__ = SCHEDULER_CONFIG_NAME
lowerCamelCase__ = []
lowerCamelCase__ = True
@classmethod
def _snake_case ( cls : str , __lowerCamelCase : Dict[str, Any] = None , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : List[str]=False , **__lowerCamelCase : int , ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.load_config(
pretrained_model_name_or_path=__lowerCamelCase , subfolder=__lowerCamelCase , return_unused_kwargs=__lowerCamelCase , return_commit_hash=__lowerCamelCase , **__lowerCamelCase , )
return cls.from_config(__lowerCamelCase , return_unused_kwargs=__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : Union[str, os.PathLike] , __lowerCamelCase : bool = False , **__lowerCamelCase : Optional[Any] ):
self.save_config(save_directory=__lowerCamelCase , push_to_hub=__lowerCamelCase , **__lowerCamelCase )
@property
def _snake_case ( self : Optional[Any] ):
return self._get_compatibles()
@classmethod
def _snake_case ( cls : Optional[int] ):
SCREAMING_SNAKE_CASE = list(set([cls.__name__] + cls._compatibles ) )
SCREAMING_SNAKE_CASE = importlib.import_module(__name__.split("." )[0] )
SCREAMING_SNAKE_CASE = [
getattr(__lowerCamelCase , __lowerCamelCase ) for c in compatible_classes_str if hasattr(__lowerCamelCase , __lowerCamelCase )
]
return compatible_classes | 698 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : Any = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 1 |
from collections import OrderedDict
from typing import Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...feature_extraction_utils import FeatureExtractionMixin
from ...onnx import OnnxConfig
from ...onnx.utils import compute_effective_axis_dimension
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType, logging
__A : List[str] = logging.get_logger(__name__)
__A : List[str] = {
'deepmind/language-perceiver': 'https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json',
# See all Perceiver models at https://huggingface.co/models?filter=perceiver
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "perceiver"
def __init__( self : int , __lowerCamelCase : Optional[Any]=256 , __lowerCamelCase : int=1280 , __lowerCamelCase : List[str]=768 , __lowerCamelCase : int=1 , __lowerCamelCase : Any=26 , __lowerCamelCase : Optional[Any]=8 , __lowerCamelCase : Any=8 , __lowerCamelCase : Tuple=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]="kv" , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Dict=1e-12 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Optional[Any]=262 , __lowerCamelCase : Optional[int]=2048 , __lowerCamelCase : int=56 , __lowerCamelCase : Union[str, Any]=[368, 496] , __lowerCamelCase : Tuple=16 , __lowerCamelCase : Tuple=1920 , __lowerCamelCase : Optional[int]=16 , __lowerCamelCase : List[Any]=[1, 16, 224, 224] , **__lowerCamelCase : Union[str, Any] , ):
super().__init__(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = num_latents
SCREAMING_SNAKE_CASE = d_latents
SCREAMING_SNAKE_CASE = d_model
SCREAMING_SNAKE_CASE = num_blocks
SCREAMING_SNAKE_CASE = num_self_attends_per_block
SCREAMING_SNAKE_CASE = num_self_attention_heads
SCREAMING_SNAKE_CASE = num_cross_attention_heads
SCREAMING_SNAKE_CASE = qk_channels
SCREAMING_SNAKE_CASE = v_channels
SCREAMING_SNAKE_CASE = cross_attention_shape_for_attention
SCREAMING_SNAKE_CASE = self_attention_widening_factor
SCREAMING_SNAKE_CASE = cross_attention_widening_factor
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = use_query_residual
# masked language modeling attributes
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
# image classification attributes
SCREAMING_SNAKE_CASE = image_size
# flow attributes
SCREAMING_SNAKE_CASE = train_size
# multimodal autoencoding attributes
SCREAMING_SNAKE_CASE = num_frames
SCREAMING_SNAKE_CASE = audio_samples_per_frame
SCREAMING_SNAKE_CASE = samples_per_patch
SCREAMING_SNAKE_CASE = output_shape
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : List[Any] ):
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE = {0: "batch", 1: "choice", 2: "sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("inputs", dynamic_axis),
("attention_mask", dynamic_axis),
] )
@property
def _snake_case ( self : Union[str, Any] ):
return 1e-4
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 40 , __lowerCamelCase : int = 40 , ):
# copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified
if isinstance(__lowerCamelCase , __lowerCamelCase ):
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
SCREAMING_SNAKE_CASE = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
SCREAMING_SNAKE_CASE = preprocessor.num_special_tokens_to_add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
SCREAMING_SNAKE_CASE = [" ".join(["a"] ) * seq_length] * batch_size
SCREAMING_SNAKE_CASE = dict(preprocessor(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = inputs.pop("input_ids" )
return inputs
elif isinstance(__lowerCamelCase , __lowerCamelCase ) and preprocessor.model_input_names[0] == "pixel_values":
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
SCREAMING_SNAKE_CASE = compute_effective_axis_dimension(__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch )
SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = inputs.pop("pixel_values" )
return inputs
else:
raise ValueError(
"Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." ) | 698 |
import cmath
import math
def __a ( A__ : float , A__ : float , A__ : float , A__ : float ):
SCREAMING_SNAKE_CASE = math.radians(A__ )
SCREAMING_SNAKE_CASE = math.radians(A__ )
# Convert voltage and current to rectangular form
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 1 |
from math import factorial
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = real
if isinstance(__lowerCamelCase , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = [1] * rank
else:
SCREAMING_SNAKE_CASE = rank
def __repr__( self : Any ):
return (
f"{self.real}+"
f"{'+'.join(str(__lowerCamelCase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}"
)
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1 )
return Dual(self.real , __lowerCamelCase )
def __add__( self : List[Any] , __lowerCamelCase : str ):
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
return Dual(self.real + other , self.duals )
SCREAMING_SNAKE_CASE = self.duals.copy()
SCREAMING_SNAKE_CASE = other.duals.copy()
if len(__lowerCamelCase ) > len(__lowerCamelCase ):
o_dual.extend([1] * (len(__lowerCamelCase ) - len(__lowerCamelCase )) )
elif len(__lowerCamelCase ) < len(__lowerCamelCase ):
s_dual.extend([1] * (len(__lowerCamelCase ) - len(__lowerCamelCase )) )
SCREAMING_SNAKE_CASE = []
for i in range(len(__lowerCamelCase ) ):
new_duals.append(s_dual[i] + o_dual[i] )
return Dual(self.real + other.real , __lowerCamelCase )
lowerCamelCase__ = __add__
def __sub__( self : Dict , __lowerCamelCase : Union[str, Any] ):
return self + other * -1
def __mul__( self : Tuple , __lowerCamelCase : List[Any] ):
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = []
for i in self.duals:
new_duals.append(i * other )
return Dual(self.real * other , __lowerCamelCase )
SCREAMING_SNAKE_CASE = [0] * (len(self.duals ) + len(other.duals ) + 1)
for i, item in enumerate(self.duals ):
for j, jtem in enumerate(other.duals ):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals ) ):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals ) ):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , __lowerCamelCase )
lowerCamelCase__ = __mul__
def __truediv__( self : Any , __lowerCamelCase : str ):
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = []
for i in self.duals:
new_duals.append(i / other )
return Dual(self.real / other , __lowerCamelCase )
raise ValueError
def __floordiv__( self : Optional[Any] , __lowerCamelCase : Tuple ):
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = []
for i in self.duals:
new_duals.append(i // other )
return Dual(self.real // other , __lowerCamelCase )
raise ValueError
def __pow__( self : Dict , __lowerCamelCase : List[str] ):
if n < 0 or isinstance(__lowerCamelCase , __lowerCamelCase ):
raise ValueError("power must be a positive integer" )
if n == 0:
return 1
if n == 1:
return self
SCREAMING_SNAKE_CASE = self
for _ in range(n - 1 ):
x *= self
return x
def __a ( A__ : Optional[int] , A__ : Optional[Any] , A__ : List[Any] ):
if not callable(A__ ):
raise ValueError("differentiate() requires a function as input for func" )
if not isinstance(A__ , (float, int) ):
raise ValueError("differentiate() requires a float as input for position" )
if not isinstance(A__ , A__ ):
raise ValueError("differentiate() requires an int as input for order" )
SCREAMING_SNAKE_CASE = Dual(A__ , 1 )
SCREAMING_SNAKE_CASE = func(A__ )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(A__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
def __a ( A__ : Optional[Any] ):
return y**2 * y**4
print(differentiate(f, 9, 2)) | 698 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __a ( A__ : Tuple , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(A__ ):
SCREAMING_SNAKE_CASE = torch.load(A__ )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = os.path.join(
A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(A__ ):
SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" )
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {"total_size": total_size}
SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n"
f.write(A__ )
return metadata, index
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__A : Optional[int] = parser.parse_args()
__A , __A : Union[str, Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__A : Any = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path) | 698 | 1 |
from collections import deque
from .hash_table import HashTable
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.values[key]
def _snake_case ( self : Union[str, Any] ):
return (
sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ):
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0
):
return key
return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase ) | 698 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = BlipImageProcessor()
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict , **__lowerCamelCase : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def _snake_case ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" )
SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 698 | 1 |
import math
import os
from copy import deepcopy
import datasets
import evaluate
import torch
import transformers
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from accelerate import Accelerator
from accelerate.test_utils import RegressionDataset, RegressionModel
from accelerate.utils import is_tpu_available, set_seed
__A : Union[str, Any] = 'true'
def __a ( A__ : List[str] , A__ : Dict=82 , A__ : int=16 ):
set_seed(42 )
SCREAMING_SNAKE_CASE = RegressionModel()
SCREAMING_SNAKE_CASE = deepcopy(A__ )
SCREAMING_SNAKE_CASE = RegressionDataset(length=A__ )
SCREAMING_SNAKE_CASE = DataLoader(A__ , batch_size=A__ )
model.to(accelerator.device )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(A__ , A__ )
return model, ddp_model, dataloader
def __a ( A__ : Accelerator , A__ : Union[str, Any]=False ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased" )
SCREAMING_SNAKE_CASE = load_dataset("glue" , "mrpc" , split="validation" )
def tokenize_function(A__ : List[Any] ):
SCREAMING_SNAKE_CASE = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A__ , max_length=A__ )
return outputs
with accelerator.main_process_first():
SCREAMING_SNAKE_CASE = dataset.map(
A__ , batched=A__ , remove_columns=["idx", "sentence1", "sentence2"] , )
SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(A__ : int ):
if use_longest:
return tokenizer.pad(A__ , padding="longest" , return_tensors="pt" )
return tokenizer.pad(A__ , padding="max_length" , max_length=128 , return_tensors="pt" )
return DataLoader(A__ , shuffle=A__ , collate_fn=A__ , batch_size=16 )
def __a ( A__ : Any , A__ : str ):
SCREAMING_SNAKE_CASE = Accelerator(dispatch_batches=A__ , split_batches=A__ )
SCREAMING_SNAKE_CASE = get_dataloader(A__ , not dispatch_batches )
SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained(
"hf-internal-testing/mrpc-bert-base-cased" , return_dict=A__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare(A__ , A__ )
return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator
def __a ( A__ : Optional[Any] , A__ : Union[str, Any] , A__ : Dict ):
SCREAMING_SNAKE_CASE = []
for batch in dataloader:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = batch.values()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(A__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((logit, target) )
logits_and_targets.append((logit, target) )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = [], []
for logit, targ in logits_and_targets:
logits.append(A__ )
targs.append(A__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.cat(A__ ), torch.cat(A__ )
return logits, targs
def __a ( A__ : Accelerator , A__ : List[Any]=82 , A__ : Tuple=False , A__ : Union[str, Any]=False , A__ : Any=16 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_basic_setup(A__ , A__ , A__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = generate_predictions(A__ , A__ , A__ )
assert (
len(A__ ) == num_samples
), F"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(A__ )}"
def __a ( A__ : bool = False , A__ : bool = False ):
SCREAMING_SNAKE_CASE = evaluate.load("glue" , "mrpc" )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_mrpc_setup(A__ , A__ )
# First do baseline
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup["no"]
model.to(A__ )
model.eval()
for batch in dataloader:
batch.to(A__ )
with torch.inference_mode():
SCREAMING_SNAKE_CASE = model(**A__ )
SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 )
metric.add_batch(predictions=A__ , references=batch["labels"] )
SCREAMING_SNAKE_CASE = metric.compute()
# Then do distributed
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = setup["ddp"]
model.eval()
for batch in dataloader:
with torch.inference_mode():
SCREAMING_SNAKE_CASE = model(**A__ )
SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 )
SCREAMING_SNAKE_CASE = batch["labels"]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((preds, references) )
metric.add_batch(predictions=A__ , references=A__ )
SCREAMING_SNAKE_CASE = metric.compute()
for key in "accuracy f1".split():
assert math.isclose(
baseline[key] , distributed[key] ), F"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n"
def __a ( ):
SCREAMING_SNAKE_CASE = Accelerator(split_batches=A__ , dispatch_batches=A__ )
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# These are a bit slower so they should only be ran on the GPU or TPU
if torch.cuda.is_available() or is_tpu_available():
if accelerator.is_local_main_process:
print("**Testing gather_for_metrics**" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
if accelerator.is_local_main_process:
print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" )
test_mrpc(A__ , A__ )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("**Test torch metrics**" )
for split_batches in [True, False]:
for dispatch_batches in [True, False]:
SCREAMING_SNAKE_CASE = Accelerator(split_batches=A__ , dispatch_batches=A__ )
if accelerator.is_local_main_process:
print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" )
test_torch_metrics(A__ , 99 )
accelerator.state._reset_state()
if accelerator.is_local_main_process:
print("**Test last batch is not dropped when perfectly divisible**" )
SCREAMING_SNAKE_CASE = Accelerator()
test_torch_metrics(A__ , 512 )
accelerator.state._reset_state()
def __a ( A__ : List[str] ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 698 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ):
pass
def __a ( A__ : str ):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
__A : Tuple = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
SCREAMING_SNAKE_CASE = "What is the placebo?"
SCREAMING_SNAKE_CASE = [
{
"image": load_image(__lowerCamelCase ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 )
self.assertEqual(
__lowerCamelCase , [
[
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "How many cats are there?"
SCREAMING_SNAKE_CASE = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
# We can optionnally pass directly the words and bounding boxes
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
@slow
@require_torch
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _snake_case ( self : List[Any] ):
pass | 698 | 1 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP | 698 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "facebook/bart-large-mnli"
lowerCamelCase__ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
lowerCamelCase__ = "text_classifier"
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSequenceClassification
lowerCamelCase__ = ["text", ["text"]]
lowerCamelCase__ = ["text"]
def _snake_case ( self : Optional[Any] ):
super().setup()
SCREAMING_SNAKE_CASE = self.model.config
SCREAMING_SNAKE_CASE = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
SCREAMING_SNAKE_CASE = int(__lowerCamelCase )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = labels
return self.pre_processor(
[text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , )
def _snake_case ( self : str , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = outputs.logits
SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id] | 698 | 1 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import debug_launcher
from accelerate.test_utils import (
execute_subprocess_async,
require_cpu,
require_huggingface_suite,
require_multi_gpu,
require_single_gpu,
)
from accelerate.utils import patch_environment
@require_huggingface_suite
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = inspect.getfile(accelerate.test_utils )
SCREAMING_SNAKE_CASE = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ["scripts", "external_deps", "test_metrics.py"] )
from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401
SCREAMING_SNAKE_CASE = test_metrics
@require_cpu
def _snake_case ( self : int ):
debug_launcher(self.test_metrics.main , num_processes=1 )
@require_cpu
def _snake_case ( self : Tuple ):
debug_launcher(self.test_metrics.main )
@require_single_gpu
def _snake_case ( self : str ):
self.test_metrics.main()
@require_multi_gpu
def _snake_case ( self : int ):
print(f"Found {torch.cuda.device_count()} devices." )
SCREAMING_SNAKE_CASE = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(__lowerCamelCase , env=os.environ.copy() ) | 698 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __a ( A__ : str=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE = subparsers.add_parser("test" )
else:
SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=A__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=A__ )
return parser
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
SCREAMING_SNAKE_CASE = script_name
else:
SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split()
SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __a ( ):
SCREAMING_SNAKE_CASE = test_command_parser()
SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(A__ )
if __name__ == "__main__":
main() | 698 | 1 |
__A : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0217_6634e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355_818,
}
def __a ( A__ : str , A__ : str , A__ : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
SCREAMING_SNAKE_CASE = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(A__ )}"
)
raise ValueError(A__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A : Optional[int] = logging.get_logger(__name__)
__A : List[str] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : Tuple = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
__A : Dict = {'facebook/blenderbot-3B': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __a ( ):
SCREAMING_SNAKE_CASE = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
SCREAMING_SNAKE_CASE = bs[:]
SCREAMING_SNAKE_CASE = 0
for b in range(2**8 ):
if b not in bs:
bs.append(A__ )
cs.append(2**8 + n )
n += 1
SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs]
return dict(zip(A__ , A__ ) )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = set()
SCREAMING_SNAKE_CASE = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
SCREAMING_SNAKE_CASE = char
return pairs
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ):
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()}
SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding
SCREAMING_SNAKE_CASE = bytes_to_unicode()
SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1]
SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges]
SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _snake_case ( self : Dict ):
return len(self.encoder )
def _snake_case ( self : int ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ):
if token in self.cache:
return self.cache[token]
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while i < len(__lowerCamelCase ):
try:
SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
SCREAMING_SNAKE_CASE = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = new_word
if len(__lowerCamelCase ) == 1:
break
else:
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = word
return word
def _snake_case ( self : str , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for token in re.findall(self.pat , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : List[str] , __lowerCamelCase : str ):
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ):
return self.decoder.get(__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
SCREAMING_SNAKE_CASE = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
SCREAMING_SNAKE_CASE = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
SCREAMING_SNAKE_CASE = " " + text
return (text, kwargs)
def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ):
SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." )
return input_ids | 698 | 1 |
from typing import Any, Callable, Dict, List, Optional, Union
import torch
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
DiffusionPipeline,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
__A : List[str] = 'CompVis/stable-diffusion-v1-1'
__A : Tuple = 'CompVis/stable-diffusion-v1-2'
__A : List[Any] = 'CompVis/stable-diffusion-v1-3'
__A : str = 'CompVis/stable-diffusion-v1-4'
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : List[str] , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : CLIPTextModel , __lowerCamelCase : CLIPTokenizer , __lowerCamelCase : UNetaDConditionModel , __lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __lowerCamelCase : StableDiffusionSafetyChecker , __lowerCamelCase : CLIPImageProcessor , __lowerCamelCase : bool = True , ):
super()._init_()
SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = StableDiffusionPipeline(
vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , requires_safety_checker=__lowerCamelCase , )
self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea )
@property
def _snake_case ( self : Union[str, Any] ):
return {k: getattr(self , __lowerCamelCase ) for k in self.config.keys() if not k.startswith("_" )}
def _snake_case ( self : Any , __lowerCamelCase : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(__lowerCamelCase )
def _snake_case ( self : Any ):
self.enable_attention_slicing(__lowerCamelCase )
@torch.no_grad()
def _snake_case ( self : str , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : Optional[Any] , ):
return self.pipea(
prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , )
@torch.no_grad()
def _snake_case ( self : Dict , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : List[Any] , ):
return self.pipea(
prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , )
@torch.no_grad()
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : str , ):
return self.pipea(
prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , )
@torch.no_grad()
def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : Any , ):
return self.pipea(
prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , )
@torch.no_grad()
def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : List[Any] , ):
SCREAMING_SNAKE_CASE = "cuda" if torch.cuda.is_available() else "cpu"
self.to(__lowerCamelCase )
# Checks if the height and width are divisible by 8 or not
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}." )
# Get first result from Stable Diffusion Checkpoint v1.1
SCREAMING_SNAKE_CASE = self.textaimg_sda_a(
prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , )
# Get first result from Stable Diffusion Checkpoint v1.2
SCREAMING_SNAKE_CASE = self.textaimg_sda_a(
prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , )
# Get first result from Stable Diffusion Checkpoint v1.3
SCREAMING_SNAKE_CASE = self.textaimg_sda_a(
prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , )
# Get first result from Stable Diffusion Checkpoint v1.4
SCREAMING_SNAKE_CASE = self.textaimg_sda_a(
prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , )
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] ) | 698 |
from __future__ import annotations
from cmath import sqrt
def __a ( A__ : int , A__ : int , A__ : int ):
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
SCREAMING_SNAKE_CASE = b * b - 4 * a * c
SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a)
SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def __a ( ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main() | 698 | 1 |
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models import ModelMixin
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ):
'''simple docstring'''
@register_to_config
def __init__( self : int , *,
__lowerCamelCase : int = 4 , __lowerCamelCase : int = 768 , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , ):
super().__init__()
SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(__lowerCamelCase ) )
# parameters for additional clip time embeddings
SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase )
# parameters for encoder hidden states
SCREAMING_SNAKE_CASE = clip_extra_context_tokens
SCREAMING_SNAKE_CASE = nn.Linear(
__lowerCamelCase , self.clip_extra_context_tokens * cross_attention_dim )
SCREAMING_SNAKE_CASE = nn.Linear(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = nn.LayerNorm(__lowerCamelCase )
def _snake_case ( self : Dict , *, __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ):
if do_classifier_free_guidance:
# Add the classifier free guidance embeddings to the image embeddings
SCREAMING_SNAKE_CASE = image_embeddings.shape[0]
SCREAMING_SNAKE_CASE = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 )
SCREAMING_SNAKE_CASE = classifier_free_guidance_embeddings.expand(
__lowerCamelCase , -1 )
SCREAMING_SNAKE_CASE = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 )
# The image embeddings batch size and the text embeddings batch size are equal
assert image_embeddings.shape[0] == prompt_embeds.shape[0]
SCREAMING_SNAKE_CASE = prompt_embeds.shape[0]
# "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and
# adding CLIP embeddings to the existing timestep embedding, ...
SCREAMING_SNAKE_CASE = self.embedding_proj(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.clip_image_embeddings_project_to_time_embeddings(__lowerCamelCase )
SCREAMING_SNAKE_CASE = time_projected_image_embeddings + time_projected_prompt_embeds
# ... and by projecting CLIP embeddings into four
# extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder"
SCREAMING_SNAKE_CASE = self.clip_extra_context_tokens_proj(__lowerCamelCase )
SCREAMING_SNAKE_CASE = clip_extra_context_tokens.reshape(__lowerCamelCase , -1 , self.clip_extra_context_tokens )
SCREAMING_SNAKE_CASE = clip_extra_context_tokens.permute(0 , 2 , 1 )
SCREAMING_SNAKE_CASE = self.encoder_hidden_states_proj(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.text_encoder_hidden_states_norm(__lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 )
return text_encoder_hidden_states, additive_clip_time_embeddings | 698 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text | 698 | 1 |
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
__A : Union[str, Any] = logging.get_logger(__name__)
__A : int = 'https://openaipublic.azureedge.net/jukebox/models/'
__A : Optional[Any] = {
'jukebox-1b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'1b_lyrics/prior_level_2.pth.tar',
],
'jukebox-5b-lyrics': [
'5b/vqvae.pth.tar',
'5b/prior_level_0.pth.tar',
'5b/prior_level_1.pth.tar',
'5b_lyrics/prior_level_2.pth.tar',
],
}
def __a ( A__ : int ):
if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10:
SCREAMING_SNAKE_CASE = key.replace(".model.1.bias" , ".conv1d_1.bias" )
elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10:
SCREAMING_SNAKE_CASE = key.replace(".model.1.weight" , ".conv1d_1.weight" )
elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10:
SCREAMING_SNAKE_CASE = key.replace(".model.3.bias" , ".conv1d_2.bias" )
elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10:
SCREAMING_SNAKE_CASE = key.replace(".model.3.weight" , ".conv1d_2.weight" )
if "conditioner_blocks.0." in key:
SCREAMING_SNAKE_CASE = key.replace("conditioner_blocks.0" , "conditioner_blocks" )
if "prime_prior" in key:
SCREAMING_SNAKE_CASE = key.replace("prime_prior" , "encoder" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
SCREAMING_SNAKE_CASE = key.replace(".emb." , "." )
if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(".k" , ".codebook" )
if "y_emb." in key:
return key.replace("y_emb." , "metadata_embedding." )
if "x_emb.emb." in key:
SCREAMING_SNAKE_CASE = key.replace("0.x_emb.emb" , "embed_tokens" )
if "prime_state_ln" in key:
return key.replace("prime_state_ln" , "encoder.final_layer_norm" )
if ".ln" in key:
return key.replace(".ln" , ".layer_norm" )
if "_ln" in key:
return key.replace("_ln" , "_layer_norm" )
if "prime_state_proj" in key:
return key.replace("prime_state_proj" , "encoder.proj_in" )
if "prime_x_out" in key:
return key.replace("prime_x_out" , "encoder.lm_head" )
if "prior.x_out" in key:
return key.replace("x_out" , "fc_proj_out" )
if "x_emb" in key:
return key.replace("x_emb" , "embed_tokens" )
return key
def __a ( A__ : Optional[Any] , A__ : Dict , A__ : Tuple , A__ : Optional[Any] ):
SCREAMING_SNAKE_CASE = {}
import re
SCREAMING_SNAKE_CASE = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(
R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(
R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(
R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" )
SCREAMING_SNAKE_CASE = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_encoder_block_conv_in.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] )
SCREAMING_SNAKE_CASE = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_encoder_block_conv_in.sub(A__ , A__ )
elif re_encoder_block_resnet.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_encoder_block_resnet.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] )
SCREAMING_SNAKE_CASE = {"1": 1, "3": 2}[groups[-2]]
SCREAMING_SNAKE_CASE = F"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."
SCREAMING_SNAKE_CASE = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = prefix + resnet_block
SCREAMING_SNAKE_CASE = re_encoder_block_resnet.sub(A__ , A__ )
elif re_encoder_block_proj_out.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_encoder_block_proj_out.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = F"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_encoder_block_proj_out.sub(A__ , A__ )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_decoder_block_conv_out.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] ) - 2
SCREAMING_SNAKE_CASE = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_decoder_block_conv_out.sub(A__ , A__ )
elif re_decoder_block_resnet.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_decoder_block_resnet.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[2] ) * 2 + int(groups[3] ) - 2
SCREAMING_SNAKE_CASE = {"1": 1, "3": 2}[groups[-2]]
SCREAMING_SNAKE_CASE = F"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."
SCREAMING_SNAKE_CASE = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = prefix + resnet_block
SCREAMING_SNAKE_CASE = re_decoder_block_resnet.sub(A__ , A__ )
elif re_decoder_block_proj_in.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_decoder_block_proj_in.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = F"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_decoder_block_proj_in.sub(A__ , A__ )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_prior_cond_conv_out.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[1] ) * 2 + int(groups[2] ) - 2
SCREAMING_SNAKE_CASE = F"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_prior_cond_conv_out.sub(A__ , A__ )
elif re_prior_cond_resnet.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_prior_cond_resnet.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = int(groups[1] ) * 2 + int(groups[2] ) - 2
SCREAMING_SNAKE_CASE = {"1": 1, "3": 2}[groups[-2]]
SCREAMING_SNAKE_CASE = F"conditioner_blocks.upsampler.upsample_block.{block_index}."
SCREAMING_SNAKE_CASE = F"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
SCREAMING_SNAKE_CASE = prefix + resnet_block
SCREAMING_SNAKE_CASE = re_prior_cond_resnet.sub(A__ , A__ )
elif re_prior_cond_proj_in.fullmatch(A__ ):
SCREAMING_SNAKE_CASE = re_prior_cond_proj_in.match(A__ )
SCREAMING_SNAKE_CASE = regex_match.groups()
SCREAMING_SNAKE_CASE = F"conditioner_blocks.upsampler.proj_in.{groups[-1]}"
SCREAMING_SNAKE_CASE = re_prior_cond_proj_in.sub(A__ , A__ )
# keep original key
else:
SCREAMING_SNAKE_CASE = original_key
SCREAMING_SNAKE_CASE = replace_key(A__ )
if F"{key_prefix}.{key}" not in model_state_dict or key is None:
print(F"failed converting {original_key} to {key}, does not match" )
# handle missmatched shape
elif value.shape != model_state_dict[F"{key_prefix}.{key}"].shape:
SCREAMING_SNAKE_CASE = model_state_dict[F"{key_prefix}.{key}"]
print(F"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" )
SCREAMING_SNAKE_CASE = original_key
SCREAMING_SNAKE_CASE = original_key
SCREAMING_SNAKE_CASE = value
return new_dict
@torch.no_grad()
def __a ( A__ : Any=None , A__ : Optional[int]=None ):
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ):
SCREAMING_SNAKE_CASE = requests.get(F"{PREFIX}{file}" , allow_redirects=A__ )
os.makedirs(F"{pytorch_dump_folder_path}/" , exist_ok=A__ )
open(F"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content )
SCREAMING_SNAKE_CASE = MODEL_MAPPING[model_name.split("/" )[-1]]
SCREAMING_SNAKE_CASE = JukeboxConfig.from_pretrained(A__ )
SCREAMING_SNAKE_CASE = JukeboxModel(A__ )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = {}
for i, dict_name in enumerate(A__ ):
SCREAMING_SNAKE_CASE = torch.load(F"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"]
SCREAMING_SNAKE_CASE = {}
for k in old_dic.keys():
if k.endswith(".b" ):
SCREAMING_SNAKE_CASE = old_dic[k]
elif k.endswith(".w" ):
SCREAMING_SNAKE_CASE = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
SCREAMING_SNAKE_CASE = old_dic[k]
else:
SCREAMING_SNAKE_CASE = old_dic[k]
SCREAMING_SNAKE_CASE = "vqvae" if i == 0 else F"priors.{3 - i}"
SCREAMING_SNAKE_CASE = fix_jukebox_keys(A__ , model.state_dict() , A__ , A__ )
weight_dict.append(A__ )
SCREAMING_SNAKE_CASE = weight_dict.pop(0 )
model.vqvae.load_state_dict(A__ )
for i in range(len(A__ ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(A__ ).mkdir(exist_ok=A__ )
with open(F"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile:
json.dump(A__ , A__ )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(A__ )
return weight_dict
if __name__ == "__main__":
__A : Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='jukebox-5b-lyrics',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='jukebox-5b-lyrics-converted',
type=str,
help='Path to the output PyTorch model directory.',
)
__A : Dict = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path) | 698 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 1 |
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
__A : Dict = threading.Lock()
__A : Optional[logging.Handler] = None
__A : Any = {
'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL,
}
__A : int = logging.WARNING
__A : int = True
def __a ( ):
SCREAMING_SNAKE_CASE = os.getenv("TRANSFORMERS_VERBOSITY" , A__ )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
F"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, "
F"has to be one of: { ', '.join(log_levels.keys() ) }" )
return _default_log_level
def __a ( ):
return __name__.split("." )[0]
def __a ( ):
return logging.getLogger(_get_library_name() )
def __a ( ):
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
SCREAMING_SNAKE_CASE = logging.StreamHandler() # Set sys.stderr as stream.
SCREAMING_SNAKE_CASE = sys.stderr.flush
# Apply our default configuration to the library root logger.
SCREAMING_SNAKE_CASE = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
SCREAMING_SNAKE_CASE = False
def __a ( ):
global _default_handler
with _lock:
if not _default_handler:
return
SCREAMING_SNAKE_CASE = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
SCREAMING_SNAKE_CASE = None
def __a ( ):
return log_levels
def __a ( A__ : Optional[str] = None ):
if name is None:
SCREAMING_SNAKE_CASE = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(A__ )
def __a ( ):
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def __a ( A__ : int ):
_configure_library_root_logger()
_get_library_root_logger().setLevel(A__ )
def __a ( ):
return set_verbosity(A__ )
def __a ( ):
return set_verbosity(A__ )
def __a ( ):
return set_verbosity(A__ )
def __a ( ):
return set_verbosity(A__ )
def __a ( ):
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def __a ( ):
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def __a ( A__ : logging.Handler ):
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(A__ )
def __a ( A__ : logging.Handler ):
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(A__ )
def __a ( ):
_configure_library_root_logger()
SCREAMING_SNAKE_CASE = False
def __a ( ):
_configure_library_root_logger()
SCREAMING_SNAKE_CASE = True
def __a ( ):
SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers
for handler in handlers:
SCREAMING_SNAKE_CASE = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" )
handler.setFormatter(A__ )
def __a ( ):
SCREAMING_SNAKE_CASE = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(A__ )
def __a ( self : List[Any] , *A__ : Union[str, Any] , **A__ : List[str] ):
SCREAMING_SNAKE_CASE = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , A__ )
if no_advisory_warnings:
return
self.warning(*A__ , **A__ )
__A : int = warning_advice
@functools.lru_cache(A__ )
def __a ( self : Dict , *A__ : Optional[int] , **A__ : Dict ):
self.warning(*A__ , **A__ )
__A : Tuple = warning_once
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Optional[Any] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Union[str, Any] ): # pylint: disable=unused-argument
SCREAMING_SNAKE_CASE = args[0] if args else None
def __iter__( self : List[Any] ):
return iter(self._iterator )
def __getattr__( self : List[Any] , __lowerCamelCase : Tuple ):
def empty_fn(*__lowerCamelCase : Tuple , **__lowerCamelCase : List[str] ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self : Any ):
return self
def __exit__( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ):
return
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __call__( self : Optional[int] , *__lowerCamelCase : Dict , **__lowerCamelCase : List[Any] ):
if _tqdm_active:
return tqdm_lib.tqdm(*__lowerCamelCase , **__lowerCamelCase )
else:
return EmptyTqdm(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Tuple , *__lowerCamelCase : int , **__lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
__A : List[str] = _tqdm_cls()
def __a ( ):
global _tqdm_active
return bool(_tqdm_active )
def __a ( ):
global _tqdm_active
SCREAMING_SNAKE_CASE = True
hf_hub_utils.enable_progress_bars()
def __a ( ):
global _tqdm_active
SCREAMING_SNAKE_CASE = False
hf_hub_utils.disable_progress_bars() | 698 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__A : Optional[Any] = datasets.load_iris()
__A : Optional[Any] = np.array(data['data'])
__A : Optional[int] = np.array(data['target'])
__A : Union[str, Any] = data['target_names']
__A , __A , __A , __A : Optional[int] = train_test_split(X, y)
def __a ( A__ : Optional[int] , A__ : Dict ):
return np.linalg.norm(np.array(A__ ) - np.array(A__ ) )
def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ):
SCREAMING_SNAKE_CASE = zip(A__ , A__ )
# List of distances of all points from the point to be classified
SCREAMING_SNAKE_CASE = []
for data_point in data:
SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) | 698 | 1 |
# using dfs for finding eulerian path traversal
def __a ( A__ : Union[str, Any] , A__ : List[Any] , A__ : Dict , A__ : int=None ):
SCREAMING_SNAKE_CASE = (path or []) + [u]
for v in graph[u]:
if visited_edge[u][v] is False:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True, True
SCREAMING_SNAKE_CASE = dfs(A__ , A__ , A__ , A__ )
return path
def __a ( A__ : int , A__ : str ):
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = -1
for i in range(A__ ):
if i not in graph.keys():
continue
if len(graph[i] ) % 2 == 1:
odd_degree_nodes += 1
SCREAMING_SNAKE_CASE = i
if odd_degree_nodes == 0:
return 1, odd_node
if odd_degree_nodes == 2:
return 2, odd_node
return 3, odd_node
def __a ( A__ : Dict , A__ : List[Any] ):
SCREAMING_SNAKE_CASE = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = check_circuit_or_path(A__ , A__ )
if check == 3:
print("graph is not Eulerian" )
print("no path" )
return
SCREAMING_SNAKE_CASE = 1
if check == 2:
SCREAMING_SNAKE_CASE = odd_node
print("graph has a Euler path" )
if check == 1:
print("graph has a Euler cycle" )
SCREAMING_SNAKE_CASE = dfs(A__ , A__ , A__ )
print(A__ )
def __a ( ):
SCREAMING_SNAKE_CASE = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]}
SCREAMING_SNAKE_CASE = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]}
SCREAMING_SNAKE_CASE = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]}
SCREAMING_SNAKE_CASE = {1: [2, 3], 2: [1, 3], 3: [1, 2]}
SCREAMING_SNAKE_CASE = {
1: [],
2: []
# all degree is zero
}
SCREAMING_SNAKE_CASE = 10
check_euler(A__ , A__ )
check_euler(A__ , A__ )
check_euler(A__ , A__ )
check_euler(A__ , A__ )
check_euler(A__ , A__ )
if __name__ == "__main__":
main() | 698 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Dict = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "resnet"
lowerCamelCase__ = ["basic", "bottleneck"]
def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ):
super().__init__(**__lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embedding_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = downsample_in_first_stage
SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : Optional[int] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : Optional[int] ):
return 1e-3 | 698 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : Any = {
'configuration_roberta': ['ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RobertaConfig', 'RobertaOnnxConfig'],
'tokenization_roberta': ['RobertaTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : str = ['RobertaTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'RobertaForCausalLM',
'RobertaForMaskedLM',
'RobertaForMultipleChoice',
'RobertaForQuestionAnswering',
'RobertaForSequenceClassification',
'RobertaForTokenClassification',
'RobertaModel',
'RobertaPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = [
'TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRobertaForCausalLM',
'TFRobertaForMaskedLM',
'TFRobertaForMultipleChoice',
'TFRobertaForQuestionAnswering',
'TFRobertaForSequenceClassification',
'TFRobertaForTokenClassification',
'TFRobertaMainLayer',
'TFRobertaModel',
'TFRobertaPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FlaxRobertaForCausalLM',
'FlaxRobertaForMaskedLM',
'FlaxRobertaForMultipleChoice',
'FlaxRobertaForQuestionAnswering',
'FlaxRobertaForSequenceClassification',
'FlaxRobertaForTokenClassification',
'FlaxRobertaModel',
'FlaxRobertaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
__A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__A : str = logging.get_logger(__name__)
__A : Optional[Any] = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "imagegpt"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_positions
SCREAMING_SNAKE_CASE = n_embd
SCREAMING_SNAKE_CASE = n_layer
SCREAMING_SNAKE_CASE = n_head
SCREAMING_SNAKE_CASE = n_inner
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_pdrop
SCREAMING_SNAKE_CASE = embd_pdrop
SCREAMING_SNAKE_CASE = attn_pdrop
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = scale_attn_weights
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx
SCREAMING_SNAKE_CASE = reorder_and_upcast_attn
SCREAMING_SNAKE_CASE = tie_word_embeddings
super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ):
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ):
SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return inputs | 698 | 1 |
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
__A : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(__snake_case )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : int , **__lowerCamelCase : Optional[int] ):
super().__init__(**__lowerCamelCase )
if self.framework != "pt":
raise ValueError(f"The {self.__class__} is only available in PyTorch." )
# No specific FOR_XXX available yet
def __call__( self : Tuple , __lowerCamelCase : Union[np.ndarray, bytes, str] , **__lowerCamelCase : Union[str, Any] ):
return super().__call__(__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Dict , **__lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = {}
if "candidate_labels" in kwargs:
SCREAMING_SNAKE_CASE = kwargs["candidate_labels"]
if "hypothesis_template" in kwargs:
SCREAMING_SNAKE_CASE = kwargs["hypothesis_template"]
return preprocess_params, {}, {}
def _snake_case ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Any]="This is a sound of {}." ):
if isinstance(__lowerCamelCase , __lowerCamelCase ):
if audio.startswith("http://" ) or audio.startswith("https://" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
SCREAMING_SNAKE_CASE = requests.get(__lowerCamelCase ).content
else:
with open(__lowerCamelCase , "rb" ) as f:
SCREAMING_SNAKE_CASE = f.read()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = ffmpeg_read(__lowerCamelCase , self.feature_extractor.sampling_rate )
if not isinstance(__lowerCamelCase , np.ndarray ):
raise ValueError("We expect a numpy ndarray as input" )
if len(audio.shape ) != 1:
raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" )
SCREAMING_SNAKE_CASE = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" )
SCREAMING_SNAKE_CASE = candidate_labels
SCREAMING_SNAKE_CASE = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels]
SCREAMING_SNAKE_CASE = self.tokenizer(__lowerCamelCase , return_tensors=self.framework , padding=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [text_inputs]
return inputs
def _snake_case ( self : int , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = model_inputs.pop("candidate_labels" )
SCREAMING_SNAKE_CASE = model_inputs.pop("text_inputs" )
if isinstance(text_inputs[0] , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = text_inputs[0]
else:
# Batching case.
SCREAMING_SNAKE_CASE = text_inputs[0][0]
SCREAMING_SNAKE_CASE = self.model(**__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = {
"candidate_labels": candidate_labels,
"logits": outputs.logits_per_audio,
}
return model_outputs
def _snake_case ( self : Any , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = model_outputs.pop("candidate_labels" )
SCREAMING_SNAKE_CASE = model_outputs["logits"][0]
if self.framework == "pt":
SCREAMING_SNAKE_CASE = logits.softmax(dim=0 )
SCREAMING_SNAKE_CASE = probs.tolist()
else:
raise ValueError("`tf` framework not supported." )
SCREAMING_SNAKE_CASE = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(__lowerCamelCase , __lowerCamelCase ) , key=lambda __lowerCamelCase : -x[0] )
]
return result | 698 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@slow
@require_torch
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" )
SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size
SCREAMING_SNAKE_CASE = tokenizer.sep_token_id
SCREAMING_SNAKE_CASE = tokenizer.cls_token_id
SCREAMING_SNAKE_CASE = 128
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) )
SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) )
SCREAMING_SNAKE_CASE = 4
def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 )
SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 )
SCREAMING_SNAKE_CASE = inputs.input_ids
SCREAMING_SNAKE_CASE = inputs.attention_mask
SCREAMING_SNAKE_CASE = outputs.input_ids
SCREAMING_SNAKE_CASE = outputs.input_ids.copy()
SCREAMING_SNAKE_CASE = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
SCREAMING_SNAKE_CASE = outputs.attention_mask
assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids )
assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = pred.label_ids
SCREAMING_SNAKE_CASE = pred.predictions
# all unnecessary tokens are removed
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase )
return {"accuracy": accuracy}
# map train dataset
SCREAMING_SNAKE_CASE = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
SCREAMING_SNAKE_CASE = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments(
output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
SCREAMING_SNAKE_CASE = SeqaSeqTrainer(
model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , )
# start training
trainer.train() | 698 | 1 |
def __a ( A__ : list ):
for i in range(len(A__ ) - 1 , 0 , -1 ):
SCREAMING_SNAKE_CASE = False
for j in range(A__ , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = unsorted[j - 1], unsorted[j]
SCREAMING_SNAKE_CASE = True
for j in range(A__ ):
if unsorted[j] > unsorted[j + 1]:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = unsorted[j + 1], unsorted[j]
SCREAMING_SNAKE_CASE = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
__A : List[str] = input('Enter numbers separated by a comma:\n').strip()
__A : List[Any] = [int(item) for item in user_input.split(',')]
print(f'{cocktail_shaker_sort(unsorted) = }') | 698 |
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = kernel_size
SCREAMING_SNAKE_CASE = stride
SCREAMING_SNAKE_CASE = padding
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = key_dim
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = attention_ratio
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = initializer_range
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ):
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = LevitModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _snake_case ( self : Any ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self : Any ):
return
@unittest.skip(reason="Levit does not use inputs_embeds" )
def _snake_case ( self : Union[str, Any] ):
pass
@unittest.skip(reason="Levit does not support input and output embeddings" )
def _snake_case ( self : Tuple ):
pass
@unittest.skip(reason="Levit does not output attentions" )
def _snake_case ( self : Tuple ):
pass
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _snake_case ( self : int ):
pass
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ):
SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__lowerCamelCase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__lowerCamelCase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE = problem_type["title"]
SCREAMING_SNAKE_CASE = problem_type["num_labels"]
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list:
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def _snake_case ( self : List[Any] ):
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __a ( ):
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Dict ):
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) | 698 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = ["image_processor", "tokenizer"]
lowerCamelCase__ = "ViTImageProcessor"
lowerCamelCase__ = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : str , __lowerCamelCase : int=None , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __lowerCamelCase , )
SCREAMING_SNAKE_CASE = kwargs.pop("feature_extractor" )
SCREAMING_SNAKE_CASE = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__lowerCamelCase , __lowerCamelCase )
def __call__( self : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , __lowerCamelCase : Optional[Any]=None , **__lowerCamelCase : int ):
if text is None and visual_prompt is None and images is None:
raise ValueError("You have to specify either text, visual prompt or images." )
if text is not None and visual_prompt is not None:
raise ValueError("You have to specify exactly one type of prompt. Either text or visual prompt." )
if text is not None:
SCREAMING_SNAKE_CASE = self.tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )
if visual_prompt is not None:
SCREAMING_SNAKE_CASE = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )
if images is not None:
SCREAMING_SNAKE_CASE = self.image_processor(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )
if visual_prompt is not None and images is not None:
SCREAMING_SNAKE_CASE = {
"pixel_values": image_features.pixel_values,
"conditional_pixel_values": prompt_features.pixel_values,
}
return encoding
elif text is not None and images is not None:
SCREAMING_SNAKE_CASE = image_features.pixel_values
return encoding
elif text is not None:
return encoding
elif visual_prompt is not None:
SCREAMING_SNAKE_CASE = {
"conditional_pixel_values": prompt_features.pixel_values,
}
return encoding
else:
return BatchEncoding(data=dict(**__lowerCamelCase ) , tensor_type=__lowerCamelCase )
def _snake_case ( self : List[Any] , *__lowerCamelCase : List[str] , **__lowerCamelCase : Optional[Any] ):
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Dict , *__lowerCamelCase : int , **__lowerCamelCase : List[Any] ):
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@property
def _snake_case ( self : str ):
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __lowerCamelCase , )
return self.image_processor_class
@property
def _snake_case ( self : Dict ):
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __lowerCamelCase , )
return self.image_processor | 698 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
return None
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ):
return None
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = [
# (model_name, model_kwargs)
("bert-base-cased", {}),
("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : Optional[int] ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t" ) as vocab_file:
vocab_file.write("\n".join(__lowerCamelCase ) )
vocab_file.flush()
SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) )
model.save_pretrained(__lowerCamelCase )
self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase )
@require_tf
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
@require_torch
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
return path
except Exception as e:
self.fail(__lowerCamelCase )
@require_torch
@require_tokenizers
@slow
def _snake_case ( self : Dict ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" )
@require_tf
@require_tokenizers
@slow
def _snake_case ( self : int ):
from transformers import TFBertModel
SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" )
def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase )
# Assert all variables are present
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase )
self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} )
self.assertDictEqual(shapes["output_1"] , {0: "batch"} )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"]
SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__lowerCamelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["input_ids"] )
self.assertEqual(ordered_input_names[0] , "input_ids" )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" )
self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() ) | 698 | 1 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "gpt_neo"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_layers
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = window_size
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_dropout
SCREAMING_SNAKE_CASE = embed_dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = classifier_dropout
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
SCREAMING_SNAKE_CASE = attention_types
SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
@staticmethod
def _snake_case ( __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ):
import torch
SCREAMING_SNAKE_CASE = input.size()
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = shape[dimension]
SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ )
SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1
SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE = [slice(A__ )] * rank
SCREAMING_SNAKE_CASE = indices
SCREAMING_SNAKE_CASE = input[s]
SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(A__ )
def __a ( A__ : Union[str, Any] , A__ : Optional[int] ):
import torch
SCREAMING_SNAKE_CASE = torch.arange(1 , A__ )
SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ )
SCREAMING_SNAKE_CASE = remainders == 0
SCREAMING_SNAKE_CASE = candidates[divisor_indices]
SCREAMING_SNAKE_CASE = torch.max(A__ )
return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _snake_case ( self : Optional[int] ):
return self._config.num_heads
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE = seqlen + 2
SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE = common_inputs["attention_mask"]
if self.use_past:
SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype
SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
return ordered_inputs
@property
def _snake_case ( self : Optional[int] ):
return 13 | 698 |
from manim import *
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
rect.set_stroke(__lowerCamelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 )
self.add(__lowerCamelCase )
cpu_targs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
SCREAMING_SNAKE_CASE = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
SCREAMING_SNAKE_CASE = MarkupText(
f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) )
self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 )
target.move_to(__lowerCamelCase )
first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) )
self.play(*__lowerCamelCase )
self.play(*__lowerCamelCase )
self.wait() | 698 | 1 |
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
__A : Optional[Any] = logging.get_logger(__name__)
__A : str = {
't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json',
't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json',
't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json',
't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json',
't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "t5"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : Tuple , __lowerCamelCase : List[str]=32128 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Dict=64 , __lowerCamelCase : Union[str, Any]=2048 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : str=8 , __lowerCamelCase : List[str]=32 , __lowerCamelCase : Union[str, Any]=128 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : List[Any]=1e-6 , __lowerCamelCase : Union[str, Any]=1.0 , __lowerCamelCase : int="relu" , __lowerCamelCase : int=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[str]=0 , __lowerCamelCase : Union[str, Any]=1 , **__lowerCamelCase : int , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = d_model
SCREAMING_SNAKE_CASE = d_kv
SCREAMING_SNAKE_CASE = d_ff
SCREAMING_SNAKE_CASE = num_layers
SCREAMING_SNAKE_CASE = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = relative_attention_num_buckets
SCREAMING_SNAKE_CASE = relative_attention_max_distance
SCREAMING_SNAKE_CASE = dropout_rate
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_factor
SCREAMING_SNAKE_CASE = feed_forward_proj
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = self.feed_forward_proj.split("-" )
SCREAMING_SNAKE_CASE = act_info[-1]
SCREAMING_SNAKE_CASE = act_info[0] == "gated"
if len(__lowerCamelCase ) > 1 and act_info[0] != "gated" or len(__lowerCamelCase ) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'" )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
SCREAMING_SNAKE_CASE = "gelu_new"
super().__init__(
pad_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase , )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
SCREAMING_SNAKE_CASE = "past_encoder_sequence + sequence"
SCREAMING_SNAKE_CASE = {0: "batch"}
SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "decoder_sequence"}
SCREAMING_SNAKE_CASE = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
return common_inputs
@property
def _snake_case ( self : str ):
return 13 | 698 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ):
pass
@is_pipeline_test
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCamelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@require_tf
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@slow
@require_torch
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , ) | 698 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__A : Dict = {
'configuration_bigbird_pegasus': [
'BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BigBirdPegasusConfig',
'BigBirdPegasusOnnxConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST',
'BigBirdPegasusForCausalLM',
'BigBirdPegasusForConditionalGeneration',
'BigBirdPegasusForQuestionAnswering',
'BigBirdPegasusForSequenceClassification',
'BigBirdPegasusModel',
'BigBirdPegasusPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
__A : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 |
__A : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0217_6634e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355_818,
}
def __a ( A__ : str , A__ : str , A__ : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
SCREAMING_SNAKE_CASE = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(A__ )}"
)
raise ValueError(A__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 1 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
__A : Dict = pytest.mark.integration
@pytest.mark.parametrize("path" , ["paws", "csv"] )
def __a ( A__ : str , A__ : str ):
inspect_dataset(A__ , A__ )
SCREAMING_SNAKE_CASE = path + ".py"
assert script_name in os.listdir(A__ )
assert "__pycache__" not in os.listdir(A__ )
@pytest.mark.filterwarnings("ignore:inspect_metric is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.parametrize("path" , ["accuracy"] )
def __a ( A__ : List[str] , A__ : Optional[Any] ):
inspect_metric(A__ , A__ )
SCREAMING_SNAKE_CASE = path + ".py"
assert script_name in os.listdir(A__ )
assert "__pycache__" not in os.listdir(A__ )
@pytest.mark.parametrize(
"path, config_name, expected_splits" , [
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
] , )
def __a ( A__ : str , A__ : Optional[Any] , A__ : Any ):
SCREAMING_SNAKE_CASE = get_dataset_config_info(A__ , config_name=A__ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"path, config_name, expected_exception" , [
("paws", None, ValueError),
] , )
def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Optional[int] ):
with pytest.raises(A__ ):
get_dataset_config_info(A__ , config_name=A__ )
@pytest.mark.parametrize(
"path, expected" , [
("squad", "plain_text"),
("acronym_identification", "default"),
("lhoestq/squad", "plain_text"),
("lhoestq/test", "default"),
("lhoestq/demo1", "lhoestq--demo1"),
("dalle-mini/wit", "dalle-mini--wit"),
] , )
def __a ( A__ : int , A__ : Tuple ):
SCREAMING_SNAKE_CASE = get_dataset_config_names(A__ )
assert expected in config_names
@pytest.mark.parametrize(
"path, expected_configs, expected_splits_in_first_config" , [
("squad", ["plain_text"], ["train", "validation"]),
("dalle-mini/wit", ["dalle-mini--wit"], ["train"]),
("paws", ["labeled_final", "labeled_swap", "unlabeled_final"], ["train", "test", "validation"]),
] , )
def __a ( A__ : Union[str, Any] , A__ : Tuple , A__ : Any ):
SCREAMING_SNAKE_CASE = get_dataset_infos(A__ )
assert list(infos.keys() ) == expected_configs
SCREAMING_SNAKE_CASE = expected_configs[0]
assert expected_config in infos
SCREAMING_SNAKE_CASE = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"path, expected_config, expected_splits" , [
("squad", "plain_text", ["train", "validation"]),
("dalle-mini/wit", "dalle-mini--wit", ["train"]),
("paws", "labeled_final", ["train", "test", "validation"]),
] , )
def __a ( A__ : List[Any] , A__ : List[Any] , A__ : Dict ):
SCREAMING_SNAKE_CASE = get_dataset_infos(A__ )
assert expected_config in infos
SCREAMING_SNAKE_CASE = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"path, config_name, expected_exception" , [
("paws", None, ValueError),
] , )
def __a ( A__ : str , A__ : Tuple , A__ : Optional[Any] ):
with pytest.raises(A__ ):
get_dataset_split_names(A__ , config_name=A__ ) | 698 |
from collections import deque
from .hash_table import HashTable
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.values[key]
def _snake_case ( self : Union[str, Any] ):
return (
sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ):
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0
):
return key
return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase ) | 698 | 1 |
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.17.0.dev0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt')
__A : Tuple = logging.getLogger(__name__)
@dataclass
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowerCamelCase__ = field(
default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} )
lowerCamelCase__ = field(
default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , )
lowerCamelCase__ = field(
default=1_0_2_4 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
lowerCamelCase__ = field(
default=__snake_case , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
lowerCamelCase__ = field(
default=__snake_case , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
lowerCamelCase__ = field(
default=__snake_case , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
lowerCamelCase__ = field(
default=__snake_case , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
lowerCamelCase__ = field(
default=__snake_case , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} , )
lowerCamelCase__ = field(
default=__snake_case , metadata={"help": "A csv or a json file containing the training data."} )
lowerCamelCase__ = field(
default=__snake_case , metadata={"help": "A csv or a json file containing the validation data."} )
lowerCamelCase__ = field(default=__snake_case , metadata={"help": "A csv or a json file containing the test data."} )
def _snake_case ( self : List[str] ):
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." )
else:
SCREAMING_SNAKE_CASE = self.train_file.split("." )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
SCREAMING_SNAKE_CASE = self.validation_file.split("." )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowerCamelCase__ = field(
default=__snake_case , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
lowerCamelCase__ = field(
default=__snake_case , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
lowerCamelCase__ = field(
default=__snake_case , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
lowerCamelCase__ = field(
default=__snake_case , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
lowerCamelCase__ = field(
default=__snake_case , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
lowerCamelCase__ = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
lowerCamelCase__ = field(
default=__snake_case , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
def __a ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
SCREAMING_SNAKE_CASE = training_args.get_process_log_level()
logger.setLevel(A__ )
datasets.utils.logging.set_verbosity(A__ )
transformers.utils.logging.set_verbosity(A__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" )
logger.info(F"Training/evaluation parameters {training_args}" )
# Detecting last checkpoint.
SCREAMING_SNAKE_CASE = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
SCREAMING_SNAKE_CASE = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
SCREAMING_SNAKE_CASE = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
SCREAMING_SNAKE_CASE = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
SCREAMING_SNAKE_CASE = data_args.train_file.split("." )[-1]
SCREAMING_SNAKE_CASE = data_args.test_file.split("." )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
SCREAMING_SNAKE_CASE = data_args.test_file
else:
raise ValueError("Need either a GLUE task or a test file for `do_predict`." )
for key in data_files.keys():
logger.info(F"load a local file for {key}: {data_files[key]}" )
if data_args.train_file.endswith(".csv" ):
# Loading a dataset from local csv files
SCREAMING_SNAKE_CASE = load_dataset("csv" , data_files=A__ , cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
SCREAMING_SNAKE_CASE = load_dataset("json" , data_files=A__ , cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
SCREAMING_SNAKE_CASE = raw_datasets["train"].features["label"].names
SCREAMING_SNAKE_CASE = len(A__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# load tapex tokenizer
SCREAMING_SNAKE_CASE = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=A__ , )
SCREAMING_SNAKE_CASE = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=A__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Padding strategy
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
SCREAMING_SNAKE_CASE = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
SCREAMING_SNAKE_CASE = {"Refused": 0, "Entailed": 1}
SCREAMING_SNAKE_CASE = {0: "Refused", 1: "Entailed"}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." )
SCREAMING_SNAKE_CASE = min(data_args.max_seq_length , tokenizer.model_max_length )
def preprocess_tabfact_function(A__ : List[str] ):
# Tokenize the texts
def _convert_table_text_to_pandas(A__ : List[Any] ):
SCREAMING_SNAKE_CASE = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )]
SCREAMING_SNAKE_CASE = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] )
return _table_pd
SCREAMING_SNAKE_CASE = examples["statement"]
SCREAMING_SNAKE_CASE = list(map(_convert_table_text_to_pandas , examples["table_text"] ) )
SCREAMING_SNAKE_CASE = tokenizer(A__ , A__ , padding=A__ , max_length=A__ , truncation=A__ )
SCREAMING_SNAKE_CASE = examples["label"]
return result
with training_args.main_process_first(desc="dataset map pre-processing" ):
SCREAMING_SNAKE_CASE = raw_datasets.map(
A__ , batched=A__ , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset" )
SCREAMING_SNAKE_CASE = raw_datasets["train"]
if data_args.max_train_samples is not None:
SCREAMING_SNAKE_CASE = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset" )
SCREAMING_SNAKE_CASE = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
SCREAMING_SNAKE_CASE = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset" )
SCREAMING_SNAKE_CASE = raw_datasets["test"]
if data_args.max_predict_samples is not None:
SCREAMING_SNAKE_CASE = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(A__ ) ) , 3 ):
logger.info(F"Sample {index} of the training set: {train_dataset[index]}." )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(A__ : EvalPrediction ):
SCREAMING_SNAKE_CASE = p.predictions[0] if isinstance(p.predictions , A__ ) else p.predictions
SCREAMING_SNAKE_CASE = np.argmax(A__ , axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
SCREAMING_SNAKE_CASE = default_data_collator
elif training_args.fpaa:
SCREAMING_SNAKE_CASE = DataCollatorWithPadding(A__ , pad_to_multiple_of=8 )
else:
SCREAMING_SNAKE_CASE = None
# Initialize our Trainer
SCREAMING_SNAKE_CASE = Trainer(
model=A__ , args=A__ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=A__ , tokenizer=A__ , data_collator=A__ , )
# Training
if training_args.do_train:
SCREAMING_SNAKE_CASE = None
if training_args.resume_from_checkpoint is not None:
SCREAMING_SNAKE_CASE = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
SCREAMING_SNAKE_CASE = last_checkpoint
SCREAMING_SNAKE_CASE = trainer.train(resume_from_checkpoint=A__ )
SCREAMING_SNAKE_CASE = train_result.metrics
SCREAMING_SNAKE_CASE = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(A__ )
)
SCREAMING_SNAKE_CASE = min(A__ , len(A__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train" , A__ )
trainer.save_metrics("train" , A__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
SCREAMING_SNAKE_CASE = trainer.evaluate(eval_dataset=A__ )
SCREAMING_SNAKE_CASE = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(A__ )
SCREAMING_SNAKE_CASE = min(A__ , len(A__ ) )
trainer.log_metrics("eval" , A__ )
trainer.save_metrics("eval" , A__ )
if training_args.do_predict:
logger.info("*** Predict ***" )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
SCREAMING_SNAKE_CASE = predict_dataset.remove_columns("label" )
SCREAMING_SNAKE_CASE = trainer.predict(A__ , metric_key_prefix="predict" ).predictions
SCREAMING_SNAKE_CASE = np.argmax(A__ , axis=1 )
SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" )
if trainer.is_world_process_zero():
with open(A__ , "w" ) as writer:
logger.info("***** Predict Results *****" )
writer.write("index\tprediction\n" )
for index, item in enumerate(A__ ):
SCREAMING_SNAKE_CASE = label_list[item]
writer.write(F"{index}\t{item}\n" )
SCREAMING_SNAKE_CASE = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
if training_args.push_to_hub:
trainer.push_to_hub(**A__ )
else:
trainer.create_model_card(**A__ )
def __a ( A__ : Dict ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main() | 698 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "gpt_neo"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_layers
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = window_size
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_dropout
SCREAMING_SNAKE_CASE = embed_dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = classifier_dropout
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
SCREAMING_SNAKE_CASE = attention_types
SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
@staticmethod
def _snake_case ( __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ):
import torch
SCREAMING_SNAKE_CASE = input.size()
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = shape[dimension]
SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ )
SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1
SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE = [slice(A__ )] * rank
SCREAMING_SNAKE_CASE = indices
SCREAMING_SNAKE_CASE = input[s]
SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(A__ )
def __a ( A__ : Union[str, Any] , A__ : Optional[int] ):
import torch
SCREAMING_SNAKE_CASE = torch.arange(1 , A__ )
SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ )
SCREAMING_SNAKE_CASE = remainders == 0
SCREAMING_SNAKE_CASE = candidates[divisor_indices]
SCREAMING_SNAKE_CASE = torch.max(A__ )
return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _snake_case ( self : Optional[int] ):
return self._config.num_heads
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE = seqlen + 2
SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE = common_inputs["attention_mask"]
if self.use_past:
SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype
SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
return ordered_inputs
@property
def _snake_case ( self : Optional[int] ):
return 13 | 698 | 1 |
import argparse
import fairseq
import torch
from torch import nn
from transformers import (
MBartaaTokenizer,
MBartConfig,
MBartForCausalLM,
SpeechEncoderDecoderConfig,
SpeechEncoderDecoderModel,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaModel,
logging,
)
logging.set_verbosity_info()
__A : List[Any] = logging.get_logger(__name__)
__A : List[Any] = {
'post_extract_proj': 'feature_projection.projection',
'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv',
'self_attn.k_proj': 'encoder.layers.*.attention.k_proj',
'self_attn.v_proj': 'encoder.layers.*.attention.v_proj',
'self_attn.q_proj': 'encoder.layers.*.attention.q_proj',
'self_attn.out_proj': 'encoder.layers.*.attention.out_proj',
'self_attn_layer_norm': 'encoder.layers.*.layer_norm',
'fc1': 'encoder.layers.*.feed_forward.intermediate_dense',
'fc2': 'encoder.layers.*.feed_forward.output_dense',
'final_layer_norm': 'encoder.layers.*.final_layer_norm',
'encoder.layer_norm': 'encoder.layer_norm',
'w2v_model.layer_norm': 'feature_projection.layer_norm',
'quantizer.weight_proj': 'quantizer.weight_proj',
'quantizer.vars': 'quantizer.codevectors',
'project_q': 'project_q',
'final_proj': 'project_hid',
'w2v_encoder.proj': 'lm_head',
'mask_emb': 'masked_spec_embed',
}
__A : List[Any] = [
'lm_head',
'quantizer.weight_proj',
'quantizer.codevectors',
'project_q',
'project_hid',
]
def __a ( A__ : List[Any] , A__ : Dict , A__ : Tuple , A__ : Tuple , A__ : Dict ):
for attribute in key.split("." ):
SCREAMING_SNAKE_CASE = getattr(A__ , A__ )
if weight_type is not None:
SCREAMING_SNAKE_CASE = getattr(A__ , A__ ).shape
else:
SCREAMING_SNAKE_CASE = hf_pointer.shape
assert hf_shape == value.shape, (
F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
F" {value.shape} for {full_name}"
)
if weight_type == "weight":
SCREAMING_SNAKE_CASE = value
elif weight_type == "weight_g":
SCREAMING_SNAKE_CASE = value
elif weight_type == "weight_v":
SCREAMING_SNAKE_CASE = value
elif weight_type == "bias":
SCREAMING_SNAKE_CASE = value
else:
SCREAMING_SNAKE_CASE = value
logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def __a ( A__ : List[str] , A__ : Tuple ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = fairseq_model.state_dict()
SCREAMING_SNAKE_CASE = hf_model.feature_extractor
SCREAMING_SNAKE_CASE = hf_model.adapter
for name, value in fairseq_dict.items():
SCREAMING_SNAKE_CASE = False
if "conv_layers" in name:
load_conv_layer(
A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == "group" , )
SCREAMING_SNAKE_CASE = True
elif any(x in name for x in ["adaptor", "w2v_encoder.proj.", "w2v_proj_ln."] ):
load_adapter(A__ , A__ , A__ , A__ )
SCREAMING_SNAKE_CASE = True
else:
for key, mapped_key in MAPPING.items():
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
SCREAMING_SNAKE_CASE = True
if "*" in mapped_key:
SCREAMING_SNAKE_CASE = name.split(A__ )[0].split("." )[-2]
SCREAMING_SNAKE_CASE = mapped_key.replace("*" , A__ )
if "weight_g" in name:
SCREAMING_SNAKE_CASE = "weight_g"
elif "weight_v" in name:
SCREAMING_SNAKE_CASE = "weight_v"
elif "bias" in name:
SCREAMING_SNAKE_CASE = "bias"
elif "weight" in name:
SCREAMING_SNAKE_CASE = "weight"
else:
SCREAMING_SNAKE_CASE = None
set_recursively(A__ , A__ , A__ , A__ , A__ )
continue
if not is_used:
unused_weights.append(A__ )
logger.warning(F"Unused weights: {unused_weights}" )
def __a ( A__ : List[str] , A__ : Optional[int] , A__ : Tuple , A__ : List[Any] , A__ : Dict ):
SCREAMING_SNAKE_CASE = full_name.split("conv_layers." )[-1]
SCREAMING_SNAKE_CASE = name.split("." )
SCREAMING_SNAKE_CASE = int(items[0] )
SCREAMING_SNAKE_CASE = int(items[1] )
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
SCREAMING_SNAKE_CASE = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
SCREAMING_SNAKE_CASE = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
F"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"
" found."
)
SCREAMING_SNAKE_CASE = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
F"{full_name} has size {value.shape}, but"
F" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
)
SCREAMING_SNAKE_CASE = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(A__ )
def __a ( A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Any ):
SCREAMING_SNAKE_CASE = full_name.split("adaptor." )[-1]
SCREAMING_SNAKE_CASE = name.split("." )
if items[1].isdigit():
SCREAMING_SNAKE_CASE = int(items[1] )
else:
SCREAMING_SNAKE_CASE = None
if "adaptor" not in full_name:
if "proj_ln" in full_name:
# has to be layer norm
if "bias" in name:
assert (
value.shape == adapter.proj_layer_norm.bias.data.shape
), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found."
SCREAMING_SNAKE_CASE = value
logger.info(F"Adapter proj layer norm bias was initialized from {full_name}." )
if "weight" in name:
assert (
value.shape == adapter.proj_layer_norm.weight.data.shape
), F"{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found."
SCREAMING_SNAKE_CASE = value
else:
# has to be projection layer
if "bias" in name:
assert (
value.shape == adapter.proj.bias.data.shape
), F"{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found."
SCREAMING_SNAKE_CASE = value
logger.info(F"Adapter proj layer bias was initialized from {full_name}." )
if "weight" in name:
assert (
value.shape == adapter.proj.weight.data.shape
), F"{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found."
SCREAMING_SNAKE_CASE = value
logger.info(F"Adapter proj layer weight was initialized from {full_name}." )
elif isinstance(A__ , A__ ):
if "bias" in name:
assert (
value.shape == adapter.layers[layer_id].conv.bias.data.shape
), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found."
SCREAMING_SNAKE_CASE = value
logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." )
elif "weight" in name:
assert (
value.shape == adapter.layers[layer_id].conv.weight.data.shape
), F"{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found."
SCREAMING_SNAKE_CASE = value
logger.info(F"Adapter layer {layer_id} bias was initialized from {full_name}." )
else:
unused_weights.append(A__ )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
@torch.no_grad()
def __a ( A__ : Any , A__ : Optional[Any] , A__ : Dict , A__ : str , A__ : Dict , A__ : Optional[int] , A__ : Optional[Any] , A__ : Union[str, Any] , A__ : Any , A__ : int , A__ : Optional[int] , ):
SCREAMING_SNAKE_CASE = WavaVecaConfig.from_pretrained(
A__ , add_adapter=A__ , adapter_stride=A__ , adapter_kernel_size=A__ , use_auth_token=A__ , output_hidden_size=A__ , )
SCREAMING_SNAKE_CASE = MBartConfig.from_pretrained(A__ )
# load model
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={
"config_yaml": config_yaml_path,
"data": "/".join(dict_path.split("/" )[:-1] ),
"w2v_path": checkpoint_path,
"load_pretrained_decoder_from": None,
} , )
SCREAMING_SNAKE_CASE = model[0].eval()
# load feature extractor
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(A__ , use_auth_token=A__ )
# set weights for wav2vec2 encoder
SCREAMING_SNAKE_CASE = WavaVecaModel(A__ )
recursively_load_weights_wavaveca(model.encoder , A__ )
# load decoder weights
SCREAMING_SNAKE_CASE = MBartForCausalLM(A__ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=A__ )
logger.warning(F"The following keys are missing when loading the decoder weights: {missing_keys}" )
logger.warning(F"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" )
SCREAMING_SNAKE_CASE = SpeechEncoderDecoderModel(encoder=A__ , decoder=A__ )
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = MBartaaTokenizer(A__ )
tokenizer.save_pretrained(A__ )
SCREAMING_SNAKE_CASE = hf_wavavec.config.to_dict()
SCREAMING_SNAKE_CASE = tokenizer.pad_token_id
SCREAMING_SNAKE_CASE = tokenizer.bos_token_id
SCREAMING_SNAKE_CASE = tokenizer.eos_token_id
SCREAMING_SNAKE_CASE = "mbart50"
SCREAMING_SNAKE_CASE = "wav2vec2"
SCREAMING_SNAKE_CASE = tokenizer.eos_token_id
SCREAMING_SNAKE_CASE = 250004
SCREAMING_SNAKE_CASE = tokenizer.eos_token_id
SCREAMING_SNAKE_CASE = SpeechEncoderDecoderConfig.from_dict(A__ )
hf_wavavec.save_pretrained(A__ )
feature_extractor.save_pretrained(A__ )
if __name__ == "__main__":
__A : Any = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint')
parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model')
parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model')
parser.add_argument(
'--encoder_config_path',
default='facebook/wav2vec2-xls-r-1b',
type=str,
help='Path to hf encoder wav2vec2 checkpoint config',
)
parser.add_argument(
'--decoder_config_path',
default='facebook/mbart-large-50-one-to-many-mmt',
type=str,
help='Path to hf decoder checkpoint config',
)
parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers')
parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers')
parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers')
parser.add_argument('--encoder_output_dim', default=1_0_2_4, type=int, help='encoder output dim')
parser.add_argument('--start_token_id', default=2_5_0_0_0_4, type=int, help='`decoder_start_token_id` of model config')
__A : Optional[Any] = parser.parse_args()
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.dict_path,
args.config_yaml_path,
encoder_config_path=args.encoder_config_path,
decoder_config_path=args.decoder_config_path,
add_adapter=args.add_adapter,
adapter_kernel_size=args.adapter_kernel_size,
adapter_stride=args.adapter_stride,
decoder_start_token_id=args.start_token_id,
encoder_output_dim=args.encoder_output_dim,
) | 698 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : Any = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 1 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __a ( A__ : Tuple , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(A__ ):
SCREAMING_SNAKE_CASE = torch.load(A__ )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = os.path.join(
A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(A__ ):
SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" )
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {"total_size": total_size}
SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n"
f.write(A__ )
return metadata, index
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__A : Optional[int] = parser.parse_args()
__A , __A : Union[str, Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__A : Any = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path) | 698 |
import cmath
import math
def __a ( A__ : float , A__ : float , A__ : float , A__ : float ):
SCREAMING_SNAKE_CASE = math.radians(A__ )
SCREAMING_SNAKE_CASE = math.radians(A__ )
# Convert voltage and current to rectangular form
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 1 |
from __future__ import annotations
from collections.abc import Generator
def __a ( ):
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = 2
while True:
SCREAMING_SNAKE_CASE = factor_map.pop(A__ , A__ )
if factor:
SCREAMING_SNAKE_CASE = factor + prime
while x in factor_map:
x += factor
SCREAMING_SNAKE_CASE = factor
else:
SCREAMING_SNAKE_CASE = prime
yield prime
prime += 1
def __a ( A__ : float = 1E1_0 ):
SCREAMING_SNAKE_CASE = sieve()
SCREAMING_SNAKE_CASE = 1
while True:
SCREAMING_SNAKE_CASE = next(A__ )
if (2 * prime * n) > limit:
return n
# Ignore the next prime as the reminder will be 2.
next(A__ )
n += 2
if __name__ == "__main__":
print(solution()) | 698 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __a ( A__ : Tuple , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(A__ ):
SCREAMING_SNAKE_CASE = torch.load(A__ )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = os.path.join(
A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(A__ ):
SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" )
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {"total_size": total_size}
SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n"
f.write(A__ )
return metadata, index
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__A : Optional[int] = parser.parse_args()
__A , __A : Union[str, Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__A : Any = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path) | 698 | 1 |
import unittest
from transformers import SPIECE_UNDERLINE
from transformers.models.speechta import SpeechTaTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.tokenization_utils import AddedToken
from ...test_tokenization_common import TokenizerTesterMixin
__A : str = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model')
@require_sentencepiece
@require_tokenizers
class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = SpeechTaTokenizer
lowerCamelCase__ = False
lowerCamelCase__ = True
def _snake_case ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE = SpeechTaTokenizer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = AddedToken("<mask>" , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase )
SCREAMING_SNAKE_CASE = mask_token
tokenizer.add_special_tokens({"mask_token": mask_token} )
tokenizer.add_tokens(["<ctc_blank>"] )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self : str , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = "this is a test"
SCREAMING_SNAKE_CASE = "this is a test"
return input_text, output_text
def _snake_case ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : str=False , __lowerCamelCase : str=20 , __lowerCamelCase : str=5 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.get_input_output_texts(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase )
return text, ids
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = "<pad>"
SCREAMING_SNAKE_CASE = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-4] , "œ" )
self.assertEqual(vocab_keys[-2] , "<mask>" )
self.assertEqual(vocab_keys[-1] , "<ctc_blank>" )
self.assertEqual(len(__lowerCamelCase ) , 81 )
def _snake_case ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 79 )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = self.get_tokenizers(do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
SCREAMING_SNAKE_CASE = tokenizer.vocab_size
SCREAMING_SNAKE_CASE = len(__lowerCamelCase )
self.assertNotEqual(__lowerCamelCase , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
SCREAMING_SNAKE_CASE = ["aaaaa bbbbbb", "cccccccccdddddddd"]
SCREAMING_SNAKE_CASE = tokenizer.add_tokens(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.vocab_size
SCREAMING_SNAKE_CASE = len(__lowerCamelCase )
self.assertNotEqual(__lowerCamelCase , 0 )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(__lowerCamelCase , len(__lowerCamelCase ) )
self.assertEqual(__lowerCamelCase , all_size + len(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=__lowerCamelCase )
self.assertGreaterEqual(len(__lowerCamelCase ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
SCREAMING_SNAKE_CASE = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
SCREAMING_SNAKE_CASE = tokenizer.add_special_tokens(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.vocab_size
SCREAMING_SNAKE_CASE = len(__lowerCamelCase )
self.assertNotEqual(__lowerCamelCase , 0 )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(__lowerCamelCase , len(__lowerCamelCase ) )
self.assertEqual(__lowerCamelCase , all_size_a + len(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = tokenizer.encode(
">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=__lowerCamelCase )
self.assertGreaterEqual(len(__lowerCamelCase ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
def _snake_case ( self : str ):
pass
def _snake_case ( self : Any ):
pass
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = tokenizer.tokenize("This is a test" )
# fmt: off
self.assertListEqual(__lowerCamelCase , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] )
# fmt: on
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , )
SCREAMING_SNAKE_CASE = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__lowerCamelCase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__lowerCamelCase )
# fmt: off
self.assertListEqual(__lowerCamelCase , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] )
# fmt: on
SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__lowerCamelCase )
self.assertListEqual(
__lowerCamelCase , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] )
@slow
def _snake_case ( self : int ):
# Use custom sequence because this tokenizer does not handle numbers.
SCREAMING_SNAKE_CASE = [
"Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
"general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
"Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained "
"models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.",
"BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
"conditioning on both left and right context in all layers.",
"The quick brown fox jumps over the lazy dog.",
]
# fmt: off
SCREAMING_SNAKE_CASE = {
"input_ids": [
[4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2],
[4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
],
"attention_mask": [
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
]
}
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=__lowerCamelCase , ) | 698 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = BlipImageProcessor()
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict , **__lowerCamelCase : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def _snake_case ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" )
SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 698 | 1 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = 42
lowerCamelCase__ = None
def __a ( A__ : int , A__ : Dict=0.9_9_9 , A__ : Optional[int]="cosine" , ):
if alpha_transform_type == "cosine":
def alpha_bar_fn(A__ : Tuple ):
return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(A__ : Any ):
return math.exp(t * -1_2.0 )
else:
raise ValueError(F"Unsupported alpha_tranform_type: {alpha_transform_type}" )
SCREAMING_SNAKE_CASE = []
for i in range(A__ ):
SCREAMING_SNAKE_CASE = i / num_diffusion_timesteps
SCREAMING_SNAKE_CASE = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(A__ ) / alpha_bar_fn(A__ ) , A__ ) )
return torch.tensor(A__ , dtype=torch.floataa )
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ):
'''simple docstring'''
@register_to_config
def __init__( self : Optional[int] , __lowerCamelCase : int = 1000 , __lowerCamelCase : str = "fixed_small_log" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[float] = 1.0 , __lowerCamelCase : str = "epsilon" , __lowerCamelCase : str = "squaredcos_cap_v2" , ):
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
SCREAMING_SNAKE_CASE = betas_for_alpha_bar(__lowerCamelCase )
SCREAMING_SNAKE_CASE = 1.0 - self.betas
SCREAMING_SNAKE_CASE = torch.cumprod(self.alphas , dim=0 )
SCREAMING_SNAKE_CASE = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
SCREAMING_SNAKE_CASE = 1.0
# setable values
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = torch.from_numpy(np.arange(0 , __lowerCamelCase )[::-1].copy() )
SCREAMING_SNAKE_CASE = variance_type
def _snake_case ( self : Tuple , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[int] = None ):
return sample
def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None ):
SCREAMING_SNAKE_CASE = num_inference_steps
SCREAMING_SNAKE_CASE = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
SCREAMING_SNAKE_CASE = (np.arange(0 , __lowerCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
SCREAMING_SNAKE_CASE = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : int=None ):
if prev_timestep is None:
SCREAMING_SNAKE_CASE = t - 1
SCREAMING_SNAKE_CASE = self.alphas_cumprod[t]
SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
SCREAMING_SNAKE_CASE = 1 - alpha_prod_t
SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
SCREAMING_SNAKE_CASE = self.betas[t]
else:
SCREAMING_SNAKE_CASE = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
SCREAMING_SNAKE_CASE = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
SCREAMING_SNAKE_CASE = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
SCREAMING_SNAKE_CASE = torch.log(torch.clamp(__lowerCamelCase , min=1e-20 ) )
SCREAMING_SNAKE_CASE = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
SCREAMING_SNAKE_CASE = variance.log()
SCREAMING_SNAKE_CASE = beta.log()
SCREAMING_SNAKE_CASE = (predicted_variance + 1) / 2
SCREAMING_SNAKE_CASE = frac * max_log + (1 - frac) * min_log
return variance
def _snake_case ( self : Dict , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : int=None , __lowerCamelCase : bool = True , ):
SCREAMING_SNAKE_CASE = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torch.split(__lowerCamelCase , sample.shape[1] , dim=1 )
else:
SCREAMING_SNAKE_CASE = None
# 1. compute alphas, betas
if prev_timestep is None:
SCREAMING_SNAKE_CASE = t - 1
SCREAMING_SNAKE_CASE = self.alphas_cumprod[t]
SCREAMING_SNAKE_CASE = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
SCREAMING_SNAKE_CASE = 1 - alpha_prod_t
SCREAMING_SNAKE_CASE = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
SCREAMING_SNAKE_CASE = self.betas[t]
SCREAMING_SNAKE_CASE = self.alphas[t]
else:
SCREAMING_SNAKE_CASE = 1 - alpha_prod_t / alpha_prod_t_prev
SCREAMING_SNAKE_CASE = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
SCREAMING_SNAKE_CASE = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
SCREAMING_SNAKE_CASE = model_output
else:
raise ValueError(
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
SCREAMING_SNAKE_CASE = torch.clamp(
__lowerCamelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
SCREAMING_SNAKE_CASE = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
SCREAMING_SNAKE_CASE = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
SCREAMING_SNAKE_CASE = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
SCREAMING_SNAKE_CASE = 0
if t > 0:
SCREAMING_SNAKE_CASE = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=__lowerCamelCase , device=model_output.device )
SCREAMING_SNAKE_CASE = self._get_variance(
__lowerCamelCase , predicted_variance=__lowerCamelCase , prev_timestep=__lowerCamelCase , )
if self.variance_type == "fixed_small_log":
SCREAMING_SNAKE_CASE = variance
elif self.variance_type == "learned_range":
SCREAMING_SNAKE_CASE = (0.5 * variance).exp()
else:
raise ValueError(
f"variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"
" for the UnCLIPScheduler." )
SCREAMING_SNAKE_CASE = variance * variance_noise
SCREAMING_SNAKE_CASE = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=__lowerCamelCase , pred_original_sample=__lowerCamelCase )
def _snake_case ( self : Optional[int] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.IntTensor , ):
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
SCREAMING_SNAKE_CASE = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
SCREAMING_SNAKE_CASE = timesteps.to(original_samples.device )
SCREAMING_SNAKE_CASE = alphas_cumprod[timesteps] ** 0.5
SCREAMING_SNAKE_CASE = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
SCREAMING_SNAKE_CASE = sqrt_alpha_prod.unsqueeze(-1 )
SCREAMING_SNAKE_CASE = (1 - alphas_cumprod[timesteps]) ** 0.5
SCREAMING_SNAKE_CASE = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
SCREAMING_SNAKE_CASE = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
SCREAMING_SNAKE_CASE = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples | 698 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ):
pass
def __a ( A__ : str ):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
__A : Tuple = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
SCREAMING_SNAKE_CASE = "What is the placebo?"
SCREAMING_SNAKE_CASE = [
{
"image": load_image(__lowerCamelCase ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 )
self.assertEqual(
__lowerCamelCase , [
[
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "How many cats are there?"
SCREAMING_SNAKE_CASE = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
# We can optionnally pass directly the words and bounding boxes
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
@slow
@require_torch
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _snake_case ( self : List[Any] ):
pass | 698 | 1 |
from __future__ import annotations
def __a ( A__ : int = 4 ):
SCREAMING_SNAKE_CASE = abs(A__ ) or 4
return [[1 + x + y * row_size for x in range(A__ )] for y in range(A__ )]
def __a ( A__ : list[list[int]] ):
return reverse_row(transpose(A__ ) )
# OR.. transpose(reverse_column(matrix))
def __a ( A__ : list[list[int]] ):
return reverse_row(reverse_column(A__ ) )
# OR.. reverse_column(reverse_row(matrix))
def __a ( A__ : list[list[int]] ):
return reverse_column(transpose(A__ ) )
# OR.. transpose(reverse_row(matrix))
def __a ( A__ : list[list[int]] ):
SCREAMING_SNAKE_CASE = [list(A__ ) for x in zip(*A__ )]
return matrix
def __a ( A__ : list[list[int]] ):
SCREAMING_SNAKE_CASE = matrix[::-1]
return matrix
def __a ( A__ : list[list[int]] ):
SCREAMING_SNAKE_CASE = [x[::-1] for x in matrix]
return matrix
def __a ( A__ : list[list[int]] ):
for i in matrix:
print(*A__ )
if __name__ == "__main__":
__A : Tuple = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 90 counterclockwise:\n')
print_matrix(rotate_aa(matrix))
__A : List[str] = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 180:\n')
print_matrix(rotate_aaa(matrix))
__A : Any = make_matrix()
print('\norigin:\n')
print_matrix(matrix)
print('\nrotate 270 counterclockwise:\n')
print_matrix(rotate_aaa(matrix)) | 698 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "facebook/bart-large-mnli"
lowerCamelCase__ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
lowerCamelCase__ = "text_classifier"
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSequenceClassification
lowerCamelCase__ = ["text", ["text"]]
lowerCamelCase__ = ["text"]
def _snake_case ( self : Optional[Any] ):
super().setup()
SCREAMING_SNAKE_CASE = self.model.config
SCREAMING_SNAKE_CASE = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
SCREAMING_SNAKE_CASE = int(__lowerCamelCase )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = labels
return self.pre_processor(
[text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , )
def _snake_case ( self : str , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = outputs.logits
SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id] | 698 | 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / 'utils'))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
__A : Dict = get_tests_dir('fixtures')
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
# A mock response for an HTTP head request to emulate server down
SCREAMING_SNAKE_CASE = mock.Mock()
SCREAMING_SNAKE_CASE = 500
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = HTTPError
SCREAMING_SNAKE_CASE = {}
# Download this model to make sure it's in the cache.
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=__lowerCamelCase ) as mock_head:
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def _snake_case ( self : int ):
# This test is for deprecated behavior and can be removed in v5
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def _snake_case ( cls : Optional[int] ):
SCREAMING_SNAKE_CASE = TOKEN
HfFolder.save_token(__lowerCamelCase )
@classmethod
def _snake_case ( cls : List[str] ):
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
__lowerCamelCase , repo_id="test-feature-extractor" , push_to_hub=__lowerCamelCase , use_auth_token=self._token )
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
__lowerCamelCase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token )
SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
def _snake_case ( self : Optional[Any] ):
CustomFeatureExtractor.register_for_auto_class()
SCREAMING_SNAKE_CASE = CustomFeatureExtractor.from_pretrained(__lowerCamelCase )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
SCREAMING_SNAKE_CASE = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=__lowerCamelCase )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" ) | 698 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __a ( A__ : str=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE = subparsers.add_parser("test" )
else:
SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=A__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=A__ )
return parser
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
SCREAMING_SNAKE_CASE = script_name
else:
SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split()
SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __a ( ):
SCREAMING_SNAKE_CASE = test_command_parser()
SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(A__ )
if __name__ == "__main__":
main() | 698 | 1 |
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel
from transformers.utils import ModelOutput
@dataclass
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = None
lowerCamelCase__ = None
lowerCamelCase__ = None
lowerCamelCase__ = None
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : List[Any] , __lowerCamelCase : List[str]=1 , __lowerCamelCase : Dict=0 , __lowerCamelCase : int=2 , __lowerCamelCase : Optional[int]=512 , __lowerCamelCase : Optional[Any]="cls" , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=True , **__lowerCamelCase : List[Any] , ):
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = project_dim
SCREAMING_SNAKE_CASE = pooler_fn
SCREAMING_SNAKE_CASE = learn_encoder
SCREAMING_SNAKE_CASE = use_attention_mask
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = [R"pooler", R"logit_scale"]
lowerCamelCase__ = [R"position_ids", R"predictions.decoder.bias"]
lowerCamelCase__ = "roberta"
lowerCamelCase__ = RobertaSeriesConfig
def __init__( self : Union[str, Any] , __lowerCamelCase : Tuple ):
super().__init__(__lowerCamelCase )
SCREAMING_SNAKE_CASE = XLMRobertaModel(__lowerCamelCase )
SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim )
SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , "has_pre_transformation" , __lowerCamelCase )
if self.has_pre_transformation:
SCREAMING_SNAKE_CASE = nn.Linear(config.hidden_size , config.project_dim )
SCREAMING_SNAKE_CASE = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps )
self.post_init()
def _snake_case ( self : Any , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[bool] = None , ):
SCREAMING_SNAKE_CASE = return_dict if return_dict is not None else self.config.use_return_dict
SCREAMING_SNAKE_CASE = self.base_model(
input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , position_ids=__lowerCamelCase , head_mask=__lowerCamelCase , inputs_embeds=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=__lowerCamelCase , )
if self.has_pre_transformation:
SCREAMING_SNAKE_CASE = outputs["hidden_states"][-2]
SCREAMING_SNAKE_CASE = self.pre_LN(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.transformation_pre(__lowerCamelCase )
return TransformationModelOutput(
projection_state=__lowerCamelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
else:
SCREAMING_SNAKE_CASE = self.transformation(outputs.last_hidden_state )
return TransformationModelOutput(
projection_state=__lowerCamelCase , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) | 698 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A : Optional[int] = logging.get_logger(__name__)
__A : List[str] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : Tuple = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
__A : Dict = {'facebook/blenderbot-3B': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __a ( ):
SCREAMING_SNAKE_CASE = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
SCREAMING_SNAKE_CASE = bs[:]
SCREAMING_SNAKE_CASE = 0
for b in range(2**8 ):
if b not in bs:
bs.append(A__ )
cs.append(2**8 + n )
n += 1
SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs]
return dict(zip(A__ , A__ ) )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = set()
SCREAMING_SNAKE_CASE = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
SCREAMING_SNAKE_CASE = char
return pairs
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ):
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()}
SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding
SCREAMING_SNAKE_CASE = bytes_to_unicode()
SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1]
SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges]
SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _snake_case ( self : Dict ):
return len(self.encoder )
def _snake_case ( self : int ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ):
if token in self.cache:
return self.cache[token]
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while i < len(__lowerCamelCase ):
try:
SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
SCREAMING_SNAKE_CASE = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = new_word
if len(__lowerCamelCase ) == 1:
break
else:
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = word
return word
def _snake_case ( self : str , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for token in re.findall(self.pat , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : List[str] , __lowerCamelCase : str ):
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ):
return self.decoder.get(__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
SCREAMING_SNAKE_CASE = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
SCREAMING_SNAKE_CASE = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
SCREAMING_SNAKE_CASE = " " + text
return (text, kwargs)
def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ):
SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." )
return input_ids | 698 | 1 |
def __a ( A__ : int = 10 , A__ : int = 1000 , A__ : bool = True ):
assert (
isinstance(A__ , A__ )
and isinstance(A__ , A__ )
and isinstance(A__ , A__ )
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" )
return min_val if option else max_val
def __a ( A__ : int , A__ : int ):
return int((number_a + number_a) / 2 )
def __a ( A__ : int , A__ : int , A__ : int ):
assert (
isinstance(A__ , A__ ) and isinstance(A__ , A__ ) and isinstance(A__ , A__ )
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)" )
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value" )
def answer(A__ : int ) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started..." )
SCREAMING_SNAKE_CASE = lower
SCREAMING_SNAKE_CASE = higher
SCREAMING_SNAKE_CASE = []
while True:
SCREAMING_SNAKE_CASE = get_avg(A__ , A__ )
last_numbers.append(A__ )
if answer(A__ ) == "low":
SCREAMING_SNAKE_CASE = number
elif answer(A__ ) == "high":
SCREAMING_SNAKE_CASE = number
else:
break
print(F"guess the number : {last_numbers[-1]}" )
print(F"details : {last_numbers!s}" )
def __a ( ):
SCREAMING_SNAKE_CASE = int(input("Enter lower value : " ).strip() )
SCREAMING_SNAKE_CASE = int(input("Enter high value : " ).strip() )
SCREAMING_SNAKE_CASE = int(input("Enter value to guess : " ).strip() )
guess_the_number(A__ , A__ , A__ )
if __name__ == "__main__":
main() | 698 |
from __future__ import annotations
from cmath import sqrt
def __a ( A__ : int , A__ : int , A__ : int ):
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
SCREAMING_SNAKE_CASE = b * b - 4 * a * c
SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a)
SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def __a ( ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main() | 698 | 1 |
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.layers import LSTM, Dense
from tensorflow.keras.models import Sequential
if __name__ == "__main__":
__A : List[str] = pd.read_csv('sample_data.csv', header=None)
__A : List[Any] = df.shape[:1][0]
# If you're using some other dataset input the target column
__A : Tuple = df.iloc[:, 1:2]
__A : List[str] = actual_data.values.reshape(len_data, 1)
__A : Tuple = MinMaxScaler().fit_transform(actual_data)
__A : Any = 1_0
__A : Any = 5
__A : Union[str, Any] = 2_0
__A : str = len_data - periods * look_back
__A : Optional[Any] = actual_data[:division]
__A : str = actual_data[division - look_back :]
__A , __A : Tuple = [], []
__A , __A : List[str] = [], []
for i in range(0, len(train_data) - forward_days - look_back + 1):
train_x.append(train_data[i : i + look_back])
train_y.append(train_data[i + look_back : i + look_back + forward_days])
for i in range(0, len(test_data) - forward_days - look_back + 1):
test_x.append(test_data[i : i + look_back])
test_y.append(test_data[i + look_back : i + look_back + forward_days])
__A : Optional[Any] = np.array(train_x)
__A : Any = np.array(test_x)
__A : Optional[int] = np.array([list(i.ravel()) for i in train_y])
__A : Dict = np.array([list(i.ravel()) for i in test_y])
__A : Optional[Any] = Sequential()
model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True))
model.add(LSTM(6_4, input_shape=(1_2_8, 1)))
model.add(Dense(forward_days))
model.compile(loss='mean_squared_error', optimizer='adam')
__A : Union[str, Any] = model.fit(
x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4
)
__A : str = model.predict(x_test) | 698 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text | 698 | 1 |
import copy
from collections import OrderedDict
from typing import Dict, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
__A : Union[str, Any] = logging.get_logger(__name__)
__A : List[str] = {
'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json',
# See all DETR models at https://huggingface.co/models?filter=detr
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "detr"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self : Optional[Any] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : int=100 , __lowerCamelCase : List[str]=6 , __lowerCamelCase : Dict=2048 , __lowerCamelCase : str=8 , __lowerCamelCase : int=6 , __lowerCamelCase : List[str]=2048 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[Any]="relu" , __lowerCamelCase : List[str]=256 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : int=0.02 , __lowerCamelCase : List[Any]=1.0 , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : str="sine" , __lowerCamelCase : Union[str, Any]="resnet50" , __lowerCamelCase : Any=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : Union[str, Any]=5 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : Dict=1 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : Tuple=5 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[int]=0.1 , **__lowerCamelCase : Optional[int] , ):
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
SCREAMING_SNAKE_CASE = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = backbone_config.get("model_type" )
SCREAMING_SNAKE_CASE = CONFIG_MAPPING[backbone_model_type]
SCREAMING_SNAKE_CASE = config_class.from_dict(__lowerCamelCase )
# set timm attributes to None
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None, None, None
SCREAMING_SNAKE_CASE = use_timm_backbone
SCREAMING_SNAKE_CASE = backbone_config
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = num_queries
SCREAMING_SNAKE_CASE = d_model
SCREAMING_SNAKE_CASE = encoder_ffn_dim
SCREAMING_SNAKE_CASE = encoder_layers
SCREAMING_SNAKE_CASE = encoder_attention_heads
SCREAMING_SNAKE_CASE = decoder_ffn_dim
SCREAMING_SNAKE_CASE = decoder_layers
SCREAMING_SNAKE_CASE = decoder_attention_heads
SCREAMING_SNAKE_CASE = dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = activation_dropout
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = init_std
SCREAMING_SNAKE_CASE = init_xavier_std
SCREAMING_SNAKE_CASE = encoder_layerdrop
SCREAMING_SNAKE_CASE = decoder_layerdrop
SCREAMING_SNAKE_CASE = encoder_layers
SCREAMING_SNAKE_CASE = auxiliary_loss
SCREAMING_SNAKE_CASE = position_embedding_type
SCREAMING_SNAKE_CASE = backbone
SCREAMING_SNAKE_CASE = use_pretrained_backbone
SCREAMING_SNAKE_CASE = dilation
# Hungarian matcher
SCREAMING_SNAKE_CASE = class_cost
SCREAMING_SNAKE_CASE = bbox_cost
SCREAMING_SNAKE_CASE = giou_cost
# Loss coefficients
SCREAMING_SNAKE_CASE = mask_loss_coefficient
SCREAMING_SNAKE_CASE = dice_loss_coefficient
SCREAMING_SNAKE_CASE = bbox_loss_coefficient
SCREAMING_SNAKE_CASE = giou_loss_coefficient
SCREAMING_SNAKE_CASE = eos_coefficient
super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase )
@property
def _snake_case ( self : Any ):
return self.encoder_attention_heads
@property
def _snake_case ( self : Tuple ):
return self.d_model
@classmethod
def _snake_case ( cls : Tuple , __lowerCamelCase : PretrainedConfig , **__lowerCamelCase : Any ):
return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
SCREAMING_SNAKE_CASE = self.backbone_config.to_dict()
SCREAMING_SNAKE_CASE = self.__class__.model_type
return output
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : Any ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def _snake_case ( self : List[str] ):
return 1e-5
@property
def _snake_case ( self : Optional[int] ):
return 12 | 698 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 1 |
from math import isqrt, loga
def __a ( A__ : int ):
SCREAMING_SNAKE_CASE = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , A__ , A__ ):
SCREAMING_SNAKE_CASE = False
return [i for i in range(2 , A__ ) if is_prime[i]]
def __a ( A__ : int = 800800 , A__ : int = 800800 ):
SCREAMING_SNAKE_CASE = degree * loga(A__ )
SCREAMING_SNAKE_CASE = int(A__ )
SCREAMING_SNAKE_CASE = calculate_prime_numbers(A__ )
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = len(A__ ) - 1
while left < right:
while (
prime_numbers[right] * loga(prime_numbers[left] )
+ prime_numbers[left] * loga(prime_numbers[right] )
> upper_bound
):
right -= 1
hybrid_integers_count += right - left
left += 1
return hybrid_integers_count
if __name__ == "__main__":
print(f'{solution() = }') | 698 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__A : Optional[Any] = datasets.load_iris()
__A : Optional[Any] = np.array(data['data'])
__A : Optional[int] = np.array(data['target'])
__A : Union[str, Any] = data['target_names']
__A , __A , __A , __A : Optional[int] = train_test_split(X, y)
def __a ( A__ : Optional[int] , A__ : Dict ):
return np.linalg.norm(np.array(A__ ) - np.array(A__ ) )
def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ):
SCREAMING_SNAKE_CASE = zip(A__ , A__ )
# List of distances of all points from the point to be classified
SCREAMING_SNAKE_CASE = []
for data_point in data:
SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) | 698 | 1 |
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
__A : Dict = get_logger(__name__)
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
lowerCamelCase__ = "dummy_data"
lowerCamelCase__ = "datasets"
lowerCamelCase__ = False
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Union[Version, str] , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[List[Callable]] = None , ):
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = dataset_name
SCREAMING_SNAKE_CASE = cache_dir
SCREAMING_SNAKE_CASE = use_local_dummy_data
SCREAMING_SNAKE_CASE = config
# download_callbacks take a single url as input
SCREAMING_SNAKE_CASE = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
SCREAMING_SNAKE_CASE = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
SCREAMING_SNAKE_CASE = str(__lowerCamelCase )
# to be downloaded
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
@property
def _snake_case ( self : Union[str, Any] ):
if self._dummy_file is None:
SCREAMING_SNAKE_CASE = self.download_dummy_data()
return self._dummy_file
@property
def _snake_case ( self : Union[str, Any] ):
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join("dummy" , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join("dummy" , self.version_name )
@property
def _snake_case ( self : int ):
return os.path.join(self.dummy_data_folder , "dummy_data.zip" )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
SCREAMING_SNAKE_CASE = cached_path(
__lowerCamelCase , cache_dir=self.cache_dir , extract_compressed_file=__lowerCamelCase , force_extract=__lowerCamelCase )
return os.path.join(__lowerCamelCase , self.dummy_file_name )
@property
def _snake_case ( self : Union[str, Any] ):
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def _snake_case ( self : int ):
if self._bucket_url is None:
SCREAMING_SNAKE_CASE = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) )
return self._bucket_url
@property
def _snake_case ( self : Any ):
# return full path if its a dir
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] )
def _snake_case ( self : List[str] , __lowerCamelCase : str , *__lowerCamelCase : Dict ):
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
SCREAMING_SNAKE_CASE = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
SCREAMING_SNAKE_CASE = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__lowerCamelCase , __lowerCamelCase ):
return self.create_dummy_data_dict(__lowerCamelCase , __lowerCamelCase )
elif isinstance(__lowerCamelCase , (list, tuple) ):
return self.create_dummy_data_list(__lowerCamelCase , __lowerCamelCase )
else:
return self.create_dummy_data_single(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] , __lowerCamelCase : List[str] , *__lowerCamelCase : Optional[Any] ):
return self.download_and_extract(__lowerCamelCase )
def _snake_case ( self : int , __lowerCamelCase : str , __lowerCamelCase : Dict ):
return self.download_and_extract(__lowerCamelCase )
def _snake_case ( self : int , __lowerCamelCase : Union[str, Any] , *__lowerCamelCase : Tuple , **__lowerCamelCase : List[str] ):
return path
def _snake_case ( self : Dict ):
return {}
def _snake_case ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__lowerCamelCase , __lowerCamelCase ):
for single_url in single_urls:
download_callback(__lowerCamelCase )
else:
SCREAMING_SNAKE_CASE = single_urls
download_callback(__lowerCamelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__lowerCamelCase , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = [os.path.join(__lowerCamelCase , urllib.parse.quote_plus(Path(__lowerCamelCase ).name ) ) for x in single_urls]
else:
SCREAMING_SNAKE_CASE = single_urls
SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , urllib.parse.quote_plus(Path(__lowerCamelCase ).name ) )
SCREAMING_SNAKE_CASE = value
# make sure that values are unique
if all(isinstance(__lowerCamelCase , __lowerCamelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
SCREAMING_SNAKE_CASE = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
SCREAMING_SNAKE_CASE = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , __lowerCamelCase ) ) for url in data_url )
SCREAMING_SNAKE_CASE = all(
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
SCREAMING_SNAKE_CASE = [data_url[0]] * len(__lowerCamelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__lowerCamelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , urllib.parse.quote_plus(single_url.split("/" )[-1] ) )
dummy_data_list.append(__lowerCamelCase )
return dummy_data_list
def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : str ):
for download_callback in self.download_callbacks:
download_callback(__lowerCamelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , urllib.parse.quote_plus(data_url.split("/" )[-1] ) )
if os.path.exists(__lowerCamelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def _snake_case ( self : Tuple ):
pass
def _snake_case ( self : Dict ):
pass
def _snake_case ( self : str , __lowerCamelCase : Optional[int] ):
def _iter_archive_members(__lowerCamelCase : List[str] ):
# this preserves the order of the members inside the ZIP archive
SCREAMING_SNAKE_CASE = Path(self.dummy_file ).parent
SCREAMING_SNAKE_CASE = path.relative_to(__lowerCamelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
SCREAMING_SNAKE_CASE = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__lowerCamelCase )
SCREAMING_SNAKE_CASE = Path(__lowerCamelCase )
SCREAMING_SNAKE_CASE = _iter_archive_members(__lowerCamelCase ) if self.use_local_dummy_data else path.rglob("*" )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith((".", "__") ):
yield file_path.relative_to(__lowerCamelCase ).as_posix(), file_path.open("rb" )
def _snake_case ( self : List[str] , __lowerCamelCase : Any ):
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = [paths]
for path in paths:
if os.path.isfile(__lowerCamelCase ):
if os.path.basename(__lowerCamelCase ).startswith((".", "__") ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__lowerCamelCase ):
if os.path.basename(__lowerCamelCase ).startswith((".", "__") ):
continue
dirnames.sort()
for filename in sorted(__lowerCamelCase ):
if filename.startswith((".", "__") ):
continue
yield os.path.join(__lowerCamelCase , __lowerCamelCase ) | 698 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Dict = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "resnet"
lowerCamelCase__ = ["basic", "bottleneck"]
def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ):
super().__init__(**__lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embedding_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = downsample_in_first_stage
SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : Optional[int] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : Optional[int] ):
return 1e-3 | 698 | 1 |
import torch
from diffusers import DPMSolverSDEScheduler
from diffusers.utils import torch_device
from diffusers.utils.testing_utils import require_torchsde
from .test_schedulers import SchedulerCommonTest
@require_torchsde
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = (DPMSolverSDEScheduler,)
lowerCamelCase__ = 1_0
def _snake_case ( self : Union[str, Any] , **__lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = {
"num_train_timesteps": 1100,
"beta_start": 0.0_001,
"beta_end": 0.02,
"beta_schedule": "linear",
"noise_sampler_seed": 0,
}
config.update(**__lowerCamelCase )
return config
def _snake_case ( self : List[Any] ):
for timesteps in [10, 50, 100, 1000]:
self.check_over_configs(num_train_timesteps=__lowerCamelCase )
def _snake_case ( self : Union[str, Any] ):
for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ):
self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase )
def _snake_case ( self : Union[str, Any] ):
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=__lowerCamelCase )
def _snake_case ( self : str ):
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config()
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(self.num_inference_steps )
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma
SCREAMING_SNAKE_CASE = sample.to(__lowerCamelCase )
for i, t in enumerate(scheduler.timesteps ):
SCREAMING_SNAKE_CASE = scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = output.prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1e-2
assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1e-2
assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2
assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config(prediction_type="v_prediction" )
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(self.num_inference_steps )
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter * scheduler.init_noise_sigma
SCREAMING_SNAKE_CASE = sample.to(__lowerCamelCase )
for i, t in enumerate(scheduler.timesteps ):
SCREAMING_SNAKE_CASE = scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = output.prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1e-2
assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1e-2
assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1e-3
else:
assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1e-2
assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1e-3
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config()
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase )
scheduler.set_timesteps(self.num_inference_steps , device=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
SCREAMING_SNAKE_CASE = scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = output.prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1e-2
assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1e-3
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1e-2
assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1e-3
else:
assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1e-2
assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1e-3
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
SCREAMING_SNAKE_CASE = self.get_scheduler_config()
SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase , use_karras_sigmas=__lowerCamelCase )
scheduler.set_timesteps(self.num_inference_steps , device=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.dummy_model()
SCREAMING_SNAKE_CASE = self.dummy_sample_deter.to(__lowerCamelCase ) * scheduler.init_noise_sigma
SCREAMING_SNAKE_CASE = sample.to(__lowerCamelCase )
for t in scheduler.timesteps:
SCREAMING_SNAKE_CASE = scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = output.prev_sample
SCREAMING_SNAKE_CASE = torch.sum(torch.abs(__lowerCamelCase ) )
SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) )
if torch_device in ["mps"]:
assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1e-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
elif torch_device in ["cuda"]:
assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1e-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2
else:
assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1e-2
assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1e-2 | 698 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__A : str = logging.get_logger(__name__)
__A : Optional[Any] = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "imagegpt"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_positions
SCREAMING_SNAKE_CASE = n_embd
SCREAMING_SNAKE_CASE = n_layer
SCREAMING_SNAKE_CASE = n_head
SCREAMING_SNAKE_CASE = n_inner
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_pdrop
SCREAMING_SNAKE_CASE = embd_pdrop
SCREAMING_SNAKE_CASE = attn_pdrop
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = scale_attn_weights
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx
SCREAMING_SNAKE_CASE = reorder_and_upcast_attn
SCREAMING_SNAKE_CASE = tie_word_embeddings
super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ):
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ):
SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return inputs | 698 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Dict = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "resnet"
lowerCamelCase__ = ["basic", "bottleneck"]
def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ):
super().__init__(**__lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embedding_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = downsample_in_first_stage
SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : Optional[int] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : Optional[int] ):
return 1e-3 | 698 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@slow
@require_torch
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" )
SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size
SCREAMING_SNAKE_CASE = tokenizer.sep_token_id
SCREAMING_SNAKE_CASE = tokenizer.cls_token_id
SCREAMING_SNAKE_CASE = 128
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) )
SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) )
SCREAMING_SNAKE_CASE = 4
def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 )
SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 )
SCREAMING_SNAKE_CASE = inputs.input_ids
SCREAMING_SNAKE_CASE = inputs.attention_mask
SCREAMING_SNAKE_CASE = outputs.input_ids
SCREAMING_SNAKE_CASE = outputs.input_ids.copy()
SCREAMING_SNAKE_CASE = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
SCREAMING_SNAKE_CASE = outputs.attention_mask
assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids )
assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = pred.label_ids
SCREAMING_SNAKE_CASE = pred.predictions
# all unnecessary tokens are removed
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase )
return {"accuracy": accuracy}
# map train dataset
SCREAMING_SNAKE_CASE = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
SCREAMING_SNAKE_CASE = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments(
output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
SCREAMING_SNAKE_CASE = SeqaSeqTrainer(
model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , )
# start training
trainer.train() | 698 | 1 |
def __a ( A__ : int ):
return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print('Program to check whether a number is a Perfect number or not...')
__A : Dict = int(input('Enter number: ').strip())
print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.') | 698 |
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = kernel_size
SCREAMING_SNAKE_CASE = stride
SCREAMING_SNAKE_CASE = padding
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = key_dim
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = attention_ratio
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = initializer_range
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ):
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = LevitModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _snake_case ( self : Any ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self : Any ):
return
@unittest.skip(reason="Levit does not use inputs_embeds" )
def _snake_case ( self : Union[str, Any] ):
pass
@unittest.skip(reason="Levit does not support input and output embeddings" )
def _snake_case ( self : Tuple ):
pass
@unittest.skip(reason="Levit does not output attentions" )
def _snake_case ( self : Tuple ):
pass
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _snake_case ( self : int ):
pass
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ):
SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__lowerCamelCase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__lowerCamelCase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE = problem_type["title"]
SCREAMING_SNAKE_CASE = problem_type["num_labels"]
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list:
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def _snake_case ( self : List[Any] ):
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __a ( ):
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Dict ):
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) | 698 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List
from unittest.mock import Mock
import torch
from torch.utils.data import DataLoader, IterableDataset, TensorDataset
from accelerate.accelerator import Accelerator
from accelerate.utils.dataclasses import DistributedType
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Tuple , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = data
def __iter__( self : str ):
for element in self.data:
yield element
def __a ( A__ : List[str]=True ):
SCREAMING_SNAKE_CASE = Accelerator(even_batches=A__ )
assert accelerator.num_processes == 2, "this script expects that two GPUs are available"
return accelerator
def __a ( A__ : Accelerator , A__ : int , A__ : int , A__ : bool = False ):
if iterable:
SCREAMING_SNAKE_CASE = DummyIterableDataset(torch.as_tensor(range(A__ ) ) )
else:
SCREAMING_SNAKE_CASE = TensorDataset(torch.as_tensor(range(A__ ) ) )
SCREAMING_SNAKE_CASE = DataLoader(A__ , batch_size=A__ )
SCREAMING_SNAKE_CASE = accelerator.prepare(A__ )
return dl
def __a ( A__ : Accelerator , A__ : int , A__ : int , A__ : List[int] , A__ : List[int] , ):
SCREAMING_SNAKE_CASE = create_dataloader(accelerator=A__ , dataset_size=A__ , batch_size=A__ )
SCREAMING_SNAKE_CASE = [len(batch[0] ) for batch in dl]
if accelerator.process_index == 0:
assert batch_sizes == process_0_expected_batch_sizes
elif accelerator.process_index == 1:
assert batch_sizes == process_1_expected_batch_sizes
def __a ( ):
SCREAMING_SNAKE_CASE = create_accelerator()
# without padding, we would expect a different number of batches
verify_dataloader_batch_sizes(
A__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , )
# without padding, we would expect the same number of batches, but different sizes
verify_dataloader_batch_sizes(
A__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , )
def __a ( ):
SCREAMING_SNAKE_CASE = create_accelerator(even_batches=A__ )
verify_dataloader_batch_sizes(
A__ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , )
verify_dataloader_batch_sizes(
A__ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , )
def __a ( ):
SCREAMING_SNAKE_CASE = create_accelerator(even_batches=A__ )
SCREAMING_SNAKE_CASE = torch.nn.Linear(1 , 1 )
SCREAMING_SNAKE_CASE = accelerator.prepare(A__ )
SCREAMING_SNAKE_CASE = create_dataloader(A__ , dataset_size=3 , batch_size=1 )
SCREAMING_SNAKE_CASE = []
with accelerator.join_uneven_inputs([ddp_model] ):
for batch_idx, batch in enumerate(A__ ):
SCREAMING_SNAKE_CASE = ddp_model(batch[0].float() )
SCREAMING_SNAKE_CASE = output.sum()
loss.backward()
batch_idxs.append(A__ )
accelerator.wait_for_everyone()
if accelerator.process_index == 0:
assert batch_idxs == [0, 1]
elif accelerator.process_index == 1:
assert batch_idxs == [0]
def __a ( A__ : List[Any] ):
with warnings.catch_warnings(record=A__ ) as w:
with accelerator.join_uneven_inputs([Mock()] ):
pass
assert issubclass(w[-1].category , A__ )
assert "only supported for multi-GPU" in str(w[-1].message )
def __a ( ):
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = create_accelerator(even_batches=A__ )
SCREAMING_SNAKE_CASE = torch.nn.Linear(1 , 1 )
SCREAMING_SNAKE_CASE = accelerator.prepare(A__ )
SCREAMING_SNAKE_CASE = create_dataloader(A__ , dataset_size=3 , batch_size=1 )
SCREAMING_SNAKE_CASE = create_dataloader(A__ , dataset_size=3 , batch_size=1 )
with accelerator.join_uneven_inputs([ddp_model] , even_batches=A__ ):
SCREAMING_SNAKE_CASE = train_dl.batch_sampler.even_batches
SCREAMING_SNAKE_CASE = valid_dl.batch_sampler.even_batches
assert train_dl_overridden_value == overridden_even_batches
assert valid_dl_overridden_value == overridden_even_batches
assert train_dl.batch_sampler.even_batches == default_even_batches
assert valid_dl.batch_sampler.even_batches == default_even_batches
def __a ( ):
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = create_accelerator(even_batches=A__ )
SCREAMING_SNAKE_CASE = torch.nn.Linear(1 , 1 )
SCREAMING_SNAKE_CASE = accelerator.prepare(A__ )
create_dataloader(A__ , dataset_size=3 , batch_size=1 , iterable=A__ )
SCREAMING_SNAKE_CASE = create_dataloader(A__ , dataset_size=3 , batch_size=1 )
with warnings.catch_warnings():
warnings.filterwarnings("ignore" )
try:
with accelerator.join_uneven_inputs([ddp_model] , even_batches=A__ ):
SCREAMING_SNAKE_CASE = batch_dl.batch_sampler.even_batches
except AttributeError:
# ensure attribute error is not raised when processing iterable dl
raise AssertionError
assert batch_dl_overridden_value == overridden_even_batches
assert batch_dl.batch_sampler.even_batches == default_even_batches
def __a ( ):
SCREAMING_SNAKE_CASE = create_accelerator()
SCREAMING_SNAKE_CASE = torch.nn.Linear(1 , 1 )
SCREAMING_SNAKE_CASE = accelerator.prepare(A__ )
create_dataloader(A__ , dataset_size=3 , batch_size=1 , iterable=A__ )
with warnings.catch_warnings(record=A__ ) as w:
with accelerator.join_uneven_inputs([ddp_model] , even_batches=A__ ):
pass
assert issubclass(w[-1].category , A__ )
assert "only supported for map-style datasets" in str(w[-1].message )
def __a ( ):
SCREAMING_SNAKE_CASE = create_accelerator()
accelerator.print("Test that even_batches variable ensures uniform batches across processes" )
test_default_ensures_even_batch_sizes()
accelerator.print("Run tests with even_batches disabled" )
test_can_disable_even_batches()
accelerator.print("Test joining uneven inputs" )
test_can_join_uneven_inputs()
accelerator.print("Test overriding even_batches when joining uneven inputs" )
test_join_can_override_even_batches()
accelerator.print("Test overriding even_batches for mixed dataloader types" )
test_join_can_override_for_mixed_type_dataloaders()
accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders" )
test_join_raises_warning_for_iterable_when_overriding_even_batches()
accelerator.print("Test join with non DDP distributed raises warning" )
SCREAMING_SNAKE_CASE = accelerator.state.distributed_type
SCREAMING_SNAKE_CASE = DistributedType.FSDP
test_join_raises_warning_for_non_ddp_distributed(A__ )
SCREAMING_SNAKE_CASE = original_state
if __name__ == "__main__":
main() | 698 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
return None
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ):
return None
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = [
# (model_name, model_kwargs)
("bert-base-cased", {}),
("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : Optional[int] ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t" ) as vocab_file:
vocab_file.write("\n".join(__lowerCamelCase ) )
vocab_file.flush()
SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) )
model.save_pretrained(__lowerCamelCase )
self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase )
@require_tf
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
@require_torch
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
return path
except Exception as e:
self.fail(__lowerCamelCase )
@require_torch
@require_tokenizers
@slow
def _snake_case ( self : Dict ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" )
@require_tf
@require_tokenizers
@slow
def _snake_case ( self : int ):
from transformers import TFBertModel
SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" )
def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase )
# Assert all variables are present
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase )
self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} )
self.assertDictEqual(shapes["output_1"] , {0: "batch"} )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"]
SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__lowerCamelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["input_ids"] )
self.assertEqual(ordered_input_names[0] , "input_ids" )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" )
self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() ) | 698 | 1 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__A : str = logging.get_logger(__name__)
__A : Optional[Any] = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "imagegpt"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_positions
SCREAMING_SNAKE_CASE = n_embd
SCREAMING_SNAKE_CASE = n_layer
SCREAMING_SNAKE_CASE = n_head
SCREAMING_SNAKE_CASE = n_inner
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_pdrop
SCREAMING_SNAKE_CASE = embd_pdrop
SCREAMING_SNAKE_CASE = attn_pdrop
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = scale_attn_weights
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx
SCREAMING_SNAKE_CASE = reorder_and_upcast_attn
SCREAMING_SNAKE_CASE = tie_word_embeddings
super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ):
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ):
SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return inputs | 698 |
from manim import *
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
rect.set_stroke(__lowerCamelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 )
self.add(__lowerCamelCase )
cpu_targs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
SCREAMING_SNAKE_CASE = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
SCREAMING_SNAKE_CASE = MarkupText(
f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) )
self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 )
target.move_to(__lowerCamelCase )
first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) )
self.play(*__lowerCamelCase )
self.play(*__lowerCamelCase )
self.wait() | 698 | 1 |
import math
def __a ( A__ : list , A__ : int = 0 , A__ : int = 0 ):
SCREAMING_SNAKE_CASE = end or len(A__ )
for i in range(A__ , A__ ):
SCREAMING_SNAKE_CASE = i
SCREAMING_SNAKE_CASE = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
SCREAMING_SNAKE_CASE = array[temp_index - 1]
temp_index -= 1
SCREAMING_SNAKE_CASE = temp_index_value
return array
def __a ( A__ : list , A__ : int , A__ : int ): # Max Heap
SCREAMING_SNAKE_CASE = index
SCREAMING_SNAKE_CASE = 2 * index + 1 # Left Node
SCREAMING_SNAKE_CASE = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
SCREAMING_SNAKE_CASE = left_index
if right_index < heap_size and array[largest] < array[right_index]:
SCREAMING_SNAKE_CASE = right_index
if largest != index:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = array[largest], array[index]
heapify(A__ , A__ , A__ )
def __a ( A__ : list ):
SCREAMING_SNAKE_CASE = len(A__ )
for i in range(n // 2 , -1 , -1 ):
heapify(A__ , A__ , A__ )
for i in range(n - 1 , 0 , -1 ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = array[0], array[i]
heapify(A__ , 0 , A__ )
return array
def __a ( A__ : list , A__ : int , A__ : int , A__ : int ):
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def __a ( A__ : list , A__ : int , A__ : int , A__ : int ):
SCREAMING_SNAKE_CASE = low
SCREAMING_SNAKE_CASE = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = array[j], array[i]
i += 1
def __a ( A__ : list ):
if len(A__ ) == 0:
return array
SCREAMING_SNAKE_CASE = 2 * math.ceil(math.loga(len(A__ ) ) )
SCREAMING_SNAKE_CASE = 16
return intro_sort(A__ , 0 , len(A__ ) , A__ , A__ )
def __a ( A__ : list , A__ : int , A__ : int , A__ : int , A__ : int ):
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(A__ )
max_depth -= 1
SCREAMING_SNAKE_CASE = median_of_a(A__ , A__ , start + ((end - start) // 2) + 1 , end - 1 )
SCREAMING_SNAKE_CASE = partition(A__ , A__ , A__ , A__ )
intro_sort(A__ , A__ , A__ , A__ , A__ )
SCREAMING_SNAKE_CASE = p
return insertion_sort(A__ , A__ , A__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
__A : Dict = input('Enter numbers separated by a comma : ').strip()
__A : Any = [float(item) for item in user_input.split(',')]
print(sort(unsorted)) | 698 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ):
pass
@is_pipeline_test
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCamelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@require_tf
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@slow
@require_torch
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , ) | 698 | 1 |
from ....configuration_utils import PretrainedConfig
from ....utils import logging
__A : Tuple = logging.get_logger(__name__)
__A : List[Any] = {
'Visual-Attention-Network/van-base': (
'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json'
),
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "van"
def __init__( self : List[str] , __lowerCamelCase : Union[str, Any]=224 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : List[Any]=[7, 3, 3, 3] , __lowerCamelCase : List[str]=[4, 2, 2, 2] , __lowerCamelCase : List[Any]=[64, 128, 320, 512] , __lowerCamelCase : Optional[Any]=[3, 3, 12, 3] , __lowerCamelCase : List[str]=[8, 8, 4, 4] , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : List[Any]=1e-6 , __lowerCamelCase : Tuple=1e-2 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : List[Any]=0.0 , **__lowerCamelCase : Dict , ):
super().__init__(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = patch_sizes
SCREAMING_SNAKE_CASE = strides
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = mlp_ratios
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = layer_scale_init_value
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = dropout_rate | 698 |
__A : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0217_6634e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355_818,
}
def __a ( A__ : str , A__ : str , A__ : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
SCREAMING_SNAKE_CASE = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(A__ )}"
)
raise ValueError(A__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 1 |
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def __a ( A__ : List[str] , A__ : Optional[Any] , A__ : Union[str, Any] , A__ : List[Any] ):
# Initialise PyTorch model
SCREAMING_SNAKE_CASE = BigBirdConfig.from_json_file(A__ )
print(F"Building PyTorch model from configuration: {config}" )
if is_trivia_qa:
SCREAMING_SNAKE_CASE = BigBirdForQuestionAnswering(A__ )
else:
SCREAMING_SNAKE_CASE = BigBirdForPreTraining(A__ )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(A__ , A__ , is_trivia_qa=A__ )
# Save pytorch-model
print(F"Save PyTorch model to {pytorch_dump_path}" )
model.save_pretrained(A__ )
if __name__ == "__main__":
__A : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--big_bird_config_file',
default=None,
type=str,
required=True,
help=(
'The config json file corresponding to the pre-trained BERT model. \n'
'This specifies the model architecture.'
),
)
parser.add_argument(
'--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.'
)
__A : List[Any] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
) | 698 |
from collections import deque
from .hash_table import HashTable
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.values[key]
def _snake_case ( self : Union[str, Any] ):
return (
sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ):
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0
):
return key
return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase ) | 698 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import (
AudioDiffusionPipeline,
AutoencoderKL,
DDIMScheduler,
DDPMScheduler,
DiffusionPipeline,
Mel,
UNetaDConditionModel,
UNetaDModel,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
enable_full_determinism()
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def _snake_case ( self : int ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = UNetaDModel(
sample_size=(32, 64) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , )
return model
@property
def _snake_case ( self : Optional[Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = UNetaDConditionModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , cross_attention_dim=10 , )
return model
@property
def _snake_case ( self : List[Any] ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE = AutoencoderKL(
sample_size=(128, 64) , in_channels=1 , out_channels=1 , latent_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , )
SCREAMING_SNAKE_CASE = UNetaDModel(
sample_size=(64, 32) , in_channels=1 , out_channels=1 , layers_per_block=2 , block_out_channels=(128, 128) , down_block_types=("AttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "AttnUpBlock2D") , )
return vqvae, unet
@slow
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = "cpu" # ensure determinism for the device-dependent torch.Generator
SCREAMING_SNAKE_CASE = Mel(
x_res=self.dummy_unet.config.sample_size[1] , y_res=self.dummy_unet.config.sample_size[0] , )
SCREAMING_SNAKE_CASE = DDPMScheduler()
SCREAMING_SNAKE_CASE = AudioDiffusionPipeline(vqvae=__lowerCamelCase , unet=self.dummy_unet , mel=__lowerCamelCase , scheduler=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
SCREAMING_SNAKE_CASE = pipe(generator=__lowerCamelCase , steps=4 )
SCREAMING_SNAKE_CASE = output.audios[0]
SCREAMING_SNAKE_CASE = output.images[0]
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
SCREAMING_SNAKE_CASE = pipe(generator=__lowerCamelCase , steps=4 , return_dict=__lowerCamelCase )
SCREAMING_SNAKE_CASE = output[0][0]
assert audio.shape == (1, (self.dummy_unet.config.sample_size[1] - 1) * mel.hop_length)
assert (
image.height == self.dummy_unet.config.sample_size[0]
and image.width == self.dummy_unet.config.sample_size[1]
)
SCREAMING_SNAKE_CASE = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
SCREAMING_SNAKE_CASE = np.frombuffer(image_from_tuple.tobytes() , dtype="uint8" )[:10]
SCREAMING_SNAKE_CASE = np.array([69, 255, 255, 255, 0, 0, 77, 181, 12, 127] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() == 0
SCREAMING_SNAKE_CASE = Mel(
x_res=self.dummy_vqvae_and_unet[0].config.sample_size[1] , y_res=self.dummy_vqvae_and_unet[0].config.sample_size[0] , )
SCREAMING_SNAKE_CASE = DDIMScheduler()
SCREAMING_SNAKE_CASE = self.dummy_vqvae_and_unet
SCREAMING_SNAKE_CASE = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=dummy_vqvae_and_unet[1] , mel=__lowerCamelCase , scheduler=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
np.random.seed(0 )
SCREAMING_SNAKE_CASE = np.random.uniform(-1 , 1 , ((dummy_vqvae_and_unet[0].config.sample_size[1] - 1) * mel.hop_length,) )
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
SCREAMING_SNAKE_CASE = pipe(raw_audio=__lowerCamelCase , generator=__lowerCamelCase , start_step=5 , steps=10 )
SCREAMING_SNAKE_CASE = output.images[0]
assert (
image.height == self.dummy_vqvae_and_unet[0].config.sample_size[0]
and image.width == self.dummy_vqvae_and_unet[0].config.sample_size[1]
)
SCREAMING_SNAKE_CASE = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
SCREAMING_SNAKE_CASE = np.array([120, 117, 110, 109, 138, 167, 138, 148, 132, 121] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
SCREAMING_SNAKE_CASE = self.dummy_unet_condition
SCREAMING_SNAKE_CASE = AudioDiffusionPipeline(
vqvae=self.dummy_vqvae_and_unet[0] , unet=__lowerCamelCase , mel=__lowerCamelCase , scheduler=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
np.random.seed(0 )
SCREAMING_SNAKE_CASE = torch.rand((1, 1, 10) )
SCREAMING_SNAKE_CASE = pipe(generator=__lowerCamelCase , encoding=__lowerCamelCase )
SCREAMING_SNAKE_CASE = output.images[0]
SCREAMING_SNAKE_CASE = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
SCREAMING_SNAKE_CASE = np.array([107, 103, 120, 127, 142, 122, 113, 122, 97, 111] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0
@slow
@require_torch_gpu
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = torch_device
SCREAMING_SNAKE_CASE = DiffusionPipeline.from_pretrained("teticio/audio-diffusion-ddim-256" )
SCREAMING_SNAKE_CASE = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.Generator(device=__lowerCamelCase ).manual_seed(42 )
SCREAMING_SNAKE_CASE = pipe(generator=__lowerCamelCase )
SCREAMING_SNAKE_CASE = output.audios[0]
SCREAMING_SNAKE_CASE = output.images[0]
assert audio.shape == (1, (pipe.unet.config.sample_size[1] - 1) * pipe.mel.hop_length)
assert image.height == pipe.unet.config.sample_size[0] and image.width == pipe.unet.config.sample_size[1]
SCREAMING_SNAKE_CASE = np.frombuffer(image.tobytes() , dtype="uint8" )[:10]
SCREAMING_SNAKE_CASE = np.array([151, 167, 154, 144, 122, 134, 121, 105, 70, 26] )
assert np.abs(image_slice.flatten() - expected_slice ).max() == 0 | 698 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "gpt_neo"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_layers
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = window_size
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_dropout
SCREAMING_SNAKE_CASE = embed_dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = classifier_dropout
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
SCREAMING_SNAKE_CASE = attention_types
SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
@staticmethod
def _snake_case ( __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ):
import torch
SCREAMING_SNAKE_CASE = input.size()
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = shape[dimension]
SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ )
SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1
SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE = [slice(A__ )] * rank
SCREAMING_SNAKE_CASE = indices
SCREAMING_SNAKE_CASE = input[s]
SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(A__ )
def __a ( A__ : Union[str, Any] , A__ : Optional[int] ):
import torch
SCREAMING_SNAKE_CASE = torch.arange(1 , A__ )
SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ )
SCREAMING_SNAKE_CASE = remainders == 0
SCREAMING_SNAKE_CASE = candidates[divisor_indices]
SCREAMING_SNAKE_CASE = torch.max(A__ )
return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _snake_case ( self : Optional[int] ):
return self._config.num_heads
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE = seqlen + 2
SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE = common_inputs["attention_mask"]
if self.use_past:
SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype
SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
return ordered_inputs
@property
def _snake_case ( self : Optional[int] ):
return 13 | 698 | 1 |
from itertools import product
def __a ( A__ : int , A__ : int ):
SCREAMING_SNAKE_CASE = sides_number
SCREAMING_SNAKE_CASE = max_face_number * dice_number
SCREAMING_SNAKE_CASE = [0] * (max_total + 1)
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = range(A__ , max_face_number + 1 )
for dice_numbers in product(A__ , repeat=A__ ):
SCREAMING_SNAKE_CASE = sum(A__ )
totals_frequencies[total] += 1
return totals_frequencies
def __a ( ):
SCREAMING_SNAKE_CASE = total_frequency_distribution(
sides_number=4 , dice_number=9 )
SCREAMING_SNAKE_CASE = total_frequency_distribution(
sides_number=6 , dice_number=6 )
SCREAMING_SNAKE_CASE = 0
SCREAMING_SNAKE_CASE = 9
SCREAMING_SNAKE_CASE = 4 * 9
SCREAMING_SNAKE_CASE = 6
for peter_total in range(A__ , max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
SCREAMING_SNAKE_CASE = (4**9) * (6**6)
SCREAMING_SNAKE_CASE = peter_wins_count / total_games_number
SCREAMING_SNAKE_CASE = round(A__ , ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(f'{solution() = }') | 698 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : Any = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 1 |
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
__A : int = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.'
)
parser.add_argument(
'--original_config_file',
type=str,
required=True,
help='The YAML config file corresponding to the original architecture.',
)
parser.add_argument(
'--num_in_channels',
default=None,
type=int,
help='The number of input channels. If `None` number of input channels will be automatically inferred.',
)
parser.add_argument(
'--image_size',
default=5_1_2,
type=int,
help=(
'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'
' Base. Use 768 for Stable Diffusion v2.'
),
)
parser.add_argument(
'--extract_ema',
action='store_true',
help=(
'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'
' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'
' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'
),
)
parser.add_argument(
'--upcast_attention',
action='store_true',
help=(
'Whether the attention computation should always be upcasted. This is necessary when running stable'
' diffusion 2.1.'
),
)
parser.add_argument(
'--from_safetensors',
action='store_true',
help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.',
)
parser.add_argument(
'--to_safetensors',
action='store_true',
help='Whether to store pipeline in safetensors format or not.',
)
parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.')
parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)')
def __a ( A__ : List[Any] ):
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F"could not parse string as bool {string}" )
parser.add_argument(
'--use_linear_projection', help='Override for use linear projection', required=False, type=parse_bool
)
parser.add_argument('--cross_attention_dim', help='Override for cross attention_dim', required=False, type=int)
__A : Union[str, Any] = parser.parse_args()
__A : int = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) | 698 |
import cmath
import math
def __a ( A__ : float , A__ : float , A__ : float , A__ : float ):
SCREAMING_SNAKE_CASE = math.radians(A__ )
SCREAMING_SNAKE_CASE = math.radians(A__ )
# Convert voltage and current to rectangular form
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 1 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] , __lowerCamelCase : List[Any] ):
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ):
SCREAMING_SNAKE_CASE = model_result["result"][batch_size][sequence_length]
self.assertIsNotNone(__lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = "sgugger/tiny-distilbert-classification"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision" )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
# set architectures equal to `None`
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == "cpu" , "Can't do half precision" )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = "sshleifer/tinier_bart"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = "sshleifer/tinier_bart"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
SCREAMING_SNAKE_CASE = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv" ) , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv" ) , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv" ) , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv" ) , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv" ) ).exists() )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "sshleifer/tiny-gpt2"
def _check_summary_is_not_empty(__lowerCamelCase : str ):
self.assertTrue(hasattr(__lowerCamelCase , "sequential" ) )
self.assertTrue(hasattr(__lowerCamelCase , "cumulative" ) )
self.assertTrue(hasattr(__lowerCamelCase , "current" ) )
self.assertTrue(hasattr(__lowerCamelCase , "total" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
SCREAMING_SNAKE_CASE = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt" ) , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = PyTorchBenchmark(__lowerCamelCase )
SCREAMING_SNAKE_CASE = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt" ) ).exists() ) | 698 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __a ( A__ : Tuple , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(A__ ):
SCREAMING_SNAKE_CASE = torch.load(A__ )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = os.path.join(
A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(A__ ):
SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" )
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {"total_size": total_size}
SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n"
f.write(A__ )
return metadata, index
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__A : Optional[int] = parser.parse_args()
__A , __A : Union[str, Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__A : Any = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path) | 698 | 1 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
__A : int = logging.getLogger(__name__)
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "token-classification"
def __init__( self : Dict , __lowerCamelCase : List[Any] ):
if type(__lowerCamelCase ) == dict:
SCREAMING_SNAKE_CASE = Namespace(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = import_module("tasks" )
try:
SCREAMING_SNAKE_CASE = getattr(__lowerCamelCase , hparams.task_type )
SCREAMING_SNAKE_CASE = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" )
SCREAMING_SNAKE_CASE = self.token_classification_task.get_labels(hparams.labels )
SCREAMING_SNAKE_CASE = CrossEntropyLoss().ignore_index
super().__init__(__lowerCamelCase , len(self.labels ) , self.mode )
def _snake_case ( self : List[Any] , **__lowerCamelCase : Any ):
return self.model(**__lowerCamelCase )
def _snake_case ( self : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
SCREAMING_SNAKE_CASE = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
SCREAMING_SNAKE_CASE = self(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = self.hparams
for mode in ["train", "dev", "test"]:
SCREAMING_SNAKE_CASE = self._feature_file(__lowerCamelCase )
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
logger.info("Loading features from cached file %s" , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase )
else:
logger.info("Creating features from dataset file at %s" , args.data_dir )
SCREAMING_SNAKE_CASE = self.token_classification_task.read_examples_from_file(args.data_dir , __lowerCamelCase )
SCREAMING_SNAKE_CASE = self.token_classification_task.convert_examples_to_features(
__lowerCamelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowerCamelCase , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info("Saving features into cached file %s" , __lowerCamelCase )
torch.save(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : bool = False ):
SCREAMING_SNAKE_CASE = self._feature_file(__lowerCamelCase )
logger.info("Loading features from cached file %s" , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.load(__lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
SCREAMING_SNAKE_CASE = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
if features[0].token_type_ids is not None:
SCREAMING_SNAKE_CASE = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
else:
SCREAMING_SNAKE_CASE = torch.tensor([0 for f in features] , dtype=torch.long )
# HACK(we will not use this anymore soon)
SCREAMING_SNAKE_CASE = torch.tensor([f.label_ids for f in features] , dtype=torch.long )
return DataLoader(
TensorDataset(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , batch_size=__lowerCamelCase )
def _snake_case ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Any ):
"""Compute validation""" ""
SCREAMING_SNAKE_CASE = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
SCREAMING_SNAKE_CASE = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
SCREAMING_SNAKE_CASE = self(**__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = outputs[:2]
SCREAMING_SNAKE_CASE = logits.detach().cpu().numpy()
SCREAMING_SNAKE_CASE = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def _snake_case ( self : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = torch.stack([x["val_loss"] for x in outputs] ).mean()
SCREAMING_SNAKE_CASE = np.concatenate([x["pred"] for x in outputs] , axis=0 )
SCREAMING_SNAKE_CASE = np.argmax(__lowerCamelCase , axis=2 )
SCREAMING_SNAKE_CASE = np.concatenate([x["target"] for x in outputs] , axis=0 )
SCREAMING_SNAKE_CASE = dict(enumerate(self.labels ) )
SCREAMING_SNAKE_CASE = [[] for _ in range(out_label_ids.shape[0] )]
SCREAMING_SNAKE_CASE = [[] for _ in range(out_label_ids.shape[0] )]
for i in range(out_label_ids.shape[0] ):
for j in range(out_label_ids.shape[1] ):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]] )
preds_list[i].append(label_map[preds[i][j]] )
SCREAMING_SNAKE_CASE = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(__lowerCamelCase , __lowerCamelCase ),
"precision": precision_score(__lowerCamelCase , __lowerCamelCase ),
"recall": recall_score(__lowerCamelCase , __lowerCamelCase ),
"f1": fa_score(__lowerCamelCase , __lowerCamelCase ),
}
SCREAMING_SNAKE_CASE = dict(results.items() )
SCREAMING_SNAKE_CASE = results
return ret, preds_list, out_label_list
def _snake_case ( self : List[str] , __lowerCamelCase : int ):
# when stable
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._eval_end(__lowerCamelCase )
SCREAMING_SNAKE_CASE = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple ):
# updating to test_epoch_end instead of deprecated test_end
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._eval_end(__lowerCamelCase )
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
SCREAMING_SNAKE_CASE = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def _snake_case ( __lowerCamelCase : List[str] , __lowerCamelCase : str ):
# Add NER specific options
BaseTransformer.add_model_specific_args(__lowerCamelCase , __lowerCamelCase )
parser.add_argument(
"--task_type" , default="NER" , type=__lowerCamelCase , help="Task type to fine tune in training (e.g. NER, POS, etc)" )
parser.add_argument(
"--max_seq_length" , default=128 , type=__lowerCamelCase , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--labels" , default="" , type=__lowerCamelCase , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , )
parser.add_argument(
"--gpus" , default=0 , type=__lowerCamelCase , help="The number of GPUs allocated for this, it is by default 0 meaning none" , )
parser.add_argument(
"--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" )
return parser
if __name__ == "__main__":
__A : Optional[Any] = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
__A : Union[str, Any] = NERTransformer.add_model_specific_args(parser, os.getcwd())
__A : Optional[Any] = parser.parse_args()
__A : Optional[int] = NERTransformer(args)
__A : int = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
__A : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True))
__A : Union[str, Any] = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model) | 698 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = BlipImageProcessor()
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict , **__lowerCamelCase : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def _snake_case ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" )
SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 698 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = BlipImageProcessor()
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict , **__lowerCamelCase : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def _snake_case ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" )
SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 698 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ):
pass
def __a ( A__ : str ):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
__A : Tuple = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
SCREAMING_SNAKE_CASE = "What is the placebo?"
SCREAMING_SNAKE_CASE = [
{
"image": load_image(__lowerCamelCase ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 )
self.assertEqual(
__lowerCamelCase , [
[
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "How many cats are there?"
SCREAMING_SNAKE_CASE = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
# We can optionnally pass directly the words and bounding boxes
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
@slow
@require_torch
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _snake_case ( self : List[Any] ):
pass | 698 | 1 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text | 698 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "facebook/bart-large-mnli"
lowerCamelCase__ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
lowerCamelCase__ = "text_classifier"
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSequenceClassification
lowerCamelCase__ = ["text", ["text"]]
lowerCamelCase__ = ["text"]
def _snake_case ( self : Optional[Any] ):
super().setup()
SCREAMING_SNAKE_CASE = self.model.config
SCREAMING_SNAKE_CASE = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
SCREAMING_SNAKE_CASE = int(__lowerCamelCase )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = labels
return self.pre_processor(
[text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , )
def _snake_case ( self : str , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = outputs.logits
SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id] | 698 | 1 |
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : Tuple , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = data
SCREAMING_SNAKE_CASE = [0x67_452_301, 0xEF_CDA_B89, 0x98_BAD_CFE, 0x10_325_476, 0xC3_D2E_1F0]
@staticmethod
def _snake_case ( __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ):
return ((n << b) | (n >> (32 - b))) & 0xFF_FFF_FFF
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = b"\x80" + b"\x00" * (63 - (len(self.data ) + 8) % 64)
SCREAMING_SNAKE_CASE = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) )
return padded_data
def _snake_case ( self : List[str] ):
return [
self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 )
]
def _snake_case ( self : Optional[int] , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = list(struct.unpack(">16L" , __lowerCamelCase ) ) + [0] * 64
for i in range(16 , 80 ):
SCREAMING_SNAKE_CASE = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 )
return w
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.padding()
SCREAMING_SNAKE_CASE = self.split_blocks()
for block in self.blocks:
SCREAMING_SNAKE_CASE = self.expand_block(__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.h
for i in range(0 , 80 ):
if 0 <= i < 20:
SCREAMING_SNAKE_CASE = (b & c) | ((~b) & d)
SCREAMING_SNAKE_CASE = 0x5A_827_999
elif 20 <= i < 40:
SCREAMING_SNAKE_CASE = b ^ c ^ d
SCREAMING_SNAKE_CASE = 0x6E_D9E_BA1
elif 40 <= i < 60:
SCREAMING_SNAKE_CASE = (b & c) | (b & d) | (c & d)
SCREAMING_SNAKE_CASE = 0x8F_1BB_CDC
elif 60 <= i < 80:
SCREAMING_SNAKE_CASE = b ^ c ^ d
SCREAMING_SNAKE_CASE = 0xCA_62C_1D6
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (
self.rotate(__lowerCamelCase , 5 ) + f + e + k + expanded_block[i] & 0xFF_FFF_FFF,
a,
self.rotate(__lowerCamelCase , 30 ),
c,
d,
)
SCREAMING_SNAKE_CASE = (
self.h[0] + a & 0xFF_FFF_FFF,
self.h[1] + b & 0xFF_FFF_FFF,
self.h[2] + c & 0xFF_FFF_FFF,
self.h[3] + d & 0xFF_FFF_FFF,
self.h[4] + e & 0xFF_FFF_FFF,
)
return ("{:08x}" * 5).format(*self.h )
def __a ( ):
SCREAMING_SNAKE_CASE = b"Test String"
assert SHAaHash(A__ ).final_hash() == hashlib.shaa(A__ ).hexdigest() # noqa: S324
def __a ( ):
SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="Process some strings or files" )
parser.add_argument(
"--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , )
parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" )
SCREAMING_SNAKE_CASE = parser.parse_args()
SCREAMING_SNAKE_CASE = args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file , "rb" ) as f:
SCREAMING_SNAKE_CASE = f.read()
else:
SCREAMING_SNAKE_CASE = bytes(A__ , "utf-8" )
print(SHAaHash(A__ ).final_hash() )
if __name__ == "__main__":
main()
import doctest
doctest.testmod() | 698 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __a ( A__ : str=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE = subparsers.add_parser("test" )
else:
SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=A__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=A__ )
return parser
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
SCREAMING_SNAKE_CASE = script_name
else:
SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split()
SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __a ( ):
SCREAMING_SNAKE_CASE = test_command_parser()
SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(A__ )
if __name__ == "__main__":
main() | 698 | 1 |
from datetime import datetime as dt
import os
from github import Github
__A : int = [
'good first issue',
'good second issue',
'good difficult issue',
'feature request',
'new model',
'wip',
]
def __a ( ):
SCREAMING_SNAKE_CASE = Github(os.environ["GITHUB_TOKEN"] )
SCREAMING_SNAKE_CASE = g.get_repo("huggingface/transformers" )
SCREAMING_SNAKE_CASE = repo.get_issues(state="open" )
for issue in open_issues:
SCREAMING_SNAKE_CASE = sorted([comment for comment in issue.get_comments()] , key=lambda A__ : i.created_at , reverse=A__ )
SCREAMING_SNAKE_CASE = comments[0] if len(A__ ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.")
issue.edit(state="closed" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# print(f"Would add stale comment to {issue.number}")
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
if __name__ == "__main__":
main() | 698 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A : Optional[int] = logging.get_logger(__name__)
__A : List[str] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : Tuple = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
__A : Dict = {'facebook/blenderbot-3B': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __a ( ):
SCREAMING_SNAKE_CASE = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
SCREAMING_SNAKE_CASE = bs[:]
SCREAMING_SNAKE_CASE = 0
for b in range(2**8 ):
if b not in bs:
bs.append(A__ )
cs.append(2**8 + n )
n += 1
SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs]
return dict(zip(A__ , A__ ) )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = set()
SCREAMING_SNAKE_CASE = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
SCREAMING_SNAKE_CASE = char
return pairs
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ):
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()}
SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding
SCREAMING_SNAKE_CASE = bytes_to_unicode()
SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1]
SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges]
SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _snake_case ( self : Dict ):
return len(self.encoder )
def _snake_case ( self : int ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ):
if token in self.cache:
return self.cache[token]
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while i < len(__lowerCamelCase ):
try:
SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
SCREAMING_SNAKE_CASE = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = new_word
if len(__lowerCamelCase ) == 1:
break
else:
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = word
return word
def _snake_case ( self : str , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for token in re.findall(self.pat , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : List[str] , __lowerCamelCase : str ):
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ):
return self.decoder.get(__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
SCREAMING_SNAKE_CASE = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
SCREAMING_SNAKE_CASE = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
SCREAMING_SNAKE_CASE = " " + text
return (text, kwargs)
def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ):
SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." )
return input_ids | 698 | 1 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ):
pass
@is_pipeline_test
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCamelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@require_tf
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@slow
@require_torch
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , ) | 698 |
from __future__ import annotations
from cmath import sqrt
def __a ( A__ : int , A__ : int , A__ : int ):
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
SCREAMING_SNAKE_CASE = b * b - 4 * a * c
SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a)
SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def __a ( ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main() | 698 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : Any = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text | 698 | 1 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ):
pass
def __a ( A__ : str ):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
__A : Tuple = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
SCREAMING_SNAKE_CASE = "What is the placebo?"
SCREAMING_SNAKE_CASE = [
{
"image": load_image(__lowerCamelCase ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 )
self.assertEqual(
__lowerCamelCase , [
[
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "How many cats are there?"
SCREAMING_SNAKE_CASE = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
# We can optionnally pass directly the words and bounding boxes
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
@slow
@require_torch
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _snake_case ( self : List[Any] ):
pass | 698 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 1 |
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "new-model"
if is_tf_available():
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = NewModelConfig
@require_tf
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "bert-base-cased"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = "bert-base-cased"
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = TFAutoModelForPreTraining.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _snake_case ( self : Optional[Any] ):
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _snake_case ( self : Union[str, Any] ):
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _snake_case ( self : str ):
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForMaskedLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _snake_case ( self : str ):
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained(__lowerCamelCase , output_loading_info=__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _snake_case ( self : int ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = TFAutoModelForSequenceClassification.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
def _snake_case ( self : Optional[int] ):
# for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
for model_name in ["bert-base-uncased"]:
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = TFAutoModelForQuestionAnswering.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
@slow
@require_tensorflow_probability
def _snake_case ( self : int ):
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = TFAutoModelForTableQuestionAnswering.from_pretrained(
__lowerCamelCase , output_loading_info=__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(model.num_parameters() , 14410 )
self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 14410 )
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = TFAutoModelWithLMHead.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual(model.num_parameters() , 14410 )
self.assertEqual(model.num_parameters(only_trainable=__lowerCamelCase ) , 14410 )
def _snake_case ( self : List[str] ):
# For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel
SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = copy.deepcopy(model.config )
SCREAMING_SNAKE_CASE = ["FunnelBaseModel"]
SCREAMING_SNAKE_CASE = TFAutoModel.from_config(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
try:
AutoConfig.register("new-model" , __lowerCamelCase )
SCREAMING_SNAKE_CASE = [
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__ ):
# Wrong config class will raise an error
with self.assertRaises(__lowerCamelCase ):
auto_class.register(__lowerCamelCase , __lowerCamelCase )
auto_class.register(__lowerCamelCase , __lowerCamelCase )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(__lowerCamelCase ):
auto_class.register(__lowerCamelCase , __lowerCamelCase )
# Now that the config is registered, it can be used as any other config with the auto-API
SCREAMING_SNAKE_CASE = BertModelTester(self ).get_config()
SCREAMING_SNAKE_CASE = NewModelConfig(**tiny_config.to_dict() )
SCREAMING_SNAKE_CASE = auto_class.from_config(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = auto_class.from_pretrained(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def _snake_case ( self : Union[str, Any] ):
with self.assertRaisesRegex(
__lowerCamelCase , "bert-base is not a local folder and is not a valid model identifier" ):
SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("bert-base" )
def _snake_case ( self : List[Any] ):
with self.assertRaisesRegex(
__lowerCamelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ):
SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained(__lowerCamelCase , revision="aaaaaa" )
def _snake_case ( self : Dict ):
with self.assertRaisesRegex(
__lowerCamelCase , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ):
SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" )
def _snake_case ( self : List[str] ):
with self.assertRaisesRegex(__lowerCamelCase , "Use `from_pt=True` to load this model" ):
SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
def _snake_case ( self : Union[str, Any] ):
# Make sure we have cached the model.
SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" )
with RequestCounter() as counter:
SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 )
# With a sharded checkpoint
SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" )
with RequestCounter() as counter:
SCREAMING_SNAKE_CASE = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" )
self.assertEqual(counter.get_request_count , 0 )
self.assertEqual(counter.head_request_count , 1 )
self.assertEqual(counter.other_request_count , 0 ) | 698 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__A : Optional[Any] = datasets.load_iris()
__A : Optional[Any] = np.array(data['data'])
__A : Optional[int] = np.array(data['target'])
__A : Union[str, Any] = data['target_names']
__A , __A , __A , __A : Optional[int] = train_test_split(X, y)
def __a ( A__ : Optional[int] , A__ : Dict ):
return np.linalg.norm(np.array(A__ ) - np.array(A__ ) )
def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ):
SCREAMING_SNAKE_CASE = zip(A__ , A__ )
# List of distances of all points from the point to be classified
SCREAMING_SNAKE_CASE = []
for data_point in data:
SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) | 698 | 1 |
from __future__ import annotations
__A : Tuple = [-1_0, -5, 0, 5, 5.1, 1_1, 1_3, 2_1, 3, 4, -2_1, -1_0, -5, -1, 0]
__A : Any = [-5, 0, 5, 5.1, 1_1, 1_3, 2_1, -1, 4, -1, -1_0, -5, -1, 0, -1]
def __a ( A__ : list[float] ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = len(A__ )
for i in range(A__ ):
SCREAMING_SNAKE_CASE = -1
for j in range(i + 1 , A__ ):
if arr[i] < arr[j]:
SCREAMING_SNAKE_CASE = arr[j]
break
result.append(A__ )
return result
def __a ( A__ : list[float] ):
SCREAMING_SNAKE_CASE = []
for i, outer in enumerate(A__ ):
SCREAMING_SNAKE_CASE = -1
for inner in arr[i + 1 :]:
if outer < inner:
SCREAMING_SNAKE_CASE = inner
break
result.append(A__ )
return result
def __a ( A__ : list[float] ):
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = [-1] * arr_size
for index in reversed(range(A__ ) ):
if stack:
while stack[-1] <= arr[index]:
stack.pop()
if not stack:
break
if stack:
SCREAMING_SNAKE_CASE = stack[-1]
stack.append(arr[index] )
return result
if __name__ == "__main__":
from doctest import testmod
from timeit import timeit
testmod()
print(next_greatest_element_slow(arr))
print(next_greatest_element_fast(arr))
print(next_greatest_element(arr))
__A : int = (
'from __main__ import arr, next_greatest_element_slow, '
'next_greatest_element_fast, next_greatest_element'
)
print(
'next_greatest_element_slow():',
timeit('next_greatest_element_slow(arr)', setup=setup),
)
print(
'next_greatest_element_fast():',
timeit('next_greatest_element_fast(arr)', setup=setup),
)
print(
' next_greatest_element():',
timeit('next_greatest_element(arr)', setup=setup),
) | 698 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Dict = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "resnet"
lowerCamelCase__ = ["basic", "bottleneck"]
def __init__( self : Optional[Any] , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=64 , __lowerCamelCase : str=[256, 512, 1024, 2048] , __lowerCamelCase : str=[3, 4, 6, 3] , __lowerCamelCase : Optional[int]="bottleneck" , __lowerCamelCase : int="relu" , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , **__lowerCamelCase : Dict , ):
super().__init__(**__lowerCamelCase )
if layer_type not in self.layer_types:
raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = embedding_size
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = layer_type
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = downsample_in_first_stage
SCREAMING_SNAKE_CASE = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_aligned_output_features_output_indices(
out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = version.parse("1.11" )
@property
def _snake_case ( self : Optional[int] ):
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def _snake_case ( self : Optional[int] ):
return 1e-3 | 698 | 1 |
from collections.abc import Sequence
def __a ( A__ : Sequence[int] | None = None ):
if nums is None or not nums:
raise ValueError("Input sequence should not be empty" )
SCREAMING_SNAKE_CASE = nums[0]
for i in range(1 , len(A__ ) ):
SCREAMING_SNAKE_CASE = nums[i]
SCREAMING_SNAKE_CASE = max(A__ , ans + num , A__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
__A : Optional[int] = int(input('Enter number of elements : ').strip())
__A : Optional[int] = list(map(int, input('\nEnter the numbers : ').strip().split()))[:n]
print(max_subsequence_sum(array)) | 698 |
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__A : str = logging.get_logger(__name__)
__A : Optional[Any] = {
'openai/imagegpt-small': '',
'openai/imagegpt-medium': '',
'openai/imagegpt-large': '',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "imagegpt"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self : List[str] , __lowerCamelCase : Any=512 + 1 , __lowerCamelCase : str=32 * 32 , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=24 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : int=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : int=False , **__lowerCamelCase : Union[str, Any] , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = n_positions
SCREAMING_SNAKE_CASE = n_embd
SCREAMING_SNAKE_CASE = n_layer
SCREAMING_SNAKE_CASE = n_head
SCREAMING_SNAKE_CASE = n_inner
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_pdrop
SCREAMING_SNAKE_CASE = embd_pdrop
SCREAMING_SNAKE_CASE = attn_pdrop
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = scale_attn_weights
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx
SCREAMING_SNAKE_CASE = reorder_and_upcast_attn
SCREAMING_SNAKE_CASE = tie_word_embeddings
super().__init__(tie_word_embeddings=__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ):
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def _snake_case ( self : Optional[int] , __lowerCamelCase : "FeatureExtractionMixin" , __lowerCamelCase : int = 1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 32 , ):
SCREAMING_SNAKE_CASE = self._generate_dummy_images(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dict(preprocessor(images=__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return inputs | 698 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__A : str = {
'configuration_groupvit': [
'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP',
'GroupViTConfig',
'GroupViTOnnxConfig',
'GroupViTTextConfig',
'GroupViTVisionConfig',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = [
'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'GroupViTModel',
'GroupViTPreTrainedModel',
'GroupViTTextModel',
'GroupViTVisionModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFGroupViTModel',
'TFGroupViTPreTrainedModel',
'TFGroupViTTextModel',
'TFGroupViTVisionModel',
]
if TYPE_CHECKING:
from .configuration_groupvit import (
GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
GroupViTConfig,
GroupViTOnnxConfig,
GroupViTTextConfig,
GroupViTVisionConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_groupvit import (
GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GroupViTModel,
GroupViTPreTrainedModel,
GroupViTTextModel,
GroupViTVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_groupvit import (
TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFGroupViTModel,
TFGroupViTPreTrainedModel,
TFGroupViTTextModel,
TFGroupViTVisionModel,
)
else:
import sys
__A : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@slow
@require_torch
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("prajjwal1/bert-tiny" , "prajjwal1/bert-tiny" )
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("bert-base-uncased" )
SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size
SCREAMING_SNAKE_CASE = tokenizer.sep_token_id
SCREAMING_SNAKE_CASE = tokenizer.cls_token_id
SCREAMING_SNAKE_CASE = 128
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="train[:1%]" )
SCREAMING_SNAKE_CASE = datasets.load_dataset("cnn_dailymail" , "3.0.0" , split="validation[:1%]" )
SCREAMING_SNAKE_CASE = train_dataset.select(range(32 ) )
SCREAMING_SNAKE_CASE = val_dataset.select(range(16 ) )
SCREAMING_SNAKE_CASE = 4
def _map_to_encoder_decoder_inputs(__lowerCamelCase : str ):
# Tokenizer will automatically set [BOS] <text> [EOS]
SCREAMING_SNAKE_CASE = tokenizer(batch["article"] , padding="max_length" , truncation=__lowerCamelCase , max_length=512 )
SCREAMING_SNAKE_CASE = tokenizer(batch["highlights"] , padding="max_length" , truncation=__lowerCamelCase , max_length=128 )
SCREAMING_SNAKE_CASE = inputs.input_ids
SCREAMING_SNAKE_CASE = inputs.attention_mask
SCREAMING_SNAKE_CASE = outputs.input_ids
SCREAMING_SNAKE_CASE = outputs.input_ids.copy()
SCREAMING_SNAKE_CASE = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["labels"]
]
SCREAMING_SNAKE_CASE = outputs.attention_mask
assert all(len(__lowerCamelCase ) == 512 for x in inputs.input_ids )
assert all(len(__lowerCamelCase ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(__lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = pred.label_ids
SCREAMING_SNAKE_CASE = pred.predictions
# all unnecessary tokens are removed
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCamelCase ) )] ) / len(__lowerCamelCase )
return {"accuracy": accuracy}
# map train dataset
SCREAMING_SNAKE_CASE = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
train_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
# same for validation dataset
SCREAMING_SNAKE_CASE = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=__lowerCamelCase , batch_size=__lowerCamelCase , remove_columns=["article", "highlights"] , )
val_dataset.set_format(
type="torch" , columns=["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask", "labels"] , )
SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir()
SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments(
output_dir=__lowerCamelCase , per_device_train_batch_size=__lowerCamelCase , per_device_eval_batch_size=__lowerCamelCase , predict_with_generate=__lowerCamelCase , evaluation_strategy="steps" , do_train=__lowerCamelCase , do_eval=__lowerCamelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
SCREAMING_SNAKE_CASE = SeqaSeqTrainer(
model=__lowerCamelCase , args=__lowerCamelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCamelCase , eval_dataset=__lowerCamelCase , tokenizer=__lowerCamelCase , )
# start training
trainer.train() | 698 | 1 |
import numpy as np
# Importing the Keras libraries and packages
import tensorflow as tf
from tensorflow.keras import layers, models
if __name__ == "__main__":
# Initialising the CNN
# (Sequential- Building the model layer by layer)
__A : Optional[int] = models.Sequential()
# Step 1 - Convolution
# Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel
# (3,3) is the kernel size (filter matrix)
classifier.add(
layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation='relu')
)
# Step 2 - Pooling
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Adding a second convolutional layer
classifier.add(layers.ConvaD(3_2, (3, 3), activation='relu'))
classifier.add(layers.MaxPoolingaD(pool_size=(2, 2)))
# Step 3 - Flattening
classifier.add(layers.Flatten())
# Step 4 - Full connection
classifier.add(layers.Dense(units=1_2_8, activation='relu'))
classifier.add(layers.Dense(units=1, activation='sigmoid'))
# Compiling the CNN
classifier.compile(
optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
)
# Part 2 - Fitting the CNN to the images
# Load Trained model weights
# from keras.models import load_model
# regressor=load_model('cnn.h5')
__A : Dict = tf.keras.preprocessing.image.ImageDataGenerator(
rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True
)
__A : List[Any] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5)
__A : Union[str, Any] = train_datagen.flow_from_directory(
'dataset/training_set', target_size=(6_4, 6_4), batch_size=3_2, class_mode='binary'
)
__A : Dict = test_datagen.flow_from_directory(
'dataset/test_set', target_size=(6_4, 6_4), batch_size=3_2, class_mode='binary'
)
classifier.fit_generator(
training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set
)
classifier.save('cnn.h5')
# Part 3 - Making new predictions
__A : Any = tf.keras.preprocessing.image.load_img(
'dataset/single_prediction/image.png', target_size=(6_4, 6_4)
)
__A : Tuple = tf.keras.preprocessing.image.img_to_array(test_image)
__A : Tuple = np.expand_dims(test_image, axis=0)
__A : Optional[int] = classifier.predict(test_image)
# training_set.class_indices
if result[0][0] == 0:
__A : Any = 'Normal'
if result[0][0] == 1:
__A : Optional[Any] = 'Abnormality detected' | 698 |
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(__lowerCamelCase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(__lowerCamelCase , "num_attention_heads" ) )
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Tuple=[128, 256, 384] , __lowerCamelCase : int=[4, 6, 8] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[str]=[16, 16, 16] , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=[2, 2, 2] , __lowerCamelCase : List[str]=[2, 2, 2] , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=True , __lowerCamelCase : int=2 , ):
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = kernel_size
SCREAMING_SNAKE_CASE = stride
SCREAMING_SNAKE_CASE = padding
SCREAMING_SNAKE_CASE = hidden_sizes
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = depths
SCREAMING_SNAKE_CASE = key_dim
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = attention_ratio
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
SCREAMING_SNAKE_CASE = is_training
SCREAMING_SNAKE_CASE = use_labels
SCREAMING_SNAKE_CASE = num_labels
SCREAMING_SNAKE_CASE = initializer_range
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE = None
if self.use_labels:
SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE = self.get_config()
return config, pixel_values, labels
def _snake_case ( self : List[str] ):
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def _snake_case ( self : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = LevitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.image_size, self.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
SCREAMING_SNAKE_CASE = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def _snake_case ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = self.num_labels
SCREAMING_SNAKE_CASE = LevitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs
SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
lowerCamelCase__ = (
{
"feature-extraction": LevitModel,
"image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = LevitModelTester(self )
SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def _snake_case ( self : Any ):
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def _snake_case ( self : Any ):
return
@unittest.skip(reason="Levit does not use inputs_embeds" )
def _snake_case ( self : Union[str, Any] ):
pass
@unittest.skip(reason="Levit does not support input and output embeddings" )
def _snake_case ( self : Tuple ):
pass
@unittest.skip(reason="Levit does not output attentions" )
def _snake_case ( self : Tuple ):
pass
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
def check_hidden_states_output(__lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE = outputs.hidden_states
SCREAMING_SNAKE_CASE = len(self.model_tester.depths ) + 1
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = (self.model_tester.image_size, self.model_tester.image_size)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = image_size[0], image_size[1]
for _ in range(4 ):
SCREAMING_SNAKE_CASE = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
SCREAMING_SNAKE_CASE = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def _snake_case ( self : int ):
pass
def _snake_case ( self : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int=False ):
SCREAMING_SNAKE_CASE = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def _snake_case ( self : List[Any] ):
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__lowerCamelCase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
for model_class in self.all_model_classes:
if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.gradient_checkpointing_enable()
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
loss.backward()
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__lowerCamelCase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}" ):
SCREAMING_SNAKE_CASE = problem_type["title"]
SCREAMING_SNAKE_CASE = problem_type["num_labels"]
SCREAMING_SNAKE_CASE = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.train()
SCREAMING_SNAKE_CASE = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if problem_type["num_labels"] > 1:
SCREAMING_SNAKE_CASE = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
SCREAMING_SNAKE_CASE = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__lowerCamelCase ) as warning_list:
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
f"Something is going wrong in the regression problem: intercepted {w.message}" )
loss.backward()
@slow
def _snake_case ( self : List[Any] ):
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE = LevitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def __a ( ):
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def _snake_case ( self : Dict ):
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.default_image_processor
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE = torch.tensor([1.0_448, -0.3_745, -1.8_317] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) ) | 698 | 1 |
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
__A : Optional[int] = logging.get_logger(__name__)
def __a ( A__ : Any ):
SCREAMING_SNAKE_CASE = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
SCREAMING_SNAKE_CASE = 128
elif "12-12" in model_name:
SCREAMING_SNAKE_CASE = 12
SCREAMING_SNAKE_CASE = 12
elif "14-14" in model_name:
SCREAMING_SNAKE_CASE = 14
SCREAMING_SNAKE_CASE = 14
elif "16-16" in model_name:
SCREAMING_SNAKE_CASE = 16
SCREAMING_SNAKE_CASE = 16
else:
raise ValueError("Model not supported" )
SCREAMING_SNAKE_CASE = "huggingface/label-files"
if "speech-commands" in model_name:
SCREAMING_SNAKE_CASE = 35
SCREAMING_SNAKE_CASE = "speech-commands-v2-id2label.json"
else:
SCREAMING_SNAKE_CASE = 527
SCREAMING_SNAKE_CASE = "audioset-id2label.json"
SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(A__ , A__ , repo_type="dataset" ) , "r" ) )
SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE = idalabel
SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
return config
def __a ( A__ : Optional[Any] ):
if "module.v" in name:
SCREAMING_SNAKE_CASE = name.replace("module.v" , "audio_spectrogram_transformer" )
if "cls_token" in name:
SCREAMING_SNAKE_CASE = name.replace("cls_token" , "embeddings.cls_token" )
if "dist_token" in name:
SCREAMING_SNAKE_CASE = name.replace("dist_token" , "embeddings.distillation_token" )
if "pos_embed" in name:
SCREAMING_SNAKE_CASE = name.replace("pos_embed" , "embeddings.position_embeddings" )
if "patch_embed.proj" in name:
SCREAMING_SNAKE_CASE = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" )
# transformer blocks
if "blocks" in name:
SCREAMING_SNAKE_CASE = name.replace("blocks" , "encoder.layer" )
if "attn.proj" in name:
SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" )
if "attn" in name:
SCREAMING_SNAKE_CASE = name.replace("attn" , "attention.self" )
if "norm1" in name:
SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
SCREAMING_SNAKE_CASE = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" )
# classifier head
if "module.mlp_head.0" in name:
SCREAMING_SNAKE_CASE = name.replace("module.mlp_head.0" , "classifier.layernorm" )
if "module.mlp_head.1" in name:
SCREAMING_SNAKE_CASE = name.replace("module.mlp_head.1" , "classifier.dense" )
return name
def __a ( A__ : Optional[int] , A__ : Optional[int] ):
for key in orig_state_dict.copy().keys():
SCREAMING_SNAKE_CASE = orig_state_dict.pop(A__ )
if "qkv" in key:
SCREAMING_SNAKE_CASE = key.split("." )
SCREAMING_SNAKE_CASE = int(key_split[3] )
SCREAMING_SNAKE_CASE = config.hidden_size
if "weight" in key:
SCREAMING_SNAKE_CASE = val[:dim, :]
SCREAMING_SNAKE_CASE = val[dim : dim * 2, :]
SCREAMING_SNAKE_CASE = val[-dim:, :]
else:
SCREAMING_SNAKE_CASE = val[:dim]
SCREAMING_SNAKE_CASE = val[dim : dim * 2]
SCREAMING_SNAKE_CASE = val[-dim:]
else:
SCREAMING_SNAKE_CASE = val
return orig_state_dict
def __a ( A__ : int ):
SCREAMING_SNAKE_CASE = [
"module.v.head.weight",
"module.v.head.bias",
"module.v.head_dist.weight",
"module.v.head_dist.bias",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
@torch.no_grad()
def __a ( A__ : Union[str, Any] , A__ : List[Any] , A__ : Optional[Any]=False ):
SCREAMING_SNAKE_CASE = get_audio_spectrogram_transformer_config(A__ )
SCREAMING_SNAKE_CASE = {
"ast-finetuned-audioset-10-10-0.4593": (
"https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"
),
"ast-finetuned-audioset-10-10-0.450": (
"https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"
),
"ast-finetuned-audioset-10-10-0.448": (
"https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"
),
"ast-finetuned-audioset-10-10-0.448-v2": (
"https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"
),
"ast-finetuned-audioset-12-12-0.447": (
"https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"
),
"ast-finetuned-audioset-14-14-0.443": (
"https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"
),
"ast-finetuned-audioset-16-16-0.442": (
"https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"
),
"ast-finetuned-speech-commands-v2": (
"https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"
),
}
# load original state_dict
SCREAMING_SNAKE_CASE = model_name_to_url[model_name]
SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(A__ , map_location="cpu" )
# remove some keys
remove_keys(A__ )
# rename some keys
SCREAMING_SNAKE_CASE = convert_state_dict(A__ , A__ )
# load 🤗 model
SCREAMING_SNAKE_CASE = ASTForAudioClassification(A__ )
model.eval()
model.load_state_dict(A__ )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
SCREAMING_SNAKE_CASE = -4.2_6_7_7_3_9_3 if "speech-commands" not in model_name else -6.8_4_5_9_7_8
SCREAMING_SNAKE_CASE = 4.5_6_8_9_9_7_4 if "speech-commands" not in model_name else 5.5_6_5_4_5_2_6
SCREAMING_SNAKE_CASE = 1024 if "speech-commands" not in model_name else 128
SCREAMING_SNAKE_CASE = ASTFeatureExtractor(mean=A__ , std=A__ , max_length=A__ )
if "speech-commands" in model_name:
SCREAMING_SNAKE_CASE = load_dataset("speech_commands" , "v0.02" , split="validation" )
SCREAMING_SNAKE_CASE = dataset[0]["audio"]["array"]
else:
SCREAMING_SNAKE_CASE = hf_hub_download(
repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = torchaudio.load(A__ )
SCREAMING_SNAKE_CASE = waveform.squeeze().numpy()
SCREAMING_SNAKE_CASE = feature_extractor(A__ , sampling_rate=16000 , return_tensors="pt" )
# forward pass
SCREAMING_SNAKE_CASE = model(**A__ )
SCREAMING_SNAKE_CASE = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
SCREAMING_SNAKE_CASE = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
SCREAMING_SNAKE_CASE = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
SCREAMING_SNAKE_CASE = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
SCREAMING_SNAKE_CASE = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
SCREAMING_SNAKE_CASE = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
SCREAMING_SNAKE_CASE = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
SCREAMING_SNAKE_CASE = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] )
elif model_name == "ast-finetuned-speech-commands-v2":
SCREAMING_SNAKE_CASE = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] )
else:
raise ValueError("Unknown model name" )
if not torch.allclose(logits[0, :3] , A__ , atol=1E-4 ):
raise ValueError("Logits don't match" )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
Path(A__ ).mkdir(exist_ok=A__ )
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(A__ )
print(F"Saving feature extractor to {pytorch_dump_folder_path}" )
feature_extractor.save_pretrained(A__ )
if push_to_hub:
print("Pushing model and feature extractor to the hub..." )
model.push_to_hub(F"MIT/{model_name}" )
feature_extractor.push_to_hub(F"MIT/{model_name}" )
if __name__ == "__main__":
__A : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default='ast-finetuned-audioset-10-10-0.4593',
type=str,
help='Name of the Audio Spectrogram Transformer model you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
parser.add_argument(
'--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.'
)
__A : Tuple = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub) | 698 |
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
return None
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : int ):
return None
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = [
# (model_name, model_kwargs)
("bert-base-cased", {}),
("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : List[Any] ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
@require_torch
@slow
def _snake_case ( self : Optional[int] ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"]
with NamedTemporaryFile(mode="w+t" ) as vocab_file:
vocab_file.write("\n".join(__lowerCamelCase ) )
vocab_file.flush()
SCREAMING_SNAKE_CASE = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
SCREAMING_SNAKE_CASE = BertModel(BertConfig(vocab_size=len(__lowerCamelCase ) ) )
model.save_pretrained(__lowerCamelCase )
self._test_export(__lowerCamelCase , "pt" , 12 , __lowerCamelCase )
@require_tf
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "tf" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(Path(__lowerCamelCase ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
@require_torch
@slow
def _snake_case ( self : Any ):
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
SCREAMING_SNAKE_CASE = self._test_export(__lowerCamelCase , "pt" , 12 , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = quantize(__lowerCamelCase )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(__lowerCamelCase ).stat().st_size:
self.fail("Quantized model is bigger than initial ONNX model" )
def _snake_case ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Tuple=None , **__lowerCamelCase : List[str] ):
try:
# Compute path
with TemporaryDirectory() as tempdir:
SCREAMING_SNAKE_CASE = Path(__lowerCamelCase ).joinpath("model.onnx" )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase )
return path
except Exception as e:
self.fail(__lowerCamelCase )
@require_torch
@require_tokenizers
@slow
def _snake_case ( self : Dict ):
from transformers import BertModel
SCREAMING_SNAKE_CASE = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "pt" )
@require_tf
@require_tokenizers
@slow
def _snake_case ( self : int ):
from transformers import TFBertModel
SCREAMING_SNAKE_CASE = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) )
SCREAMING_SNAKE_CASE = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" )
self._test_infer_dynamic_axis(__lowerCamelCase , __lowerCamelCase , "tf" )
def _snake_case ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = FeatureExtractionPipeline(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"]
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = infer_shapes(__lowerCamelCase , __lowerCamelCase )
# Assert all variables are present
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , __lowerCamelCase )
self.assertSequenceEqual(variable_names[3:] , __lowerCamelCase )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} )
self.assertDictEqual(shapes["output_1"] , {0: "batch"} )
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask", "token_type_ids"]
SCREAMING_SNAKE_CASE = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]}
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(__lowerCamelCase ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(__lowerCamelCase ) , set(__lowerCamelCase ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(__lowerCamelCase , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ensure_valid_input(FuncNonContiguousArgs() , __lowerCamelCase , __lowerCamelCase )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(__lowerCamelCase ) , 1 )
self.assertEqual(len(__lowerCamelCase ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens["input_ids"] )
self.assertEqual(ordered_input_names[0] , "input_ids" )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" )
self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() ) | 698 | 1 |
def __a ( A__ : list[int] , A__ : int ):
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
SCREAMING_SNAKE_CASE = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
SCREAMING_SNAKE_CASE = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
SCREAMING_SNAKE_CASE = subset[i - 1][j]
if arr[i - 1] <= j:
SCREAMING_SNAKE_CASE = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 |
from manim import *
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = Rectangle(height=0.5 , width=0.5 )
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("CPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(4 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("GPU" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Model" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCamelCase )
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
rect.set_stroke(__lowerCamelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
SCREAMING_SNAKE_CASE = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__lowerCamelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 )
self.add(__lowerCamelCase )
cpu_targs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = [mem.copy() for i in range(6 )]
SCREAMING_SNAKE_CASE = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
SCREAMING_SNAKE_CASE = Text("Loaded Checkpoint" , font_size=24 )
SCREAMING_SNAKE_CASE = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
SCREAMING_SNAKE_CASE = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
SCREAMING_SNAKE_CASE = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
SCREAMING_SNAKE_CASE = MarkupText(
f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) )
self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for i, rect in enumerate(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 )
target.move_to(__lowerCamelCase )
first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) )
SCREAMING_SNAKE_CASE = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) )
self.play(*__lowerCamelCase )
self.play(*__lowerCamelCase )
self.wait() | 698 | 1 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __a ( A__ : str=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE = subparsers.add_parser("test" )
else:
SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=A__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=A__ )
return parser
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
SCREAMING_SNAKE_CASE = script_name
else:
SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split()
SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __a ( ):
SCREAMING_SNAKE_CASE = test_command_parser()
SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(A__ )
if __name__ == "__main__":
main() | 698 |
import unittest
from transformers import is_vision_available
from transformers.pipelines import pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Any , **__lowerCamelCase : Any ):
pass
@is_pipeline_test
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@require_torch
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
# The floating scores are so close, we enter floating error approximation and the order is not guaranteed across
# python and torch versions.
self.assertIn(
nested_simplify(__lowerCamelCase ) , [
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}],
[{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "c"}, {"score": 0.333, "label": "b"}],
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@require_tf
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = pipeline(
model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" )
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["a", "b", "c"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [{"score": 0.333, "label": "a"}, {"score": 0.333, "label": "b"}, {"score": 0.333, "label": "c"}] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
[
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
{"score": 0.333, "label": ANY(__lowerCamelCase )},
],
] , )
@slow
@require_torch
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , )
@slow
@require_tf
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = pipeline(
task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" )
# This is an image of 2 cats with remotes and no planes
SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
SCREAMING_SNAKE_CASE = image_classifier(__lowerCamelCase , candidate_labels=["cat", "plane", "remote"] )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
] , )
SCREAMING_SNAKE_CASE = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , [
[
{"score": 0.511, "label": "remote"},
{"score": 0.485, "label": "cat"},
{"score": 0.004, "label": "plane"},
],
]
* 5 , ) | 698 | 1 |
from typing import List, Union
import numpy as np
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING
__A : List[Any] = logging.get_logger(__name__)
@add_end_docstrings(__snake_case )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : List[str] , *__lowerCamelCase : int , **__lowerCamelCase : List[str] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
requires_backends(self , "vision" )
self.check_model_type(__lowerCamelCase )
def __call__( self : List[Any] , __lowerCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCamelCase : Union[str, Any] ):
return super().__call__(__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : List[str] , **__lowerCamelCase : int ):
return {}, {}, {}
def _snake_case ( self : Tuple , __lowerCamelCase : Any ):
SCREAMING_SNAKE_CASE = load_image(__lowerCamelCase )
SCREAMING_SNAKE_CASE = image.size
SCREAMING_SNAKE_CASE = self.image_processor(images=__lowerCamelCase , return_tensors=self.framework )
return model_inputs
def _snake_case ( self : str , __lowerCamelCase : List[str] ):
SCREAMING_SNAKE_CASE = self.model(**__lowerCamelCase )
return model_outputs
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = model_outputs.predicted_depth
SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="bicubic" , align_corners=__lowerCamelCase )
SCREAMING_SNAKE_CASE = prediction.squeeze().cpu().numpy()
SCREAMING_SNAKE_CASE = (output * 255 / np.max(__lowerCamelCase )).astype("uint8" )
SCREAMING_SNAKE_CASE = Image.fromarray(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = predicted_depth
SCREAMING_SNAKE_CASE = depth
return output_dict | 698 |
__A : dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_0_0_0,
"megajoule": 1_0_0_0_0_0_0,
"gigajoule": 1_0_0_0_0_0_0_0_0_0,
"wattsecond": 1.0,
"watthour": 3_6_0_0,
"kilowatthour": 3_6_0_0_0_0_0,
"newtonmeter": 1.0,
"calorie_nutr": 4_1_8_6.8,
"kilocalorie_nutr": 4_1_8_6_8_0_0.0_0,
"electronvolt": 1.6_0217_6634e-19,
"britishthermalunit_it": 1_0_5_5.0_5_5_8_5,
"footpound": 1.355_818,
}
def __a ( A__ : str , A__ : str , A__ : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
SCREAMING_SNAKE_CASE = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(A__ )}"
)
raise ValueError(A__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 1 |
import argparse
import os
import re
import packaging.version
__A : str = 'examples/'
__A : Union[str, Any] = {
'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'),
'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'),
'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'),
'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'),
}
__A : Optional[Any] = {
'init': 'src/transformers/__init__.py',
'setup': 'setup.py',
}
__A : Union[str, Any] = 'README.md'
def __a ( A__ : str , A__ : int , A__ : List[str] ):
with open(A__ , "r" , encoding="utf-8" , newline="\n" ) as f:
SCREAMING_SNAKE_CASE = f.read()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = REPLACE_PATTERNS[pattern]
SCREAMING_SNAKE_CASE = replace.replace("VERSION" , A__ )
SCREAMING_SNAKE_CASE = re_pattern.sub(A__ , A__ )
with open(A__ , "w" , encoding="utf-8" , newline="\n" ) as f:
f.write(A__ )
def __a ( A__ : Optional[int] ):
for folder, directories, fnames in os.walk(A__ ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove("research_projects" )
if "legacy" in directories:
directories.remove("legacy" )
for fname in fnames:
if fname.endswith(".py" ):
update_version_in_file(os.path.join(A__ , A__ ) , A__ , pattern="examples" )
def __a ( A__ : int , A__ : str=False ):
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(A__ , A__ , A__ )
if not patch:
update_version_in_examples(A__ )
def __a ( ):
SCREAMING_SNAKE_CASE = "🤗 Transformers currently provides the following architectures"
SCREAMING_SNAKE_CASE = "1. Want to contribute a new model?"
with open(A__ , "r" , encoding="utf-8" , newline="\n" ) as f:
SCREAMING_SNAKE_CASE = f.readlines()
# Find the start of the list.
SCREAMING_SNAKE_CASE = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
SCREAMING_SNAKE_CASE = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith("1." ):
SCREAMING_SNAKE_CASE = lines[index].replace(
"https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , )
index += 1
with open(A__ , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(A__ )
def __a ( ):
with open(REPLACE_FILES["init"] , "r" ) as f:
SCREAMING_SNAKE_CASE = f.read()
SCREAMING_SNAKE_CASE = REPLACE_PATTERNS["init"][0].search(A__ ).groups()[0]
return packaging.version.parse(A__ )
def __a ( A__ : Union[str, Any]=False ):
SCREAMING_SNAKE_CASE = get_version()
if patch and default_version.is_devrelease:
raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" )
if default_version.is_devrelease:
SCREAMING_SNAKE_CASE = default_version.base_version
elif patch:
SCREAMING_SNAKE_CASE = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}"
else:
SCREAMING_SNAKE_CASE = F"{default_version.major}.{default_version.minor + 1}.0"
# Now let's ask nicely if that's the right one.
SCREAMING_SNAKE_CASE = input(F"Which version are you releasing? [{default_version}]" )
if len(A__ ) == 0:
SCREAMING_SNAKE_CASE = default_version
print(F"Updating version to {version}." )
global_version_update(A__ , patch=A__ )
if not patch:
print("Cleaning main README, don't forget to run `make fix-copies`." )
clean_main_ref_in_model_list()
def __a ( ):
SCREAMING_SNAKE_CASE = get_version()
SCREAMING_SNAKE_CASE = F"{current_version.major}.{current_version.minor + 1}.0.dev0"
SCREAMING_SNAKE_CASE = current_version.base_version
# Check with the user we got that right.
SCREAMING_SNAKE_CASE = input(F"Which version are we developing now? [{dev_version}]" )
if len(A__ ) == 0:
SCREAMING_SNAKE_CASE = dev_version
print(F"Updating version to {version}." )
global_version_update(A__ )
print("Cleaning main README, don't forget to run `make fix-copies`." )
clean_main_ref_in_model_list()
if __name__ == "__main__":
__A : Union[str, Any] = argparse.ArgumentParser()
parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.')
parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.')
__A : List[Any] = parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('Nothing to do after a patch :-)')
else:
post_release_work() | 698 |
from collections import deque
from .hash_table import HashTable
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Optional[Any] ):
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ):
SCREAMING_SNAKE_CASE = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.values[key]
def _snake_case ( self : Union[str, Any] ):
return (
sum(self.charge_factor - len(__lowerCamelCase ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None ):
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__lowerCamelCase ) == 0
):
return key
return super()._collision_resolution(__lowerCamelCase , __lowerCamelCase ) | 698 | 1 |
def __a ( A__ : list[list] ):
SCREAMING_SNAKE_CASE = current_set.copy()
for row_index, row in enumerate(A__ ):
SCREAMING_SNAKE_CASE = row[0]
for column_index, column in enumerate(A__ ):
if magnitude == 0:
SCREAMING_SNAKE_CASE = column
continue
SCREAMING_SNAKE_CASE = column / magnitude
# Subtract to cancel term
SCREAMING_SNAKE_CASE = current_set[0]
SCREAMING_SNAKE_CASE = [first_row]
SCREAMING_SNAKE_CASE = current_set[1::]
for row in current_set:
SCREAMING_SNAKE_CASE = []
# If first term is 0, it is already in form we want, so we preserve it
if row[0] == 0:
final_set.append(A__ )
continue
for column_index in range(len(A__ ) ):
temp_row.append(first_row[column_index] - row[column_index] )
final_set.append(A__ )
# Create next recursion iteration set
if len(final_set[0] ) != 3:
SCREAMING_SNAKE_CASE = final_set[0]
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
for row in final_set[1::]:
current_first_column.append(row[0] )
next_iteration.append(row[1::] )
SCREAMING_SNAKE_CASE = simplify(A__ )
for i in range(len(A__ ) ):
resultant[i].insert(0 , current_first_column[i] )
resultant.insert(0 , A__ )
SCREAMING_SNAKE_CASE = resultant
return final_set
def __a ( A__ : list[list] ):
if len(A__ ) == 0:
raise IndexError("solve_simultaneous() requires n lists of length n+1" )
SCREAMING_SNAKE_CASE = len(A__ ) + 1
if any(len(A__ ) != _length for item in equations ):
raise IndexError("solve_simultaneous() requires n lists of length n+1" )
for row in equations:
if any(not isinstance(A__ , (int, float) ) for column in row ):
raise ValueError("solve_simultaneous() requires lists of integers" )
if len(A__ ) == 1:
return [equations[0][-1] / equations[0][0]]
SCREAMING_SNAKE_CASE = equations.copy()
if any(0 in row for row in data_set ):
SCREAMING_SNAKE_CASE = data_set.copy()
SCREAMING_SNAKE_CASE = []
for row_index, row in enumerate(A__ ):
if 0 not in row:
SCREAMING_SNAKE_CASE = data_set.pop(A__ )
break
if not full_row:
raise ValueError("solve_simultaneous() requires at least 1 full equation" )
data_set.insert(0 , A__ )
SCREAMING_SNAKE_CASE = data_set.copy()
SCREAMING_SNAKE_CASE = simplify(A__ )
SCREAMING_SNAKE_CASE = simplified[::-1]
SCREAMING_SNAKE_CASE = []
for row in simplified:
SCREAMING_SNAKE_CASE = row[-1]
if not solutions:
if row[-2] == 0:
solutions.append(0 )
continue
solutions.append(current_solution / row[-2] )
continue
SCREAMING_SNAKE_CASE = row.copy()[: len(A__ ) - 1 :]
while temp_row[0] == 0:
temp_row.pop(0 )
if len(A__ ) == 0:
solutions.append(0 )
continue
SCREAMING_SNAKE_CASE = temp_row[1::]
SCREAMING_SNAKE_CASE = temp_row[::-1]
for column_index, column in enumerate(A__ ):
current_solution -= column * solutions[column_index]
solutions.append(A__ )
SCREAMING_SNAKE_CASE = []
for item in solutions:
final.append(float(round(A__ , 5 ) ) )
return final[::-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
__A : Union[str, Any] = [
[2, 1, 1, 1, 1, 4],
[1, 2, 1, 1, 1, 5],
[1, 1, 2, 1, 1, 6],
[1, 1, 1, 2, 1, 7],
[1, 1, 1, 1, 2, 8],
]
print(solve_simultaneous(eq))
print(solve_simultaneous([[4, 2]])) | 698 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
__A : Optional[int] = logging.get_logger(__name__)
__A : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "gpt_neo"
lowerCamelCase__ = ["past_key_values"]
lowerCamelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : str , __lowerCamelCase : Dict=50257 , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Optional[Any]=2048 , __lowerCamelCase : int=24 , __lowerCamelCase : int=[[["global", "local"], 12]] , __lowerCamelCase : int=16 , __lowerCamelCase : List[str]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=1e-5 , __lowerCamelCase : Dict=0.02 , __lowerCamelCase : Dict=True , __lowerCamelCase : Dict=50256 , __lowerCamelCase : Optional[int]=50256 , **__lowerCamelCase : Dict , ):
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_layers
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = window_size
SCREAMING_SNAKE_CASE = activation_function
SCREAMING_SNAKE_CASE = resid_dropout
SCREAMING_SNAKE_CASE = embed_dropout
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = classifier_dropout
SCREAMING_SNAKE_CASE = layer_norm_epsilon
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = use_cache
SCREAMING_SNAKE_CASE = bos_token_id
SCREAMING_SNAKE_CASE = eos_token_id
SCREAMING_SNAKE_CASE = attention_types
SCREAMING_SNAKE_CASE = self.expand_attention_types_params(__lowerCamelCase )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"Configuration for convolutional module is incorrect. "
"It is required that `len(config.attention_layers)` == `config.num_layers` "
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
"`config.attention_layers` is prepared using `config.attention_types`. "
"Please verify the value of `config.attention_types` argument." )
super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
@staticmethod
def _snake_case ( __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def __a ( A__ : str , A__ : List[Any] , A__ : List[str] , A__ : Union[str, Any] ):
import torch
SCREAMING_SNAKE_CASE = input.size()
SCREAMING_SNAKE_CASE = len(A__ )
SCREAMING_SNAKE_CASE = shape[dimension]
SCREAMING_SNAKE_CASE = torch.arange(0 , A__ , A__ )
SCREAMING_SNAKE_CASE = torch.div(sizedim - size , A__ , rounding_mode="floor" ) + 1
SCREAMING_SNAKE_CASE = torch.arange(A__ ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE = [slice(A__ )] * rank
SCREAMING_SNAKE_CASE = indices
SCREAMING_SNAKE_CASE = input[s]
SCREAMING_SNAKE_CASE = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(A__ )
def __a ( A__ : Union[str, Any] , A__ : Optional[int] ):
import torch
SCREAMING_SNAKE_CASE = torch.arange(1 , A__ )
SCREAMING_SNAKE_CASE = torch.remainder(A__ , A__ )
SCREAMING_SNAKE_CASE = remainders == 0
SCREAMING_SNAKE_CASE = candidates[divisor_indices]
SCREAMING_SNAKE_CASE = torch.max(A__ )
return largest_divisor, torch.div(A__ , A__ , rounding_mode="floor" )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} )
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
SCREAMING_SNAKE_CASE = {0: "batch", 1: "past_sequence + sequence"}
else:
SCREAMING_SNAKE_CASE = {0: "batch", 1: "sequence"}
return common_inputs
@property
def _snake_case ( self : Optional[int] ):
return self._config.num_heads
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
SCREAMING_SNAKE_CASE = super(__lowerCamelCase , self ).generate_dummy_inputs(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE = OrderedDict({"input_ids": common_inputs["input_ids"]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE = seqlen + 2
SCREAMING_SNAKE_CASE = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE = common_inputs["attention_mask"]
if self.use_past:
SCREAMING_SNAKE_CASE = ordered_inputs["attention_mask"].dtype
SCREAMING_SNAKE_CASE = torch.cat(
[ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
return ordered_inputs
@property
def _snake_case ( self : Optional[int] ):
return 13 | 698 | 1 |
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = ["image_processor"]
lowerCamelCase__ = "SamImageProcessor"
def __init__( self : List[Any] , __lowerCamelCase : int ):
super().__init__(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.image_processor
SCREAMING_SNAKE_CASE = -10
SCREAMING_SNAKE_CASE = self.image_processor.size["longest_edge"]
def __call__( self : Any , __lowerCamelCase : List[str]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , **__lowerCamelCase : str , ):
SCREAMING_SNAKE_CASE = self.image_processor(
__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase , )
# pop arguments that are not used in the foward but used nevertheless
SCREAMING_SNAKE_CASE = encoding_image_processor["original_sizes"]
if hasattr(__lowerCamelCase , "numpy" ): # Checks if Torch or TF tensor
SCREAMING_SNAKE_CASE = original_sizes.numpy()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._check_and_preprocess_points(
input_points=__lowerCamelCase , input_labels=__lowerCamelCase , input_boxes=__lowerCamelCase , )
SCREAMING_SNAKE_CASE = self._normalize_and_convert(
__lowerCamelCase , __lowerCamelCase , input_points=__lowerCamelCase , input_labels=__lowerCamelCase , input_boxes=__lowerCamelCase , return_tensors=__lowerCamelCase , )
return encoding_image_processor
def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple=None , __lowerCamelCase : int=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]="pt" , ):
if input_points is not None:
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = [
self._normalize_coordinates(self.target_size , __lowerCamelCase , original_sizes[0] ) for point in input_points
]
else:
SCREAMING_SNAKE_CASE = [
self._normalize_coordinates(self.target_size , __lowerCamelCase , __lowerCamelCase )
for point, original_size in zip(__lowerCamelCase , __lowerCamelCase )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self._pad_points_and_labels(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = np.array(__lowerCamelCase )
if input_labels is not None:
SCREAMING_SNAKE_CASE = np.array(__lowerCamelCase )
if input_boxes is not None:
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = [
self._normalize_coordinates(self.target_size , __lowerCamelCase , original_sizes[0] , is_bounding_box=__lowerCamelCase )
for box in input_boxes
]
else:
SCREAMING_SNAKE_CASE = [
self._normalize_coordinates(self.target_size , __lowerCamelCase , __lowerCamelCase , is_bounding_box=__lowerCamelCase )
for box, original_size in zip(__lowerCamelCase , __lowerCamelCase )
]
SCREAMING_SNAKE_CASE = np.array(__lowerCamelCase )
if input_boxes is not None:
if return_tensors == "pt":
SCREAMING_SNAKE_CASE = torch.from_numpy(__lowerCamelCase )
# boxes batch size of 1 by default
SCREAMING_SNAKE_CASE = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(__lowerCamelCase )
# boxes batch size of 1 by default
SCREAMING_SNAKE_CASE = tf.expand_dims(__lowerCamelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"input_boxes": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
SCREAMING_SNAKE_CASE = torch.from_numpy(__lowerCamelCase )
# point batch size of 1 by default
SCREAMING_SNAKE_CASE = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(__lowerCamelCase )
# point batch size of 1 by default
SCREAMING_SNAKE_CASE = tf.expand_dims(__lowerCamelCase , 1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"input_points": input_points} )
if input_labels is not None:
if return_tensors == "pt":
SCREAMING_SNAKE_CASE = torch.from_numpy(__lowerCamelCase )
# point batch size of 1 by default
SCREAMING_SNAKE_CASE = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(__lowerCamelCase )
# point batch size of 1 by default
SCREAMING_SNAKE_CASE = tf.expand_dims(__lowerCamelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"input_labels": input_labels} )
return encoding_image_processor
def _snake_case ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = max([point.shape[0] for point in input_points] )
SCREAMING_SNAKE_CASE = []
for i, point in enumerate(__lowerCamelCase ):
if point.shape[0] != expected_nb_points:
SCREAMING_SNAKE_CASE = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 )
SCREAMING_SNAKE_CASE = np.append(input_labels[i] , [self.point_pad_value] )
processed_input_points.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = processed_input_points
return input_points, input_labels
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : np.ndarray , __lowerCamelCase : str , __lowerCamelCase : str=False ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = original_size
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.image_processor._get_preprocess_shape(__lowerCamelCase , longest_edge=__lowerCamelCase )
SCREAMING_SNAKE_CASE = deepcopy(__lowerCamelCase ).astype(__lowerCamelCase )
if is_bounding_box:
SCREAMING_SNAKE_CASE = coords.reshape(-1 , 2 , 2 )
SCREAMING_SNAKE_CASE = coords[..., 0] * (new_w / old_w)
SCREAMING_SNAKE_CASE = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
SCREAMING_SNAKE_CASE = coords.reshape(-1 , 4 )
return coords
def _snake_case ( self : List[str] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Any=None , __lowerCamelCase : int=None , ):
if input_points is not None:
if hasattr(__lowerCamelCase , "numpy" ): # Checks for TF or Torch tensor
SCREAMING_SNAKE_CASE = input_points.numpy().tolist()
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not isinstance(input_points[0] , __lowerCamelCase ):
raise ValueError("Input points must be a list of list of floating points." )
SCREAMING_SNAKE_CASE = [np.array(__lowerCamelCase ) for input_point in input_points]
else:
SCREAMING_SNAKE_CASE = None
if input_labels is not None:
if hasattr(__lowerCamelCase , "numpy" ):
SCREAMING_SNAKE_CASE = input_labels.numpy().tolist()
if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not isinstance(input_labels[0] , __lowerCamelCase ):
raise ValueError("Input labels must be a list of list integers." )
SCREAMING_SNAKE_CASE = [np.array(__lowerCamelCase ) for label in input_labels]
else:
SCREAMING_SNAKE_CASE = None
if input_boxes is not None:
if hasattr(__lowerCamelCase , "numpy" ):
SCREAMING_SNAKE_CASE = input_boxes.numpy().tolist()
if (
not isinstance(__lowerCamelCase , __lowerCamelCase )
or not isinstance(input_boxes[0] , __lowerCamelCase )
or not isinstance(input_boxes[0][0] , __lowerCamelCase )
):
raise ValueError("Input boxes must be a list of list of list of floating points." )
SCREAMING_SNAKE_CASE = [np.array(__lowerCamelCase ).astype(np.floataa ) for box in input_boxes]
else:
SCREAMING_SNAKE_CASE = None
return input_points, input_labels, input_boxes
@property
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.image_processor.model_input_names
return list(dict.fromkeys(__lowerCamelCase ) )
def _snake_case ( self : int , *__lowerCamelCase : List[Any] , **__lowerCamelCase : int ):
return self.image_processor.post_process_masks(*__lowerCamelCase , **__lowerCamelCase ) | 698 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
__A : Any = {
'configuration_longt5': ['LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LongT5Config', 'LongT5OnnxConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = [
'LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST',
'LongT5EncoderModel',
'LongT5ForConditionalGeneration',
'LongT5Model',
'LongT5PreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[Any] = [
'FlaxLongT5ForConditionalGeneration',
'FlaxLongT5Model',
'FlaxLongT5PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__A : Tuple = logging.get_logger(__name__)
__A : Union[str, Any] = {
'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json',
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "canine"
def __init__( self : Optional[int] , __lowerCamelCase : Union[str, Any]=768 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : int=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Any="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Optional[Any]=16384 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : int=1e-12 , __lowerCamelCase : Tuple=0 , __lowerCamelCase : Union[str, Any]=0xE_000 , __lowerCamelCase : str=0xE_001 , __lowerCamelCase : int=4 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[Any]=8 , __lowerCamelCase : int=16384 , __lowerCamelCase : Union[str, Any]=128 , **__lowerCamelCase : Tuple , ):
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = hidden_dropout_prob
SCREAMING_SNAKE_CASE = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = type_vocab_size
SCREAMING_SNAKE_CASE = layer_norm_eps
# Character config:
SCREAMING_SNAKE_CASE = downsampling_rate
SCREAMING_SNAKE_CASE = upsampling_kernel_size
SCREAMING_SNAKE_CASE = num_hash_functions
SCREAMING_SNAKE_CASE = num_hash_buckets
SCREAMING_SNAKE_CASE = local_transformer_stride | 698 |
import cmath
import math
def __a ( A__ : float , A__ : float , A__ : float , A__ : float ):
SCREAMING_SNAKE_CASE = math.radians(A__ )
SCREAMING_SNAKE_CASE = math.radians(A__ )
# Convert voltage and current to rectangular form
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
SCREAMING_SNAKE_CASE = cmath.rect(A__ , A__ )
# Calculate apparent power
return voltage_rect * current_rect
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 | 1 |
from __future__ import annotations
import math
from collections.abc import Callable
def __a ( A__ : Callable[[int | float], int | float] , A__ : int | float , A__ : int | float , A__ : int = 100 , ):
SCREAMING_SNAKE_CASE = x_start
SCREAMING_SNAKE_CASE = fnc(A__ )
SCREAMING_SNAKE_CASE = 0.0
for _ in range(A__ ):
# Approximates curve as a sequence of linear lines and sums their length
SCREAMING_SNAKE_CASE = (x_end - x_start) / steps + xa
SCREAMING_SNAKE_CASE = fnc(A__ )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
SCREAMING_SNAKE_CASE = xa
SCREAMING_SNAKE_CASE = fxa
return length
if __name__ == "__main__":
def __a ( A__ : Optional[Any] ):
return math.sin(10 * x )
print('f(x) = sin(10 * x)')
print('The length of the curve from x = -10 to x = 10 is:')
__A : Optional[int] = 1_0
while i <= 1_0_0_0_0_0:
print(f'With {i} steps: {line_length(f, -1_0, 1_0, i)}')
i *= 1_0 | 698 |
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def __a ( A__ : List[str] ):
SCREAMING_SNAKE_CASE = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = emb.weight.shape
SCREAMING_SNAKE_CASE = nn.Linear(A__ , A__ , bias=A__ )
SCREAMING_SNAKE_CASE = emb.weight.data
return lin_layer
def __a ( A__ : Tuple , A__ : Union[str, Any]=None ):
SCREAMING_SNAKE_CASE = {}
for old_key in state_dict.keys():
SCREAMING_SNAKE_CASE = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts.0" , F"ffn.experts.expert_{expert_idx}" )
else:
SCREAMING_SNAKE_CASE = key.replace("moe_layer.experts." , "ffn.experts.expert_" )
if "gate" in key:
SCREAMING_SNAKE_CASE = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" )
if "fc2" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc2." , ".ffn.fc2." )
if "fc1" and "experts" not in key:
SCREAMING_SNAKE_CASE = key.replace(".fc1." , ".ffn.fc1." )
if ".encoder_attn." in key:
SCREAMING_SNAKE_CASE = key.replace(".encoder_attn." , ".cross_attention." )
if "encoder_attn_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" )
if "final_layer_norm" in key:
SCREAMING_SNAKE_CASE = key.replace("final_layer_norm" , "ff_layer_norm" )
SCREAMING_SNAKE_CASE = state_dict[old_key]
return new_dict
def __a ( A__ : List[str] , A__ : List[Any] , A__ : str , A__ : Union[str, Any] , A__ : str = WEIGHTS_NAME ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
os.makedirs(A__ , exist_ok=A__ )
for expert in range(A__ ):
SCREAMING_SNAKE_CASE = switch_checkpoint_path + F"-rank-{expert}.pt"
if os.path.isfile(A__ ):
SCREAMING_SNAKE_CASE = torch.load(A__ )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = os.path.join(
A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
torch.save(A__ , A__ )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(A__ )[0]].dtype )
# Add the last block
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{len(A__ )+1:05d}-of-???.bin" ) )
SCREAMING_SNAKE_CASE = torch.load(switch_checkpoint_path + "-shared.pt" )["model"]
remove_ignore_keys_(A__ )
SCREAMING_SNAKE_CASE = rename_fairseq_keys(A__ , A__ )
SCREAMING_SNAKE_CASE = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(A__ ) == 1:
SCREAMING_SNAKE_CASE = os.path.join(A__ , A__ )
torch.save(A__ , A__ )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(A__ , A__ )
# Otherwise, let's build the index
SCREAMING_SNAKE_CASE = {}
for idx, shard in enumerate(A__ ):
SCREAMING_SNAKE_CASE = weights_name.replace(".bin" , F"-{idx+1:05d}-of-{len(A__ ):05d}.bin" )
SCREAMING_SNAKE_CASE = os.path.join(A__ , weights_name.replace(".bin" , F"-{idx+1:05d}-of-???.bin" ) )
os.rename(A__ , os.path.join(A__ , A__ ) )
for key in shard:
SCREAMING_SNAKE_CASE = shard_file
# Add the metadata
SCREAMING_SNAKE_CASE = {"total_size": total_size}
SCREAMING_SNAKE_CASE = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(A__ , A__ ) , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE = json.dumps(A__ , indent=2 , sort_keys=A__ ) + "\n"
f.write(A__ )
return metadata, index
if __name__ == "__main__":
__A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--nllb_moe_checkpoint_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000',
type=str,
required=False,
help='Path to a directory containing a folder per layer. Follows the original Google format.',
)
parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model')
parser.add_argument(
'--pytorch_dump_folder_path',
default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b',
type=str,
required=False,
help='Path to the output pytorch model.',
)
__A : Optional[int] = parser.parse_args()
__A , __A : Union[str, Any] = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
1_2_8,
args.dtype,
)
__A : Any = NllbMoeConfig.from_pretrained(
'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8
)
config.save_pretrained(args.pytorch_dump_folder_path)
__A : Any = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print('Done')
model.save_pretrained(args.pytorch_dump_folder_path) | 698 | 1 |
def __a ( A__ : list ):
if not grid or not grid[0]:
raise TypeError("The grid does not contain the appropriate information" )
for cell_n in range(1 , len(grid[0] ) ):
grid[0][cell_n] += grid[0][cell_n - 1]
SCREAMING_SNAKE_CASE = grid[0]
for row_n in range(1 , len(A__ ) ):
SCREAMING_SNAKE_CASE = grid[row_n]
SCREAMING_SNAKE_CASE = fill_row(A__ , A__ )
SCREAMING_SNAKE_CASE = grid[row_n]
return grid[-1][-1]
def __a ( A__ : list , A__ : list ):
current_row[0] += row_above[0]
for cell_n in range(1 , len(A__ ) ):
current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] )
return current_row
if __name__ == "__main__":
import doctest
doctest.testmod() | 698 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = BlipImageProcessor()
SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-BertModel" )
SCREAMING_SNAKE_CASE = BlipProcessor(__lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict , **__lowerCamelCase : Any ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def _snake_case ( self : List[Any] , **__lowerCamelCase : Optional[Any] ):
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def _snake_case ( self : Union[str, Any] ):
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
SCREAMING_SNAKE_CASE = BlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = image_processor(__lowerCamelCase , return_tensors="np" )
SCREAMING_SNAKE_CASE = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def _snake_case ( self : Any ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
SCREAMING_SNAKE_CASE = processor.batch_decode(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.get_image_processor()
SCREAMING_SNAKE_CASE = self.get_tokenizer()
SCREAMING_SNAKE_CASE = BlipProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = "lower newer"
SCREAMING_SNAKE_CASE = self.prepare_image_inputs()
SCREAMING_SNAKE_CASE = processor(text=__lowerCamelCase , images=__lowerCamelCase )
# For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask']
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "input_ids", "attention_mask"] ) | 698 | 1 |
import logging
import os
import sys
from pathlib import Path
from unittest.mock import patch
from parameterized import parameterized
from run_eval import run_generate
from run_eval_search import run_search
from transformers.testing_utils import CaptureStdout, TestCasePlus, slow
from utils import ROUGE_KEYS
logging.basicConfig(level=logging.DEBUG)
__A : List[Any] = logging.getLogger()
def __a ( A__ : Path , A__ : list ):
SCREAMING_SNAKE_CASE = "\n".join(A__ )
Path(A__ ).open("w" ).writelines(A__ )
__A : List[str] = 'patrickvonplaten/t5-tiny-random'
__A : Any = 'sshleifer/bart-tiny-random'
__A : int = 'sshleifer/tiny-mbart'
__A : int = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
def _snake_case ( self : Dict , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
SCREAMING_SNAKE_CASE = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
SCREAMING_SNAKE_CASE = [" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County."]
_dump_articles(__lowerCamelCase , __lowerCamelCase )
SCREAMING_SNAKE_CASE = str(Path(self.get_auto_remove_tmp_dir() ) / "scores.json" )
SCREAMING_SNAKE_CASE = "translation_en_to_de" if model == T5_TINY else "summarization"
SCREAMING_SNAKE_CASE = f"\n run_eval_search.py\n {model}\n {input_file_name}\n {output_file_name}\n --score_path {score_path}\n --task {task}\n --num_beams 2\n --length_penalty 2.0\n ".split()
with patch.object(__lowerCamelCase , "argv" , __lowerCamelCase ):
run_generate()
assert Path(__lowerCamelCase ).exists()
# os.remove(Path(output_file_name))
def _snake_case ( self : Any ):
self.run_eval_tester(__lowerCamelCase )
@parameterized.expand([BART_TINY, MBART_TINY] )
@slow
def _snake_case ( self : List[str] , __lowerCamelCase : int ):
self.run_eval_tester(__lowerCamelCase )
@parameterized.expand([T5_TINY, MBART_TINY] )
@slow
def _snake_case ( self : int , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir() ) / "utest_input.source"
SCREAMING_SNAKE_CASE = input_file_name.parent / "utest_output.txt"
assert not output_file_name.exists()
SCREAMING_SNAKE_CASE = {
"en": ["Machine learning is great, isn't it?", "I like to eat bananas", "Tomorrow is another great day!"],
"de": [
"Maschinelles Lernen ist großartig, oder?",
"Ich esse gerne Bananen",
"Morgen ist wieder ein toller Tag!",
],
}
SCREAMING_SNAKE_CASE = Path(self.get_auto_remove_tmp_dir() )
SCREAMING_SNAKE_CASE = str(tmp_dir / "scores.json" )
SCREAMING_SNAKE_CASE = str(tmp_dir / "val.target" )
_dump_articles(__lowerCamelCase , text["en"] )
_dump_articles(__lowerCamelCase , text["de"] )
SCREAMING_SNAKE_CASE = "translation_en_to_de" if model == T5_TINY else "summarization"
SCREAMING_SNAKE_CASE = f"\n run_eval_search.py\n {model}\n {str(__lowerCamelCase )}\n {str(__lowerCamelCase )}\n --score_path {score_path}\n --reference_path {reference_path}\n --task {task}\n ".split()
testargs.extend(["--search", "num_beams=1:2 length_penalty=0.9:1.0"] )
with patch.object(__lowerCamelCase , "argv" , __lowerCamelCase ):
with CaptureStdout() as cs:
run_search()
SCREAMING_SNAKE_CASE = [" num_beams | length_penalty", model, "Best score args"]
SCREAMING_SNAKE_CASE = ["Info"]
if "translation" in task:
expected_strings.append("bleu" )
else:
expected_strings.extend(__lowerCamelCase )
for w in expected_strings:
assert w in cs.out
for w in un_expected_strings:
assert w not in cs.out
assert Path(__lowerCamelCase ).exists()
os.remove(Path(__lowerCamelCase ) ) | 698 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
@staticmethod
def _snake_case ( *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Union[str, Any] ):
pass
def __a ( A__ : str ):
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
__A : Tuple = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def _snake_case ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model=__lowerCamelCase , tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
SCREAMING_SNAKE_CASE = "What is the placebo?"
SCREAMING_SNAKE_CASE = [
{
"image": load_image(__lowerCamelCase ),
"question": question,
},
{
"image": image,
"question": question,
},
{
"image": image,
"question": question,
"word_boxes": word_boxes,
},
]
return dqa_pipeline, examples
def _snake_case ( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = dqa_pipeline(__lowerCamelCase , top_k=2 )
self.assertEqual(
__lowerCamelCase , [
[
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
{"score": ANY(__lowerCamelCase ), "answer": ANY(__lowerCamelCase ), "start": ANY(__lowerCamelCase ), "end": ANY(__lowerCamelCase )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "How many cats are there?"
SCREAMING_SNAKE_CASE = [
{"score": 0.0_001, "answer": "oy 2312/2019", "start": 38, "end": 39},
{"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40},
]
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , __lowerCamelCase )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
# We can optionnally pass directly the words and bounding boxes
SCREAMING_SNAKE_CASE = "./tests/fixtures/tests_samples/COCO/000000039769.png"
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , words=__lowerCamelCase , boxes=__lowerCamelCase , top_k=2 )
self.assertEqual(__lowerCamelCase , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_944, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_009, "answer": "us-001", "start": 16, "end": 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_974, "answer": "1110212019", "start": 23, "end": 23},
{"score": 0.9_948, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : str ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": image, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.4_251, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.0_819, "answer": "1110212019", "start": 23, "end": 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(
"impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=__lowerCamelCase )
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=__lowerCamelCase , revision="3dc6de3" , max_seq_len=50 , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
SCREAMING_SNAKE_CASE = dqa_pipeline(
[{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
]
]
* 2 , )
SCREAMING_SNAKE_CASE = list(zip(*apply_tesseract(load_image(__lowerCamelCase ) , __lowerCamelCase , "" ) ) )
# This model should also work if `image` is set to None
SCREAMING_SNAKE_CASE = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
{"score": 0.9_999, "answer": "us-001", "start": 16, "end": 16},
{"score": 0.9_998, "answer": "us-001", "start": 16, "end": 16},
] , )
@slow
@require_torch
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = pipeline(
"document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , )
SCREAMING_SNAKE_CASE = INVOICE_URL
SCREAMING_SNAKE_CASE = "What is the invoice number?"
SCREAMING_SNAKE_CASE = dqa_pipeline(image=__lowerCamelCase , question=__lowerCamelCase , top_k=2 )
self.assertEqual(nested_simplify(__lowerCamelCase , decimals=4 ) , [{"answer": "us-001"}] )
@require_tf
@unittest.skip("Document question answering not implemented in TF" )
def _snake_case ( self : List[Any] ):
pass | 698 | 1 |
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
__A : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model')
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
__A : Optional[Any] = 2_5_0_0_0_4
__A : int = 2_5_0_0_2_0
@require_sentencepiece
@require_tokenizers
class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = MBartaaTokenizer
lowerCamelCase__ = MBartaaTokenizerFast
lowerCamelCase__ = True
lowerCamelCase__ = True
def _snake_case ( self : Optional[int] ):
super().setUp()
# We have a SentencePiece fixture for testing
SCREAMING_SNAKE_CASE = MBartaaTokenizer(__lowerCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = "<s>"
SCREAMING_SNAKE_CASE = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__lowerCamelCase ) , 1054 )
def _snake_case ( self : List[Any] ):
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = MBartaaTokenizer(__lowerCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.tokenize("This is a test" )
self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
SCREAMING_SNAKE_CASE = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , )
SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__lowerCamelCase )
self.assertListEqual(
__lowerCamelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__lowerCamelCase )
self.assertListEqual(
__lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , )
@slow
def _snake_case ( self : List[Any] ):
# fmt: off
SCREAMING_SNAKE_CASE = {"input_ids": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , )
def _snake_case ( self : Tuple ):
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__lowerCamelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f )
self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase )
# Checks everything loads correctly in the same way
SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__lowerCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__lowerCamelCase )
# Save tokenizer rust, legacy_format=True
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__lowerCamelCase )
# Checks it save with the same files
self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase )
# Checks everything loads correctly in the same way
SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__lowerCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) )
shutil.rmtree(__lowerCamelCase )
# Save tokenizer rust, legacy_format=False
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__lowerCamelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__lowerCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) )
shutil.rmtree(__lowerCamelCase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = "facebook/mbart-large-50-one-to-many-mmt"
lowerCamelCase__ = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
lowerCamelCase__ = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
lowerCamelCase__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2]
@classmethod
def _snake_case ( cls : List[str] ):
SCREAMING_SNAKE_CASE = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" )
SCREAMING_SNAKE_CASE = 1
return cls
def _snake_case ( self : Tuple ):
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 250038 )
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __lowerCamelCase )
def _snake_case ( self : Optional[Any] ):
self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids )
SCREAMING_SNAKE_CASE = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
SCREAMING_SNAKE_CASE = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = ["this is gunna be a long sentence " * 20]
assert isinstance(src_text[0] , __lowerCamelCase )
SCREAMING_SNAKE_CASE = 10
SCREAMING_SNAKE_CASE = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ).input_ids[0]
self.assertEqual(ids[0] , __lowerCamelCase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
def _snake_case ( self : Any ):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250053, 250001] )
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = tempfile.mkdtemp()
SCREAMING_SNAKE_CASE = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__lowerCamelCase )
SCREAMING_SNAKE_CASE = MBartaaTokenizer.from_pretrained(__lowerCamelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase )
@require_torch
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , return_tensors="pt" )
SCREAMING_SNAKE_CASE = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def _snake_case ( self : Union[str, Any] ):
SCREAMING_SNAKE_CASE = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
SCREAMING_SNAKE_CASE = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __lowerCamelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors="pt" )
SCREAMING_SNAKE_CASE = self.tokenizer(
text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=10 , return_tensors="pt" )
SCREAMING_SNAKE_CASE = targets["input_ids"]
SCREAMING_SNAKE_CASE = shift_tokens_right(__lowerCamelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def _snake_case ( self : List[Any] ):
SCREAMING_SNAKE_CASE = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , {
# en_XX, A, test, EOS
"input_ids": [[250004, 62, 3034, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 250001,
} , ) | 698 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer
from .base import PipelineTool
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "facebook/bart-large-mnli"
lowerCamelCase__ = (
"This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which "
"should be the text to classify, and `labels`, which should be the list of labels to use for classification. "
"It returns the most likely label in the list of provided `labels` for the input text."
)
lowerCamelCase__ = "text_classifier"
lowerCamelCase__ = AutoTokenizer
lowerCamelCase__ = AutoModelForSequenceClassification
lowerCamelCase__ = ["text", ["text"]]
lowerCamelCase__ = ["text"]
def _snake_case ( self : Optional[Any] ):
super().setup()
SCREAMING_SNAKE_CASE = self.model.config
SCREAMING_SNAKE_CASE = -1
for idx, label in config.idalabel.items():
if label.lower().startswith("entail" ):
SCREAMING_SNAKE_CASE = int(__lowerCamelCase )
if self.entailment_id == -1:
raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." )
def _snake_case ( self : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = labels
return self.pre_processor(
[text] * len(__lowerCamelCase ) , [f"This example is {label}" for label in labels] , return_tensors="pt" , padding="max_length" , )
def _snake_case ( self : str , __lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = outputs.logits
SCREAMING_SNAKE_CASE = torch.argmax(logits[:, 2] ).item()
return self._labels[label_id] | 698 | 1 |
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
__A : int = logging.get_logger(__name__)
def __a ( A__ : Union[tf.Tensor, np.ndarray] ):
if isinstance(A__ , np.ndarray ):
return list(tensor.shape )
SCREAMING_SNAKE_CASE = tf.shape(A__ )
if tensor.shape == tf.TensorShape(A__ ):
return dynamic
SCREAMING_SNAKE_CASE = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(A__ )]
def __a ( A__ : tf.Tensor , A__ : Optional[int] = None , A__ : Optional[str] = None ):
return tf.nn.softmax(logits=logits + 1E-9 , axis=A__ , name=A__ )
def __a ( A__ : str , A__ : Union[str, Any] , A__ : Any , A__ : Dict=1E-5 , A__ : Any=-1 ):
# This is a very simplified functional layernorm, designed to duplicate
# the functionality of PyTorch nn.functional.layer_norm when this is needed to port
# models in Transformers.
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(A__ , A__ ):
raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." )
# Get mean and variance on the axis to be normalized
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = tf.nn.moments(A__ , axes=[axis] , keepdims=A__ )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
SCREAMING_SNAKE_CASE = [1] * inputs.shape.rank
SCREAMING_SNAKE_CASE = shape_list(A__ )[axis]
SCREAMING_SNAKE_CASE = tf.reshape(A__ , A__ )
SCREAMING_SNAKE_CASE = tf.reshape(A__ , A__ )
# Compute layer normalization using the batch_normalization
# function.
SCREAMING_SNAKE_CASE = tf.nn.batch_normalization(
A__ , A__ , A__ , offset=A__ , scale=A__ , variance_epsilon=A__ , )
return outputs
def __a ( A__ : int , A__ : List[Any]=0 , A__ : Dict=-1 ):
# Replicates the behavior of torch.flatten in TF
# If end_dim or start_dim is negative, count them from the end
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
SCREAMING_SNAKE_CASE = tf.shape(A__ )
SCREAMING_SNAKE_CASE = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
SCREAMING_SNAKE_CASE = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(A__ , A__ )
def __a ( A__ : tf.Tensor ):
if not isinstance(A__ , tf.Tensor ):
SCREAMING_SNAKE_CASE = tf.convert_to_tensor(A__ ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
SCREAMING_SNAKE_CASE = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
SCREAMING_SNAKE_CASE = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
SCREAMING_SNAKE_CASE = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def __a ( A__ : tf.Tensor , A__ : int , A__ : str = "input_ids" ):
tf.debugging.assert_less(
A__ , tf.cast(A__ , dtype=tensor.dtype ) , message=(
F"The maximum value of {tensor_name} ({tf.math.reduce_max(A__ )}) must be smaller than the embedding "
F"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time."
) , )
def __a ( A__ : int , A__ : Optional[Any] , A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = 64512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
SCREAMING_SNAKE_CASE = [x for x in data if len(A__ ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"The following attributes cannot be saved to HDF5 file because "
F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} "
F"bytes: {bad_attributes}" )
SCREAMING_SNAKE_CASE = np.asarray(A__ )
SCREAMING_SNAKE_CASE = 1
SCREAMING_SNAKE_CASE = np.array_split(A__ , A__ )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
SCREAMING_SNAKE_CASE = np.array_split(A__ , A__ )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(A__ ):
SCREAMING_SNAKE_CASE = chunk_data
else:
SCREAMING_SNAKE_CASE = data
def __a ( A__ : Tuple , A__ : Tuple ):
if name in group.attrs:
SCREAMING_SNAKE_CASE = [n.decode("utf8" ) if hasattr(A__ , "decode" ) else n for n in group.attrs[name]]
else:
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode("utf8" ) if hasattr(A__ , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] )
chunk_id += 1
return data
def __a ( A__ : List[str] ):
def _expand_single_ad_tensor(A__ : List[str] ):
if isinstance(A__ , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(A__ , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , A__ ) | 698 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def __a ( A__ : str=None ):
if subparsers is not None:
SCREAMING_SNAKE_CASE = subparsers.add_parser("test" )
else:
SCREAMING_SNAKE_CASE = argparse.ArgumentParser("Accelerate test command" )
parser.add_argument(
"--config_file" , default=A__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=A__ )
return parser
def __a ( A__ : Tuple ):
SCREAMING_SNAKE_CASE = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["test_utils", "scripts", "test_script.py"] )
if args.config_file is None:
SCREAMING_SNAKE_CASE = script_name
else:
SCREAMING_SNAKE_CASE = F"--config_file={args.config_file} {script_name}"
SCREAMING_SNAKE_CASE = ["accelerate-launch"] + test_args.split()
SCREAMING_SNAKE_CASE = execute_subprocess_async(A__ , env=os.environ.copy() )
if result.returncode == 0:
print("Test is a success! You are ready for your distributed training!" )
def __a ( ):
SCREAMING_SNAKE_CASE = test_command_parser()
SCREAMING_SNAKE_CASE = parser.parse_args()
test_command(A__ )
if __name__ == "__main__":
main() | 698 | 1 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__A : Optional[Any] = logging.get_logger(__name__)
__A : Tuple = {'vocab_file': 'spiece.model'}
__A : Union[str, Any] = {
'vocab_file': {
'bert_for_seq_generation': (
'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model'
),
}
}
__A : str = {'bert_for_seq_generation': 5_1_2}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = []
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any]="<s>" , __lowerCamelCase : Union[str, Any]="</s>" , __lowerCamelCase : List[str]="<unk>" , __lowerCamelCase : Union[str, Any]="<pad>" , __lowerCamelCase : Union[str, Any]="<::::>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Optional[Any] , ):
SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs
# Add extra_ids to the special token list
super().__init__(
bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , sep_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , )
SCREAMING_SNAKE_CASE = vocab_file
SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__lowerCamelCase )
@property
def _snake_case ( self : Union[str, Any] ):
return self.sp_model.get_piece_size()
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.__dict__.copy()
SCREAMING_SNAKE_CASE = None
return state
def __setstate__( self : Tuple , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _snake_case ( self : Optional[Any] , __lowerCamelCase : str ):
return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase )
def _snake_case ( self : str , __lowerCamelCase : Optional[int] ):
return self.sp_model.piece_to_id(__lowerCamelCase )
def _snake_case ( self : List[Any] , __lowerCamelCase : int ):
SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(__lowerCamelCase )
return token
def _snake_case ( self : Tuple , __lowerCamelCase : List[Any] ):
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__lowerCamelCase ) + token
SCREAMING_SNAKE_CASE = []
else:
current_sub_tokens.append(__lowerCamelCase )
out_string += self.sp_model.decode(__lowerCamelCase )
return out_string.strip()
def _snake_case ( self : int , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCamelCase , "wb" ) as fi:
SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto()
fi.write(__lowerCamelCase )
return (out_vocab_file,) | 698 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__A : Optional[int] = logging.get_logger(__name__)
__A : List[str] = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
__A : Tuple = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
__A : Dict = {'facebook/blenderbot-3B': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def __a ( ):
SCREAMING_SNAKE_CASE = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
SCREAMING_SNAKE_CASE = bs[:]
SCREAMING_SNAKE_CASE = 0
for b in range(2**8 ):
if b not in bs:
bs.append(A__ )
cs.append(2**8 + n )
n += 1
SCREAMING_SNAKE_CASE = [chr(A__ ) for n in cs]
return dict(zip(A__ , A__ ) )
def __a ( A__ : Optional[int] ):
SCREAMING_SNAKE_CASE = set()
SCREAMING_SNAKE_CASE = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
SCREAMING_SNAKE_CASE = char
return pairs
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any]="replace" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : Dict="</s>" , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : List[Any]="<mask>" , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Tuple , ):
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
SCREAMING_SNAKE_CASE = json.load(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {v: k for k, v in self.encoder.items()}
SCREAMING_SNAKE_CASE = errors # how to handle errors in decoding
SCREAMING_SNAKE_CASE = bytes_to_unicode()
SCREAMING_SNAKE_CASE = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
SCREAMING_SNAKE_CASE = merges_handle.read().split("\n" )[1:-1]
SCREAMING_SNAKE_CASE = [tuple(merge.split() ) for merge in bpe_merges]
SCREAMING_SNAKE_CASE = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
SCREAMING_SNAKE_CASE = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def _snake_case ( self : Dict ):
return len(self.encoder )
def _snake_case ( self : int ):
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : Tuple , __lowerCamelCase : List[str] ):
if token in self.cache:
return self.cache[token]
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
SCREAMING_SNAKE_CASE = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = bigram
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
while i < len(__lowerCamelCase ):
try:
SCREAMING_SNAKE_CASE = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
SCREAMING_SNAKE_CASE = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
SCREAMING_SNAKE_CASE = tuple(__lowerCamelCase )
SCREAMING_SNAKE_CASE = new_word
if len(__lowerCamelCase ) == 1:
break
else:
SCREAMING_SNAKE_CASE = get_pairs(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = word
return word
def _snake_case ( self : str , __lowerCamelCase : Dict ):
SCREAMING_SNAKE_CASE = []
for token in re.findall(self.pat , __lowerCamelCase ):
SCREAMING_SNAKE_CASE = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def _snake_case ( self : List[str] , __lowerCamelCase : str ):
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Optional[int] , __lowerCamelCase : Tuple ):
return self.decoder.get(__lowerCamelCase )
def _snake_case ( self : Tuple , __lowerCamelCase : str ):
SCREAMING_SNAKE_CASE = "".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
SCREAMING_SNAKE_CASE = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
SCREAMING_SNAKE_CASE = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
SCREAMING_SNAKE_CASE = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def _snake_case ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def _snake_case ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=False , **__lowerCamelCase : Optional[int] ):
SCREAMING_SNAKE_CASE = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
SCREAMING_SNAKE_CASE = " " + text
return (text, kwargs)
def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def _snake_case ( self : Tuple , __lowerCamelCase : "Conversation" ):
SCREAMING_SNAKE_CASE = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(" " + text )
else:
# Generated responses should contain them already.
inputs.append(__lowerCamelCase )
SCREAMING_SNAKE_CASE = " ".join(__lowerCamelCase )
SCREAMING_SNAKE_CASE = self.encode(__lowerCamelCase )
if len(__lowerCamelCase ) > self.model_max_length:
SCREAMING_SNAKE_CASE = input_ids[-self.model_max_length :]
logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens." )
return input_ids | 698 | 1 |
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__A : List[Any] = logging.get_logger(__name__)
__A : Any = {
'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json',
'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json',
'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json',
}
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "owlvit_text_model"
def __init__( self : Any , __lowerCamelCase : Dict=49408 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Optional[int]=2048 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Optional[Any]=8 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : List[Any]="quick_gelu" , __lowerCamelCase : Any=1e-5 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : List[str]=0.02 , __lowerCamelCase : Tuple=1.0 , __lowerCamelCase : int=0 , __lowerCamelCase : List[Any]=49406 , __lowerCamelCase : Tuple=49407 , **__lowerCamelCase : Optional[int] , ):
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
SCREAMING_SNAKE_CASE = vocab_size
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = max_position_embeddings
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = initializer_factor
@classmethod
def _snake_case ( cls : List[str] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Optional[int] ):
cls._set_token_in_kwargs(__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
SCREAMING_SNAKE_CASE = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "owlvit_vision_model"
def __init__( self : int , __lowerCamelCase : List[str]=768 , __lowerCamelCase : List[Any]=3072 , __lowerCamelCase : str=12 , __lowerCamelCase : Dict=12 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[str]=32 , __lowerCamelCase : Optional[int]="quick_gelu" , __lowerCamelCase : Dict=1e-5 , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : Any=0.02 , __lowerCamelCase : Union[str, Any]=1.0 , **__lowerCamelCase : List[str] , ):
super().__init__(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = hidden_size
SCREAMING_SNAKE_CASE = intermediate_size
SCREAMING_SNAKE_CASE = num_hidden_layers
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = patch_size
SCREAMING_SNAKE_CASE = hidden_act
SCREAMING_SNAKE_CASE = layer_norm_eps
SCREAMING_SNAKE_CASE = attention_dropout
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = initializer_factor
@classmethod
def _snake_case ( cls : List[str] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : List[str] ):
cls._set_token_in_kwargs(__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
SCREAMING_SNAKE_CASE = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__lowerCamelCase , **__lowerCamelCase )
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = "owlvit"
lowerCamelCase__ = True
def __init__( self : Optional[int] , __lowerCamelCase : Any=None , __lowerCamelCase : int=None , __lowerCamelCase : List[str]=512 , __lowerCamelCase : str=2.6_592 , __lowerCamelCase : List[Any]=True , **__lowerCamelCase : str , ):
super().__init__(**__lowerCamelCase )
if text_config is None:
SCREAMING_SNAKE_CASE = {}
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." )
if vision_config is None:
SCREAMING_SNAKE_CASE = {}
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." )
SCREAMING_SNAKE_CASE = OwlViTTextConfig(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = OwlViTVisionConfig(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = projection_dim
SCREAMING_SNAKE_CASE = logit_scale_init_value
SCREAMING_SNAKE_CASE = return_dict
SCREAMING_SNAKE_CASE = 1.0
@classmethod
def _snake_case ( cls : Optional[Any] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : int ):
cls._set_token_in_kwargs(__lowerCamelCase )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase )
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(__lowerCamelCase , **__lowerCamelCase )
@classmethod
def _snake_case ( cls : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Dict , **__lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = {}
SCREAMING_SNAKE_CASE = text_config
SCREAMING_SNAKE_CASE = vision_config
return cls.from_dict(__lowerCamelCase , **__lowerCamelCase )
def _snake_case ( self : Tuple ):
SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE = self.text_config.to_dict()
SCREAMING_SNAKE_CASE = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE = self.__class__.model_type
return output
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
@property
def _snake_case ( self : Any ):
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
] )
@property
def _snake_case ( self : Tuple ):
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
] )
@property
def _snake_case ( self : str ):
return 1e-4
def _snake_case ( self : Optional[Any] , __lowerCamelCase : "ProcessorMixin" , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : Optional["TensorType"] = None , ):
SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(
processor.tokenizer , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , framework=__lowerCamelCase )
SCREAMING_SNAKE_CASE = super().generate_dummy_inputs(
processor.image_processor , batch_size=__lowerCamelCase , framework=__lowerCamelCase )
return {**text_input_dict, **image_input_dict}
@property
def _snake_case ( self : List[Any] ):
return 14 | 698 |
from __future__ import annotations
from cmath import sqrt
def __a ( A__ : int , A__ : int , A__ : int ):
if a == 0:
raise ValueError("Coefficient 'a' must not be zero." )
SCREAMING_SNAKE_CASE = b * b - 4 * a * c
SCREAMING_SNAKE_CASE = (-b + sqrt(A__ )) / (2 * a)
SCREAMING_SNAKE_CASE = (-b - sqrt(A__ )) / (2 * a)
return (
root_a.real if not root_a.imag else root_a,
root_a.real if not root_a.imag else root_a,
)
def __a ( ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = quadratic_roots(a=5 , b=6 , c=1 )
print(F"The solutions are: {solutiona} and {solutiona}" )
if __name__ == "__main__":
main() | 698 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_torch_available,
is_vision_available,
)
__A : Union[str, Any] = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = ['BeitFeatureExtractor']
__A : Dict = ['BeitImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = [
'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST',
'BeitForImageClassification',
'BeitForMaskedImageModeling',
'BeitForSemanticSegmentation',
'BeitModel',
'BeitPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FlaxBeitForImageClassification',
'FlaxBeitForMaskedImageModeling',
'FlaxBeitModel',
'FlaxBeitPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_beit import BeitFeatureExtractor
from .image_processing_beit import BeitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_beit import (
BEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
BeitPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_beit import (
FlaxBeitForImageClassification,
FlaxBeitForMaskedImageModeling,
FlaxBeitModel,
FlaxBeitPreTrainedModel,
)
else:
import sys
__A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 |
import unittest
from queue import Empty
from threading import Thread
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available
from transformers.testing_utils import CaptureStdout, require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers import AutoModelForCausalLM
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = tokenizer.decode(greedy_ids[0] )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase )
SCREAMING_SNAKE_CASE = greedy_ids[:, input_ids.shape[1] :]
SCREAMING_SNAKE_CASE = tokenizer.decode(new_greedy_ids[0] )
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_prompt=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=10 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The greedy text should be printed to stdout, except for the final "\n" in the streamer
SCREAMING_SNAKE_CASE = cs.out[:-1]
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
def _snake_case ( self : int ):
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested
# with actual models -- the dummy models' tokenizers are not aligned with their models, and
# `skip_special_tokens=True` has no effect on them
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("distilgpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("distilgpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = torch.ones((1, 5) , device=__lowerCamelCase ).long() * model.config.bos_token_id
with CaptureStdout() as cs:
SCREAMING_SNAKE_CASE = TextStreamer(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
model.generate(__lowerCamelCase , max_new_tokens=1 , do_sample=__lowerCamelCase , streamer=__lowerCamelCase )
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when
# re-tokenized, must only contain one token
SCREAMING_SNAKE_CASE = cs.out[:-1] # Remove the final "\n"
SCREAMING_SNAKE_CASE = tokenizer(__lowerCamelCase , return_tensors="pt" )
self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) )
def _snake_case ( self : Optional[int] ):
SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
SCREAMING_SNAKE_CASE = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2" ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = -1
SCREAMING_SNAKE_CASE = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE = TextIteratorStreamer(__lowerCamelCase , timeout=0.001 )
SCREAMING_SNAKE_CASE = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer}
SCREAMING_SNAKE_CASE = Thread(target=model.generate , kwargs=__lowerCamelCase )
thread.start()
# The streamer will timeout after 0.001 seconds, so an exception will be raised
with self.assertRaises(__lowerCamelCase ):
SCREAMING_SNAKE_CASE = ""
for new_text in streamer:
streamer_text += new_text | 698 | 1 |
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
__A : List[str] = logging.get_logger(__name__)
__A : str = {'vocab_file': 'vocab.txt'}
__A : Tuple = {
'vocab_file': {
'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt',
'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt',
},
}
__A : Optional[Any] = {
'facebook/esm2_t6_8M_UR50D': 1_0_2_4,
'facebook/esm2_t12_35M_UR50D': 1_0_2_4,
}
def __a ( A__ : Union[str, Any] ):
with open(A__ , "r" ) as f:
SCREAMING_SNAKE_CASE = f.read().splitlines()
return [l.strip() for l in lines]
class _SCREAMING_SNAKE_CASE ( __snake_case ):
'''simple docstring'''
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ["input_ids", "attention_mask"]
def __init__( self : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[Any]="<cls>" , __lowerCamelCase : List[Any]="<pad>" , __lowerCamelCase : Optional[Any]="<mask>" , __lowerCamelCase : Optional[int]="<eos>" , **__lowerCamelCase : int , ):
super().__init__(**__lowerCamelCase )
SCREAMING_SNAKE_CASE = load_vocab_file(__lowerCamelCase )
SCREAMING_SNAKE_CASE = dict(enumerate(self.all_tokens ) )
SCREAMING_SNAKE_CASE = {tok: ind for ind, tok in enumerate(self.all_tokens )}
SCREAMING_SNAKE_CASE = unk_token
SCREAMING_SNAKE_CASE = cls_token
SCREAMING_SNAKE_CASE = pad_token
SCREAMING_SNAKE_CASE = mask_token
SCREAMING_SNAKE_CASE = eos_token
SCREAMING_SNAKE_CASE = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def _snake_case ( self : Optional[int] , __lowerCamelCase : int ):
return self._id_to_token.get(__lowerCamelCase , self.unk_token )
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str ):
return self._token_to_id.get(__lowerCamelCase , self._token_to_id.get(self.unk_token ) )
def _snake_case ( self : Optional[int] , __lowerCamelCase : str , **__lowerCamelCase : Tuple ):
return text.split()
def _snake_case ( self : int , __lowerCamelCase : int=False ):
return len(self._id_to_token )
def _snake_case ( self : List[Any] ):
return {token: i for i, token in enumerate(self.all_tokens )}
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : str ):
return self._token_to_id.get(__lowerCamelCase , self._token_to_id.get(self.unk_token ) )
def _snake_case ( self : List[str] , __lowerCamelCase : int ):
return self._id_to_token.get(__lowerCamelCase , self.unk_token )
def _snake_case ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
SCREAMING_SNAKE_CASE = [self.cls_token_id]
SCREAMING_SNAKE_CASE = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError("Cannot tokenize multiple sequences when EOS token is not set!" )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def _snake_case ( self : int , __lowerCamelCase : List , __lowerCamelCase : Optional[List] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
SCREAMING_SNAKE_CASE = [1] + ([0] * len(__lowerCamelCase )) + [1]
if token_ids_a is not None:
mask += [0] * len(__lowerCamelCase ) + [1]
return mask
def _snake_case ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] ):
SCREAMING_SNAKE_CASE = os.path.join(__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + "vocab.txt" )
with open(__lowerCamelCase , "w" ) as f:
f.write("\n".join(self.all_tokens ) )
return (vocab_file,)
@property
def _snake_case ( self : Tuple ):
return self.get_vocab_size(with_added_tokens=__lowerCamelCase )
def _snake_case ( self : Union[str, Any] , __lowerCamelCase : Union[List[str], List[AddedToken]] , __lowerCamelCase : bool = False ):
return super()._add_tokens(__lowerCamelCase , special_tokens=__lowerCamelCase ) | 698 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
__A : Union[str, Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : List[str] = ['FNetTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Any = ['FNetTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'FNET_PRETRAINED_MODEL_ARCHIVE_LIST',
'FNetForMaskedLM',
'FNetForMultipleChoice',
'FNetForNextSentencePrediction',
'FNetForPreTraining',
'FNetForQuestionAnswering',
'FNetForSequenceClassification',
'FNetForTokenClassification',
'FNetLayer',
'FNetModel',
'FNetPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet import FNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_fnet_fast import FNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_fnet import (
FNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FNetForMaskedLM,
FNetForMultipleChoice,
FNetForNextSentencePrediction,
FNetForPreTraining,
FNetForQuestionAnswering,
FNetForSequenceClassification,
FNetForTokenClassification,
FNetLayer,
FNetModel,
FNetPreTrainedModel,
)
else:
import sys
__A : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 698 | 1 |
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any=7 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : int=18 , __lowerCamelCase : Union[str, Any]=30 , __lowerCamelCase : int=400 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=[0.5, 0.5, 0.5] , __lowerCamelCase : str=[0.5, 0.5, 0.5] , __lowerCamelCase : int=False , ):
SCREAMING_SNAKE_CASE = size if size is not None else {"height": 20, "width": 20}
SCREAMING_SNAKE_CASE = crop_size if crop_size is not None else {"height": 18, "width": 18}
SCREAMING_SNAKE_CASE = parent
SCREAMING_SNAKE_CASE = batch_size
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = image_size
SCREAMING_SNAKE_CASE = min_resolution
SCREAMING_SNAKE_CASE = max_resolution
SCREAMING_SNAKE_CASE = do_resize
SCREAMING_SNAKE_CASE = size
SCREAMING_SNAKE_CASE = do_center_crop
SCREAMING_SNAKE_CASE = crop_size
SCREAMING_SNAKE_CASE = do_normalize
SCREAMING_SNAKE_CASE = image_mean
SCREAMING_SNAKE_CASE = image_std
SCREAMING_SNAKE_CASE = do_reduce_labels
def _snake_case ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def __a ( ):
SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
SCREAMING_SNAKE_CASE = Image.open(dataset[0]["file"] )
SCREAMING_SNAKE_CASE = Image.open(dataset[1]["file"] )
return image, map
def __a ( ):
SCREAMING_SNAKE_CASE = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
SCREAMING_SNAKE_CASE = Image.open(ds[0]["file"] )
SCREAMING_SNAKE_CASE = Image.open(ds[1]["file"] )
SCREAMING_SNAKE_CASE = Image.open(ds[2]["file"] )
SCREAMING_SNAKE_CASE = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class _SCREAMING_SNAKE_CASE ( __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase__ = BeitImageProcessor if is_vision_available() else None
def _snake_case ( self : Dict ):
SCREAMING_SNAKE_CASE = BeitImageProcessingTester(self )
@property
def _snake_case ( self : List[str] ):
return self.image_processor_tester.prepare_image_processor_dict()
def _snake_case ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) )
self.assertTrue(hasattr(__lowerCamelCase , "size" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_center_crop" ) )
self.assertTrue(hasattr(__lowerCamelCase , "center_crop" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) )
self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) )
self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) )
def _snake_case ( self : List[str] ):
SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels , __lowerCamelCase )
SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__lowerCamelCase )
self.assertEqual(image_processor.size , {"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels , __lowerCamelCase )
def _snake_case ( self : Dict ):
pass
def _snake_case ( self : List[Any] ):
# Initialize image_processing
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _snake_case ( self : str ):
# Initialize image_processing
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _snake_case ( self : Tuple ):
# Initialize image_processing
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def _snake_case ( self : Tuple ):
# Initialize image_processing
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase )
SCREAMING_SNAKE_CASE = []
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test batched
SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test not batched input (PIL images)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = prepare_semantic_single_inputs()
SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test batched input (PIL images)
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = prepare_semantic_batch_inputs()
SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
def _snake_case ( self : str ):
# Initialize image_processing
SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = prepare_semantic_single_inputs()
SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 150 )
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = image_processing(__lowerCamelCase , __lowerCamelCase , return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 ) | 698 |
from collections import Counter
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
__A : Optional[Any] = datasets.load_iris()
__A : Optional[Any] = np.array(data['data'])
__A : Optional[int] = np.array(data['target'])
__A : Union[str, Any] = data['target_names']
__A , __A , __A , __A : Optional[int] = train_test_split(X, y)
def __a ( A__ : Optional[int] , A__ : Dict ):
return np.linalg.norm(np.array(A__ ) - np.array(A__ ) )
def __a ( A__ : Optional[Any] , A__ : int , A__ : Dict , A__ : Optional[Any] , A__ : Dict=5 ):
SCREAMING_SNAKE_CASE = zip(A__ , A__ )
# List of distances of all points from the point to be classified
SCREAMING_SNAKE_CASE = []
for data_point in data:
SCREAMING_SNAKE_CASE = euclidean_distance(data_point[0] , A__ )
distances.append((distance, data_point[1]) )
# Choosing 'k' points with the least distances.
SCREAMING_SNAKE_CASE = [i[1] for i in sorted(A__ )[:k]]
# Most commonly occurring class among them
# is the class into which the point is classified
SCREAMING_SNAKE_CASE = Counter(A__ ).most_common(1 )[0][0]
return classes[result]
if __name__ == "__main__":
print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4])) | 698 | 1 |
Subsets and Splits