code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Tuple = len(lowerCAmelCase_ ) print("""The following activities are selected:""" ) # The first activity is always selected _UpperCAmelCase : List[str] = 0 print(lowerCAmelCase_ , end=""",""" ) # Consider rest of the activities for j in range(lowerCAmelCase_ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowerCAmelCase_ , end=""",""" ) _UpperCAmelCase : List[str] = j if __name__ == "__main__": import doctest doctest.testmod() A_ : Any = [1, 3, 0, 5, 8, 5] A_ : List[str] = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
349
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A_ : Optional[Any] = 1_6 A_ : Tuple = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = 16 , lowerCAmelCase_ = "bert-base-cased" )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : Any = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _UpperCAmelCase : int = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCAmelCase_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase_ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. _UpperCAmelCase : Optional[int] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : int = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Optional[int] = config["""lr"""] _UpperCAmelCase : List[str] = int(config["""num_epochs"""] ) _UpperCAmelCase : Dict = int(config["""seed"""] ) _UpperCAmelCase : List[str] = int(config["""batch_size"""] ) _UpperCAmelCase : int = args.model_name_or_path set_seed(lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = get_dataloaders(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase_ , return_dict=lowerCAmelCase_ ) # Instantiate optimizer _UpperCAmelCase : List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _UpperCAmelCase : Tuple = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase_ ) if accelerator.state.deepspeed_plugin is not None: _UpperCAmelCase : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: _UpperCAmelCase : Union[str, Any] = 1 _UpperCAmelCase : Union[str, Any] = (len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _UpperCAmelCase : str = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase_ , ) else: _UpperCAmelCase : List[Any] = DummyScheduler(lowerCAmelCase_ , total_num_steps=lowerCAmelCase_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[int] = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # We need to keep track of how many total steps we have iterated over _UpperCAmelCase : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly _UpperCAmelCase : Optional[Any] = 0 # Now we train the model _UpperCAmelCase : Optional[Any] = evaluate.load("""glue""" , """mrpc""" ) _UpperCAmelCase : str = 0 _UpperCAmelCase : str = {} for epoch in range(lowerCAmelCase_ , lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.loss _UpperCAmelCase : List[str] = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _UpperCAmelCase : Union[str, Any] = 0 for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : int = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase_ ) - 1: _UpperCAmelCase : List[Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] _UpperCAmelCase : str = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) _UpperCAmelCase : List[str] = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: _UpperCAmelCase : str = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Any = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCAmelCase_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase_ , ) parser.add_argument( """--output_dir""" , type=lowerCAmelCase_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase_ , default=3 , help="""Number of train epochs.""" , ) _UpperCAmelCase : Tuple = parser.parse_args() _UpperCAmelCase : Any = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
1
'''simple docstring''' import random def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = a[left_index] _UpperCAmelCase : Optional[int] = left_index + 1 for j in range(left_index + 1 , lowerCAmelCase_ ): if a[j] < pivot: _UpperCAmelCase ,_UpperCAmelCase : Any = a[i], a[j] i += 1 _UpperCAmelCase ,_UpperCAmelCase : Any = a[i - 1], a[left_index] return i - 1 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if left < right: _UpperCAmelCase : Tuple = random.randint(lowerCAmelCase_ , right - 1 ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = ( a[left], a[pivot], ) # switches the pivot with the left most bound _UpperCAmelCase : Tuple = partition(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) quick_sort_random( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowerCAmelCase_ , pivot_index + 1 , lowerCAmelCase_ ) # recursive quicksort to the right of the pivot point def snake_case_ ( )-> Dict: '''simple docstring''' _UpperCAmelCase : str = input("""Enter numbers separated by a comma:\n""" ).strip() _UpperCAmelCase : int = [int(lowerCAmelCase_ ) for item in user_input.split(""",""" )] quick_sort_random(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) ) print(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
1
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[str]: _UpperCAmelCase : str = [] _UpperCAmelCase : Dict = [] for i in range(self.num_layers ): _UpperCAmelCase : Optional[int] = self.in_channels if i == 0 else self.out_channels _UpperCAmelCase : Dict = FlaxResnetBlockaD( in_channels=a_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(a_ ) _UpperCAmelCase : Dict = resnets _UpperCAmelCase : Any = attentions if self.add_downsample: _UpperCAmelCase : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_ ,a_=True ) -> Any: _UpperCAmelCase : Optional[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): _UpperCAmelCase : Any = resnet(a_ ,a_ ,deterministic=a_ ) _UpperCAmelCase : List[str] = attn(a_ ,a_ ,deterministic=a_ ) output_states += (hidden_states,) if self.add_downsample: _UpperCAmelCase : Any = self.downsamplers_a(a_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Optional[int] = [] for i in range(self.num_layers ): _UpperCAmelCase : str = self.in_channels if i == 0 else self.out_channels _UpperCAmelCase : List[str] = FlaxResnetBlockaD( in_channels=a_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : Optional[int] = resnets if self.add_downsample: _UpperCAmelCase : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_=True ) -> str: _UpperCAmelCase : str = () for resnet in self.resnets: _UpperCAmelCase : Optional[Any] = resnet(a_ ,a_ ,deterministic=a_ ) output_states += (hidden_states,) if self.add_downsample: _UpperCAmelCase : int = self.downsamplers_a(a_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[str] = [] _UpperCAmelCase : List[Any] = [] for i in range(self.num_layers ): _UpperCAmelCase : Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels _UpperCAmelCase : int = self.prev_output_channel if i == 0 else self.out_channels _UpperCAmelCase : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(a_ ) _UpperCAmelCase : List[str] = resnets _UpperCAmelCase : Tuple = attentions if self.add_upsample: _UpperCAmelCase : int = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_ ,a_ ,a_=True ) -> Optional[Any]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states _UpperCAmelCase : Dict = res_hidden_states_tuple[-1] _UpperCAmelCase : str = res_hidden_states_tuple[:-1] _UpperCAmelCase : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _UpperCAmelCase : List[str] = resnet(a_ ,a_ ,deterministic=a_ ) _UpperCAmelCase : str = attn(a_ ,a_ ,deterministic=a_ ) if self.add_upsample: _UpperCAmelCase : Optional[int] = self.upsamplers_a(a_ ) return hidden_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Union[str, Any] = [] for i in range(self.num_layers ): _UpperCAmelCase : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels _UpperCAmelCase : str = self.prev_output_channel if i == 0 else self.out_channels _UpperCAmelCase : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : Dict = resnets if self.add_upsample: _UpperCAmelCase : Dict = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_ ,a_=True ) -> int: for resnet in self.resnets: # pop res hidden states _UpperCAmelCase : Any = res_hidden_states_tuple[-1] _UpperCAmelCase : List[str] = res_hidden_states_tuple[:-1] _UpperCAmelCase : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _UpperCAmelCase : Dict = resnet(a_ ,a_ ,deterministic=a_ ) if self.add_upsample: _UpperCAmelCase : str = self.upsamplers_a(a_ ) return hidden_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[str]: # there is always at least one resnet _UpperCAmelCase : Optional[int] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] _UpperCAmelCase : List[Any] = [] for _ in range(self.num_layers ): _UpperCAmelCase : str = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(a_ ) _UpperCAmelCase : List[Any] = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : Optional[Any] = resnets _UpperCAmelCase : List[str] = attentions def __call__( self ,a_ ,a_ ,a_ ,a_=True ) -> List[Any]: _UpperCAmelCase : Any = self.resnets[0](a_ ,a_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): _UpperCAmelCase : int = attn(a_ ,a_ ,deterministic=a_ ) _UpperCAmelCase : List[Any] = resnet(a_ ,a_ ,deterministic=a_ ) return hidden_states
349
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A_ : List[str] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''transformer.blocks.{i}.norm1.weight''', F'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm1.bias''', F'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.weight''', F'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (F'''transformer.blocks.{i}.attn.proj.bias''', F'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.weight''', F'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.norm2.bias''', F'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (F'''transformer.blocks.{i}.mlp.fc1.weight''', F'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc1.bias''', F'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.weight''', F'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''transformer.blocks.{i}.mlp.fc2.bias''', F'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): _UpperCAmelCase : Optional[Any] = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : int = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.weight''' ) _UpperCAmelCase : Tuple = state_dict.pop(F'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Tuple = in_proj_bias[: config.hidden_size] _UpperCAmelCase : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : Any = in_proj_bias[-config.hidden_size :] def snake_case_ ( lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Tuple = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = dct.pop(lowerCAmelCase_ ) _UpperCAmelCase : int = val @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowerCAmelCase_ ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : Dict = False _UpperCAmelCase : Dict = False _UpperCAmelCase : List[Any] = False if "vqa" in checkpoint_url: _UpperCAmelCase : Any = True _UpperCAmelCase : Union[str, Any] = 3129 _UpperCAmelCase : List[str] = """huggingface/label-files""" _UpperCAmelCase : Dict = """vqa2-id2label.json""" _UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : Dict = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : int = idalabel _UpperCAmelCase : int = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Union[str, Any] = ViltForQuestionAnswering(lowerCAmelCase_ ) elif "nlvr" in checkpoint_url: _UpperCAmelCase : int = True _UpperCAmelCase : Union[str, Any] = 2 _UpperCAmelCase : Tuple = {0: """False""", 1: """True"""} _UpperCAmelCase : Optional[int] = {v: k for k, v in config.idalabel.items()} _UpperCAmelCase : str = 3 _UpperCAmelCase : Any = ViltForImagesAndTextClassification(lowerCAmelCase_ ) elif "irtr" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : List[Any] = ViltForImageAndTextRetrieval(lowerCAmelCase_ ) elif "mlm_itm" in checkpoint_url: _UpperCAmelCase : Union[str, Any] = True _UpperCAmelCase : int = ViltForMaskedLM(lowerCAmelCase_ ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys _UpperCAmelCase : List[str] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""state_dict"""] _UpperCAmelCase : Tuple = create_rename_keys(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) if mlm_model or irtr_model: _UpperCAmelCase : int = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) # load state dict into HuggingFace model model.eval() if mlm_model: _UpperCAmelCase ,_UpperCAmelCase : List[str] = model.load_state_dict(lowerCAmelCase_ , strict=lowerCAmelCase_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowerCAmelCase_ ) # Define processor _UpperCAmelCase : Dict = ViltImageProcessor(size=384 ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : int = ViltProcessor(lowerCAmelCase_ , lowerCAmelCase_ ) # Forward pass on example inputs (image + text) if nlvr_model: _UpperCAmelCase : str = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCAmelCase_ ).raw ) _UpperCAmelCase : Optional[int] = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowerCAmelCase_ ).raw ) _UpperCAmelCase : Any = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) _UpperCAmelCase : Any = processor(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors="""pt""" ) _UpperCAmelCase : Optional[Any] = processor(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors="""pt""" ) _UpperCAmelCase : Union[str, Any] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _UpperCAmelCase : Tuple = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=lowerCAmelCase_ ).raw ) if mlm_model: _UpperCAmelCase : int = """a bunch of [MASK] laying on a [MASK].""" else: _UpperCAmelCase : Union[str, Any] = """How many cats are there?""" _UpperCAmelCase : str = processor(lowerCAmelCase_ , lowerCAmelCase_ , return_tensors="""pt""" ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) # Verify outputs if mlm_model: _UpperCAmelCase : Tuple = torch.Size([1, 11, 30522] ) _UpperCAmelCase : Optional[int] = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase_ , atol=1e-4 ) # verify masked token prediction equals "cats" _UpperCAmelCase : Any = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _UpperCAmelCase : int = torch.Size([1, 3129] ) _UpperCAmelCase : Union[str, Any] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowerCAmelCase_ , atol=1e-4 ) # verify vqa prediction equals "2" _UpperCAmelCase : str = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _UpperCAmelCase : Any = torch.Size([1, 2] ) _UpperCAmelCase : Union[str, Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A_ : Optional[int] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
349
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version A_ : Optional[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt""") @dataclass class lowercase : """simple docstring""" UpperCAmelCase = field( default="""cifar10""" , metadata={"""help""": """Name of a dataset from the datasets package"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """The column name of the images in the files."""} ) UpperCAmelCase = field(default=_lowerCamelCase , metadata={"""help""": """A folder containing the training data."""} ) UpperCAmelCase = field(default=_lowerCamelCase , metadata={"""help""": """A folder containing the validation data."""} ) UpperCAmelCase = field( default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Any = {} if self.train_dir is not None: _UpperCAmelCase : Dict = self.train_dir if self.validation_dir is not None: _UpperCAmelCase : List[Any] = self.validation_dir _UpperCAmelCase : Tuple = data_files if data_files else None @dataclass class lowercase : """simple docstring""" UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name_or_path"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} ) UpperCAmelCase = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCAmelCase = field(default=_lowerCamelCase , metadata={"""help""": """Name or path of preprocessor config."""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) UpperCAmelCase = field( default=0.75 , metadata={"""help""": """The ratio of the number of masked tokens in the input sequence."""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Whether or not to train with normalized pixel values as target."""} ) @dataclass class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = field( default=1E-3 , metadata={"""help""": """Base learning rate: absolute_lr = base_lr * total_batch_size / 256."""} ) def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = torch.stack([example["""pixel_values"""] for example in examples] ) return {"pixel_values": pixel_values} def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mae""" , lowerCAmelCase_ , lowerCAmelCase_ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : Tuple = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase_ ) transformers.utils.logging.set_verbosity(lowerCAmelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _UpperCAmelCase : str = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. _UpperCAmelCase : List[Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _UpperCAmelCase : List[str] = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , lowerCAmelCase_ ) and data_args.train_val_split > 0.0: _UpperCAmelCase : str = ds["""train"""].train_test_split(data_args.train_val_split ) _UpperCAmelCase : Union[str, Any] = split["""train"""] _UpperCAmelCase : int = split["""test"""] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Any = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name: _UpperCAmelCase : Optional[int] = ViTMAEConfig.from_pretrained(model_args.config_name , **lowerCAmelCase_ ) elif model_args.model_name_or_path: _UpperCAmelCase : Optional[Any] = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_ ) else: _UpperCAmelCase : str = ViTMAEConfig() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { """mask_ratio""": model_args.mask_ratio, """norm_pix_loss""": model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _UpperCAmelCase : int = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **lowerCAmelCase_ ) elif model_args.model_name_or_path: _UpperCAmelCase : int = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **lowerCAmelCase_ ) else: _UpperCAmelCase : Any = ViTImageProcessor() # create model if model_args.model_name_or_path: _UpperCAmelCase : Any = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) _UpperCAmelCase : Union[str, Any] = ViTMAEForPreTraining(lowerCAmelCase_ ) if training_args.do_train: _UpperCAmelCase : Union[str, Any] = ds["""train"""].column_names else: _UpperCAmelCase : Optional[int] = ds["""validation"""].column_names if data_args.image_column_name is not None: _UpperCAmelCase : Optional[int] = data_args.image_column_name elif "image" in column_names: _UpperCAmelCase : Optional[int] = """image""" elif "img" in column_names: _UpperCAmelCase : List[str] = """img""" else: _UpperCAmelCase : str = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _UpperCAmelCase : Optional[int] = image_processor.size["""shortest_edge"""] else: _UpperCAmelCase : str = (image_processor.size["""height"""], image_processor.size["""width"""]) _UpperCAmelCase : List[Any] = Compose( [ Lambda(lambda lowerCAmelCase_ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(lowerCAmelCase_ , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(lowerCAmelCase_ ): _UpperCAmelCase : int = [transforms(lowerCAmelCase_ ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: _UpperCAmelCase : int = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(lowerCAmelCase_ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: _UpperCAmelCase : List[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(lowerCAmelCase_ ) # Compute absolute learning rate _UpperCAmelCase : Optional[Any] = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _UpperCAmelCase : Optional[Any] = training_args.base_learning_rate * total_train_batch_size / 256 # Initialize our trainer _UpperCAmelCase : str = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: _UpperCAmelCase : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : Tuple = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : Any = last_checkpoint _UpperCAmelCase : List[str] = trainer.train(resume_from_checkpoint=lowerCAmelCase_ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCAmelCase : List[Any] = trainer.evaluate() trainer.log_metrics("""eval""" , lowerCAmelCase_ ) trainer.save_metrics("""eval""" , lowerCAmelCase_ ) # Write model card and (optionally) push to hub _UpperCAmelCase : Dict = { """tasks""": """masked-auto-encoding""", """dataset""": data_args.dataset_name, """tags""": ["""masked-auto-encoding"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase_ ) else: trainer.create_model_card(**lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' main() if __name__ == "__main__": main()
349
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
1
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : Optional[Any] = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
1
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) _UpperCAmelCase : int = precision _UpperCAmelCase : List[Any] = ceil(precision / 14 ) _UpperCAmelCase : Optional[int] = 426880 * Decimal(10005 ).sqrt() _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : Union[str, Any] = 13591409 _UpperCAmelCase : List[Any] = Decimal(lowerCAmelCase_ ) for k in range(1 , lowerCAmelCase_ ): _UpperCAmelCase : str = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCAmelCase_ ) ** 3) linear_term += 545140134 exponential_term *= -262537412640768000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": A_ : Tuple = 5_0 print(f"""The first {n} digits of pi is: {pi(n)}""")
349
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black A_ : int = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. A_ : Dict = """ \"\"\" Output class for the scheduler's step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \"\"\" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None """ class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: _UpperCAmelCase : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir ,"""schedulers/""" ) ) _UpperCAmelCase : int = self.diffusers_dir shutil.copy( os.path.join(a_ ,"""src/diffusers/schedulers/scheduling_ddpm.py""" ) ,os.path.join(self.diffusers_dir ,"""schedulers/scheduling_ddpm.py""" ) ,) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Tuple = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_=None ) -> Optional[Any]: _UpperCAmelCase : List[str] = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _UpperCAmelCase : Union[str, Any] = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _UpperCAmelCase : int = black.Mode(target_versions={black.TargetVersion.PYaa} ,line_length=119 ) _UpperCAmelCase : List[str] = black.format_str(a_ ,mode=a_ ) _UpperCAmelCase : Tuple = os.path.join(self.diffusers_dir ,"""new_code.py""" ) with open(a_ ,"""w""" ,newline="""\n""" ) as f: f.write(a_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(a_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name ,overwrite=a_ ) with open(a_ ,"""r""" ) as f: self.assertTrue(f.read() ,a_ ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(a_ ,a_ ) def _snake_case ( self ) -> Optional[int]: # Base copy consistency self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,REFERENCE_CODE + """\n""" ,) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ,"""DDPMSchedulerOutput""" ,a_ ,) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,re.sub("""DDPM""" ,"""Test""" ,a_ ) ,) # Copy consistency with a really long name _UpperCAmelCase : List[Any] = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}''' ,f'''{long_class_name}SchedulerOutput''' ,re.sub("""Bert""" ,a_ ,a_ ) ,) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" ,"""TestSchedulerOutput""" ,a_ ,overwrite_result=re.sub("""DDPM""" ,"""Test""" ,a_ ) ,)
349
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = SwinvaConfig() _UpperCAmelCase : Optional[Any] = swinva_name.split("""_""" ) _UpperCAmelCase : Dict = name_split[1] if "to" in name_split[3]: _UpperCAmelCase : Optional[Any] = int(name_split[3][-3:] ) else: _UpperCAmelCase : List[str] = int(name_split[3] ) if "to" in name_split[2]: _UpperCAmelCase : List[Any] = int(name_split[2][-2:] ) else: _UpperCAmelCase : List[Any] = int(name_split[2][6:] ) if model_size == "tiny": _UpperCAmelCase : Tuple = 96 _UpperCAmelCase : Dict = (2, 2, 6, 2) _UpperCAmelCase : Union[str, Any] = (3, 6, 12, 24) elif model_size == "small": _UpperCAmelCase : Tuple = 96 _UpperCAmelCase : List[str] = (2, 2, 18, 2) _UpperCAmelCase : List[str] = (3, 6, 12, 24) elif model_size == "base": _UpperCAmelCase : List[str] = 128 _UpperCAmelCase : Optional[Any] = (2, 2, 18, 2) _UpperCAmelCase : Optional[Any] = (4, 8, 16, 32) else: _UpperCAmelCase : Optional[Any] = 192 _UpperCAmelCase : Dict = (2, 2, 18, 2) _UpperCAmelCase : Any = (6, 12, 24, 48) if "to" in swinva_name: _UpperCAmelCase : Optional[Any] = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): _UpperCAmelCase : str = 21841 _UpperCAmelCase : Optional[int] = """huggingface/label-files""" _UpperCAmelCase : int = """imagenet-22k-id2label.json""" _UpperCAmelCase : int = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : Union[str, Any] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Optional[int] = idalabel _UpperCAmelCase : Any = {v: k for k, v in idalabel.items()} else: _UpperCAmelCase : Dict = 1000 _UpperCAmelCase : Tuple = """huggingface/label-files""" _UpperCAmelCase : Any = """imagenet-1k-id2label.json""" _UpperCAmelCase : Dict = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : Optional[Any] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Any = idalabel _UpperCAmelCase : Optional[Any] = {v: k for k, v in idalabel.items()} _UpperCAmelCase : Union[str, Any] = img_size _UpperCAmelCase : Union[str, Any] = num_classes _UpperCAmelCase : List[str] = embed_dim _UpperCAmelCase : Tuple = depths _UpperCAmelCase : Optional[Any] = num_heads _UpperCAmelCase : List[str] = window_size return config def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' if "patch_embed.proj" in name: _UpperCAmelCase : Any = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: _UpperCAmelCase : Optional[Any] = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: _UpperCAmelCase : List[str] = """encoder.""" + name if "attn.proj" in name: _UpperCAmelCase : Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _UpperCAmelCase : Optional[Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _UpperCAmelCase : int = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _UpperCAmelCase : str = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _UpperCAmelCase : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _UpperCAmelCase : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: _UpperCAmelCase : Optional[Any] = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: _UpperCAmelCase : Dict = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: _UpperCAmelCase : Dict = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: _UpperCAmelCase : List[Any] = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if name == "norm.weight": _UpperCAmelCase : Optional[Any] = """layernorm.weight""" if name == "norm.bias": _UpperCAmelCase : Union[str, Any] = """layernorm.bias""" if "head" in name: _UpperCAmelCase : Union[str, Any] = name.replace("""head""" , """classifier""" ) else: _UpperCAmelCase : Optional[Any] = """swinv2.""" + name return name def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _UpperCAmelCase : List[str] = orig_state_dict.pop(lowerCAmelCase_ ) if "mask" in key: continue elif "qkv" in key: _UpperCAmelCase : List[Any] = key.split(""".""" ) _UpperCAmelCase : Optional[Any] = int(key_split[1] ) _UpperCAmelCase : Optional[int] = int(key_split[3] ) _UpperCAmelCase : List[Any] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: _UpperCAmelCase : List[str] = val[:dim, :] _UpperCAmelCase : Union[str, Any] = val[dim : dim * 2, :] _UpperCAmelCase : List[Any] = val[-dim:, :] else: _UpperCAmelCase : Any = val[:dim] _UpperCAmelCase : Optional[Any] = val[ dim : dim * 2 ] _UpperCAmelCase : int = val[-dim:] else: _UpperCAmelCase : Union[str, Any] = val return orig_state_dict def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Tuple = timm.create_model(lowerCAmelCase_ , pretrained=lowerCAmelCase_ ) timm_model.eval() _UpperCAmelCase : Optional[int] = get_swinva_config(lowerCAmelCase_ ) _UpperCAmelCase : str = SwinvaForImageClassification(lowerCAmelCase_ ) model.eval() _UpperCAmelCase : Tuple = convert_state_dict(timm_model.state_dict() , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : Optional[Any] = AutoImageProcessor.from_pretrained("""microsoft/{}""".format(swinva_name.replace("""_""" , """-""" ) ) ) _UpperCAmelCase : List[Any] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) _UpperCAmelCase : int = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) _UpperCAmelCase : List[str] = timm_model(inputs["""pixel_values"""] ) _UpperCAmelCase : str = model(**lowerCAmelCase_ ).logits assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-3 ) print(F'''Saving model {swinva_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase_ ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nandwalritik""" , commit_message="""Add model""" , ) if __name__ == "__main__": A_ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swinv2_name""", default="""swinv2_tiny_patch4_window8_256""", type=str, help="""Name of the Swinv2 timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A_ : Optional[int] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
349
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import pytest A_ : Optional[int] = """__dummy_dataset1__""" A_ : Any = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def snake_case_ ( )-> Tuple: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = dataset_loading_script_name _UpperCAmelCase : Tuple = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=lowerCAmelCase_ ) _UpperCAmelCase : Tuple = script_dir / F'''{script_name}.py''' with open(lowerCAmelCase_ , """w""" ) as f: f.write(lowerCAmelCase_ ) return str(lowerCAmelCase_ )
349
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import math import qiskit def snake_case_ ( lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 , lowerCAmelCase_ = 1 )-> qiskit.result.counts.Counts: '''simple docstring''' if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(lowerCAmelCase_ ) != input_a) or (math.floor(lowerCAmelCase_ ) != input_a) or (math.floor(lowerCAmelCase_ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers _UpperCAmelCase : List[str] = qiskit.QuantumRegister(4 , """qr""" ) _UpperCAmelCase : str = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries _UpperCAmelCase : Optional[int] = [input_a, input_a, carry_in] _UpperCAmelCase : Any = qiskit.QuantumCircuit(lowerCAmelCase_ , lowerCAmelCase_ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(lowerCAmelCase_ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(lowerCAmelCase_ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(lowerCAmelCase_ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , lowerCAmelCase_ ) # measure the last two qbits _UpperCAmelCase : List[str] = qiskit.Aer.get_backend("""aer_simulator""" ) _UpperCAmelCase : List[Any] = qiskit.execute(lowerCAmelCase_ , lowerCAmelCase_ , shots=1000 ) return job.result().get_counts(lowerCAmelCase_ ) if __name__ == "__main__": print(f"""Total sum count for state is: {quantum_full_adder(1, 1, 1)}""")
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
1
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py A_ : Optional[int] = """src/transformers""" A_ : List[Any] = """docs/source/en""" A_ : List[str] = """.""" def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' with open(lowerCAmelCase_ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _UpperCAmelCase : Union[str, Any] = f.readlines() # Find the start prompt. _UpperCAmelCase : Union[str, Any] = 0 while not lines[start_index].startswith(lowerCAmelCase_ ): start_index += 1 start_index += 1 _UpperCAmelCase : List[Any] = start_index while not lines[end_index].startswith(lowerCAmelCase_ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | A_ : Any = """Model|Encoder|Decoder|ForConditionalGeneration""" # Regexes that match TF/Flax/PT model names. A_ : Any = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") A_ : Union[str, Any] = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. A_ : int = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # This is to make sure the transformers module imported is the one in the repo. A_ : str = direct_transformers_import(TRANSFORMERS_PATH) def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Any = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , lowerCAmelCase_ ) return [m.group(0 ) for m in matches] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : int = 2 if text == """✅""" or text == """❌""" else len(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = (width - text_length) // 2 _UpperCAmelCase : int = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def snake_case_ ( )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES _UpperCAmelCase : Tuple = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } _UpperCAmelCase : Dict = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. _UpperCAmelCase : Union[str, Any] = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : int = collections.defaultdict(lowerCAmelCase_ ) _UpperCAmelCase : Any = collections.defaultdict(lowerCAmelCase_ ) # Let's lookup through all transformers object (once). for attr_name in dir(lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = None if attr_name.endswith("""Tokenizer""" ): _UpperCAmelCase : Tuple = slow_tokenizers _UpperCAmelCase : Optional[int] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): _UpperCAmelCase : str = fast_tokenizers _UpperCAmelCase : Union[str, Any] = attr_name[:-13] elif _re_tf_models.match(lowerCAmelCase_ ) is not None: _UpperCAmelCase : int = tf_models _UpperCAmelCase : Optional[int] = _re_tf_models.match(lowerCAmelCase_ ).groups()[0] elif _re_flax_models.match(lowerCAmelCase_ ) is not None: _UpperCAmelCase : Optional[Any] = flax_models _UpperCAmelCase : Tuple = _re_flax_models.match(lowerCAmelCase_ ).groups()[0] elif _re_pt_models.match(lowerCAmelCase_ ) is not None: _UpperCAmelCase : str = pt_models _UpperCAmelCase : Dict = _re_pt_models.match(lowerCAmelCase_ ).groups()[0] if lookup_dict is not None: while len(lowerCAmelCase_ ) > 0: if attr_name in model_name_to_prefix.values(): _UpperCAmelCase : str = True break # Try again after removing the last word in the name _UpperCAmelCase : str = """""".join(camel_case_split(lowerCAmelCase_ )[:-1] ) # Let's build that table! _UpperCAmelCase : Tuple = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) _UpperCAmelCase : int = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). _UpperCAmelCase : int = [len(lowerCAmelCase_ ) + 2 for c in columns] _UpperCAmelCase : Union[str, Any] = max([len(lowerCAmelCase_ ) for name in model_names] ) + 2 # Build the table per se _UpperCAmelCase : Optional[Any] = """|""" + """|""".join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for c, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" _UpperCAmelCase : int = {True: """✅""", False: """❌"""} for name in model_names: _UpperCAmelCase : Any = model_name_to_prefix[name] _UpperCAmelCase : Tuple = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(lowerCAmelCase_ , lowerCAmelCase_ ) for l, w in zip(lowerCAmelCase_ , lowerCAmelCase_ )] ) + "|\n" return table def snake_case_ ( lowerCAmelCase_=False )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = _find_text_in_file( filename=os.path.join(lowerCAmelCase_ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) _UpperCAmelCase : Union[str, Any] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(lowerCAmelCase_ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A_ : List[str] = parser.parse_args() check_model_table(args.fix_and_overwrite)
349
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
1
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ )-> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( lowerCAmelCase_ = 10001 )-> int: '''simple docstring''' try: _UpperCAmelCase : Any = int(lowerCAmelCase_ ) except (TypeError, ValueError): raise TypeError("""Parameter nth must be int or castable to int.""" ) from None if nth <= 0: raise ValueError("""Parameter nth must be greater than or equal to one.""" ) _UpperCAmelCase : list[int] = [] _UpperCAmelCase : Any = 2 while len(lowerCAmelCase_ ) < nth: if is_prime(lowerCAmelCase_ ): primes.append(lowerCAmelCase_ ) num += 1 else: num += 1 return primes[len(lowerCAmelCase_ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
349
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """EleutherAI/gpt-j-6B""": """https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json""", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """gptj""" UpperCAmelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self ,a_=50_400 ,a_=2_048 ,a_=4_096 ,a_=28 ,a_=16 ,a_=64 ,a_=None ,a_="gelu_new" ,a_=0.0 ,a_=0.0 ,a_=0.0 ,a_=1E-5 ,a_=0.02 ,a_=True ,a_=50_256 ,a_=50_256 ,a_=False ,**a_ ,) -> Dict: _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : str = n_positions _UpperCAmelCase : Optional[int] = n_embd _UpperCAmelCase : List[str] = n_layer _UpperCAmelCase : List[Any] = n_head _UpperCAmelCase : Tuple = n_inner _UpperCAmelCase : List[str] = rotary_dim _UpperCAmelCase : List[str] = activation_function _UpperCAmelCase : Union[str, Any] = resid_pdrop _UpperCAmelCase : Union[str, Any] = embd_pdrop _UpperCAmelCase : Optional[int] = attn_pdrop _UpperCAmelCase : List[str] = layer_norm_epsilon _UpperCAmelCase : int = initializer_range _UpperCAmelCase : str = use_cache _UpperCAmelCase : Any = bos_token_id _UpperCAmelCase : List[Any] = eos_token_id super().__init__( bos_token_id=a_ ,eos_token_id=a_ ,tie_word_embeddings=a_ ,**a_ ) class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = "default" ,a_ = None ,a_ = False ,) -> int: super().__init__(a_ ,task=a_ ,patching_specs=a_ ,use_past=a_ ) if not getattr(self._config ,"""pad_token_id""" ,a_ ): # TODO: how to do that better? _UpperCAmelCase : List[str] = 0 @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: _UpperCAmelCase : List[str] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(a_ ,direction="""inputs""" ) _UpperCAmelCase : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: _UpperCAmelCase : Optional[int] = {0: """batch""", 1: """sequence"""} return common_inputs @property def _snake_case ( self ) -> int: return self._config.n_layer @property def _snake_case ( self ) -> int: return self._config.n_head def _snake_case ( self ,a_ ,a_ = -1 ,a_ = -1 ,a_ = False ,a_ = None ,) -> Mapping[str, Any]: _UpperCAmelCase : Any = super(a_ ,self ).generate_dummy_inputs( a_ ,batch_size=a_ ,seq_length=a_ ,is_pair=a_ ,framework=a_ ) # We need to order the input in the way they appears in the forward() _UpperCAmelCase : Optional[int] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch _UpperCAmelCase ,_UpperCAmelCase : Dict = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _UpperCAmelCase : Union[str, Any] = seqlen + 2 _UpperCAmelCase : List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCAmelCase : Optional[Any] = [ (torch.zeros(a_ ), torch.zeros(a_ )) for _ in range(self.num_layers ) ] _UpperCAmelCase : int = common_inputs["""attention_mask"""] if self.use_past: _UpperCAmelCase : Any = ordered_inputs["""attention_mask"""].dtype _UpperCAmelCase : Optional[int] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(a_ ,a_ ,dtype=a_ )] ,dim=1 ) return ordered_inputs @property def _snake_case ( self ) -> int: return 13
349
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex A_ : List[str] = logging.getLogger(__name__) class lowercase : """simple docstring""" def __init__( self ) -> Optional[int]: _UpperCAmelCase : str = False def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ) -> Dict: if not self.initialized: _UpperCAmelCase : Any = RagRetriever( a_ ,question_encoder_tokenizer=a_ ,generator_tokenizer=a_ ,index=a_ ,init_retrieval=a_ ,) _UpperCAmelCase : str = True def _snake_case ( self ) -> Optional[int]: self.retriever.index.init_index() def _snake_case ( self ,a_ ,a_ ) -> str: _UpperCAmelCase ,_UpperCAmelCase : Any = self.retriever._main_retrieve(a_ ,a_ ) return doc_ids, retrieved_doc_embeds class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ ,a_ ,a_ ,a_=None ) -> int: if index is not None and index.is_initialized() and len(a_ ) > 0: raise ValueError( """When using Ray for distributed fine-tuning, """ """you'll need to provide the paths instead, """ """as the dataset and the index are loaded """ """separately. More info in examples/rag/use_own_knowledge_dataset.py """ ) super().__init__( a_ ,question_encoder_tokenizer=a_ ,generator_tokenizer=a_ ,index=a_ ,init_retrieval=a_ ,) _UpperCAmelCase : List[str] = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(a_ ,a_ ,a_ ,a_ ) for worker in self.retrieval_workers ] ) def _snake_case ( self ) -> List[Any]: logger.info("""initializing retrieval""" ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def _snake_case ( self ,a_ ,a_ ) -> str: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. _UpperCAmelCase : Tuple = self.retrieval_workers[random.randint(0 ,len(self.retrieval_workers ) - 1 )] _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = ray.get(random_worker.retrieve.remote(a_ ,a_ ) ) else: _UpperCAmelCase ,_UpperCAmelCase : int = self._main_retrieve(a_ ,a_ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(a_ ) @classmethod def _snake_case ( cls ,a_ ,a_=None ,**a_ ) -> int: return super(a_ ,cls ).get_tokenizers(a_ ,a_ ,**a_ ) @classmethod def _snake_case ( cls ,a_ ,a_ ,a_=None ,**a_ ) -> Tuple: _UpperCAmelCase : Optional[int] = kwargs.pop("""config""" ,a_ ) or RagConfig.from_pretrained(a_ ,**a_ ) _UpperCAmelCase : List[Any] = RagTokenizer.from_pretrained(a_ ,config=a_ ) _UpperCAmelCase : Dict = rag_tokenizer.question_encoder _UpperCAmelCase : Union[str, Any] = rag_tokenizer.generator if indexed_dataset is not None: _UpperCAmelCase : List[str] = """custom""" _UpperCAmelCase : List[Any] = CustomHFIndex(config.retrieval_vector_size ,a_ ) else: _UpperCAmelCase : Dict = cls._build_index(a_ ) return cls( a_ ,question_encoder_tokenizer=a_ ,generator_tokenizer=a_ ,retrieval_workers=a_ ,index=a_ ,)
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig A_ : str = { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/config.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/config.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/config.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/config.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/config.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/config.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json""", } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """albert""" def __init__( self ,a_=30_000 ,a_=128 ,a_=4_096 ,a_=12 ,a_=1 ,a_=64 ,a_=16_384 ,a_=1 ,a_="gelu_new" ,a_=0 ,a_=0 ,a_=512 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0.1 ,a_="absolute" ,a_=0 ,a_=2 ,a_=3 ,**a_ ,) -> List[Any]: super().__init__(pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,**a_ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : str = embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : Any = num_hidden_layers _UpperCAmelCase : Dict = num_hidden_groups _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Any = inner_group_num _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Tuple = intermediate_size _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : int = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : List[str] = layer_norm_eps _UpperCAmelCase : int = classifier_dropout_prob _UpperCAmelCase : Any = position_embedding_type class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
1
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer A_ : int = logging.get_logger(__name__) A_ : List[str] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} A_ : str = { """vocab_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt""" ), """squeezebert/squeezebert-mnli""": """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt""", """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """squeezebert/squeezebert-uncased""": ( """https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli""": ( """https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json""" ), """squeezebert/squeezebert-mnli-headless""": ( """https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json""" ), }, } A_ : List[Any] = { """squeezebert/squeezebert-uncased""": 5_1_2, """squeezebert/squeezebert-mnli""": 5_1_2, """squeezebert/squeezebert-mnli-headless""": 5_1_2, } A_ : Dict = { """squeezebert/squeezebert-uncased""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli""": {"""do_lower_case""": True}, """squeezebert/squeezebert-mnli-headless""": {"""do_lower_case""": True}, } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = SqueezeBertTokenizer def __init__( self ,a_=None ,a_=None ,a_=True ,a_="[UNK]" ,a_="[SEP]" ,a_="[PAD]" ,a_="[CLS]" ,a_="[MASK]" ,a_=True ,a_=None ,**a_ ,) -> Optional[int]: super().__init__( a_ ,tokenizer_file=a_ ,do_lower_case=a_ ,unk_token=a_ ,sep_token=a_ ,pad_token=a_ ,cls_token=a_ ,mask_token=a_ ,tokenize_chinese_chars=a_ ,strip_accents=a_ ,**a_ ,) _UpperCAmelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,a_ ) != do_lower_case or normalizer_state.get("""strip_accents""" ,a_ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,a_ ) != tokenize_chinese_chars ): _UpperCAmelCase : List[Any] = getattr(a_ ,normalizer_state.pop("""type""" ) ) _UpperCAmelCase : Optional[Any] = do_lower_case _UpperCAmelCase : List[Any] = strip_accents _UpperCAmelCase : Optional[Any] = tokenize_chinese_chars _UpperCAmelCase : Tuple = normalizer_class(**a_ ) _UpperCAmelCase : str = do_lower_case def _snake_case ( self ,a_ ,a_=None ) -> int: _UpperCAmelCase : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: _UpperCAmelCase : Union[str, Any] = [self.sep_token_id] _UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: _UpperCAmelCase : str = self._tokenizer.model.save(a_ ,name=a_ ) return tuple(a_ )
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification A_ : Any = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co A_ : str = """main""" # Default branch name A_ : Tuple = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) A_ : Optional[int] = """aaaaaaa""" # This commit does not exist, so we should 404. A_ : List[Any] = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes A_ : List[str] = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def snake_case_ ( )-> int: '''simple docstring''' print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def snake_case_ ( )-> Tuple: '''simple docstring''' print("""Bonjour!""" ) yield print("""Au revoir!""" ) class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> int: # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class lowercase ( unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" ,new_callable=io.StringIO ) def _snake_case ( self ,a_ ) -> int: with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() ,"""Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" ,new_callable=io.StringIO ) def _snake_case ( self ,a_ ) -> List[Any]: with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,"""Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" ,new_callable=io.StringIO ) def _snake_case ( self ,a_ ) -> Dict: with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() ,"""Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def _snake_case ( self ) -> Union[str, Any]: self.assertEqual(find_labels(a_ ) ,["""labels"""] ) self.assertEqual(find_labels(a_ ) ,["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(a_ ) ,["""start_positions""", """end_positions"""] ) class lowercase ( _lowerCamelCase ): """simple docstring""" pass self.assertEqual(find_labels(a_ ) ,["""labels"""] ) @require_tf def _snake_case ( self ) -> List[str]: self.assertEqual(find_labels(a_ ) ,["""labels"""] ) self.assertEqual(find_labels(a_ ) ,["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(a_ ) ,["""start_positions""", """end_positions"""] ) class lowercase ( _lowerCamelCase ): """simple docstring""" pass self.assertEqual(find_labels(a_ ) ,["""labels"""] ) @require_flax def _snake_case ( self ) -> int: # Flax models don't have labels self.assertEqual(find_labels(a_ ) ,[] ) self.assertEqual(find_labels(a_ ) ,[] ) self.assertEqual(find_labels(a_ ) ,[] ) class lowercase ( _lowerCamelCase ): """simple docstring""" pass self.assertEqual(find_labels(a_ ) ,[] )
349
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
1
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self ,a_ ,a_=7 ,a_=3 ,a_=18 ,a_=30 ,a_=400 ,a_=True ,a_=None ,a_=True ,) -> Any: _UpperCAmelCase : List[str] = size if size is not None else {"""height""": 18, """width""": 18} _UpperCAmelCase : Any = parent _UpperCAmelCase : Tuple = batch_size _UpperCAmelCase : Optional[Any] = num_channels _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : int = min_resolution _UpperCAmelCase : Union[str, Any] = max_resolution _UpperCAmelCase : List[str] = do_resize _UpperCAmelCase : Union[str, Any] = size _UpperCAmelCase : Tuple = do_normalize def _snake_case ( self ) -> Optional[int]: return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866_4436_3403_3203, 0.6618_8293_6954_4983, 0.3891_7464_0178_6804], [-0.6042_5591_4688_1104, -0.0_2295_0088_6052_8469, 0.5423_7973_6900_3296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ImageGPTImageProcessor if is_vision_available() else None def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = ImageGPTImageProcessingTester(self ) @property def _snake_case ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def _snake_case ( self ) -> str: _UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a_ ,"""clusters""" ) ) self.assertTrue(hasattr(a_ ,"""do_resize""" ) ) self.assertTrue(hasattr(a_ ,"""size""" ) ) self.assertTrue(hasattr(a_ ,"""do_normalize""" ) ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{"""height""": 18, """width""": 18} ) _UpperCAmelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ,size=42 ) self.assertEqual(image_processor.size ,{"""height""": 42, """width""": 42} ) def _snake_case ( self ) -> str: _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) _UpperCAmelCase : List[Any] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(a_ ,obj[key] ) ) else: self.assertEqual(obj[key] ,a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : str = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = os.path.join(a_ ,"""image_processor.json""" ) image_processor_first.to_json_file(a_ ) _UpperCAmelCase : Any = self.image_processing_class.from_json_file(a_ ).to_dict() _UpperCAmelCase : List[Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,a_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(a_ ) _UpperCAmelCase : Dict = self.image_processing_class.from_pretrained(a_ ).to_dict() _UpperCAmelCase : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(a_ ,image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] ,a_ ) @unittest.skip("""ImageGPT requires clusters at initialization""" ) def _snake_case ( self ) -> Dict: pass def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Tuple = load_dataset("""hf-internal-testing/fixtures_image_utils""" , split="""test""" ) _UpperCAmelCase : int = Image.open(dataset[4]["""file"""] ) _UpperCAmelCase : Optional[Any] = Image.open(dataset[5]["""file"""] ) _UpperCAmelCase : Optional[int] = [imagea, imagea] return images @require_vision @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Tuple = ImageGPTImageProcessor.from_pretrained("""openai/imagegpt-small""" ) _UpperCAmelCase : List[str] = prepare_images() # test non-batched _UpperCAmelCase : List[Any] = image_processing(images[0] ,return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(1, 1_024) ) _UpperCAmelCase : Dict = [306, 191, 191] self.assertEqual(encoding.input_ids[0, :3].tolist() ,a_ ) # test batched _UpperCAmelCase : int = image_processing(a_ ,return_tensors="""pt""" ) self.assertIsInstance(encoding.input_ids ,torch.LongTensor ) self.assertEqual(encoding.input_ids.shape ,(2, 1_024) ) _UpperCAmelCase : Union[str, Any] = [303, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() ,a_ )
349
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
1
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class lowercase : """simple docstring""" def __init__( self ) -> Dict: _UpperCAmelCase : int = {} def _snake_case ( self ,a_ ,a_ ,a_=1 ) -> Optional[int]: if self.graph.get(a_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _UpperCAmelCase : Tuple = [[w, v]] if not self.graph.get(a_ ): _UpperCAmelCase : Optional[Any] = [] def _snake_case ( self ) -> Optional[Any]: return list(self.graph ) def _snake_case ( self ,a_ ,a_ ) -> int: if self.graph.get(a_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a_ ) def _snake_case ( self ,a_=-2 ,a_=-1 ) -> Any: if s == d: return [] _UpperCAmelCase : Dict = [] _UpperCAmelCase : List[Any] = [] if s == -2: _UpperCAmelCase : Dict = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : List[str] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Optional[int] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a_ ) != 0: _UpperCAmelCase : Optional[Any] = stack[len(a_ ) - 1] else: _UpperCAmelCase : int = ss # check if se have reached the starting point if len(a_ ) == 0: return visited def _snake_case ( self ,a_=-1 ) -> Union[str, Any]: if c == -1: _UpperCAmelCase : str = floor(random() * 10_000 ) + 10 for i in range(a_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _UpperCAmelCase : Optional[int] = floor(random() * c ) + 1 if n != i: self.add_pair(a_ ,a_ ,1 ) def _snake_case ( self ,a_=-2 ) -> str: _UpperCAmelCase : Any = deque() _UpperCAmelCase : int = [] if s == -2: _UpperCAmelCase : Dict = list(self.graph )[0] d.append(a_ ) visited.append(a_ ) while d: _UpperCAmelCase : Optional[Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _snake_case ( self ,a_ ) -> Optional[int]: _UpperCAmelCase : List[str] = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _snake_case ( self ,a_ ) -> Optional[Any]: return len(self.graph[u] ) def _snake_case ( self ,a_=-2 ) -> int: _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Dict = [] if s == -2: _UpperCAmelCase : Optional[int] = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : int = s _UpperCAmelCase : int = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[str] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(a_ ) != 0: _UpperCAmelCase : Any = stack[len(a_ ) - 1] else: _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(a_ ) == 0: return sorted_nodes def _snake_case ( self ) -> Dict: _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : int = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : Union[str, Any] = -2 _UpperCAmelCase : str = [] _UpperCAmelCase : Union[str, Any] = s _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : List[Any] = len(a_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Tuple = True if len(a_ ) != 0: _UpperCAmelCase : str = stack[len(a_ ) - 1] else: _UpperCAmelCase : Any = False indirect_parents.append(a_ ) _UpperCAmelCase : Optional[int] = s _UpperCAmelCase : List[Any] = ss # check if se have reached the starting point if len(a_ ) == 0: return list(a_ ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase : Tuple = [] _UpperCAmelCase : Optional[Any] = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : Dict = -2 _UpperCAmelCase : Dict = [] _UpperCAmelCase : Dict = s _UpperCAmelCase : str = False _UpperCAmelCase : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : int = len(a_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Dict = True if len(a_ ) != 0: _UpperCAmelCase : Optional[int] = stack[len(a_ ) - 1] else: _UpperCAmelCase : Union[str, Any] = False indirect_parents.append(a_ ) _UpperCAmelCase : Any = s _UpperCAmelCase : Any = ss # check if se have reached the starting point if len(a_ ) == 0: return False def _snake_case ( self ,a_=-2 ,a_=-1 ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = time() self.dfs(a_ ,a_ ) _UpperCAmelCase : Dict = time() return end - begin def _snake_case ( self ,a_=-2 ) -> int: _UpperCAmelCase : int = time() self.bfs(a_ ) _UpperCAmelCase : Union[str, Any] = time() return end - begin class lowercase : """simple docstring""" def __init__( self ) -> str: _UpperCAmelCase : List[Any] = {} def _snake_case ( self ,a_ ,a_ ,a_=1 ) -> Union[str, Any]: # check if the u exists if self.graph.get(a_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _UpperCAmelCase : Optional[int] = [[w, v]] # add the other way if self.graph.get(a_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _UpperCAmelCase : Optional[int] = [[w, u]] def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: if self.graph.get(a_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(a_ ) # the other way round if self.graph.get(a_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(a_ ) def _snake_case ( self ,a_=-2 ,a_=-1 ) -> Tuple: if s == d: return [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Tuple = [] if s == -2: _UpperCAmelCase : Dict = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : List[str] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(a_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(a_ ) != 0: _UpperCAmelCase : Tuple = stack[len(a_ ) - 1] else: _UpperCAmelCase : int = ss # check if se have reached the starting point if len(a_ ) == 0: return visited def _snake_case ( self ,a_=-1 ) -> List[Any]: if c == -1: _UpperCAmelCase : Optional[int] = floor(random() * 10_000 ) + 10 for i in range(a_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): _UpperCAmelCase : List[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(a_ ,a_ ,1 ) def _snake_case ( self ,a_=-2 ) -> int: _UpperCAmelCase : Optional[int] = deque() _UpperCAmelCase : Any = [] if s == -2: _UpperCAmelCase : Tuple = list(self.graph )[0] d.append(a_ ) visited.append(a_ ) while d: _UpperCAmelCase : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _snake_case ( self ,a_ ) -> Tuple: return len(self.graph[u] ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Union[str, Any] = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : Tuple = -2 _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : Optional[Any] = s _UpperCAmelCase : int = False _UpperCAmelCase : Any = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : Union[str, Any] = len(a_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Any = True if len(a_ ) != 0: _UpperCAmelCase : Any = stack[len(a_ ) - 1] else: _UpperCAmelCase : Tuple = False indirect_parents.append(a_ ) _UpperCAmelCase : Dict = s _UpperCAmelCase : str = ss # check if se have reached the starting point if len(a_ ) == 0: return list(a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Tuple = list(self.graph )[0] stack.append(a_ ) visited.append(a_ ) _UpperCAmelCase : Dict = -2 _UpperCAmelCase : List[str] = [] _UpperCAmelCase : str = s _UpperCAmelCase : Tuple = False _UpperCAmelCase : Optional[int] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _UpperCAmelCase : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _UpperCAmelCase : List[str] = len(a_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _UpperCAmelCase : str = node[1] break # check if all the children are visited if s == ss: stack.pop() _UpperCAmelCase : Optional[int] = True if len(a_ ) != 0: _UpperCAmelCase : Tuple = stack[len(a_ ) - 1] else: _UpperCAmelCase : Dict = False indirect_parents.append(a_ ) _UpperCAmelCase : List[str] = s _UpperCAmelCase : Union[str, Any] = ss # check if se have reached the starting point if len(a_ ) == 0: return False def _snake_case ( self ) -> List[Any]: return list(self.graph ) def _snake_case ( self ,a_=-2 ,a_=-1 ) -> Optional[int]: _UpperCAmelCase : Any = time() self.dfs(a_ ,a_ ) _UpperCAmelCase : Optional[int] = time() return end - begin def _snake_case ( self ,a_=-2 ) -> Dict: _UpperCAmelCase : Dict = time() self.bfs(a_ ) _UpperCAmelCase : Union[str, Any] = time() return end - begin
349
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
1
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING A_ : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,**a_ ) -> Optional[Any]: super().__init__(**a_ ) requires_backends(self ,"""vision""" ) requires_backends(self ,"""torch""" ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) self.check_model_type(a_ ) def _snake_case ( self ,**a_ ) -> Tuple: _UpperCAmelCase : Dict = {} _UpperCAmelCase : Dict = {} _UpperCAmelCase : int = {} # preprocess args if "points_per_batch" in kwargs: _UpperCAmelCase : List[str] = kwargs["""points_per_batch"""] if "points_per_crop" in kwargs: _UpperCAmelCase : List[str] = kwargs["""points_per_crop"""] if "crops_n_layers" in kwargs: _UpperCAmelCase : Optional[int] = kwargs["""crops_n_layers"""] if "crop_overlap_ratio" in kwargs: _UpperCAmelCase : Union[str, Any] = kwargs["""crop_overlap_ratio"""] if "crop_n_points_downscale_factor" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["""crop_n_points_downscale_factor"""] # postprocess args if "pred_iou_thresh" in kwargs: _UpperCAmelCase : int = kwargs["""pred_iou_thresh"""] if "stability_score_offset" in kwargs: _UpperCAmelCase : Dict = kwargs["""stability_score_offset"""] if "mask_threshold" in kwargs: _UpperCAmelCase : Union[str, Any] = kwargs["""mask_threshold"""] if "stability_score_thresh" in kwargs: _UpperCAmelCase : List[Any] = kwargs["""stability_score_thresh"""] if "crops_nms_thresh" in kwargs: _UpperCAmelCase : Union[str, Any] = kwargs["""crops_nms_thresh"""] if "output_rle_mask" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["""output_rle_mask"""] if "output_bboxes_mask" in kwargs: _UpperCAmelCase : Union[str, Any] = kwargs["""output_bboxes_mask"""] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self ,a_ ,*a_ ,a_=None ,a_=None ,**a_ ) -> Union[str, Any]: return super().__call__(a_ ,*a_ ,num_workers=a_ ,batch_size=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_=64 ,a_ = 0 ,a_ = 512 / 1_500 ,a_ = 32 ,a_ = 1 ,) -> int: _UpperCAmelCase : Any = load_image(a_ ) _UpperCAmelCase : Dict = self.image_processor.size["""longest_edge"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Tuple = self.image_processor.generate_crop_boxes( a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) _UpperCAmelCase : Union[str, Any] = self.image_processor(images=a_ ,return_tensors="""pt""" ) with self.device_placement(): if self.framework == "pt": _UpperCAmelCase : Optional[Any] = self.get_inference_context() with inference_context(): _UpperCAmelCase : int = self._ensure_tensor_on_device(a_ ,device=self.device ) _UpperCAmelCase : Dict = self.model.get_image_embeddings(model_inputs.pop("""pixel_values""" ) ) _UpperCAmelCase : str = image_embeddings _UpperCAmelCase : Optional[int] = grid_points.shape[1] _UpperCAmelCase : Any = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( """Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. """ """To return all points at once, set points_per_batch to None""" ) for i in range(0 ,a_ ,a_ ): _UpperCAmelCase : Any = grid_points[:, i : i + points_per_batch, :, :] _UpperCAmelCase : List[str] = input_labels[:, i : i + points_per_batch] _UpperCAmelCase : str = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _snake_case ( self ,a_ ,a_=0.88 ,a_=0.95 ,a_=0 ,a_=1 ,) -> Any: _UpperCAmelCase : Optional[int] = model_inputs.pop("""input_boxes""" ) _UpperCAmelCase : Union[str, Any] = model_inputs.pop("""is_last""" ) _UpperCAmelCase : List[Any] = model_inputs.pop("""original_sizes""" ).tolist() _UpperCAmelCase : Tuple = model_inputs.pop("""reshaped_input_sizes""" ).tolist() _UpperCAmelCase : Optional[Any] = self.model(**a_ ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks _UpperCAmelCase : Union[str, Any] = model_outputs["""pred_masks"""] _UpperCAmelCase : List[Any] = self.image_processor.post_process_masks( a_ ,a_ ,a_ ,a_ ,binarize=a_ ) _UpperCAmelCase : Any = model_outputs["""iou_scores"""] _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = self.image_processor.filter_masks( masks[0] ,iou_scores[0] ,original_sizes[0] ,input_boxes[0] ,a_ ,a_ ,a_ ,a_ ,) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _snake_case ( self ,a_ ,a_=False ,a_=False ,a_=0.7 ,) -> Dict: _UpperCAmelCase : str = [] _UpperCAmelCase : Any = [] _UpperCAmelCase : str = [] for model_output in model_outputs: all_scores.append(model_output.pop("""iou_scores""" ) ) all_masks.extend(model_output.pop("""masks""" ) ) all_boxes.append(model_output.pop("""boxes""" ) ) _UpperCAmelCase : Any = torch.cat(a_ ) _UpperCAmelCase : int = torch.cat(a_ ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : List[Any] = self.image_processor.post_process_for_mask_generation( a_ ,a_ ,a_ ,a_ ) _UpperCAmelCase : List[Any] = defaultdict(a_ ) for output in model_outputs: for k, v in output.items(): extra[k].append(a_ ) _UpperCAmelCase : Optional[int] = {} if output_rle_mask: _UpperCAmelCase : Tuple = rle_mask if output_bboxes_mask: _UpperCAmelCase : Dict = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
1
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput A_ : Dict = 8 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=BITS )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = x.device _UpperCAmelCase : int = (x * 255).int().clamp(0 , 255 ) _UpperCAmelCase : Tuple = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = rearrange(lowerCAmelCase_ , """d -> d 1 1""" ) _UpperCAmelCase : List[Any] = rearrange(lowerCAmelCase_ , """b c h w -> b c 1 h w""" ) _UpperCAmelCase : Optional[Any] = ((x & mask) != 0).float() _UpperCAmelCase : int = rearrange(lowerCAmelCase_ , """b c d h w -> b (c d) h w""" ) _UpperCAmelCase : Tuple = bits * 2 - 1 return bits def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=BITS )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : List[str] = x.device _UpperCAmelCase : Optional[int] = (x > 0).int() _UpperCAmelCase : Any = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowerCAmelCase_ , dtype=torch.intaa ) _UpperCAmelCase : Tuple = rearrange(lowerCAmelCase_ , """d -> d 1 1""" ) _UpperCAmelCase : Dict = rearrange(lowerCAmelCase_ , """b (c d) h w -> b c d h w""" , d=8 ) _UpperCAmelCase : Optional[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def snake_case_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0.0 , lowerCAmelCase_ = True , lowerCAmelCase_=None , lowerCAmelCase_ = True , )-> Union[DDIMSchedulerOutput, Tuple]: '''simple docstring''' if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) _UpperCAmelCase : str = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas _UpperCAmelCase : List[str] = self.alphas_cumprod[timestep] _UpperCAmelCase : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod _UpperCAmelCase : List[Any] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" _UpperCAmelCase : List[Any] = self.bit_scale if self.config.clip_sample: _UpperCAmelCase : Union[str, Any] = torch.clamp(lowerCAmelCase_ , -scale , lowerCAmelCase_ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) _UpperCAmelCase : Union[str, Any] = self._get_variance(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : int = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide _UpperCAmelCase : str = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : Optional[int] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _UpperCAmelCase : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 _UpperCAmelCase : Dict = model_output.device if torch.is_tensor(lowerCAmelCase_ ) else """cpu""" _UpperCAmelCase : Union[str, Any] = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowerCAmelCase_ ).to(lowerCAmelCase_ ) _UpperCAmelCase : int = self._get_variance(lowerCAmelCase_ , lowerCAmelCase_ ) ** 0.5 * eta * noise _UpperCAmelCase : Tuple = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def snake_case_ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="epsilon" , lowerCAmelCase_=None , lowerCAmelCase_ = True , )-> Union[DDPMSchedulerOutput, Tuple]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: _UpperCAmelCase ,_UpperCAmelCase : Any = torch.split(lowerCAmelCase_ , sample.shape[1] , dim=1 ) else: _UpperCAmelCase : List[Any] = None # 1. compute alphas, betas _UpperCAmelCase : Union[str, Any] = self.alphas_cumprod[t] _UpperCAmelCase : int = self.alphas_cumprod[t - 1] if t > 0 else self.one _UpperCAmelCase : Tuple = 1 - alpha_prod_t _UpperCAmelCase : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": _UpperCAmelCase : Optional[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": _UpperCAmelCase : str = model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" _UpperCAmelCase : int = self.bit_scale if self.config.clip_sample: _UpperCAmelCase : Any = torch.clamp(lowerCAmelCase_ , -scale , lowerCAmelCase_ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase : Any = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t _UpperCAmelCase : int = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _UpperCAmelCase : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _UpperCAmelCase : List[str] = 0 if t > 0: _UpperCAmelCase : List[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowerCAmelCase_ ).to(model_output.device ) _UpperCAmelCase : Tuple = (self._get_variance(lowerCAmelCase_ , predicted_variance=lowerCAmelCase_ ) ** 0.5) * noise _UpperCAmelCase : List[str] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ ,a_ = 1.0 ,) -> Any: super().__init__() _UpperCAmelCase : List[Any] = bit_scale _UpperCAmelCase : Any = ( ddim_bit_scheduler_step if isinstance(a_ ,a_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=a_ ,scheduler=a_ ) @torch.no_grad() def __call__( self ,a_ = 256 ,a_ = 256 ,a_ = 50 ,a_ = None ,a_ = 1 ,a_ = "pil" ,a_ = True ,**a_ ,) -> Union[Tuple, ImagePipelineOutput]: _UpperCAmelCase : int = torch.randn( (batch_size, self.unet.config.in_channels, height, width) ,generator=a_ ,) _UpperCAmelCase : int = decimal_to_bits(a_ ) * self.bit_scale _UpperCAmelCase : int = latents.to(self.device ) self.scheduler.set_timesteps(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual _UpperCAmelCase : Union[str, Any] = self.unet(a_ ,a_ ).sample # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : Optional[Any] = self.scheduler.step(a_ ,a_ ,a_ ).prev_sample _UpperCAmelCase : List[str] = bits_to_decimal(a_ ) if output_type == "pil": _UpperCAmelCase : List[str] = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
349
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
1
'''simple docstring''' from __future__ import annotations A_ : Dict = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' _UpperCAmelCase : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase_ ) ) ] # the reference grid _UpperCAmelCase : Any = 1 _UpperCAmelCase : List[str] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(lowerCAmelCase_ ) ) ] # the action grid _UpperCAmelCase : str = init[0] _UpperCAmelCase : Tuple = init[1] _UpperCAmelCase : str = 0 _UpperCAmelCase : List[str] = g + heuristic[x][y] # cost from starting cell to destination cell _UpperCAmelCase : List[str] = [[f, g, x, y]] _UpperCAmelCase : Dict = False # flag that is set when search is complete _UpperCAmelCase : Dict = False # flag set if we can't find expand while not found and not resign: if len(lowerCAmelCase_ ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() _UpperCAmelCase : str = cell.pop() _UpperCAmelCase : Tuple = next_cell[2] _UpperCAmelCase : Optional[int] = next_cell[3] _UpperCAmelCase : Any = next_cell[1] if x == goal[0] and y == goal[1]: _UpperCAmelCase : Tuple = True else: for i in range(len(lowerCAmelCase_ ) ): # to try out different valid actions _UpperCAmelCase : Dict = x + DIRECTIONS[i][0] _UpperCAmelCase : Optional[Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(lowerCAmelCase_ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: _UpperCAmelCase : int = g + cost _UpperCAmelCase : Dict = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) _UpperCAmelCase : Dict = 1 _UpperCAmelCase : Optional[Any] = i _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Any = goal[0] _UpperCAmelCase : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: _UpperCAmelCase : Union[str, Any] = x - DIRECTIONS[action[x][y]][0] _UpperCAmelCase : Optional[int] = y - DIRECTIONS[action[x][y]][1] _UpperCAmelCase : str = xa _UpperCAmelCase : int = ya invpath.append([x, y] ) _UpperCAmelCase : Optional[Any] = [] for i in range(len(lowerCAmelCase_ ) ): path.append(invpath[len(lowerCAmelCase_ ) - 1 - i] ) return path, action if __name__ == "__main__": A_ : Optional[Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] A_ : int = [0, 0] # all coordinates are given in format [y,x] A_ : Optional[int] = [len(grid) - 1, len(grid[0]) - 1] A_ : Any = 1 # the cost map which pushes the path closer to the goal A_ : Optional[Any] = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): A_ : Optional[Any] = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map A_ : str = 9_9 A_ , A_ : str = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
349
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
1
'''simple docstring''' import argparse import json import os import tensorstore as ts import torch from flax import serialization from flax.traverse_util import flatten_dict, unflatten_dict from tensorflow.io import gfile from transformers.modeling_utils import dtype_byte_size from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import ( rename_keys, ) from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME from transformers.utils.hub import convert_file_size_to_int def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3: # expert layer _UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase : Tuple = torch.permute(lowerCAmelCase_ , (0, 2, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(lowerCAmelCase_ ): # linear layer _UpperCAmelCase : Optional[int] = flax_key_tuple[:-1] + ("""weight""",) _UpperCAmelCase : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _UpperCAmelCase : List[Any] = flax_key_tuple[:-1] + ("""weight""",) return flax_key_tuple, flax_tensor def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if "metadata" in layer: _UpperCAmelCase : List[str] = layer.split("""metadata""" ) _UpperCAmelCase : int = """""".join(split_layer[0] )[:-1] _UpperCAmelCase : Any = [tuple(("""metadata""" + split_layer[1]).split("""/""" ) )] elif "kvstore" in layer: _UpperCAmelCase : Tuple = layer.split("""kvstore""" ) _UpperCAmelCase : List[str] = """""".join(split_layer[0] )[:-1] _UpperCAmelCase : Dict = [tuple(("""kvstore""" + split_layer[1]).split("""/""" ) )] else: _UpperCAmelCase : str = layer.split("""/""" ) _UpperCAmelCase : Optional[int] = """/""".join(split_layer[:-1] ) _UpperCAmelCase : int = (split_layer[-1],) if "kvstore/path" in layer: _UpperCAmelCase : Union[str, Any] = F'''{switch_checkpoint_path}/{checkpoint_info[layer]}''' elif "kvstore/driver" in layer: _UpperCAmelCase : Any = """file""" else: _UpperCAmelCase : Optional[int] = checkpoint_info[layer] return curr_real_layer_name, split_layer, content def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = rename_keys(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = {} for k, v in current_block.items(): _UpperCAmelCase : List[str] = v _UpperCAmelCase : Optional[int] = new_current_block torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = WEIGHTS_NAME )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = convert_file_size_to_int(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = [] _UpperCAmelCase : str = {} _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : List[Any] = 0 os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) with gfile.GFile(switch_checkpoint_path + """/checkpoint""" , """rb""" ) as fp: _UpperCAmelCase : List[str] = serialization.msgpack_restore(fp.read() )["""optimizer"""]["""target"""] _UpperCAmelCase : Dict = flatten_dict(lowerCAmelCase_ , sep="""/""" ) _UpperCAmelCase : List[str] = {} for layer in checkpoint_info.keys(): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : int = get_key_and_tensorstore_dict( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if curr_real_layer_name in all_layers: _UpperCAmelCase : str = content else: _UpperCAmelCase : Any = {split_layer[-1]: content} for key in all_layers.keys(): # open tensorstore file _UpperCAmelCase : str = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result() _UpperCAmelCase : List[str] = torch.tensor(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = raw_weights.numel() * dtype_byte_size(raw_weights.dtype ) # use the renaming pattern from the small conversion scripts _UpperCAmelCase ,_UpperCAmelCase : List[Any] = rename_base_flax_keys(tuple(key.split("""/""" ) ) , lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = """/""".join(lowerCAmelCase_ ) # If this weight is going to tip up over the maximal size, we split. if current_block_size + weight_size > max_shard_size: _UpperCAmelCase : List[str] = os.path.join( lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{len(lowerCAmelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) del current_block _UpperCAmelCase : List[Any] = {} _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Tuple = raw_weights.to(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) current_block_size += weight_size total_size += weight_size # Add the last block _UpperCAmelCase : Tuple = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{len(lowerCAmelCase_ )+1:05d}-of-???.bin''' ) ) rename_and_save_block(lowerCAmelCase_ , lowerCAmelCase_ ) sharded_state_dicts.append(current_block.keys() ) # If we only have one shard, we return it if len(lowerCAmelCase_ ) == 1: return {weights_name: sharded_state_dicts[0]}, None # Otherwise, let's build the index _UpperCAmelCase : List[str] = {} _UpperCAmelCase : str = {} for idx, shard in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = weights_name.replace( """.bin""" , F'''-{idx+1:05d}-of-{len(lowerCAmelCase_ ):05d}.bin''' ) # len(sharded_state_dicts):05d} _UpperCAmelCase : Optional[int] = os.path.join(lowerCAmelCase_ , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCAmelCase_ , os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[int] = shard for key in shard: _UpperCAmelCase : List[Any] = shard_file # Add the metadata _UpperCAmelCase : str = {"""total_size""": total_size} _UpperCAmelCase : Tuple = {"""metadata""": metadata, """weight_map""": weight_map} with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , """w""" , encoding="""utf-8""" ) as f: _UpperCAmelCase : Tuple = json.dumps(lowerCAmelCase_ , indent=2 , sort_keys=lowerCAmelCase_ ) + """\n""" f.write(lowerCAmelCase_ ) return metadata, index if __name__ == "__main__": A_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--switch_t5x_checkpoint_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--max_shard_size""", default="""10GB""", required=False, help="""Max shard size""") parser.add_argument("""--dtype""", default="""bfloat16""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted""", type=str, required=False, help="""Path to the output pytorch model.""", ) A_ : str = parser.parse_args() shard_on_the_fly( args.switch_tax_checkpoint_path, args.pytorch_dump_folder_path, args.max_shard_size, args.dtype, ) def snake_case_ ( )-> Tuple: '''simple docstring''' from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer _UpperCAmelCase : Tuple = SwitchTransformersConfig.from_pretrained("""google/switch-base-8""" ) config.save_pretrained("""/home/arthur_huggingface_co/transformers/switch_converted""" ) _UpperCAmelCase : int = SwitchTransformersForConditionalGeneration.from_pretrained( """/home/arthur_huggingface_co/transformers/switch_converted""" , device_map="""auto""" ) _UpperCAmelCase : Dict = TaTokenizer.from_pretrained("""t5-small""" ) _UpperCAmelCase : int = """A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""" _UpperCAmelCase : List[str] = tokenizer(lowerCAmelCase_ , return_tensors="""pt""" ).input_ids _UpperCAmelCase : Any = model.generate(lowerCAmelCase_ , decoder_start_token_id=0 ) print(tokenizer.decode(out[0] ) )
349
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
1
'''simple docstring''' import numpy as np def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple = int(np.ceil((x_end - xa) / h ) ) _UpperCAmelCase : Optional[Any] = np.zeros((n + 1,) ) _UpperCAmelCase : Any = ya _UpperCAmelCase : Dict = xa for k in range(lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = f(lowerCAmelCase_ , y[k] ) _UpperCAmelCase : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCAmelCase : Dict = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) _UpperCAmelCase : Union[str, Any] = f(x + h , y[k] + h * ka ) _UpperCAmelCase : Optional[int] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False )-> Optional[Any]: '''simple docstring''' if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Tuple = len(set_a.intersection(lowerCAmelCase_ ) ) if alternative_union: _UpperCAmelCase : Optional[int] = len(lowerCAmelCase_ ) + len(lowerCAmelCase_ ) else: _UpperCAmelCase : Union[str, Any] = len(set_a.union(lowerCAmelCase_ ) ) return intersection / union if isinstance(lowerCAmelCase_ , (list, tuple) ) and isinstance(lowerCAmelCase_ , (list, tuple) ): _UpperCAmelCase : Any = [element for element in set_a if element in set_b] if alternative_union: _UpperCAmelCase : List[Any] = len(lowerCAmelCase_ ) + len(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) / union else: _UpperCAmelCase : str = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) return len(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) return None if __name__ == "__main__": A_ : List[str] = {"""a""", """b""", """c""", """d""", """e"""} A_ : Tuple = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
349
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
1
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ : Dict = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = PegasusTokenizer UpperCAmelCase = PegasusTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def _snake_case ( self ) -> Union[str, Any]: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : Any = PegasusTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self ) -> str: return PegasusTokenizer.from_pretrained("""google/pegasus-large""" ) def _snake_case ( self ,**a_ ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**a_ ) def _snake_case ( self ,a_ ) -> int: return ("This is a test", "This is a test") def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Tuple = """</s>""" _UpperCAmelCase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) ,a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) ,a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,"""<pad>""" ) self.assertEqual(vocab_keys[1] ,"""</s>""" ) self.assertEqual(vocab_keys[-1] ,"""v""" ) self.assertEqual(len(a_ ) ,1_103 ) def _snake_case ( self ) -> Dict: self.assertEqual(self.get_tokenizer().vocab_size ,1_103 ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Tuple = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : List[Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _UpperCAmelCase : Tuple = rust_tokenizer([raw_input_str] ,return_tensors=a_ ,add_special_tokens=a_ ).input_ids[0] _UpperCAmelCase : str = py_tokenizer([raw_input_str] ,return_tensors=a_ ,add_special_tokens=a_ ).input_ids[0] self.assertListEqual(a_ ,a_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _UpperCAmelCase : Optional[int] = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _UpperCAmelCase : Optional[int] = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1] _UpperCAmelCase : List[Any] = tokenizer([raw_input_str] ,return_tensors=a_ ).input_ids[0] self.assertListEqual(a_ ,a_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96_103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1_024 _UpperCAmelCase : Tuple = """To ensure a smooth flow of bank resolutions.""" _UpperCAmelCase : Dict = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1] _UpperCAmelCase : List[str] = tokenizer([raw_input_str] ,return_tensors=a_ ).input_ids[0] self.assertListEqual(a_ ,a_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = ["""This is going to be way too long.""" * 150, """short example"""] _UpperCAmelCase : Any = ["""not super long but more than 5 tokens""", """tiny"""] _UpperCAmelCase : Optional[int] = self._large_tokenizer(a_ ,padding=a_ ,truncation=a_ ,return_tensors="""pt""" ) _UpperCAmelCase : int = self._large_tokenizer( text_target=a_ ,max_length=5 ,padding=a_ ,truncation=a_ ,return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 1_024) assert batch.attention_mask.shape == (2, 1_024) assert targets["input_ids"].shape == (2, 5) assert len(a_ ) == 2 # input_ids, attention_mask. @slow def _snake_case ( self ) -> int: # fmt: off _UpperCAmelCase : List[Any] = {"""input_ids""": [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ ,model_name="""google/bigbird-pegasus-large-arxiv""" ,revision="""ba85d0851d708441f91440d509690f1ab6353415""" ,) @require_sentencepiece @require_tokenizers class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = PegasusTokenizer UpperCAmelCase = PegasusTokenizerFast UpperCAmelCase = True UpperCAmelCase = True def _snake_case ( self ) -> Optional[Any]: super().setUp() # We have a SentencePiece fixture for testing _UpperCAmelCase : List[Any] = PegasusTokenizer(a_ ,offset=0 ,mask_token_sent=a_ ,mask_token="""[MASK]""" ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _snake_case ( self ) -> str: return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" ) def _snake_case ( self ,**a_ ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname ,**a_ ) def _snake_case ( self ,a_ ) -> Union[str, Any]: return ("This is a test", "This is a test") def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname ) _UpperCAmelCase : Dict = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _UpperCAmelCase : Tuple = rust_tokenizer([raw_input_str] ,return_tensors=a_ ,add_special_tokens=a_ ).input_ids[0] _UpperCAmelCase : Optional[int] = py_tokenizer([raw_input_str] ,return_tensors=a_ ,add_special_tokens=a_ ).input_ids[0] self.assertListEqual(a_ ,a_ ) @require_torch def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Optional[int] = ["""This is going to be way too long.""" * 1_000, """short example"""] _UpperCAmelCase : Tuple = ["""not super long but more than 5 tokens""", """tiny"""] _UpperCAmelCase : int = self._large_tokenizer(a_ ,padding=a_ ,truncation=a_ ,return_tensors="""pt""" ) _UpperCAmelCase : int = self._large_tokenizer( text_target=a_ ,max_length=5 ,padding=a_ ,truncation=a_ ,return_tensors="""pt""" ) assert batch.input_ids.shape == (2, 4_096) assert batch.attention_mask.shape == (2, 4_096) assert targets["input_ids"].shape == (2, 5) assert len(a_ ) == 2 # input_ids, attention_mask. def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _UpperCAmelCase : List[Any] = self._large_tokenizer(a_ ).input_ids self.assertListEqual( a_ ,[182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] ,)
349
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
1
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
1
'''simple docstring''' from bisect import bisect from itertools import accumulate def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Any = sorted(zip(lowerCAmelCase_ , lowerCAmelCase_ ) , key=lambda lowerCAmelCase_ : x[0] / x[1] , reverse=lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = [i[0] for i in r], [i[1] for i in r] _UpperCAmelCase : int = list(accumulate(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = bisect(lowerCAmelCase_ , lowerCAmelCase_ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node A_ : str = 4 A_ : List[Any] = 3 class lowercase ( _lowerCamelCase ): """simple docstring""" pass def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' for shard in shards: for i in range(lowerCAmelCase_ ): yield {"i": i, "shard": shard} def snake_case_ ( )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : int = int(os.environ["""RANK"""] ) _UpperCAmelCase : int = int(os.environ["""WORLD_SIZE"""] ) _UpperCAmelCase : Optional[Any] = ArgumentParser() parser.add_argument("""--streaming""" , type=lowerCAmelCase_ ) parser.add_argument("""--local_rank""" , type=lowerCAmelCase_ ) parser.add_argument("""--num_workers""" , type=lowerCAmelCase_ , default=0 ) _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[int] = args.streaming _UpperCAmelCase : Optional[Any] = args.num_workers _UpperCAmelCase : Optional[int] = {"""shards""": [F'''shard_{shard_idx}''' for shard_idx in range(lowerCAmelCase_ )]} _UpperCAmelCase : Any = IterableDataset.from_generator(lowerCAmelCase_ , gen_kwargs=lowerCAmelCase_ ) if not streaming: _UpperCAmelCase : Optional[Any] = Dataset.from_list(list(lowerCAmelCase_ ) ) _UpperCAmelCase : Union[str, Any] = split_dataset_by_node(lowerCAmelCase_ , rank=lowerCAmelCase_ , world_size=lowerCAmelCase_ ) _UpperCAmelCase : int = torch.utils.data.DataLoader(lowerCAmelCase_ , num_workers=lowerCAmelCase_ ) _UpperCAmelCase : Any = NUM_SHARDS * NUM_ITEMS_PER_SHARD _UpperCAmelCase : int = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) _UpperCAmelCase : Tuple = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(F'''local_size {local_size} != expected_local_size {expected_local_size}''' ) if __name__ == "__main__": main()
349
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import numpy as np def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 1e-1_2 , lowerCAmelCase_ = 100 , )-> tuple[float, np.ndarray]: '''simple docstring''' assert np.shape(lowerCAmelCase_ )[0] == np.shape(lowerCAmelCase_ )[1] # Ensure proper dimensionality. assert np.shape(lowerCAmelCase_ )[0] == np.shape(lowerCAmelCase_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCAmelCase_ ) == np.iscomplexobj(lowerCAmelCase_ ) _UpperCAmelCase : Any = np.iscomplexobj(lowerCAmelCase_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCAmelCase_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : Dict = 0 _UpperCAmelCase : List[str] = 1e1_2 while not convergence: # Multiple matrix by the vector. _UpperCAmelCase : Optional[int] = np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) # Normalize the resulting output vector. _UpperCAmelCase : Dict = w / np.linalg.norm(lowerCAmelCase_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _UpperCAmelCase : Any = vector.conj().T if is_complex else vector.T _UpperCAmelCase : Optional[Any] = np.dot(lowerCAmelCase_ , np.dot(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Check convergence. _UpperCAmelCase : Optional[int] = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _UpperCAmelCase : List[str] = True _UpperCAmelCase : Any = lambda_ if is_complex: _UpperCAmelCase : Optional[int] = np.real(lambda_ ) return lambda_, vector def snake_case_ ( )-> None: '''simple docstring''' _UpperCAmelCase : Optional[int] = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _UpperCAmelCase : Union[str, Any] = np.array([41, 4, 20] ) _UpperCAmelCase : Tuple = real_input_matrix.astype(np.complexaaa ) _UpperCAmelCase : Optional[Any] = np.triu(1j * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _UpperCAmelCase : Optional[Any] = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _UpperCAmelCase : List[str] = real_input_matrix _UpperCAmelCase : Any = real_vector elif problem_type == "complex": _UpperCAmelCase : Dict = complex_input_matrix _UpperCAmelCase : List[str] = complex_vector # Our implementation. _UpperCAmelCase ,_UpperCAmelCase : List[Any] = power_iteration(lowerCAmelCase_ , lowerCAmelCase_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = np.linalg.eigh(lowerCAmelCase_ ) # Last eigenvalue is the maximum one. _UpperCAmelCase : List[Any] = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _UpperCAmelCase : Any = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCAmelCase_ ) - np.abs(lowerCAmelCase_ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
349
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : """simple docstring""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=True ,a_=True ,a_=True ,a_=99 ,a_=24 ,a_=2 ,a_=6 ,a_=37 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=16 ,a_=2 ,a_=0.02 ,a_=3 ,a_=None ,a_=1_000 ,) -> Any: _UpperCAmelCase : Optional[int] = parent _UpperCAmelCase : Dict = batch_size _UpperCAmelCase : Tuple = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : Dict = use_input_mask _UpperCAmelCase : Dict = use_token_type_ids _UpperCAmelCase : Optional[Any] = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : int = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : int = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Tuple = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Dict = type_sequence_label_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Union[str, Any] = num_labels _UpperCAmelCase : List[Any] = scope _UpperCAmelCase : str = range_bbox def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _UpperCAmelCase : str = bbox[i, j, 3] _UpperCAmelCase : List[str] = bbox[i, j, 1] _UpperCAmelCase : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: _UpperCAmelCase : Dict = bbox[i, j, 2] _UpperCAmelCase : Tuple = bbox[i, j, 0] _UpperCAmelCase : Optional[Any] = t _UpperCAmelCase : List[Any] = None if self.use_input_mask: _UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,vocab_size=2 ) _UpperCAmelCase : str = None if self.use_token_type_ids: _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Any = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _UpperCAmelCase : str = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self ) -> Union[str, Any]: return LiltConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Optional[int]: _UpperCAmelCase : Optional[int] = LiltModel(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Union[str, Any] = model(a_ ,bbox=a_ ,attention_mask=a_ ,token_type_ids=a_ ) _UpperCAmelCase : Union[str, Any] = model(a_ ,bbox=a_ ,token_type_ids=a_ ) _UpperCAmelCase : Tuple = model(a_ ,bbox=a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> str: _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : Union[str, Any] = LiltForTokenClassification(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Tuple = model( a_ ,bbox=a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Union[str, Any]: _UpperCAmelCase : str = LiltForQuestionAnswering(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : List[Any] = model( a_ ,bbox=a_ ,attention_mask=a_ ,token_type_ids=a_ ,start_positions=a_ ,end_positions=a_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : List[Any] = config_and_inputs _UpperCAmelCase : str = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowercase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Tuple: return True def _snake_case ( self ) -> List[str]: _UpperCAmelCase : str = LiltModelTester(self ) _UpperCAmelCase : str = ConfigTester(self ,config_class=a_ ,hidden_size=37 ) def _snake_case ( self ) -> Optional[int]: self.config_tester.run_common_tests() def _snake_case ( self ) -> Dict: _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def _snake_case ( self ) -> int: _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase : int = type self.model_tester.create_and_check_model(*a_ ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a_ ) def _snake_case ( self ) -> Any: _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a_ ) @slow def _snake_case ( self ) -> Union[str, Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Any = LiltModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch @slow class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> str: _UpperCAmelCase : int = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(a_ ) _UpperCAmelCase : Tuple = torch.tensor([[1, 2]] ,device=a_ ) _UpperCAmelCase : Dict = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] ,device=a_ ) # forward pass with torch.no_grad(): _UpperCAmelCase : str = model(input_ids=a_ ,bbox=a_ ) _UpperCAmelCase : Tuple = torch.Size([1, 2, 768] ) _UpperCAmelCase : List[str] = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] ,device=a_ ,) self.assertTrue(outputs.last_hidden_state.shape ,a_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] ,a_ ,atol=1E-3 ) )
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> list: '''simple docstring''' if len(lowerCAmelCase_ ) <= 1: return lst _UpperCAmelCase : str = 1 while i < len(lowerCAmelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: _UpperCAmelCase ,_UpperCAmelCase : Any = lst[i], lst[i - 1] i -= 1 if i == 0: _UpperCAmelCase : Union[str, Any] = 1 return lst if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() A_ : Tuple = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
349
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Dict = { """tanreinama/GPTSAN-2.8B-spout_is_uniform""": ( """https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json""" ), } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """gptsan-japanese""" UpperCAmelCase = [ """past_key_values""", ] UpperCAmelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self ,a_=36_000 ,a_=1_280 ,a_=1_024 ,a_=8_192 ,a_=4_096 ,a_=128 ,a_=10 ,a_=0 ,a_=16 ,a_=16 ,a_=128 ,a_=0.0 ,a_=1E-5 ,a_=False ,a_=0.0 ,a_="float32" ,a_=False ,a_=False ,a_=False ,a_=0.002 ,a_=False ,a_=True ,a_=35_998 ,a_=35_995 ,a_=35_999 ,**a_ ,) -> Tuple: _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Dict = d_model _UpperCAmelCase : str = d_ff _UpperCAmelCase : List[str] = d_ext _UpperCAmelCase : Dict = d_spout _UpperCAmelCase : str = num_switch_layers _UpperCAmelCase : Optional[Any] = num_ext_layers _UpperCAmelCase : List[Any] = num_switch_layers + num_ext_layers _UpperCAmelCase : Dict = num_heads _UpperCAmelCase : List[Any] = num_experts _UpperCAmelCase : List[str] = expert_capacity _UpperCAmelCase : Optional[int] = dropout_rate _UpperCAmelCase : Any = layer_norm_epsilon _UpperCAmelCase : Dict = router_bias _UpperCAmelCase : Optional[Any] = router_jitter_noise _UpperCAmelCase : List[str] = router_dtype _UpperCAmelCase : str = router_ignore_padding_tokens _UpperCAmelCase : Optional[Any] = output_hidden_states _UpperCAmelCase : Optional[int] = output_attentions _UpperCAmelCase : Any = initializer_factor _UpperCAmelCase : Dict = output_router_logits _UpperCAmelCase : Tuple = use_cache super().__init__( separator_token_id=a_ ,pad_token_id=a_ ,eos_token_id=a_ ,**a_ ,)
349
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """Wav2Vec2FeatureExtractor""" UpperCAmelCase = """AutoTokenizer""" def __init__( self ,a_ ,a_ ) -> Tuple: super().__init__(a_ ,a_ ) _UpperCAmelCase : Optional[int] = self.feature_extractor _UpperCAmelCase : List[str] = False @classmethod def _snake_case ( cls ,a_ ,**a_ ) -> Dict: try: return super().from_pretrained(a_ ,**a_ ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ ,a_ ,) _UpperCAmelCase : List[Any] = WavaVecaFeatureExtractor.from_pretrained(a_ ,**a_ ) _UpperCAmelCase : Tuple = WavaVecaCTCTokenizer.from_pretrained(a_ ,**a_ ) return cls(feature_extractor=a_ ,tokenizer=a_ ) def __call__( self ,*a_ ,**a_ ) -> int: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*a_ ,**a_ ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) _UpperCAmelCase : Dict = kwargs.pop("""raw_speech""" ) else: _UpperCAmelCase : List[Any] = kwargs.pop("""audio""" ,a_ ) _UpperCAmelCase : List[Any] = kwargs.pop("""sampling_rate""" ,a_ ) _UpperCAmelCase : List[str] = kwargs.pop("""text""" ,a_ ) if len(a_ ) > 0: _UpperCAmelCase : List[Any] = args[0] _UpperCAmelCase : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: _UpperCAmelCase : Union[str, Any] = self.feature_extractor(a_ ,*a_ ,sampling_rate=a_ ,**a_ ) if text is not None: _UpperCAmelCase : Dict = self.tokenizer(a_ ,**a_ ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase : Optional[int] = encodings["""input_ids"""] return inputs def _snake_case ( self ,*a_ ,**a_ ) -> Any: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*a_ ,**a_ ) _UpperCAmelCase : List[Any] = kwargs.pop("""input_features""" ,a_ ) _UpperCAmelCase : int = kwargs.pop("""labels""" ,a_ ) if len(a_ ) > 0: _UpperCAmelCase : Optional[Any] = args[0] _UpperCAmelCase : Optional[Any] = args[1:] if input_features is not None: _UpperCAmelCase : List[str] = self.feature_extractor.pad(a_ ,*a_ ,**a_ ) if labels is not None: _UpperCAmelCase : List[str] = self.tokenizer.pad(a_ ,**a_ ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCAmelCase : Tuple = labels["""input_ids"""] return input_features def _snake_case ( self ,*a_ ,**a_ ) -> Tuple: return self.tokenizer.batch_decode(*a_ ,**a_ ) def _snake_case ( self ,*a_ ,**a_ ) -> Dict: return self.tokenizer.decode(*a_ ,**a_ ) @contextmanager def _snake_case ( self ) -> List[Any]: warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) _UpperCAmelCase : str = True _UpperCAmelCase : List[str] = self.tokenizer yield _UpperCAmelCase : List[str] = self.feature_extractor _UpperCAmelCase : Any = False
349
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
1
'''simple docstring''' from collections.abc import Sequence def snake_case_ ( lowerCAmelCase_ = None )-> int: '''simple docstring''' if nums is None or not nums: raise ValueError("""Input sequence should not be empty""" ) _UpperCAmelCase : Union[str, Any] = nums[0] for i in range(1 , len(lowerCAmelCase_ ) ): _UpperCAmelCase : Union[str, Any] = nums[i] _UpperCAmelCase : Optional[int] = max(lowerCAmelCase_ , ans + num , lowerCAmelCase_ ) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user A_ : List[Any] = int(input("""Enter number of elements : """).strip()) A_ : Any = list(map(int, input("""\nEnter the numbers : """).strip().split()))[:n] print(max_subsequence_sum(array))
349
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = None UpperCAmelCase = None def snake_case_ ( )-> Node | None: '''simple docstring''' _UpperCAmelCase : List[str] = Node(1 ) _UpperCAmelCase : Optional[Any] = Node(2 ) _UpperCAmelCase : List[str] = Node(3 ) _UpperCAmelCase : str = Node(4 ) _UpperCAmelCase : int = Node(5 ) return tree def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def snake_case_ ( lowerCAmelCase_ )-> Sequence[Node | None]: '''simple docstring''' _UpperCAmelCase : list[Any] = [] if root is None: return output _UpperCAmelCase : List[str] = deque([root] ) while process_queue: _UpperCAmelCase : Dict = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Sequence[Node | None]: '''simple docstring''' _UpperCAmelCase : list[Any] = [] def populate_output(lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCAmelCase_ , lowerCAmelCase_ ) return output def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Sequence[Node | None]: '''simple docstring''' _UpperCAmelCase : list[Any] = [] def populate_output(lowerCAmelCase_ , lowerCAmelCase_ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCAmelCase_ , lowerCAmelCase_ ) return output def snake_case_ ( lowerCAmelCase_ )-> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] _UpperCAmelCase : list[Sequence[Node | None]] = [] _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Any = height(lowerCAmelCase_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCAmelCase_ , lowerCAmelCase_ ) ) _UpperCAmelCase : Any = 1 else: output.append(get_nodes_from_right_to_left(lowerCAmelCase_ , lowerCAmelCase_ ) ) _UpperCAmelCase : Tuple = 0 return output def snake_case_ ( )-> None: # Main function for testing. '''simple docstring''' _UpperCAmelCase : Any = make_tree() print(F'''In-order Traversal: {inorder(lowerCAmelCase_ )}''' ) print(F'''Pre-order Traversal: {preorder(lowerCAmelCase_ )}''' ) print(F'''Post-order Traversal: {postorder(lowerCAmelCase_ )}''' , """\n""" ) print(F'''Height of Tree: {height(lowerCAmelCase_ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(lowerCAmelCase_ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(lowerCAmelCase_ ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(lowerCAmelCase_ , level=lowerCAmelCase_ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(lowerCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
1
'''simple docstring''' A_ : Tuple = 9.8_0665 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = g )-> float: '''simple docstring''' if fluid_density <= 0: raise ValueError("""Impossible fluid density""" ) if volume < 0: raise ValueError("""Impossible Object volume""" ) if gravity <= 0: raise ValueError("""Impossible Gravity""" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
349
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A_ : Union[str, Any] = logging.get_logger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""pixel_values"""] def __init__( self ,a_ = True ,a_ = None ,a_ = PILImageResampling.BICUBIC ,a_ = True ,a_ = True ,a_ = 1 / 255 ,a_ = None ,a_ = True ,a_ = None ,a_ = None ,**a_ ,) -> None: super().__init__(**a_ ) _UpperCAmelCase : Tuple = size if size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase : Optional[Any] = get_size_dict(a_ ) _UpperCAmelCase : Tuple = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase : Optional[int] = get_size_dict(a_ ,default_to_square=a_ ,param_name="""crop_size""" ) _UpperCAmelCase : List[Any] = do_resize _UpperCAmelCase : str = do_rescale _UpperCAmelCase : str = do_normalize _UpperCAmelCase : Any = do_center_crop _UpperCAmelCase : List[str] = crop_size _UpperCAmelCase : Any = size _UpperCAmelCase : List[str] = resample _UpperCAmelCase : Union[str, Any] = rescale_factor _UpperCAmelCase : Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _UpperCAmelCase : Any = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self ,a_ ,a_ ,a_ = PILImageResampling.BILINEAR ,a_ = None ,**a_ ,) -> np.ndarray: _UpperCAmelCase : Optional[Any] = get_size_dict(a_ ) if "shortest_edge" in size: _UpperCAmelCase : Any = get_resize_output_image_size(a_ ,size=size["""shortest_edge"""] ,default_to_square=a_ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: _UpperCAmelCase : str = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must contain \'height\' and \'width\' keys or \'shortest_edge\' key. Got {size.keys()}''' ) return resize(a_ ,size=a_ ,resample=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: _UpperCAmelCase : Any = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(a_ ,size=(size["""height"""], size["""width"""]) ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = None ,**a_ ) -> np.ndarray: return rescale(a_ ,scale=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ = None ,**a_ ,) -> np.ndarray: return normalize(a_ ,mean=a_ ,std=a_ ,data_format=a_ ,**a_ ) def _snake_case ( self ,a_ ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = None ,a_ = ChannelDimension.FIRST ,**a_ ,) -> BatchFeature: _UpperCAmelCase : str = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase : List[str] = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase : int = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase : Any = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase : List[Any] = get_size_dict(a_ ,param_name="""crop_size""" ,default_to_square=a_ ) _UpperCAmelCase : Tuple = resample if resample is not None else self.resample _UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase : int = image_std if image_std is not None else self.image_std _UpperCAmelCase : List[str] = size if size is not None else self.size _UpperCAmelCase : Tuple = get_size_dict(a_ ) if not is_batched(a_ ): _UpperCAmelCase : Optional[int] = [images] if not valid_images(a_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase : str = [to_numpy_array(a_ ) for image in images] if do_resize: _UpperCAmelCase : Tuple = [self.resize(image=a_ ,size=a_ ,resample=a_ ) for image in images] if do_center_crop: _UpperCAmelCase : Optional[Any] = [self.center_crop(image=a_ ,size=a_ ) for image in images] if do_rescale: _UpperCAmelCase : Optional[int] = [self.rescale(image=a_ ,scale=a_ ) for image in images] if do_normalize: _UpperCAmelCase : Optional[int] = [self.normalize(image=a_ ,mean=a_ ,std=a_ ) for image in images] _UpperCAmelCase : Any = [to_channel_dimension_format(a_ ,a_ ) for image in images] _UpperCAmelCase : List[str] = {"""pixel_values""": images} return BatchFeature(data=a_ ,tensor_type=a_ )
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' from collections.abc import Generator from math import sin def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' if len(lowerCAmelCase_ ) != 32: raise ValueError("""Input must be of length 32""" ) _UpperCAmelCase : Optional[int] = B"""""" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) _UpperCAmelCase : str = format(lowerCAmelCase_ , """08x""" )[-8:] _UpperCAmelCase : Optional[Any] = B"""""" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : int = B"""""" for char in message: bit_string += format(lowerCAmelCase_ , """08b""" ).encode("""utf-8""" ) _UpperCAmelCase : str = format(len(lowerCAmelCase_ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(lowerCAmelCase_ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def snake_case_ ( lowerCAmelCase_ )-> Generator[list[int], None, None]: '''simple docstring''' if len(lowerCAmelCase_ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(lowerCAmelCase_ ) , 512 ): _UpperCAmelCase : List[Any] = bit_string[pos : pos + 512] _UpperCAmelCase : Union[str, Any] = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) _UpperCAmelCase : Optional[Any] = format(lowerCAmelCase_ , """032b""" ) _UpperCAmelCase : Union[str, Any] = """""" for c in i_str: new_str += "1" if c == "0" else "0" return int(lowerCAmelCase_ , 2 ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' return (a + b) % 2**32 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : List[Any] = preprocess(lowerCAmelCase_ ) _UpperCAmelCase : Any = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _UpperCAmelCase : List[Any] = 0x67_452_301 _UpperCAmelCase : int = 0xEF_CDA_B89 _UpperCAmelCase : List[Any] = 0x98_BAD_CFE _UpperCAmelCase : Any = 0x10_325_476 _UpperCAmelCase : Tuple = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = aa _UpperCAmelCase : str = ba _UpperCAmelCase : str = ca _UpperCAmelCase : List[str] = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _UpperCAmelCase : str = d ^ (b & (c ^ d)) _UpperCAmelCase : str = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _UpperCAmelCase : Optional[Any] = c ^ (d & (b ^ c)) _UpperCAmelCase : int = (5 * i + 1) % 16 elif i <= 47: _UpperCAmelCase : int = b ^ c ^ d _UpperCAmelCase : Optional[int] = (3 * i + 5) % 16 else: _UpperCAmelCase : List[str] = c ^ (b | not_aa(lowerCAmelCase_ )) _UpperCAmelCase : Optional[int] = (7 * i) % 16 _UpperCAmelCase : str = (f + a + added_consts[i] + block_words[g]) % 2**32 _UpperCAmelCase : Any = d _UpperCAmelCase : Optional[int] = c _UpperCAmelCase : Any = b _UpperCAmelCase : List[str] = sum_aa(lowerCAmelCase_ , left_rotate_aa(lowerCAmelCase_ , shift_amounts[i] ) ) # Add hashed chunk to running total _UpperCAmelCase : Optional[int] = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : str = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[str] = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : int = sum_aa(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) + reformat_hex(lowerCAmelCase_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
1
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ = 100 )-> int: '''simple docstring''' _UpperCAmelCase : int = sum(i * i for i in range(1 , n + 1 ) ) _UpperCAmelCase : List[str] = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
349
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : str = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """mra""" def __init__( self ,a_=50_265 ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=1 ,a_=0.02 ,a_=1E-5 ,a_="absolute" ,a_=4 ,a_="full" ,a_=0 ,a_=0 ,a_=1 ,a_=0 ,a_=2 ,**a_ ,) -> int: super().__init__(pad_token_id=a_ ,bos_token_id=a_ ,eos_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : Union[str, Any] = max_position_embeddings _UpperCAmelCase : int = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : int = hidden_act _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : int = attention_probs_dropout_prob _UpperCAmelCase : int = initializer_range _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Optional[Any] = position_embedding_type _UpperCAmelCase : List[Any] = block_per_row _UpperCAmelCase : List[str] = approx_mode _UpperCAmelCase : List[Any] = initial_prior_first_n_blocks _UpperCAmelCase : int = initial_prior_diagonal_n_blocks
349
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
1
'''simple docstring''' import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : Optional[Any] = logging.get_logger(__name__) A_ : int = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """conditional_detr""" UpperCAmelCase = ["""past_key_values"""] UpperCAmelCase = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self ,a_=True ,a_=None ,a_=3 ,a_=300 ,a_=6 ,a_=2_048 ,a_=8 ,a_=6 ,a_=2_048 ,a_=8 ,a_=0.0 ,a_=0.0 ,a_=True ,a_="relu" ,a_=256 ,a_=0.1 ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1.0 ,a_=False ,a_="sine" ,a_="resnet50" ,a_=True ,a_=False ,a_=2 ,a_=5 ,a_=2 ,a_=1 ,a_=1 ,a_=2 ,a_=5 ,a_=2 ,a_=0.25 ,**a_ ,) -> List[str]: if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _UpperCAmelCase : Any = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(a_ ,a_ ): _UpperCAmelCase : int = backbone_config.get("""model_type""" ) _UpperCAmelCase : Any = CONFIG_MAPPING[backbone_model_type] _UpperCAmelCase : List[str] = config_class.from_dict(a_ ) _UpperCAmelCase : str = use_timm_backbone _UpperCAmelCase : Tuple = backbone_config _UpperCAmelCase : List[str] = num_channels _UpperCAmelCase : Optional[int] = num_queries _UpperCAmelCase : Dict = d_model _UpperCAmelCase : List[Any] = encoder_ffn_dim _UpperCAmelCase : List[Any] = encoder_layers _UpperCAmelCase : Tuple = encoder_attention_heads _UpperCAmelCase : List[str] = decoder_ffn_dim _UpperCAmelCase : Optional[Any] = decoder_layers _UpperCAmelCase : Tuple = decoder_attention_heads _UpperCAmelCase : Optional[int] = dropout _UpperCAmelCase : Tuple = attention_dropout _UpperCAmelCase : Optional[int] = activation_dropout _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : Dict = init_std _UpperCAmelCase : Dict = init_xavier_std _UpperCAmelCase : List[Any] = encoder_layerdrop _UpperCAmelCase : int = decoder_layerdrop _UpperCAmelCase : int = encoder_layers _UpperCAmelCase : int = auxiliary_loss _UpperCAmelCase : Optional[int] = position_embedding_type _UpperCAmelCase : List[Any] = backbone _UpperCAmelCase : Optional[int] = use_pretrained_backbone _UpperCAmelCase : List[Any] = dilation # Hungarian matcher _UpperCAmelCase : List[str] = class_cost _UpperCAmelCase : Optional[Any] = bbox_cost _UpperCAmelCase : Tuple = giou_cost # Loss coefficients _UpperCAmelCase : str = mask_loss_coefficient _UpperCAmelCase : Tuple = dice_loss_coefficient _UpperCAmelCase : int = cls_loss_coefficient _UpperCAmelCase : Tuple = bbox_loss_coefficient _UpperCAmelCase : Union[str, Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = focal_alpha super().__init__(is_encoder_decoder=a_ ,**a_ ) @property def _snake_case ( self ) -> int: return self.encoder_attention_heads @property def _snake_case ( self ) -> int: return self.d_model def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: _UpperCAmelCase : Union[str, Any] = self.backbone_config.to_dict() _UpperCAmelCase : Optional[Any] = self.__class__.model_type return output class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-5 @property def _snake_case ( self ) -> int: return 12
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
1
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase : """simple docstring""" @staticmethod def _snake_case ( *a_ ,**a_ ) -> Dict: pass def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def _snake_case ( self ,a_ ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : Optional[int] = DepthEstimationPipeline(model=a_ ,image_processor=a_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : int = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} ,a_ ) import datasets _UpperCAmelCase : List[Any] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" ,"""image""" ,split="""test""" ) _UpperCAmelCase : List[str] = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] ,a_ ,) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def _snake_case ( self ) -> str: pass @slow @require_torch def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Optional[int] = """Intel/dpt-large""" _UpperCAmelCase : Tuple = pipeline("""depth-estimation""" ,model=a_ ) _UpperCAmelCase : List[str] = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) _UpperCAmelCase : List[Any] = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) ,29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) ,2.662 ) @require_torch def _snake_case ( self ) -> str: # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
349
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
1
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : List[Any] = checkpoint _UpperCAmelCase : Union[str, Any] = {} _UpperCAmelCase : Tuple = vae_state_dict["""encoder.conv_in.weight"""] _UpperCAmelCase : List[str] = vae_state_dict["""encoder.conv_in.bias"""] _UpperCAmelCase : Dict = vae_state_dict["""encoder.conv_out.weight"""] _UpperCAmelCase : List[Any] = vae_state_dict["""encoder.conv_out.bias"""] _UpperCAmelCase : List[str] = vae_state_dict["""encoder.norm_out.weight"""] _UpperCAmelCase : Dict = vae_state_dict["""encoder.norm_out.bias"""] _UpperCAmelCase : Optional[Any] = vae_state_dict["""decoder.conv_in.weight"""] _UpperCAmelCase : Dict = vae_state_dict["""decoder.conv_in.bias"""] _UpperCAmelCase : Union[str, Any] = vae_state_dict["""decoder.conv_out.weight"""] _UpperCAmelCase : List[Any] = vae_state_dict["""decoder.conv_out.bias"""] _UpperCAmelCase : List[Any] = vae_state_dict["""decoder.norm_out.weight"""] _UpperCAmelCase : Any = vae_state_dict["""decoder.norm_out.bias"""] _UpperCAmelCase : Tuple = vae_state_dict["""quant_conv.weight"""] _UpperCAmelCase : Any = vae_state_dict["""quant_conv.bias"""] _UpperCAmelCase : List[Any] = vae_state_dict["""post_quant_conv.weight"""] _UpperCAmelCase : Optional[Any] = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only _UpperCAmelCase : List[Any] = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) _UpperCAmelCase : Tuple = { layer_id: [key for key in vae_state_dict if F'''down.{layer_id}''' in key] for layer_id in range(lowerCAmelCase_ ) } # Retrieves the keys for the decoder up blocks only _UpperCAmelCase : Any = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) _UpperCAmelCase : List[str] = { layer_id: [key for key in vae_state_dict if F'''up.{layer_id}''' in key] for layer_id in range(lowerCAmelCase_ ) } for i in range(lowerCAmelCase_ ): _UpperCAmelCase : Tuple = [key for key in down_blocks[i] if F'''down.{i}''' in key and F'''down.{i}.downsample''' not in key] if F'''encoder.down.{i}.downsample.conv.weight''' in vae_state_dict: _UpperCAmelCase : Any = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.weight''' ) _UpperCAmelCase : Any = vae_state_dict.pop( F'''encoder.down.{i}.downsample.conv.bias''' ) _UpperCAmelCase : Dict = renew_vae_resnet_paths(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = {"""old""": F'''down.{i}.block''', """new""": F'''down_blocks.{i}.resnets'''} assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , config=lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [key for key in vae_state_dict if """encoder.mid.block""" in key] _UpperCAmelCase : int = 2 for i in range(1 , num_mid_res_blocks + 1 ): _UpperCAmelCase : Dict = [key for key in mid_resnets if F'''encoder.mid.block_{i}''' in key] _UpperCAmelCase : int = renew_vae_resnet_paths(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = {"""old""": F'''mid.block_{i}''', """new""": F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , config=lowerCAmelCase_ ) _UpperCAmelCase : int = [key for key in vae_state_dict if """encoder.mid.attn""" in key] _UpperCAmelCase : int = renew_vae_attention_paths(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , config=lowerCAmelCase_ ) conv_attn_to_linear(lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): _UpperCAmelCase : List[Any] = num_up_blocks - 1 - i _UpperCAmelCase : Tuple = [ key for key in up_blocks[block_id] if F'''up.{block_id}''' in key and F'''up.{block_id}.upsample''' not in key ] if F'''decoder.up.{block_id}.upsample.conv.weight''' in vae_state_dict: _UpperCAmelCase : Tuple = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.weight''' ] _UpperCAmelCase : int = vae_state_dict[ F'''decoder.up.{block_id}.upsample.conv.bias''' ] _UpperCAmelCase : Any = renew_vae_resnet_paths(lowerCAmelCase_ ) _UpperCAmelCase : Dict = {"""old""": F'''up.{block_id}.block''', """new""": F'''up_blocks.{i}.resnets'''} assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , config=lowerCAmelCase_ ) _UpperCAmelCase : str = [key for key in vae_state_dict if """decoder.mid.block""" in key] _UpperCAmelCase : Tuple = 2 for i in range(1 , num_mid_res_blocks + 1 ): _UpperCAmelCase : Tuple = [key for key in mid_resnets if F'''decoder.mid.block_{i}''' in key] _UpperCAmelCase : List[str] = renew_vae_resnet_paths(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = {"""old""": F'''mid.block_{i}''', """new""": F'''mid_block.resnets.{i - 1}'''} assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , config=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = [key for key in vae_state_dict if """decoder.mid.attn""" in key] _UpperCAmelCase : List[Any] = renew_vae_attention_paths(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , config=lowerCAmelCase_ ) conv_attn_to_linear(lowerCAmelCase_ ) return new_checkpoint def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , )-> Any: '''simple docstring''' _UpperCAmelCase : str = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) _UpperCAmelCase : List[Any] = io.BytesIO(r.content ) _UpperCAmelCase : Optional[Any] = OmegaConf.load(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = 512 _UpperCAmelCase : str = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open _UpperCAmelCase : Tuple = {} with safe_open(lowerCAmelCase_ , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): _UpperCAmelCase : Optional[int] = f.get_tensor(lowerCAmelCase_ ) else: _UpperCAmelCase : List[Any] = torch.load(lowerCAmelCase_ , map_location=lowerCAmelCase_ )["""state_dict"""] # Convert the VAE model. _UpperCAmelCase : Any = create_vae_diffusers_config(lowerCAmelCase_ , image_size=lowerCAmelCase_ ) _UpperCAmelCase : str = custom_convert_ldm_vae_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = AutoencoderKL(**lowerCAmelCase_ ) vae.load_state_dict(lowerCAmelCase_ ) vae.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--vae_pt_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the VAE.pt to convert.""") A_ : Dict = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
349
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Optional[int]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Dict: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> str: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Tuple: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Any: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> List[Any]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Dict: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> List[str]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Optional[int]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> str: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Optional[Any]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> List[str]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Dict: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> int: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> str: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> List[str]: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> str: requires_backends(cls ,["""flax"""] ) class lowercase ( metaclass=_lowerCamelCase ): """simple docstring""" UpperCAmelCase = ["""flax"""] def __init__( self ,*a_ ,**a_ ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> List[str]: requires_backends(cls ,["""flax"""] ) @classmethod def _snake_case ( cls ,*a_ ,**a_ ) -> Optional[int]: requires_backends(cls ,["""flax"""] )
349
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowercase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) UpperCAmelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ) -> Tuple: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) torch.manual_seed(0 ) _UpperCAmelCase : List[str] = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) torch.manual_seed(0 ) _UpperCAmelCase : Tuple = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) torch.manual_seed(0 ) _UpperCAmelCase : str = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) _UpperCAmelCase : Dict = CLIPTextModel(a_ ) _UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCAmelCase : List[str] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self ,a_ ,a_=0 ) -> Union[str, Any]: if str(a_ ).startswith("""mps""" ): _UpperCAmelCase : int = torch.manual_seed(a_ ) else: _UpperCAmelCase : str = torch.Generator(device=a_ ).manual_seed(a_ ) _UpperCAmelCase : int = 2 _UpperCAmelCase : List[str] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=a_ ,device=torch.device(a_ ) ,) _UpperCAmelCase : Tuple = floats_tensor(control_image.shape ,rng=random.Random(a_ ) ).to(a_ ) _UpperCAmelCase : List[str] = image.cpu().permute(0 ,2 ,3 ,1 )[0] _UpperCAmelCase : Dict = Image.fromarray(np.uinta(a_ ) ).convert("""RGB""" ).resize((64, 64) ) _UpperCAmelCase : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def _snake_case ( self ) -> str: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def _snake_case ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _snake_case ( self ) -> int: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = StableDiffusionControlNetImgaImgPipeline UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} UpperCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _snake_case ( self ) -> Any: torch.manual_seed(0 ) _UpperCAmelCase : Tuple = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) torch.manual_seed(0 ) def init_weights(a_ ): if isinstance(a_ ,torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _UpperCAmelCase : int = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(a_ ) torch.manual_seed(0 ) _UpperCAmelCase : Any = ControlNetModel( block_out_channels=(32, 64) ,layers_per_block=2 ,in_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,cross_attention_dim=32 ,conditioning_embedding_out_channels=(16, 32) ,) controlneta.controlnet_down_blocks.apply(a_ ) torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) torch.manual_seed(0 ) _UpperCAmelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) torch.manual_seed(0 ) _UpperCAmelCase : int = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) _UpperCAmelCase : List[Any] = CLIPTextModel(a_ ) _UpperCAmelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCAmelCase : int = MultiControlNetModel([controlneta, controlneta] ) _UpperCAmelCase : Any = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def _snake_case ( self ,a_ ,a_=0 ) -> Optional[Any]: if str(a_ ).startswith("""mps""" ): _UpperCAmelCase : Any = torch.manual_seed(a_ ) else: _UpperCAmelCase : str = torch.Generator(device=a_ ).manual_seed(a_ ) _UpperCAmelCase : int = 2 _UpperCAmelCase : Tuple = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=a_ ,device=torch.device(a_ ) ,), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) ,generator=a_ ,device=torch.device(a_ ) ,), ] _UpperCAmelCase : Dict = floats_tensor(control_image[0].shape ,rng=random.Random(a_ ) ).to(a_ ) _UpperCAmelCase : List[str] = image.cpu().permute(0 ,2 ,3 ,1 )[0] _UpperCAmelCase : Tuple = Image.fromarray(np.uinta(a_ ) ).convert("""RGB""" ).resize((64, 64) ) _UpperCAmelCase : int = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = self.pipeline_class(**a_ ) pipe.to(a_ ) _UpperCAmelCase : Union[str, Any] = 10.0 _UpperCAmelCase : List[Any] = 4 _UpperCAmelCase : Any = self.get_dummy_inputs(a_ ) _UpperCAmelCase : Any = steps _UpperCAmelCase : Optional[Any] = scale _UpperCAmelCase : Any = pipe(**a_ )[0] _UpperCAmelCase : List[str] = self.get_dummy_inputs(a_ ) _UpperCAmelCase : Any = steps _UpperCAmelCase : str = scale _UpperCAmelCase : Any = pipe(**a_ ,control_guidance_start=0.1 ,control_guidance_end=0.2 )[0] _UpperCAmelCase : Union[str, Any] = self.get_dummy_inputs(a_ ) _UpperCAmelCase : str = steps _UpperCAmelCase : List[Any] = scale _UpperCAmelCase : List[str] = pipe(**a_ ,control_guidance_start=[0.1, 0.3] ,control_guidance_end=[0.2, 0.7] )[0] _UpperCAmelCase : List[str] = self.get_dummy_inputs(a_ ) _UpperCAmelCase : int = steps _UpperCAmelCase : Optional[int] = scale _UpperCAmelCase : Dict = pipe(**a_ ,control_guidance_start=0.4 ,control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def _snake_case ( self ) -> Optional[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() ,reason="""XFormers attention is only available with CUDA and `xformers` installed""" ,) def _snake_case ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def _snake_case ( self ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def _snake_case ( self ) -> str: _UpperCAmelCase : Any = self.get_dummy_components() _UpperCAmelCase : str = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(a_ ) except NotImplementedError: pass @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Tuple: _UpperCAmelCase : str = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) _UpperCAmelCase : str = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ,controlnet=a_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase : int = """evil space-punk bird""" _UpperCAmelCase : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) _UpperCAmelCase : Tuple = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) _UpperCAmelCase : Any = pipe( a_ ,a_ ,control_image=a_ ,generator=a_ ,output_type="""np""" ,num_inference_steps=50 ,strength=0.6 ,) _UpperCAmelCase : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) _UpperCAmelCase : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
349
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
1
'''simple docstring''' from jiwer import compute_measures import datasets A_ : List[str] = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ A_ : Any = """\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ A_ : List[Any] = """ Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): """simple docstring""" def _snake_case ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Value("""string""" ,id="""sequence""" ), } ) ,codebase_urls=["""https://github.com/jitsi/jiwer/"""] ,reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] ,) def _snake_case ( self ,a_=None ,a_=None ,a_=False ) -> List[Any]: if concatenate_texts: return compute_measures(a_ ,a_ )["wer"] else: _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Any = 0 for prediction, reference in zip(a_ ,a_ ): _UpperCAmelCase : Optional[int] = compute_measures(a_ ,a_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
349
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
1
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
1
'''simple docstring''' print((lambda quine: quine % quine)("""print((lambda quine: quine %% quine)(%r))"""))
349
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : """simple docstring""" def __init__( self ,a_ ,a_=13 ,a_=7 ,a_=True ,a_=True ,a_=True ,a_=True ,a_=True ,a_=False ,a_=False ,a_=False ,a_=2 ,a_=99 ,a_=0 ,a_=32 ,a_=5 ,a_=4 ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=2 ,a_=0.02 ,a_=2 ,a_=4 ,a_="last" ,a_=True ,a_=None ,a_=0 ,) -> str: _UpperCAmelCase : Optional[Any] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : List[Any] = seq_length _UpperCAmelCase : Any = is_training _UpperCAmelCase : List[Any] = use_input_lengths _UpperCAmelCase : str = use_token_type_ids _UpperCAmelCase : Tuple = use_labels _UpperCAmelCase : Optional[int] = gelu_activation _UpperCAmelCase : str = sinusoidal_embeddings _UpperCAmelCase : Dict = causal _UpperCAmelCase : Union[str, Any] = asm _UpperCAmelCase : str = n_langs _UpperCAmelCase : List[str] = vocab_size _UpperCAmelCase : List[Any] = n_special _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = type_sequence_label_size _UpperCAmelCase : Any = initializer_range _UpperCAmelCase : int = num_labels _UpperCAmelCase : Dict = num_choices _UpperCAmelCase : Dict = summary_type _UpperCAmelCase : Dict = use_proj _UpperCAmelCase : str = scope _UpperCAmelCase : str = bos_token_id def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : List[str] = None if self.use_input_lengths: _UpperCAmelCase : Optional[int] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _UpperCAmelCase : List[Any] = None if self.use_token_type_ids: _UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) _UpperCAmelCase : str = None _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _UpperCAmelCase : str = ids_tensor([self.batch_size] ,2 ).float() _UpperCAmelCase : Any = ids_tensor([self.batch_size] ,self.num_choices ) _UpperCAmelCase : Any = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _snake_case ( self ) -> str: return XLMConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,num_labels=self.num_labels ,bos_token_id=self.bos_token_id ,) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Dict: _UpperCAmelCase : int = XLMModel(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : List[str] = model(a_ ,lengths=a_ ,langs=a_ ) _UpperCAmelCase : int = model(a_ ,langs=a_ ) _UpperCAmelCase : Optional[Any] = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Optional[int]: _UpperCAmelCase : Any = XLMWithLMHeadModel(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : List[str] = model(a_ ,token_type_ids=a_ ,labels=a_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> Dict: _UpperCAmelCase : str = XLMForQuestionAnsweringSimple(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : List[str] = model(a_ ) _UpperCAmelCase : List[str] = model(a_ ,start_positions=a_ ,end_positions=a_ ) _UpperCAmelCase : Any = outputs self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> int: _UpperCAmelCase : List[Any] = XLMForQuestionAnswering(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Optional[Any] = model(a_ ) _UpperCAmelCase : Tuple = model( a_ ,start_positions=a_ ,end_positions=a_ ,cls_index=a_ ,is_impossible=a_ ,p_mask=a_ ,) _UpperCAmelCase : Optional[int] = model( a_ ,start_positions=a_ ,end_positions=a_ ,cls_index=a_ ,is_impossible=a_ ,) ((_UpperCAmelCase) ,) : Tuple = result_with_labels.to_tuple() _UpperCAmelCase : Optional[Any] = model(a_ ,start_positions=a_ ,end_positions=a_ ) ((_UpperCAmelCase) ,) : Tuple = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape ,() ) self.parent.assertEqual(result.start_top_log_probs.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape ,(self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape ,(self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape ,(self.batch_size,) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> List[Any]: _UpperCAmelCase : Optional[Any] = XLMForSequenceClassification(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : List[str] = model(a_ ) _UpperCAmelCase : Dict = model(a_ ,labels=a_ ) self.parent.assertEqual(result.loss.shape ,() ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> List[Any]: _UpperCAmelCase : Union[str, Any] = self.num_labels _UpperCAmelCase : Dict = XLMForTokenClassification(a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Dict = model(a_ ,attention_mask=a_ ,labels=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ,) -> str: _UpperCAmelCase : str = self.num_choices _UpperCAmelCase : Dict = XLMForMultipleChoice(config=a_ ) model.to(a_ ) model.eval() _UpperCAmelCase : Any = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _UpperCAmelCase : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _UpperCAmelCase : List[Any] = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() _UpperCAmelCase : Dict = model( a_ ,attention_mask=a_ ,token_type_ids=a_ ,labels=a_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _snake_case ( self ) -> int: _UpperCAmelCase : List[str] = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) ,( _UpperCAmelCase ) , ) : List[str] = config_and_inputs _UpperCAmelCase : int = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths} return config, inputs_dict @require_torch class lowercase ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCAmelCase = ( { """feature-extraction""": XLMModel, """fill-mask""": XLMWithLMHeadModel, """question-answering""": XLMForQuestionAnsweringSimple, """text-classification""": XLMForSequenceClassification, """text-generation""": XLMWithLMHeadModel, """token-classification""": XLMForTokenClassification, """zero-shot""": XLMForSequenceClassification, } if is_torch_available() else {} ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Tuple: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _snake_case ( self ,a_ ,a_ ,a_=False ) -> int: _UpperCAmelCase : Any = super()._prepare_for_class(a_ ,a_ ,return_labels=a_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _UpperCAmelCase : Optional[int] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=a_ ) _UpperCAmelCase : str = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=a_ ) return inputs_dict def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[Any] = XLMModelTester(self ) _UpperCAmelCase : str = ConfigTester(self ,config_class=a_ ,emb_dim=37 ) def _snake_case ( self ) -> Any: self.config_tester.run_common_tests() def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*a_ ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*a_ ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*a_ ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*a_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*a_ ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_=False ,a_=1 ) -> Optional[int]: self.assertIsInstance(a_ ,a_ ) self.assertListEqual( [isinstance(a_ ,a_ ) for iter_attentions in attentions] ,[True] * len(a_ ) ) self.assertEqual(len(a_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(a_ ): # adds PAD dummy token _UpperCAmelCase : Dict = min_length + idx + 1 _UpperCAmelCase : List[str] = min_length + idx + 1 _UpperCAmelCase : Optional[Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] ,[expected_shape] * len(a_ ) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_=False ,a_=1 ) -> List[str]: self.assertIsInstance(a_ ,a_ ) self.assertListEqual( [isinstance(a_ ,a_ ) for iter_hidden_states in hidden_states] ,[True] * len(a_ ) ,) self.assertEqual(len(a_ ) ,(max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(a_ ): # adds PAD dummy token _UpperCAmelCase : Tuple = min_length + idx + 1 _UpperCAmelCase : List[Any] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] ,[expected_shape] * len(a_ ) ,) pass @slow def _snake_case ( self ) -> int: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : Optional[Any] = XLMModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> str: _UpperCAmelCase : List[Any] = XLMWithLMHeadModel.from_pretrained("""xlm-mlm-en-2048""" ) model.to(a_ ) _UpperCAmelCase : Union[str, Any] = torch.tensor([[14, 447]] ,dtype=torch.long ,device=a_ ) # the president _UpperCAmelCase : Optional[int] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _UpperCAmelCase : str = model.generate(a_ ,do_sample=a_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() ,a_ )
349
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowercase : """simple docstring""" def __init__( self ,a_ ,) -> Dict: _UpperCAmelCase : Tuple = parent _UpperCAmelCase : Tuple = 13 _UpperCAmelCase : Union[str, Any] = 7 _UpperCAmelCase : List[str] = True _UpperCAmelCase : Tuple = True _UpperCAmelCase : int = False _UpperCAmelCase : List[str] = True _UpperCAmelCase : Optional[int] = 99 _UpperCAmelCase : int = 32 _UpperCAmelCase : Any = 2 _UpperCAmelCase : List[Any] = 4 _UpperCAmelCase : Optional[int] = 37 _UpperCAmelCase : List[str] = """gelu""" _UpperCAmelCase : List[Any] = 0.1 _UpperCAmelCase : List[Any] = 0.1 _UpperCAmelCase : int = 512 _UpperCAmelCase : Tuple = 16 _UpperCAmelCase : Dict = 2 _UpperCAmelCase : Optional[int] = 0.02 _UpperCAmelCase : int = 3 _UpperCAmelCase : List[Any] = 4 _UpperCAmelCase : Dict = None def _snake_case ( self ) -> Any: _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : List[Any] = None if self.use_input_mask: _UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : str = None _UpperCAmelCase : Union[str, Any] = None if self.use_labels: _UpperCAmelCase : Any = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) _UpperCAmelCase : str = ids_tensor([self.batch_size] ,self.num_choices ) _UpperCAmelCase : int = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = TFDistilBertModel(config=a_ ) _UpperCAmelCase : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase : Tuple = model(a_ ) _UpperCAmelCase : List[str] = [input_ids, input_mask] _UpperCAmelCase : str = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> str: _UpperCAmelCase : Tuple = TFDistilBertForMaskedLM(config=a_ ) _UpperCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = TFDistilBertForQuestionAnswering(config=a_ ) _UpperCAmelCase : Union[str, Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, } _UpperCAmelCase : str = model(a_ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> int: _UpperCAmelCase : str = self.num_labels _UpperCAmelCase : Union[str, Any] = TFDistilBertForSequenceClassification(a_ ) _UpperCAmelCase : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase : Union[str, Any] = model(a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> List[Any]: _UpperCAmelCase : Union[str, Any] = self.num_choices _UpperCAmelCase : Optional[int] = TFDistilBertForMultipleChoice(a_ ) _UpperCAmelCase : List[str] = tf.tile(tf.expand_dims(a_ ,1 ) ,(1, self.num_choices, 1) ) _UpperCAmelCase : Optional[int] = tf.tile(tf.expand_dims(a_ ,1 ) ,(1, self.num_choices, 1) ) _UpperCAmelCase : Dict = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } _UpperCAmelCase : Tuple = model(a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ,a_ ,a_ ) -> int: _UpperCAmelCase : Optional[Any] = self.num_labels _UpperCAmelCase : List[Any] = TFDistilBertForTokenClassification(a_ ) _UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} _UpperCAmelCase : Optional[int] = model(a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ) -> int: _UpperCAmelCase : Any = self.prepare_config_and_inputs() ((_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase) ,(_UpperCAmelCase)) : str = config_and_inputs _UpperCAmelCase : int = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) UpperCAmelCase = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ) -> int: _UpperCAmelCase : Any = TFDistilBertModelTester(self ) _UpperCAmelCase : Any = ConfigTester(self ,config_class=a_ ,dim=37 ) def _snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*a_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*a_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*a_ ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*a_ ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*a_ ) def _snake_case ( self ) -> str: _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*a_ ) @slow def _snake_case ( self ) -> List[Any]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _UpperCAmelCase : Optional[int] = TFDistilBertModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" @slow def _snake_case ( self ) -> Any: _UpperCAmelCase : Tuple = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) _UpperCAmelCase : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] ) _UpperCAmelCase : List[str] = model(a_ )[0] _UpperCAmelCase : int = [1, 6, 768] self.assertEqual(output.shape ,a_ ) _UpperCAmelCase : Tuple = tf.constant( [ [ [0.1926_1885, -0.1373_2955, 0.411_9799], [0.2215_0156, -0.0742_2661, 0.3903_7204], [0.2275_6018, -0.089_6414, 0.370_1467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] ,a_ ,atol=1E-4 )
349
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import requests def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : List[Any] = {"""Content-Type""": """application/json"""} _UpperCAmelCase : Optional[Any] = requests.post(lowerCAmelCase_ , json={"""text""": message_body} , headers=lowerCAmelCase_ ) if response.status_code != 200: _UpperCAmelCase : str = ( """Request to slack returned an error """ F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(lowerCAmelCase_ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
349
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
1
'''simple docstring''' class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ,a_ ) -> List[str]: _UpperCAmelCase : List[Any] = name _UpperCAmelCase : Dict = value _UpperCAmelCase : Any = weight def __repr__( self ) -> Dict: return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def _snake_case ( self ) -> Any: return self.value def _snake_case ( self ) -> Tuple: return self.name def _snake_case ( self ) -> Optional[Any]: return self.weight def _snake_case ( self ) -> List[Any]: return self.value / self.weight def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' _UpperCAmelCase : Any = [] for i in range(len(lowerCAmelCase_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = sorted(lowerCAmelCase_ , key=lowerCAmelCase_ , reverse=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = [] _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = 0.0, 0.0 for i in range(len(lowerCAmelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def snake_case_ ( )-> List[str]: '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> bool: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : Any = F'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCAmelCase_ ) if number < 0: return False _UpperCAmelCase : Union[str, Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
1
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ = 13 ,a_ = 64 ,a_ = 2 ,a_ = 3 ,a_ = 3 ,a_ = True ,a_ = True ,a_ = 128 ,a_=[16, 32, 64, 128] ,a_ = 7 ,a_ = 4 ,a_ = 37 ,a_ = "gelu" ,a_ = 0.1 ,a_ = 0.1 ,a_ = 10 ,a_ = 0.02 ,a_ = 2 ,a_ = 1 ,a_ = 128 ,a_ = [2, 2, 2, 2] ,a_ = 2 ,a_ = 2 ,) -> Tuple: _UpperCAmelCase : int = parent _UpperCAmelCase : Optional[Any] = batch_size _UpperCAmelCase : int = image_size _UpperCAmelCase : Optional[int] = patch_size _UpperCAmelCase : int = num_channels _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : Union[str, Any] = hidden_size _UpperCAmelCase : Tuple = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : Any = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : int = type_sequence_label_size _UpperCAmelCase : Dict = initializer_range _UpperCAmelCase : List[str] = encoder_stride _UpperCAmelCase : Optional[Any] = num_attention_outputs _UpperCAmelCase : Any = embed_dim _UpperCAmelCase : Union[str, Any] = embed_dim + 1 _UpperCAmelCase : List[Any] = resolution _UpperCAmelCase : Dict = depths _UpperCAmelCase : int = hidden_sizes _UpperCAmelCase : List[str] = dim _UpperCAmelCase : str = mlp_expansion_ratio def _snake_case ( self ) -> int: _UpperCAmelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : str = None if self.use_labels: _UpperCAmelCase : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) _UpperCAmelCase : Union[str, Any] = self.get_config() return config, pixel_values, labels def _snake_case ( self ) -> str: return EfficientFormerConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=a_ ,initializer_range=self.initializer_range ,encoder_stride=self.encoder_stride ,resolution=self.resolution ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,dim=self.dim ,mlp_expansion_ratio=self.mlp_expansion_ratio ,) def _snake_case ( self ,a_ ,a_ ,a_ ) -> int: _UpperCAmelCase : str = TFEfficientFormerModel(config=a_ ) _UpperCAmelCase : Union[str, Any] = model(a_ ,training=a_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self ,a_ ,a_ ,a_ ) -> Any: _UpperCAmelCase : int = self.type_sequence_label_size _UpperCAmelCase : Union[str, Any] = TFEfficientFormerForImageClassification(a_ ) _UpperCAmelCase : Optional[Any] = model(a_ ,labels=a_ ,training=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : str = 1 _UpperCAmelCase : Any = TFEfficientFormerForImageClassification(a_ ) _UpperCAmelCase : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : List[Any] = model(a_ ,labels=a_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : List[str] = config_and_inputs _UpperCAmelCase : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) UpperCAmelCase = ( { """feature-extraction""": TFEfficientFormerModel, """image-classification""": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Optional[Any] = TFEfficientFormerModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester( self ,config_class=a_ ,has_text_modality=a_ ,hidden_size=37 ) def _snake_case ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""EfficientFormer does not use inputs_embeds""" ) def _snake_case ( self ) -> Optional[int]: pass @unittest.skip(reason="""EfficientFormer does not support input and output embeddings""" ) def _snake_case ( self ) -> Optional[Any]: pass def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase ,_UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = model_class(a_ ) _UpperCAmelCase : List[str] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : Dict = [*signature.parameters.keys()] _UpperCAmelCase : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,a_ ) def _snake_case ( self ) -> int: def check_hidden_states_output(a_ ,a_ ,a_ ): _UpperCAmelCase : Any = model_class(a_ ) _UpperCAmelCase : Optional[int] = model(**self._prepare_for_class(a_ ,a_ ) ,training=a_ ) _UpperCAmelCase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCAmelCase : Optional[int] = getattr( self.model_tester ,"""expected_num_hidden_layers""" ,self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(a_ ) ,a_ ) if hasattr(self.model_tester ,"""encoder_seq_length""" ): _UpperCAmelCase : Any = self.model_tester.encoder_seq_length if hasattr(self.model_tester ,"""chunk_length""" ) and self.model_tester.chunk_length > 1: _UpperCAmelCase : Optional[int] = seq_length * self.model_tester.chunk_length else: _UpperCAmelCase : Optional[Any] = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[seq_length, self.model_tester.hidden_size] ,) if config.is_encoder_decoder: _UpperCAmelCase : Tuple = outputs.decoder_hidden_states self.asseretIsInstance(a_ ,(list, tuple) ) self.assertEqual(len(a_ ) ,a_ ) _UpperCAmelCase : Optional[Any] = getattr(self.model_tester ,"""seq_length""" ,a_ ) _UpperCAmelCase : Optional[Any] = getattr(self.model_tester ,"""decoder_seq_length""" ,a_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) ,[decoder_seq_length, self.model_tester.hidden_size] ,) _UpperCAmelCase ,_UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : str = True check_hidden_states_output(a_ ,a_ ,a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase : List[str] = True check_hidden_states_output(a_ ,a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_=False ) -> List[Any]: _UpperCAmelCase : Optional[Any] = super()._prepare_for_class(a_ ,a_ ,return_labels=a_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _snake_case ( self ) -> List[str]: _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) @unittest.skip(reason="""EfficientFormer does not implement masked image modeling yet""" ) def _snake_case ( self ) -> Dict: _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*a_ ) def _snake_case ( self ) -> Tuple: _UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def _snake_case ( self ) -> Tuple: for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase : int = TFEfficientFormerModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase ,_UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase : str = True _UpperCAmelCase : str = getattr(self.model_tester ,"""seq_length""" ,a_ ) _UpperCAmelCase : Any = getattr(self.model_tester ,"""encoder_seq_length""" ,a_ ) _UpperCAmelCase : str = getattr(self.model_tester ,"""key_length""" ,a_ ) _UpperCAmelCase : List[Any] = getattr(self.model_tester ,"""chunk_length""" ,a_ ) if chunk_length is not None and hasattr(self.model_tester ,"""num_hashes""" ): _UpperCAmelCase : int = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: _UpperCAmelCase : Any = True _UpperCAmelCase : str = False _UpperCAmelCase : int = True _UpperCAmelCase : Any = model_class(a_ ) _UpperCAmelCase : str = model(**self._prepare_for_class(a_ ,a_ ) ,training=a_ ) _UpperCAmelCase : Optional[int] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) ,self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _UpperCAmelCase : Dict = True _UpperCAmelCase : List[str] = model_class(a_ ) _UpperCAmelCase : str = model(**self._prepare_for_class(a_ ,a_ ) ,training=a_ ) _UpperCAmelCase : Optional[Any] = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(a_ ) ,self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] ,) else: self.assertListEqual( list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] ,) def _snake_case ( self ) -> str: # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model _UpperCAmelCase : int = model_class(a_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes _UpperCAmelCase : Optional[int] = { key: tf.keras.Input(shape=val.shape[1:] ,dtype=val.dtype ,name=a_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } _UpperCAmelCase : Any = model(a_ ) self.assertTrue(outputs_dict is not None ) def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def _snake_case ( self ) -> List[Any]: return ( EfficientFormerImageProcessor.from_pretrained("""snap-research/efficientformer-l1-300""" ) if is_vision_available() else None ) @slow def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Union[str, Any] = TFEfficientFormerForImageClassification.from_pretrained("""snap-research/efficientformer-l1-300""" ) _UpperCAmelCase : int = self.default_image_processor _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : Any = image_processor(images=a_ ,return_tensors="""tf""" ) # forward pass _UpperCAmelCase : str = model(**a_ ,training=a_ ) # verify the logits _UpperCAmelCase : Tuple = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,a_ ) _UpperCAmelCase : List[str] = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,a_ ,atol=1E-4 ) ) @slow def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Dict = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( """snap-research/efficientformer-l1-300""" ) _UpperCAmelCase : Any = self.default_image_processor _UpperCAmelCase : List[Any] = prepare_img() _UpperCAmelCase : List[str] = image_processor(images=a_ ,return_tensors="""tf""" ) # forward pass _UpperCAmelCase : List[str] = model(**a_ ,training=a_ ) # verify the logits _UpperCAmelCase : Optional[Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape ,a_ ) _UpperCAmelCase : Any = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] ,a_ ,atol=1E-4 ) )
349
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ = 2000000 )-> int: '''simple docstring''' _UpperCAmelCase : int = [0 for i in range(n + 1 )] _UpperCAmelCase : int = 1 _UpperCAmelCase : Any = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowerCAmelCase_ ): _UpperCAmelCase : Any = 1 _UpperCAmelCase : List[str] = 0 for i in range(lowerCAmelCase_ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig A_ : Tuple = logging.get_logger(__name__) A_ : List[str] = { """Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""", # See all DPT models at https://huggingface.co/models?filter=dpt } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """dpt""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=384 ,a_=16 ,a_=3 ,a_=False ,a_=True ,a_=[2, 5, 8, 11] ,a_="project" ,a_=[4, 2, 1, 0.5] ,a_=[96, 192, 384, 768] ,a_=256 ,a_=-1 ,a_=False ,a_=True ,a_=0.4 ,a_=255 ,a_=0.1 ,a_=[1, 1_024, 24, 24] ,a_=[0, 1] ,a_=None ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : int = hidden_size _UpperCAmelCase : Any = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) _UpperCAmelCase : Dict = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } _UpperCAmelCase : Optional[Any] = BitConfig(**a_ ) elif isinstance(a_ ,a_ ): logger.info("""Initializing the config with a `BiT` backbone.""" ) _UpperCAmelCase : Optional[int] = BitConfig(**a_ ) elif isinstance(a_ ,a_ ): _UpperCAmelCase : Any = backbone_config else: raise ValueError( f'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _UpperCAmelCase : List[str] = backbone_featmap_shape _UpperCAmelCase : Union[str, Any] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: _UpperCAmelCase : List[Any] = None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Dict = [] _UpperCAmelCase : Union[str, Any] = num_hidden_layers _UpperCAmelCase : str = num_attention_heads _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Tuple = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : Dict = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : str = layer_norm_eps _UpperCAmelCase : str = image_size _UpperCAmelCase : Any = patch_size _UpperCAmelCase : Any = num_channels _UpperCAmelCase : Optional[int] = qkv_bias _UpperCAmelCase : Tuple = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) _UpperCAmelCase : Tuple = readout_type _UpperCAmelCase : Any = reassemble_factors _UpperCAmelCase : Optional[int] = neck_hidden_sizes _UpperCAmelCase : str = fusion_hidden_size _UpperCAmelCase : str = head_in_index _UpperCAmelCase : Dict = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _UpperCAmelCase : Dict = use_auxiliary_head _UpperCAmelCase : Union[str, Any] = auxiliary_loss_weight _UpperCAmelCase : Dict = semantic_loss_ignore_index _UpperCAmelCase : List[Any] = semantic_classifier_dropout def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : List[str] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCAmelCase : Dict = self.backbone_config.to_dict() _UpperCAmelCase : List[str] = self.__class__.model_type return output
349
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
1
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def snake_case_ ( lowerCAmelCase_ )-> Dict[str, torch.Tensor]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Tuple = [] for rt in rc.restypes: _UpperCAmelCase : Optional[int] = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) _UpperCAmelCase : Any = {name: i for i, name in enumerate(lowerCAmelCase_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) _UpperCAmelCase : Optional[Any] = torch.tensor( lowerCAmelCase_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) _UpperCAmelCase : Any = torch.tensor( lowerCAmelCase_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) _UpperCAmelCase : Dict = torch.tensor( lowerCAmelCase_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) _UpperCAmelCase : Optional[Any] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein _UpperCAmelCase : List[str] = restype_atomaa_to_atomaa[protein_aatype] _UpperCAmelCase : Optional[int] = restype_atomaa_mask[protein_aatype] _UpperCAmelCase : str = residx_atomaa_mask _UpperCAmelCase : Tuple = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back _UpperCAmelCase : Optional[Any] = restype_atomaa_to_atomaa[protein_aatype] _UpperCAmelCase : List[Any] = residx_atomaa_to_atomaa.long() # create the corresponding mask _UpperCAmelCase : Union[str, Any] = torch.zeros([21, 37] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): _UpperCAmelCase : Tuple = rc.restype_atoa[restype_letter] _UpperCAmelCase : str = rc.residue_atoms[restype_name] for atom_name in atom_names: _UpperCAmelCase : Optional[int] = rc.atom_order[atom_name] _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : int = restype_atomaa_mask[protein_aatype] _UpperCAmelCase : Dict = residx_atomaa_mask return protein def snake_case_ ( lowerCAmelCase_ )-> Dict[str, np.ndarray]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = tree_map(lambda lowerCAmelCase_ : torch.tensor(lowerCAmelCase_ , device=batch["""aatype"""].device ) , lowerCAmelCase_ , np.ndarray ) _UpperCAmelCase : Optional[int] = tensor_tree_map(lambda lowerCAmelCase_ : np.array(lowerCAmelCase_ ) , make_atomaa_masks(lowerCAmelCase_ ) ) return out
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) A_ : int = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
1
'''simple docstring''' from math import pi, sqrt def snake_case_ ( lowerCAmelCase_ )-> float: '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) if num > 1_7_1.5: raise OverflowError("""math range error""" ) elif num - int(lowerCAmelCase_ ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(lowerCAmelCase_ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def snake_case_ ( )-> None: '''simple docstring''' assert gamma(0.5 ) == sqrt(lowerCAmelCase_ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() A_ : Union[str, Any] = 1.0 while num: A_ : Optional[Any] = float(input("""Gamma of: """)) print(f"""gamma({num}) = {gamma(num)}""") print("""\nEnter 0 to exit...""")
349
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() A_ : Optional[Any] = logging.get_logger(__name__) A_ : Optional[int] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """adapter_layer""": """encoder.layers.*.adapter_layer""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", """pooling_layer.linear""": """projector""", """pooling_layer.projection""": """classifier""", } A_ : Tuple = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", """projector""", """classifier""", ] def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : int = {} with open(lowerCAmelCase_ , """r""" ) as file: for line_number, line in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : int = line.strip() if line: _UpperCAmelCase : Tuple = line.split() _UpperCAmelCase : Optional[int] = line_number _UpperCAmelCase : str = words[0] _UpperCAmelCase : Optional[Any] = value return result def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' for attribute in key.split(""".""" ): _UpperCAmelCase : Dict = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): _UpperCAmelCase : List[str] = PARAM_MAPPING[full_name.split(""".""" )[-1]] _UpperCAmelCase : Union[str, Any] = """param""" if weight_type is not None and weight_type != "param": _UpperCAmelCase : Optional[int] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ).shape elif weight_type is not None and weight_type == "param": _UpperCAmelCase : Optional[Any] = hf_pointer for attribute in hf_param_name.split(""".""" ): _UpperCAmelCase : Any = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[str] = shape_pointer.shape # let's reduce dimension _UpperCAmelCase : str = value[0] else: _UpperCAmelCase : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCAmelCase : List[Any] = value elif weight_type == "weight_g": _UpperCAmelCase : Optional[int] = value elif weight_type == "weight_v": _UpperCAmelCase : Dict = value elif weight_type == "bias": _UpperCAmelCase : int = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): _UpperCAmelCase : List[Any] = getattr(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = value else: _UpperCAmelCase : Tuple = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : Dict = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(lowerCAmelCase_ ): _UpperCAmelCase : Any = PARAM_MAPPING[full_name.split(""".""" )[-1]] _UpperCAmelCase : Optional[Any] = """param""" if weight_type is not None and weight_type != "param": _UpperCAmelCase : List[str] = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _UpperCAmelCase : Dict = """.""".join([key, hf_param_name] ) else: _UpperCAmelCase : int = key _UpperCAmelCase : int = value if """lm_head""" in full_key else value[0] A_ : Union[str, Any] = { """W_a""": """linear_1.weight""", """W_b""": """linear_2.weight""", """b_a""": """linear_1.bias""", """b_b""": """linear_2.bias""", """ln_W""": """norm.weight""", """ln_b""": """norm.bias""", } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None )-> Any: '''simple docstring''' _UpperCAmelCase : int = False for key, mapped_key in MAPPING.items(): _UpperCAmelCase : Tuple = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: _UpperCAmelCase : Tuple = True if "*" in mapped_key: _UpperCAmelCase : Dict = name.split(lowerCAmelCase_ )[0].split(""".""" )[-2] _UpperCAmelCase : Dict = mapped_key.replace("""*""" , lowerCAmelCase_ ) if "weight_g" in name: _UpperCAmelCase : Optional[Any] = """weight_g""" elif "weight_v" in name: _UpperCAmelCase : Optional[Any] = """weight_v""" elif "bias" in name: _UpperCAmelCase : Dict = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase : List[str] = """weight""" else: _UpperCAmelCase : Optional[Any] = None if hf_dict is not None: rename_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: set_recursively(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return is_used return is_used def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Any = [] _UpperCAmelCase : Dict = fairseq_model.state_dict() _UpperCAmelCase : Optional[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase : int = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , hf_model.config.feat_extract_norm == """group""" , ) _UpperCAmelCase : int = True else: _UpperCAmelCase : Dict = load_wavaveca_layer(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Dict = full_name.split("""conv_layers.""" )[-1] _UpperCAmelCase : Any = name.split(""".""" ) _UpperCAmelCase : Any = int(items[0] ) _UpperCAmelCase : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCAmelCase : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCAmelCase : Any = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) _UpperCAmelCase : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCAmelCase : int = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False )-> Optional[int]: '''simple docstring''' if config_path is not None: _UpperCAmelCase : List[Any] = WavaVecaConfig.from_pretrained(lowerCAmelCase_ ) else: _UpperCAmelCase : Optional[Any] = WavaVecaConfig() if is_seq_class: _UpperCAmelCase : List[str] = read_txt_into_dict(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = idalabel _UpperCAmelCase : List[str] = WavaVecaForSequenceClassification(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) feature_extractor.save_pretrained(lowerCAmelCase_ ) elif is_finetuned: if dict_path: _UpperCAmelCase : str = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase : str = target_dict.pad_index _UpperCAmelCase : List[str] = target_dict.bos_index _UpperCAmelCase : int = target_dict.eos_index _UpperCAmelCase : Optional[Any] = len(target_dict.symbols ) _UpperCAmelCase : Union[str, Any] = os.path.join(lowerCAmelCase_ , """vocab.json""" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_ , exist_ok=lowerCAmelCase_ ) _UpperCAmelCase : int = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCAmelCase : Any = 0 _UpperCAmelCase : int = 1 with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = WavaVecaCTCTokenizer( lowerCAmelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCAmelCase_ , ) _UpperCAmelCase : int = True if config.feat_extract_norm == """layer""" else False _UpperCAmelCase : Tuple = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , ) _UpperCAmelCase : str = WavaVecaProcessor(feature_extractor=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) _UpperCAmelCase : str = WavaVecaForCTC(lowerCAmelCase_ ) else: _UpperCAmelCase : int = WavaVecaForPreTraining(lowerCAmelCase_ ) if is_finetuned or is_seq_class: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: _UpperCAmelCase : Optional[Any] = argparse.Namespace(task="""audio_pretraining""" ) _UpperCAmelCase : List[str] = fairseq.tasks.setup_task(lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowerCAmelCase_ ) _UpperCAmelCase : str = model[0].eval() recursively_load_weights(lowerCAmelCase_ , lowerCAmelCase_ , not is_finetuned ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": A_ : List[str] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) A_ : Optional[int] = parser.parse_args() A_ : List[str] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A_ : Dict = { """configuration_layoutlmv3""": [ """LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv3Config""", """LayoutLMv3OnnxConfig""", ], """processing_layoutlmv3""": ["""LayoutLMv3Processor"""], """tokenization_layoutlmv3""": ["""LayoutLMv3Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = ["""LayoutLMv3TokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv3ForQuestionAnswering""", """LayoutLMv3ForSequenceClassification""", """LayoutLMv3ForTokenClassification""", """LayoutLMv3Model""", """LayoutLMv3PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : List[Any] = [ """TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLayoutLMv3ForQuestionAnswering""", """TFLayoutLMv3ForSequenceClassification""", """TFLayoutLMv3ForTokenClassification""", """TFLayoutLMv3Model""", """TFLayoutLMv3PreTrainedModel""", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = ["""LayoutLMv3FeatureExtractor"""] A_ : Optional[int] = ["""LayoutLMv3ImageProcessor"""] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys A_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , )-> float: '''simple docstring''' _UpperCAmelCase : Optional[int] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: _UpperCAmelCase : Optional[int] = 1 - (matter_density + radiation_density + dark_energy) _UpperCAmelCase : int = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _UpperCAmelCase : Union[str, Any] = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation A_ : Dict = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1e-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
349
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A_ : int = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Union[str, Any] = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Tuple = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
1
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=1e-1_2 )-> List[str]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowerCAmelCase_ , axis=1 ) , a_min=lowerCAmelCase_ ) ).T _UpperCAmelCase : Optional[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(lowerCAmelCase_ , axis=1 ) , a_min=lowerCAmelCase_ ) ).T return jnp.matmul(lowerCAmelCase_ , norm_emb_a.T ) class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : List[str] = FlaxCLIPVisionModule(self.config.vision_config ) _UpperCAmelCase : Optional[Any] = nn.Dense(self.config.projection_dim ,use_bias=a_ ,dtype=self.dtype ) _UpperCAmelCase : Optional[int] = self.param("""concept_embeds""" ,jax.nn.initializers.ones ,(17, self.config.projection_dim) ) _UpperCAmelCase : List[str] = self.param( """special_care_embeds""" ,jax.nn.initializers.ones ,(3, self.config.projection_dim) ) _UpperCAmelCase : List[Any] = self.param("""concept_embeds_weights""" ,jax.nn.initializers.ones ,(17,) ) _UpperCAmelCase : str = self.param("""special_care_embeds_weights""" ,jax.nn.initializers.ones ,(3,) ) def __call__( self ,a_ ) -> List[Any]: _UpperCAmelCase : str = self.vision_model(a_ )[1] _UpperCAmelCase : Tuple = self.visual_projection(a_ ) _UpperCAmelCase : str = jax_cosine_distance(a_ ,self.special_care_embeds ) _UpperCAmelCase : Optional[int] = jax_cosine_distance(a_ ,self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _UpperCAmelCase : str = 0.0 _UpperCAmelCase : List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _UpperCAmelCase : Any = jnp.round(a_ ,3 ) _UpperCAmelCase : Dict = jnp.any(special_scores > 0 ,axis=1 ,keepdims=a_ ) # Use a lower threshold if an image has any special care concept _UpperCAmelCase : Union[str, Any] = is_special_care * 0.01 _UpperCAmelCase : List[str] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _UpperCAmelCase : str = jnp.round(a_ ,3 ) _UpperCAmelCase : Optional[Any] = jnp.any(concept_scores > 0 ,axis=1 ) return has_nsfw_concepts class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = CLIPConfig UpperCAmelCase = """clip_input""" UpperCAmelCase = FlaxStableDiffusionSafetyCheckerModule def __init__( self ,a_ ,a_ = None ,a_ = 0 ,a_ = jnp.floataa ,a_ = True ,**a_ ,) -> str: if input_shape is None: _UpperCAmelCase : List[str] = (1, 224, 224, 3) _UpperCAmelCase : Union[str, Any] = self.module_class(config=a_ ,dtype=a_ ,**a_ ) super().__init__(a_ ,a_ ,input_shape=a_ ,seed=a_ ,dtype=a_ ,_do_init=_do_init ) def _snake_case ( self ,a_ ,a_ ,a_ = None ) -> FrozenDict: # init input tensor _UpperCAmelCase : Optional[Any] = jax.random.normal(a_ ,a_ ) _UpperCAmelCase ,_UpperCAmelCase : List[Any] = jax.random.split(a_ ) _UpperCAmelCase : Tuple = {"""params""": params_rng, """dropout""": dropout_rng} _UpperCAmelCase : Optional[Any] = self.module.init(a_ ,a_ )["""params"""] return random_params def __call__( self ,a_ ,a_ = None ,) -> List[str]: _UpperCAmelCase : Optional[int] = jnp.transpose(a_ ,(0, 2, 3, 1) ) return self.module.apply( {"""params""": params or self.params} ,jnp.array(a_ ,dtype=jnp.floataa ) ,rngs={} ,)
349
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
1
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
1
'''simple docstring''' import numpy # List of input, output pairs A_ : List[str] = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) A_ : List[Any] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) A_ : int = [2, 4, 1, 5] A_ : Optional[Any] = len(train_data) A_ : Optional[Any] = 0.009 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_="train" )-> List[str]: '''simple docstring''' return calculate_hypothesis_value(lowerCAmelCase_ , lowerCAmelCase_ ) - output( lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Dict = 0 for i in range(len(lowerCAmelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=m )-> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = 0 for i in range(lowerCAmelCase_ ): if index == -1: summation_value += _error(lowerCAmelCase_ ) else: summation_value += _error(lowerCAmelCase_ ) * train_data[i][0][index] return summation_value def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : int = summation_of_cost_derivative(lowerCAmelCase_ , lowerCAmelCase_ ) / m return cost_derivative_value def snake_case_ ( )-> Any: '''simple docstring''' global parameter_vector # Tune these values to set a tolerance value for predicted output _UpperCAmelCase : Optional[int] = 0.0_0_0_0_0_2 _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = 0 while True: j += 1 _UpperCAmelCase : List[str] = [0, 0, 0, 0] for i in range(0 , len(lowerCAmelCase_ ) ): _UpperCAmelCase : Tuple = get_cost_derivative(i - 1 ) _UpperCAmelCase : List[Any] = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( lowerCAmelCase_ , lowerCAmelCase_ , atol=lowerCAmelCase_ , rtol=lowerCAmelCase_ , ): break _UpperCAmelCase : str = temp_parameter_vector print(("""Number of iterations:""", j) ) def snake_case_ ( )-> List[str]: '''simple docstring''' for i in range(len(lowerCAmelCase_ ) ): print(("""Actual output value:""", output(lowerCAmelCase_ , """test""" )) ) print(("""Hypothesis output:""", calculate_hypothesis_value(lowerCAmelCase_ , """test""" )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
349
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
1
'''simple docstring''' import baseaa def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("""utf-8""" ) ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' return baseaa.baadecode(lowerCAmelCase_ ).decode("""utf-8""" ) if __name__ == "__main__": A_ : Dict = """Hello World!""" A_ : Any = baseaa_encode(test) print(encoded) A_ : Optional[int] = baseaa_decode(encoded) print(decoded)
349
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : Dict = logging.get_logger(__name__) A_ : Any = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """dpr""" def __init__( self ,a_=30_522 ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_="absolute" ,a_ = 0 ,**a_ ,) -> Dict: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : Any = vocab_size _UpperCAmelCase : Tuple = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : Optional[int] = num_attention_heads _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : Union[str, Any] = intermediate_size _UpperCAmelCase : str = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : Dict = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Optional[Any] = initializer_range _UpperCAmelCase : Any = layer_norm_eps _UpperCAmelCase : Optional[int] = projection_dim _UpperCAmelCase : Tuple = position_embedding_type
349
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib A_ : Optional[Any] = threading.Lock() A_ : Optional[logging.Handler] = None A_ : Dict = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } A_ : List[str] = logging.WARNING A_ : Dict = True def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : List[str] = os.getenv("""TRANSFORMERS_VERBOSITY""" , lowerCAmelCase_ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' F'''has to be one of: { ', '.join(log_levels.keys() ) }''' ) return _default_log_level def snake_case_ ( )-> str: '''simple docstring''' return __name__.split(""".""" )[0] def snake_case_ ( )-> logging.Logger: '''simple docstring''' return logging.getLogger(_get_library_name() ) def snake_case_ ( )-> None: '''simple docstring''' global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return _UpperCAmelCase : List[str] = logging.StreamHandler() # Set sys.stderr as stream. _UpperCAmelCase : int = sys.stderr.flush # Apply our default configuration to the library root logger. _UpperCAmelCase : Tuple = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) _UpperCAmelCase : Dict = False def snake_case_ ( )-> None: '''simple docstring''' global _default_handler with _lock: if not _default_handler: return _UpperCAmelCase : Union[str, Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) _UpperCAmelCase : List[Any] = None def snake_case_ ( )-> List[Any]: '''simple docstring''' return log_levels def snake_case_ ( lowerCAmelCase_ = None )-> logging.Logger: '''simple docstring''' if name is None: _UpperCAmelCase : str = _get_library_name() _configure_library_root_logger() return logging.getLogger(lowerCAmelCase_ ) def snake_case_ ( )-> int: '''simple docstring''' _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' _configure_library_root_logger() _get_library_root_logger().setLevel(lowerCAmelCase_ ) def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' return set_verbosity(lowerCAmelCase_ ) def snake_case_ ( )-> int: '''simple docstring''' return set_verbosity(lowerCAmelCase_ ) def snake_case_ ( )-> Tuple: '''simple docstring''' return set_verbosity(lowerCAmelCase_ ) def snake_case_ ( )-> str: '''simple docstring''' return set_verbosity(lowerCAmelCase_ ) def snake_case_ ( )-> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def snake_case_ ( )-> None: '''simple docstring''' _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(lowerCAmelCase_ ) def snake_case_ ( )-> None: '''simple docstring''' _configure_library_root_logger() _UpperCAmelCase : Dict = False def snake_case_ ( )-> None: '''simple docstring''' _configure_library_root_logger() _UpperCAmelCase : List[Any] = True def snake_case_ ( )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = _get_library_root_logger().handlers for handler in handlers: _UpperCAmelCase : Optional[Any] = logging.Formatter("""[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s""" ) handler.setFormatter(lowerCAmelCase_ ) def snake_case_ ( )-> None: '''simple docstring''' _UpperCAmelCase : Optional[int] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(lowerCAmelCase_ ) def snake_case_ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = os.getenv("""TRANSFORMERS_NO_ADVISORY_WARNINGS""" , lowerCAmelCase_ ) if no_advisory_warnings: return self.warning(*lowerCAmelCase_ , **lowerCAmelCase_ ) A_ : Any = warning_advice @functools.lru_cache(lowerCAmelCase_ ) def snake_case_ ( self , *lowerCAmelCase_ , **lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' self.warning(*lowerCAmelCase_ , **lowerCAmelCase_ ) A_ : Optional[Any] = warning_once class lowercase : """simple docstring""" def __init__( self ,*a_ ,**a_ ) -> List[str]: # pylint: disable=unused-argument _UpperCAmelCase : Optional[Any] = args[0] if args else None def __iter__( self ) -> Dict: return iter(self._iterator ) def __getattr__( self ,a_ ) -> Any: def empty_fn(*a_ ,**a_ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ) -> List[str]: return self def __exit__( self ,a_ ,a_ ,a_ ) -> Any: return class lowercase : """simple docstring""" def __call__( self ,*a_ ,**a_ ) -> Optional[int]: if _tqdm_active: return tqdm_lib.tqdm(*a_ ,**a_ ) else: return EmptyTqdm(*a_ ,**a_ ) def _snake_case ( self ,*a_ ,**a_ ) -> Optional[Any]: _UpperCAmelCase : str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*a_ ,**a_ ) def _snake_case ( self ) -> str: if _tqdm_active: return tqdm_lib.tqdm.get_lock() A_ : str = _tqdm_cls() def snake_case_ ( )-> bool: '''simple docstring''' global _tqdm_active return bool(_tqdm_active ) def snake_case_ ( )-> Optional[Any]: '''simple docstring''' global _tqdm_active _UpperCAmelCase : Optional[Any] = True hf_hub_utils.enable_progress_bars() def snake_case_ ( )-> List[str]: '''simple docstring''' global _tqdm_active _UpperCAmelCase : int = False hf_hub_utils.disable_progress_bars()
349
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer A_ : Dict = logging.get_logger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """AutoTokenizer""" UpperCAmelCase = ["""tokenizer"""] UpperCAmelCase = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self ,a_ ,a_=None ) -> Any: super().__init__(a_ ) _UpperCAmelCase : Optional[int] = speaker_embeddings @classmethod def _snake_case ( cls ,a_ ,a_="speaker_embeddings_path.json" ,**a_ ) -> Any: if speaker_embeddings_dict_path is not None: _UpperCAmelCase : Optional[Any] = get_file_from_repo( a_ ,a_ ,subfolder=kwargs.pop("""subfolder""" ,a_ ) ,cache_dir=kwargs.pop("""cache_dir""" ,a_ ) ,force_download=kwargs.pop("""force_download""" ,a_ ) ,proxies=kwargs.pop("""proxies""" ,a_ ) ,resume_download=kwargs.pop("""resume_download""" ,a_ ) ,local_files_only=kwargs.pop("""local_files_only""" ,a_ ) ,use_auth_token=kwargs.pop("""use_auth_token""" ,a_ ) ,revision=kwargs.pop("""revision""" ,a_ ) ,) if speaker_embeddings_path is None: logger.warning( f'''`{os.path.join(a_ ,a_ )}` does not exists , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.''' ) _UpperCAmelCase : Optional[int] = None else: with open(a_ ) as speaker_embeddings_json: _UpperCAmelCase : Optional[int] = json.load(a_ ) else: _UpperCAmelCase : Optional[int] = None _UpperCAmelCase : Dict = AutoTokenizer.from_pretrained(a_ ,**a_ ) return cls(tokenizer=a_ ,speaker_embeddings=a_ ) def _snake_case ( self ,a_ ,a_="speaker_embeddings_path.json" ,a_="speaker_embeddings" ,a_ = False ,**a_ ,) -> Optional[Any]: if self.speaker_embeddings is not None: os.makedirs(os.path.join(a_ ,a_ ,"""v2""" ) ,exist_ok=a_ ) _UpperCAmelCase : int = {} _UpperCAmelCase : Union[str, Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCAmelCase : List[Any] = self._load_voice_preset(a_ ) _UpperCAmelCase : List[Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict["""repo_or_path"""] ,a_ ,f'''{prompt_key}_{key}''' ) ,voice_preset[key] ,allow_pickle=a_ ,) _UpperCAmelCase : List[Any] = os.path.join(a_ ,f'''{prompt_key}_{key}.npy''' ) _UpperCAmelCase : int = tmp_dict with open(os.path.join(a_ ,a_ ) ,"""w""" ) as fp: json.dump(a_ ,a_ ) super().save_pretrained(a_ ,a_ ,**a_ ) def _snake_case ( self ,a_ = None ,**a_ ) -> Tuple: _UpperCAmelCase : int = self.speaker_embeddings[voice_preset] _UpperCAmelCase : Any = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( f'''Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].''' ) _UpperCAmelCase : int = get_file_from_repo( self.speaker_embeddings.get("""repo_or_path""" ,"""/""" ) ,voice_preset_paths[key] ,subfolder=kwargs.pop("""subfolder""" ,a_ ) ,cache_dir=kwargs.pop("""cache_dir""" ,a_ ) ,force_download=kwargs.pop("""force_download""" ,a_ ) ,proxies=kwargs.pop("""proxies""" ,a_ ) ,resume_download=kwargs.pop("""resume_download""" ,a_ ) ,local_files_only=kwargs.pop("""local_files_only""" ,a_ ) ,use_auth_token=kwargs.pop("""use_auth_token""" ,a_ ) ,revision=kwargs.pop("""revision""" ,a_ ) ,) if path is None: raise ValueError( f'''`{os.path.join(self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] )}` does not exists , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset} embeddings.''' ) _UpperCAmelCase : Tuple = np.load(a_ ) return voice_preset_dict def _snake_case ( self ,a_ = None ) -> Optional[int]: for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(f'''Voice preset unrecognized, missing {key} as a key.''' ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(f'''{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.''' ) def __call__( self ,a_=None ,a_=None ,a_="pt" ,a_=256 ,a_=False ,a_=True ,a_=False ,**a_ ,) -> Tuple: if voice_preset is not None and not isinstance(a_ ,a_ ): if ( isinstance(a_ ,a_ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCAmelCase : int = self._load_voice_preset(a_ ) else: if isinstance(a_ ,a_ ) and not voice_preset.endswith(""".npz""" ): _UpperCAmelCase : Optional[Any] = voice_preset + """.npz""" _UpperCAmelCase : Optional[Any] = np.load(a_ ) if voice_preset is not None: self._validate_voice_preset_dict(a_ ,**a_ ) _UpperCAmelCase : int = BatchFeature(data=a_ ,tensor_type=a_ ) _UpperCAmelCase : Tuple = self.tokenizer( a_ ,return_tensors=a_ ,padding="""max_length""" ,max_length=a_ ,return_attention_mask=a_ ,return_token_type_ids=a_ ,add_special_tokens=a_ ,**a_ ,) if voice_preset is not None: _UpperCAmelCase : Dict = voice_preset return encoded_text
349
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors A_ : Dict = logging.getLogger(__name__) class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """sequence-classification""" def __init__( self ,a_ ) -> Dict: if type(a_ ) == dict: _UpperCAmelCase : Tuple = Namespace(**a_ ) _UpperCAmelCase : Optional[int] = glue_output_modes[hparams.task] _UpperCAmelCase : Union[str, Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ ,a_ ,self.mode ) def _snake_case ( self ,**a_ ) -> Optional[Any]: return self.model(**a_ ) def _snake_case ( self ,a_ ,a_ ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : Any = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : Any = self(**a_ ) _UpperCAmelCase : int = outputs[0] _UpperCAmelCase : Any = self.trainer.lr_schedulers[0]["""scheduler"""] _UpperCAmelCase : Any = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = self.hparams _UpperCAmelCase : int = processors[args.task]() _UpperCAmelCase : str = processor.get_labels() for mode in ["train", "dev"]: _UpperCAmelCase : Tuple = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" ,a_ ) else: logger.info("""Creating features from dataset file at %s""" ,args.data_dir ) _UpperCAmelCase : List[Any] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) _UpperCAmelCase : Union[str, Any] = convert_examples_to_features( a_ ,self.tokenizer ,max_length=args.max_seq_length ,label_list=self.labels ,output_mode=args.glue_output_mode ,) logger.info("""Saving features into cached file %s""" ,a_ ) torch.save(a_ ,a_ ) def _snake_case ( self ,a_ ,a_ ,a_ = False ) -> DataLoader: _UpperCAmelCase : Union[str, Any] = """dev""" if mode == """test""" else mode _UpperCAmelCase : Tuple = self._feature_file(a_ ) logger.info("""Loading features from cached file %s""" ,a_ ) _UpperCAmelCase : Union[str, Any] = torch.load(a_ ) _UpperCAmelCase : List[str] = torch.tensor([f.input_ids for f in features] ,dtype=torch.long ) _UpperCAmelCase : Tuple = torch.tensor([f.attention_mask for f in features] ,dtype=torch.long ) _UpperCAmelCase : str = torch.tensor([f.token_type_ids for f in features] ,dtype=torch.long ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : Optional[int] = torch.tensor([f.label for f in features] ,dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : str = torch.tensor([f.label for f in features] ,dtype=torch.float ) return DataLoader( TensorDataset(a_ ,a_ ,a_ ,a_ ) ,batch_size=a_ ,shuffle=a_ ,) def _snake_case ( self ,a_ ,a_ ) -> Any: _UpperCAmelCase : Any = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: _UpperCAmelCase : int = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None _UpperCAmelCase : List[str] = self(**a_ ) _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = outputs[:2] _UpperCAmelCase : List[str] = logits.detach().cpu().numpy() _UpperCAmelCase : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _snake_case ( self ,a_ ) -> tuple: _UpperCAmelCase : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() _UpperCAmelCase : Any = np.concatenate([x["""pred"""] for x in outputs] ,axis=0 ) if self.hparams.glue_output_mode == "classification": _UpperCAmelCase : int = np.argmax(a_ ,axis=1 ) elif self.hparams.glue_output_mode == "regression": _UpperCAmelCase : Union[str, Any] = np.squeeze(a_ ) _UpperCAmelCase : str = np.concatenate([x["""target"""] for x in outputs] ,axis=0 ) _UpperCAmelCase : Tuple = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] _UpperCAmelCase : Optional[int] = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task ,a_ ,a_ )} _UpperCAmelCase : Dict = dict(results.items() ) _UpperCAmelCase : Any = results return ret, preds_list, out_label_list def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Dict = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _snake_case ( self ,a_ ) -> dict: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = self._eval_end(a_ ) _UpperCAmelCase : List[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _snake_case ( a_ ,a_ ) -> Any: BaseTransformer.add_model_specific_args(a_ ,a_ ) parser.add_argument( """--max_seq_length""" ,default=128 ,type=a_ ,help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) ,) parser.add_argument( """--task""" ,default="""""" ,type=a_ ,required=a_ ,help="""The GLUE task to run""" ,) parser.add_argument( """--gpus""" ,default=0 ,type=a_ ,help="""The number of GPUs allocated for this, it is by default 0 meaning none""" ,) parser.add_argument( """--overwrite_cache""" ,action="""store_true""" ,help="""Overwrite the cached training and evaluation sets""" ) return parser def snake_case_ ( )-> Tuple: '''simple docstring''' _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() add_generic_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = GLUETransformer.add_model_specific_args(lowerCAmelCase_ , os.getcwd() ) _UpperCAmelCase : Optional[int] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: _UpperCAmelCase : Optional[int] = os.path.join( """./results""" , F'''{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}''' , ) os.makedirs(args.output_dir ) _UpperCAmelCase : int = GLUETransformer(lowerCAmelCase_ ) _UpperCAmelCase : Any = generic_train(lowerCAmelCase_ , lowerCAmelCase_ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: _UpperCAmelCase : int = sorted(glob.glob(os.path.join(args.output_dir , """checkpoint-epoch=*.ckpt""" ) , recursive=lowerCAmelCase_ ) ) _UpperCAmelCase : int = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import argparse from collections import defaultdict import yaml A_ : Dict = """docs/source/en/_toctree.yml""" def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = defaultdict(lowerCAmelCase_ ) for doc in model_doc: counts[doc["local"]] += 1 _UpperCAmelCase : Any = [key for key, value in counts.items() if value > 1] _UpperCAmelCase : Tuple = [] for duplicate_key in duplicates: _UpperCAmelCase : List[Any] = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(lowerCAmelCase_ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(lowerCAmelCase_ , key=lambda lowerCAmelCase_ : s["title"].lower() ) def snake_case_ ( lowerCAmelCase_=False )-> List[str]: '''simple docstring''' with open(lowerCAmelCase_ , encoding="""utf-8""" ) as f: _UpperCAmelCase : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc _UpperCAmelCase : Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _UpperCAmelCase : str = content[api_idx]["""sections"""] # Then to the model doc _UpperCAmelCase : Optional[Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _UpperCAmelCase : Tuple = api_doc[model_idx]["""sections"""] _UpperCAmelCase : int = [(idx, section) for idx, section in enumerate(lowerCAmelCase_ ) if """sections""" in section] _UpperCAmelCase : Union[str, Any] = False for idx, modality_doc in modalities_docs: _UpperCAmelCase : Union[str, Any] = modality_doc["""sections"""] _UpperCAmelCase : int = clean_model_doc_toc(lowerCAmelCase_ ) if old_modality_doc != new_modality_doc: _UpperCAmelCase : Any = True if overwrite: _UpperCAmelCase : Union[str, Any] = new_modality_doc if diff: if overwrite: _UpperCAmelCase : List[Any] = model_doc _UpperCAmelCase : int = api_doc with open(lowerCAmelCase_ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowerCAmelCase_ , allow_unicode=lowerCAmelCase_ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") A_ : List[str] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Union[str, Any] = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """roformer""" def __init__( self ,a_=50_000 ,a_=None ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=1_536 ,a_=2 ,a_=0.02 ,a_=1E-1_2 ,a_=0 ,a_=False ,a_=True ,**a_ ,) -> Tuple: super().__init__(pad_token_id=a_ ,**a_ ) _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size if embedding_size is None else embedding_size _UpperCAmelCase : List[Any] = hidden_size _UpperCAmelCase : str = num_hidden_layers _UpperCAmelCase : Optional[Any] = num_attention_heads _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : str = intermediate_size _UpperCAmelCase : Optional[Any] = hidden_dropout_prob _UpperCAmelCase : Any = attention_probs_dropout_prob _UpperCAmelCase : Optional[int] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : Tuple = initializer_range _UpperCAmelCase : Dict = layer_norm_eps _UpperCAmelCase : Optional[int] = rotary_value _UpperCAmelCase : Any = use_cache class lowercase ( _lowerCamelCase ): """simple docstring""" @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _UpperCAmelCase : List[Any] = {0: """batch""", 1: """sequence"""} _UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
349
1
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging A_ : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[str]: '''simple docstring''' try: with open(lowerCAmelCase_ , """rb""" ) as flax_state_f: _UpperCAmelCase : str = from_bytes(lowerCAmelCase_ , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowerCAmelCase_ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'''Unable to convert {model_file} to Flax deserializable object. ''' ) return load_flax_weights_in_pytorch_model(lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Tuple: '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _UpperCAmelCase : Union[str, Any] = flatten_dict(jax.tree_util.tree_map(lambda lowerCAmelCase_ : x.dtype == jnp.bfloataa , lowerCAmelCase_ ) ).values() if any(lowerCAmelCase_ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _UpperCAmelCase : Union[str, Any] = jax.tree_util.tree_map( lambda lowerCAmelCase_ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowerCAmelCase_ ) _UpperCAmelCase : int = """""" _UpperCAmelCase : Any = flatten_dict(lowerCAmelCase_ , sep=""".""" ) _UpperCAmelCase : Optional[int] = pt_model.state_dict() # keep track of unexpected & missing keys _UpperCAmelCase : str = [] _UpperCAmelCase : Optional[int] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _UpperCAmelCase : int = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _UpperCAmelCase : Dict = flax_key_tuple_array[:-1] + ["""weight"""] _UpperCAmelCase : List[Any] = jnp.transpose(lowerCAmelCase_ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _UpperCAmelCase : int = flax_key_tuple_array[:-1] + ["""weight"""] _UpperCAmelCase : Union[str, Any] = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _UpperCAmelCase : Any = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowerCAmelCase_ ): _UpperCAmelCase : Dict = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) _UpperCAmelCase : Any = """.""".join(lowerCAmelCase_ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'''Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ''' F'''to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) else: # add weight to pytorch dict _UpperCAmelCase : int = np.asarray(lowerCAmelCase_ ) if not isinstance(lowerCAmelCase_ , np.ndarray ) else flax_tensor _UpperCAmelCase : Union[str, Any] = torch.from_numpy(lowerCAmelCase_ ) # remove from missing keys missing_keys.remove(lowerCAmelCase_ ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowerCAmelCase_ ) pt_model.load_state_dict(lowerCAmelCase_ ) # re-transform missing_keys to list _UpperCAmelCase : Tuple = list(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" F''' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing''' F''' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture''' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" F''' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect''' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(lowerCAmelCase_ ) > 0: logger.warning( F'''Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly''' F''' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to''' """ use it for predictions and inference.""" ) return pt_model
349
'''simple docstring''' from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class lowercase ( _lowerCamelCase ): """simple docstring""" @slow @require_torch def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Tuple = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" ,"""prajjwal1/bert-tiny""" ) _UpperCAmelCase : List[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase : List[Any] = bertabert.config.encoder.vocab_size _UpperCAmelCase : Optional[int] = tokenizer.sep_token_id _UpperCAmelCase : Union[str, Any] = tokenizer.cls_token_id _UpperCAmelCase : str = 128 _UpperCAmelCase : List[str] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""train[:1%]""" ) _UpperCAmelCase : Union[str, Any] = datasets.load_dataset("""cnn_dailymail""" ,"""3.0.0""" ,split="""validation[:1%]""" ) _UpperCAmelCase : Any = train_dataset.select(range(32 ) ) _UpperCAmelCase : Any = val_dataset.select(range(16 ) ) _UpperCAmelCase : List[Any] = 4 def _map_to_encoder_decoder_inputs(a_ ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase : int = tokenizer(batch["""article"""] ,padding="""max_length""" ,truncation=a_ ,max_length=512 ) _UpperCAmelCase : Tuple = tokenizer(batch["""highlights"""] ,padding="""max_length""" ,truncation=a_ ,max_length=128 ) _UpperCAmelCase : int = inputs.input_ids _UpperCAmelCase : Union[str, Any] = inputs.attention_mask _UpperCAmelCase : Union[str, Any] = outputs.input_ids _UpperCAmelCase : Dict = outputs.input_ids.copy() _UpperCAmelCase : Dict = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase : Optional[int] = outputs.attention_mask assert all(len(a_ ) == 512 for x in inputs.input_ids ) assert all(len(a_ ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(a_ ): _UpperCAmelCase : Optional[int] = pred.label_ids _UpperCAmelCase : Optional[int] = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : str = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(a_ ) )] ) / len(a_ ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase : Union[str, Any] = train_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) train_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) # same for validation dataset _UpperCAmelCase : List[str] = val_dataset.map( _map_to_encoder_decoder_inputs ,batched=a_ ,batch_size=a_ ,remove_columns=["""article""", """highlights"""] ,) val_dataset.set_format( type="""torch""" ,columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] ,) _UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : List[str] = SeqaSeqTrainingArguments( output_dir=a_ ,per_device_train_batch_size=a_ ,per_device_eval_batch_size=a_ ,predict_with_generate=a_ ,evaluation_strategy="""steps""" ,do_train=a_ ,do_eval=a_ ,warmup_steps=0 ,eval_steps=2 ,logging_steps=2 ,) # instantiate trainer _UpperCAmelCase : int = SeqaSeqTrainer( model=a_ ,args=a_ ,compute_metrics=_compute_metrics ,train_dataset=a_ ,eval_dataset=a_ ,tokenizer=a_ ,) # start training trainer.train()
349
1
'''simple docstring''' import requests from bsa import BeautifulSoup def snake_case_ ( lowerCAmelCase_ = "AAPL" )-> str: '''simple docstring''' _UpperCAmelCase : Any = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' _UpperCAmelCase : Tuple = BeautifulSoup(requests.get(lowerCAmelCase_ ).text , """html.parser""" ) _UpperCAmelCase : List[Any] = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
349
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance A_ : List[Any] = 637_8137.0 A_ : Dict = 635_6752.31_4245 A_ : int = 6_3_7_8_1_3_7 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> float: '''simple docstring''' _UpperCAmelCase : Tuple = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _UpperCAmelCase : Any = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[Any] = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _UpperCAmelCase : Union[str, Any] = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _UpperCAmelCase : Optional[int] = (b_lata + b_lata) / 2 _UpperCAmelCase : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _UpperCAmelCase : List[str] = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = cos(sigma / 2 ) ** 2 _UpperCAmelCase : Dict = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _UpperCAmelCase : Union[str, Any] = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) _UpperCAmelCase : Union[str, Any] = sin(sigma / 2 ) ** 2 _UpperCAmelCase : Optional[Any] = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_=None ,a_=True ,a_=None ,**a_ ) -> Optional[Any]: _UpperCAmelCase : List[str] = parent _UpperCAmelCase : Optional[Any] = config_class _UpperCAmelCase : Optional[Any] = has_text_modality _UpperCAmelCase : Any = kwargs _UpperCAmelCase : Tuple = common_properties def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Any = self.config_class(**self.inputs_dict ) _UpperCAmelCase : Union[str, Any] = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(a_ ,a_ ) ,msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(a_ ): try: setattr(a_ ,a_ ,a_ ) self.parent.assertEqual( getattr(a_ ,a_ ) ,a_ ,msg=f'''`{name} value {idx} expected, but was {getattr(a_ ,a_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(a_ ): try: _UpperCAmelCase : Dict = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(a_ ,a_ ) ,a_ ,msg=f'''`{name} value {idx} expected, but was {getattr(a_ ,a_ )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _snake_case ( self ) -> Dict: _UpperCAmelCase : str = self.config_class(**self.inputs_dict ) _UpperCAmelCase : Dict = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] ,a_ ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : int = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : List[str] = os.path.join(a_ ,"""config.json""" ) config_first.to_json_file(a_ ) _UpperCAmelCase : Any = self.config_class.from_json_file(a_ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : List[str] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(a_ ) _UpperCAmelCase : Dict = self.config_class.from_pretrained(a_ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.config_class(**self.inputs_dict ) _UpperCAmelCase : Optional[int] = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = os.path.join(a_ ,a_ ) config_first.save_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = self.config_class.from_pretrained(a_ ,subfolder=a_ ) self.parent.assertEqual(config_second.to_dict() ,config_first.to_dict() ) def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Union[str, Any] = self.config_class(**self.inputs_dict ,num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) ,5 ) self.parent.assertEqual(len(config.labelaid ) ,5 ) _UpperCAmelCase : List[Any] = 3 self.parent.assertEqual(len(config.idalabel ) ,3 ) self.parent.assertEqual(len(config.labelaid ) ,3 ) def _snake_case ( self ) -> Optional[int]: if self.config_class.is_composition: return _UpperCAmelCase : List[Any] = self.config_class() self.parent.assertIsNotNone(a_ ) def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Tuple = copy.deepcopy(a_ ) _UpperCAmelCase : Optional[Any] = self.config_class(**a_ ) _UpperCAmelCase : Optional[int] = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(a_ ,a_ ) != value: wrong_values.append((key, getattr(a_ ,a_ ), value) ) if len(a_ ) > 0: _UpperCAmelCase : Tuple = """\n""".join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def _snake_case ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
349
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 100 , )-> float: '''simple docstring''' _UpperCAmelCase : str = x_start _UpperCAmelCase : Union[str, Any] = fnc(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = 0.0 for _ in range(lowerCAmelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area _UpperCAmelCase : Any = (x_end - x_start) / steps + xa _UpperCAmelCase : List[Any] = fnc(lowerCAmelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step _UpperCAmelCase : Any = xa _UpperCAmelCase : str = fxa return area if __name__ == "__main__": def snake_case_ ( lowerCAmelCase_ )-> Any: '''simple docstring''' return x**3 + x**2 print("""f(x) = x^3 + x^2""") print("""The area between the curve, x = -5, x = 5 and the x axis is:""") A_ : List[str] = 1_0 while i <= 1_0_0_0_0_0: print(f"""with {i} steps: {trapezoidal_area(f, -5, 5, i)}""") i *= 1_0
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = (boundary[1] - boundary[0]) / steps _UpperCAmelCase : Tuple = boundary[0] _UpperCAmelCase : List[str] = boundary[1] _UpperCAmelCase : List[Any] = make_points(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = 0.0 y += (h / 2.0) * f(lowerCAmelCase_ ) for i in x_i: # print(i) y += h * f(lowerCAmelCase_ ) y += (h / 2.0) * f(lowerCAmelCase_ ) return y def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> Any: '''simple docstring''' _UpperCAmelCase : int = a + h while x < (b - h): yield x _UpperCAmelCase : List[str] = x + h def snake_case_ ( lowerCAmelCase_ )-> Tuple: # enter your function here '''simple docstring''' _UpperCAmelCase : int = (x - 0) * (x - 0) return y def snake_case_ ( )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : int = 0.0 # Lower bound of integration _UpperCAmelCase : Optional[Any] = 1.0 # Upper bound of integration _UpperCAmelCase : Union[str, Any] = 1_0.0 # define number of steps or resolution _UpperCAmelCase : List[Any] = [a, b] # define boundary of integration _UpperCAmelCase : Any = method_a(lowerCAmelCase_ , lowerCAmelCase_ ) print(F'''y = {y}''' ) if __name__ == "__main__": main()
349
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def snake_case_ ( )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=lowerCAmelCase_ , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=lowerCAmelCase_ , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=lowerCAmelCase_ ) return parser.parse_args() def snake_case_ ( )-> str: '''simple docstring''' _UpperCAmelCase : List[str] = parse_args() # Import training_script as a module. _UpperCAmelCase : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _UpperCAmelCase : Optional[Any] = script_fpath.stem _UpperCAmelCase : List[str] = importlib.import_module(lowerCAmelCase_ ) # Patch sys.argv _UpperCAmelCase : Dict = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
349
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Union[str, Any] = StableDiffusionKDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) _UpperCAmelCase : Optional[int] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) sd_pipe.set_scheduler("""sample_euler""" ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Tuple = torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase : int = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) _UpperCAmelCase : Tuple = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) sd_pipe.set_scheduler("""sample_euler""" ) _UpperCAmelCase : Optional[Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=9.0 ,num_inference_steps=20 ,output_type="""np""" ) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase : Optional[int] = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[Any] = StableDiffusionKDiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) _UpperCAmelCase : List[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) sd_pipe.set_scheduler("""sample_dpmpp_2m""" ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Union[str, Any] = torch.manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=7.5 ,num_inference_steps=15 ,output_type="""np""" ,use_karras_sigmas=a_ ,) _UpperCAmelCase : int = output.images _UpperCAmelCase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCAmelCase : Dict = np.array( [0.1138_1689, 0.1211_2921, 0.138_9457, 0.1254_9606, 0.124_4964, 0.1083_1517, 0.1156_2866, 0.1086_7816, 0.1049_9048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("""only integers accepted as input""" ) else: _UpperCAmelCase : Dict = str(abs(lowerCAmelCase_ ) ) _UpperCAmelCase : Optional[Any] = [list(lowerCAmelCase_ ) for char in range(len(lowerCAmelCase_ ) )] for index in range(len(lowerCAmelCase_ ) ): num_transpositions[index].pop(lowerCAmelCase_ ) return max( int("""""".join(list(lowerCAmelCase_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> bool: '''simple docstring''' _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _UpperCAmelCase : Union[str, Any] = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _UpperCAmelCase : Union[str, Any] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _UpperCAmelCase : Tuple = subset[i - 1][j] if arr[i - 1] <= j: _UpperCAmelCase : Optional[int] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging A_ : Dict = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ ), F'''{len(lowerCAmelCase_ )} != {len(lowerCAmelCase_ )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) A_ : Union[str, Any] = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } A_ : int = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: _UpperCAmelCase : Any = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' F''' {n_student}''' ) return list(range(lowerCAmelCase_ ) ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[int]: '''simple docstring''' if n_student > n_teacher: raise ValueError(F'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(lowerCAmelCase_ ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ = "student" , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , )-> Tuple[PreTrainedModel, List[int], List[int]]: '''simple docstring''' _UpperCAmelCase : List[Any] = """encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.""" assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): AutoTokenizer.from_pretrained(lowerCAmelCase_ ).save_pretrained(lowerCAmelCase_ ) # purely for convenience _UpperCAmelCase : Any = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase_ ).eval() else: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), F'''teacher must be a model or string got type {type(lowerCAmelCase_ )}''' _UpperCAmelCase : str = teacher.config.to_diff_dict() try: _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : Tuple = teacher_e if d is None: _UpperCAmelCase : Dict = teacher_d init_kwargs.update({"""encoder_layers""": e, """decoder_layers""": d} ) except AttributeError: # T5 if hasattr(teacher.config , """num_encoder_layers""" ): _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase ,_UpperCAmelCase : int = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[str] = teacher_e if d is None: _UpperCAmelCase : str = teacher_d if hasattr(teacher.config , """num_encoder_layers""" ): init_kwargs.update({"""num_encoder_layers""": e, """num_decoder_layers""": d} ) else: init_kwargs.update({"""num_layers""": e, """num_decoder_layers""": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase_ ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase_ ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : Optional[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase_ ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = list(range(lowerCAmelCase_ ) ), list(range(lowerCAmelCase_ ) ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' F''' {save_path}''' ) student.save_pretrained(lowerCAmelCase_ ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase_ , lowerCAmelCase_ ) try: if hasattr( lowerCAmelCase_ , """prophetnet""" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase_ ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase_ ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase_ ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase_ ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase_ ) logger.info( F'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _UpperCAmelCase : Dict = { """teacher_type""": teacher.config.model_type, """copied_encoder_layers""": e_layers_to_copy, """copied_decoder_layers""": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase_ ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
349
1
'''simple docstring''' import requests A_ : str = """https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=""" def snake_case_ ( lowerCAmelCase_ )-> None: '''simple docstring''' _UpperCAmelCase : Any = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page["""articles"""] , 1 ): print(F'''{i}.) {article['title']}''' ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key="""<Your BBC News API key goes here>""")
349
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0 , lowerCAmelCase_ = 0 )-> int: '''simple docstring''' _UpperCAmelCase : Optional[Any] = right or len(lowerCAmelCase_ ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(lowerCAmelCase_ , lowerCAmelCase_ , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=False )-> Dict: '''simple docstring''' try: _UpperCAmelCase : Any = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _UpperCAmelCase : str = default else: # KEY is set, convert it to True or False. try: _UpperCAmelCase : int = strtobool(lowerCAmelCase_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''' ) return _value A_ : str = parse_flag_from_env("""RUN_SLOW""", default=False) A_ : List[str] = parse_flag_from_env("""RUN_REMOTE""", default=False) A_ : str = parse_flag_from_env("""RUN_LOCAL""", default=True) A_ : Union[str, Any] = parse_flag_from_env("""RUN_PACKAGED""", default=True) # Compression A_ : int = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="""test requires lz4""") A_ : Any = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="""test requires py7zr""") A_ : Optional[Any] = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="""test requires zstandard""") # Audio A_ : str = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("""soundfile""") is None or version.parse(importlib_metadata.version("""soundfile""")) < version.parse("""0.12.0"""), reason="""test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; """, ) # Beam A_ : Optional[int] = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("""0.3.2"""), reason="""test requires apache-beam and a compatible dill version""", ) # Dill-cloudpickle compatibility A_ : Optional[int] = pytest.mark.skipif( config.DILL_VERSION <= version.parse("""0.3.2"""), reason="""test requires dill>0.3.2 for cloudpickle compatibility""", ) # Windows A_ : Dict = pytest.mark.skipif( sys.platform == """win32""", reason="""test should not be run on Windows""", ) def snake_case_ ( lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' try: import faiss # noqa except ImportError: _UpperCAmelCase : Any = unittest.skip("""test requires faiss""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' try: import regex # noqa except ImportError: _UpperCAmelCase : Optional[int] = unittest.skip("""test requires regex""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' try: import elasticsearch # noqa except ImportError: _UpperCAmelCase : str = unittest.skip("""test requires elasticsearch""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' try: import sqlalchemy # noqa except ImportError: _UpperCAmelCase : Optional[Any] = unittest.skip("""test requires sqlalchemy""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' if not config.TORCH_AVAILABLE: _UpperCAmelCase : str = unittest.skip("""test requires PyTorch""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' if not config.TF_AVAILABLE: _UpperCAmelCase : List[str] = unittest.skip("""test requires TensorFlow""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' if not config.JAX_AVAILABLE: _UpperCAmelCase : Any = unittest.skip("""test requires JAX""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' if not config.PIL_AVAILABLE: _UpperCAmelCase : str = unittest.skip("""test requires Pillow""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(lowerCAmelCase_ ) else: return test_case def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(lowerCAmelCase_ ) else: return test_case def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(lowerCAmelCase_ ) else: return test_case def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' def _require_spacy_model(lowerCAmelCase_ ): try: import spacy # noqa F401 spacy.load(lowerCAmelCase_ ) except ImportError: return unittest.skip("""test requires spacy""" )(lowerCAmelCase_ ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(lowerCAmelCase_ ) )(lowerCAmelCase_ ) else: return test_case return _require_spacy_model def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(lowerCAmelCase_ ) else: return test_case def snake_case_ ( lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(lowerCAmelCase_ ) else: return test_case def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' if not _run_slow_tests or _run_slow_tests == 0: _UpperCAmelCase : List[Any] = unittest.skip("""test is slow""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' if not _run_local_tests or _run_local_tests == 0: _UpperCAmelCase : Union[str, Any] = unittest.skip("""test is local""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' if not _run_packaged_tests or _run_packaged_tests == 0: _UpperCAmelCase : List[Any] = unittest.skip("""test is packaged""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( lowerCAmelCase_ )-> int: '''simple docstring''' if not _run_remote_tests or _run_remote_tests == 0: _UpperCAmelCase : Tuple = unittest.skip("""test requires remote""" )(lowerCAmelCase_ ) return test_case def snake_case_ ( *lowerCAmelCase_ )-> List[str]: '''simple docstring''' def decorate(cls ): for name, fn in cls.__dict__.items(): if callable(lowerCAmelCase_ ) and name.startswith("""test""" ): for decorator in decorators: _UpperCAmelCase : List[Any] = decorator(lowerCAmelCase_ ) setattr(cls , lowerCAmelCase_ , lowerCAmelCase_ ) return cls return decorate class lowercase ( _lowerCamelCase ): """simple docstring""" pass class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 2 @contextmanager def snake_case_ ( lowerCAmelCase_=OfflineSimulationMode.CONNECTION_FAILS , lowerCAmelCase_=1e-1_6 )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = requests.Session().request def timeout_request(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): # Change the url to an invalid url so that the connection hangs _UpperCAmelCase : List[Any] = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) _UpperCAmelCase : List[str] = timeout try: return online_request(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier _UpperCAmelCase : Tuple = url _UpperCAmelCase : Optional[int] = e.args[0] _UpperCAmelCase : Dict = (max_retry_error.args[0].replace("""10.255.255.1""" , F'''OfflineMock[{url}]''' ),) _UpperCAmelCase : Dict = (max_retry_error,) raise def raise_connection_error(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=lowerCAmelCase_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , lowerCAmelCase_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , lowerCAmelCase_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , lowerCAmelCase_ ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def snake_case_ ( *lowerCAmelCase_ , **lowerCAmelCase_ )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = str(Path().resolve() ) with tempfile.TemporaryDirectory(*lowerCAmelCase_ , **lowerCAmelCase_ ) as tmp_dir: try: os.chdir(lowerCAmelCase_ ) yield finally: os.chdir(lowerCAmelCase_ ) @contextmanager def snake_case_ ( )-> Any: '''simple docstring''' import gc gc.collect() _UpperCAmelCase : List[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def snake_case_ ( )-> Any: '''simple docstring''' import gc gc.collect() _UpperCAmelCase : Optional[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[Any]: '''simple docstring''' return deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist() == deepcopy(lowerCAmelCase_ ).integers(0 , 100 , 10 ).tolist() def snake_case_ ( lowerCAmelCase_ )-> List[Any]: '''simple docstring''' import decorator from requests.exceptions import HTTPError def _wrapper(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): try: return func(*lowerCAmelCase_ , **lowerCAmelCase_ ) except HTTPError as err: if str(lowerCAmelCase_ ).startswith("""500""" ) or str(lowerCAmelCase_ ).startswith("""502""" ): pytest.xfail(str(lowerCAmelCase_ ) ) raise err return decorator.decorator(_wrapper , lowerCAmelCase_ ) class lowercase : """simple docstring""" def __init__( self ,a_ ,a_ ,a_ ) -> Dict: _UpperCAmelCase : Union[str, Any] = returncode _UpperCAmelCase : Optional[Any] = stdout _UpperCAmelCase : Any = stderr async def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' while True: _UpperCAmelCase : Optional[int] = await stream.readline() if line: callback(lowerCAmelCase_ ) else: break async def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=False )-> _RunOutput: '''simple docstring''' if echo: print("""\nRunning: """ , """ """.join(lowerCAmelCase_ ) ) _UpperCAmelCase : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCAmelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCAmelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) _UpperCAmelCase : Dict = [] _UpperCAmelCase : Optional[int] = [] def tee(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="" ): _UpperCAmelCase : Union[str, Any] = line.decode("""utf-8""" ).rstrip() sink.append(lowerCAmelCase_ ) if not quiet: print(lowerCAmelCase_ , lowerCAmelCase_ , file=lowerCAmelCase_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda lowerCAmelCase_ : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda lowerCAmelCase_ : tee(lowerCAmelCase_ , lowerCAmelCase_ , sys.stderr , label="""stderr:""" ) ), ] , timeout=lowerCAmelCase_ , ) return _RunOutput(await p.wait() , lowerCAmelCase_ , lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=180 , lowerCAmelCase_=False , lowerCAmelCase_=True )-> _RunOutput: '''simple docstring''' _UpperCAmelCase : Dict = asyncio.get_event_loop() _UpperCAmelCase : Any = loop.run_until_complete( _stream_subprocess(lowerCAmelCase_ , env=lowerCAmelCase_ , stdin=lowerCAmelCase_ , timeout=lowerCAmelCase_ , quiet=lowerCAmelCase_ , echo=lowerCAmelCase_ ) ) _UpperCAmelCase : Tuple = """ """.join(lowerCAmelCase_ ) if result.returncode > 0: _UpperCAmelCase : Union[str, Any] = """\n""".join(result.stderr ) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''' ) return result def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : Tuple = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) _UpperCAmelCase : Dict = re.sub(R"""^gw""" , """""" , lowerCAmelCase_ , 0 , re.M ) return int(lowerCAmelCase_ ) def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Any = 29500 _UpperCAmelCase : str = pytest_xdist_worker_id() return port + uniq_delta
349
'''simple docstring''' from datetime import datetime import requests def snake_case_ ( lowerCAmelCase_ )-> bytes: '''simple docstring''' _UpperCAmelCase : Optional[Any] = """https://downloadgram.net/wp-json/wppress/video-downloader/video?url=""" _UpperCAmelCase : Dict = requests.get(base_url + url ).json()[0]["""urls"""][0]["""src"""] return requests.get(lowerCAmelCase_ ).content if __name__ == "__main__": A_ : Union[str, Any] = input("""Enter Video/IGTV url: """).strip() A_ : Dict = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
349
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : str = 0 def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : int = Path(a_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Union[str, Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : List[str] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : List[Any] = Path(a_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : int = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Any = CLIPConfig() # Create a dummy config file with image_proceesor_type _UpperCAmelCase : str = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : Optional[int] = Path(a_ ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained(a_ ).to_dict() config_dict.pop("""image_processor_type""" ) _UpperCAmelCase : List[str] = CLIPImageProcessor(**a_ ) # save in new folder model_config.save_pretrained(a_ ) config.save_pretrained(a_ ) _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained(a_ ) # make sure private variable is not incorrectly saved _UpperCAmelCase : Dict = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : str = Path(a_ ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) def _snake_case ( self ) -> List[Any]: with self.assertRaisesRegex( a_ ,"""clip-base is not a local folder and is not a valid model identifier""" ): _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained("""clip-base""" ) def _snake_case ( self ) -> List[str]: with self.assertRaisesRegex( a_ ,r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): _UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained(a_ ,revision="""aaaaaa""" ) def _snake_case ( self ) -> Optional[Any]: with self.assertRaisesRegex( a_ ,"""hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" ,): _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def _snake_case ( self ) -> Optional[Any]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(a_ ): _UpperCAmelCase : Dict = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a_ ): _UpperCAmelCase : List[str] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ,trust_remote_code=a_ ) self.assertEqual(reloaded_image_processor.__class__.__name__ ,"""NewImageProcessor""" ) def _snake_case ( self ) -> Any: try: AutoConfig.register("""custom""" ,a_ ) AutoImageProcessor.register(a_ ,a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): AutoImageProcessor.register(a_ ,a_ ) with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[int] = Path(a_ ) / """preprocessor_config.json""" _UpperCAmelCase : Dict = Path(a_ ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} ,open(a_ ,"""w""" ) ,) json.dump({"""model_type""": """clip"""} ,open(a_ ,"""w""" ) ) _UpperCAmelCase : Union[str, Any] = CustomImageProcessor.from_pretrained(a_ ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(a_ ) _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained(a_ ) self.assertIsInstance(a_ ,a_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def _snake_case ( self ) -> str: class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = True try: AutoConfig.register("""custom""" ,a_ ) AutoImageProcessor.register(a_ ,a_ ) # If remote code is not set, the default is to use local _UpperCAmelCase : Union[str, Any] = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. _UpperCAmelCase : Optional[int] = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub _UpperCAmelCase : Tuple = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" ,trust_remote_code=a_ ) self.assertEqual(image_processor.__class__.__name__ ,"""NewImageProcessor""" ) self.assertTrue(not hasattr(a_ ,"""is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
349
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
1
'''simple docstring''' # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys A_ : List[str] = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") A_ : Dict = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode("""utf-8""").split() A_ : str = """|""".join(sys.argv[1:]) A_ : Union[str, Any] = re.compile(rf"""^({joined_dirs}).*?\.py$""") A_ : int = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
349
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ : str = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys A_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : List[Any] = {"""vocab_file""": """sentencepiece.model"""} A_ : Any = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, } A_ : Any = { """google/rembert""": 2_5_6, } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,a_ ,a_=False ,a_=True ,a_=True ,a_="[CLS]" ,a_="[SEP]" ,a_="[UNK]" ,a_="[SEP]" ,a_="[PAD]" ,a_="[CLS]" ,a_="[MASK]" ,**a_ ,) -> Dict: super().__init__( do_lower_case=a_ ,remove_space=a_ ,keep_accents=a_ ,bos_token=a_ ,eos_token=a_ ,unk_token=a_ ,sep_token=a_ ,pad_token=a_ ,cls_token=a_ ,mask_token=a_ ,**a_ ,) _UpperCAmelCase : Tuple = do_lower_case _UpperCAmelCase : str = remove_space _UpperCAmelCase : int = keep_accents _UpperCAmelCase : int = vocab_file _UpperCAmelCase : str = spm.SentencePieceProcessor() self.sp_model.Load(a_ ) @property def _snake_case ( self ) -> Tuple: return len(self.sp_model ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: _UpperCAmelCase : Tuple = self.__dict__.copy() _UpperCAmelCase : Dict = None return state def __setstate__( self ,a_ ) -> Optional[int]: _UpperCAmelCase : Dict = d _UpperCAmelCase : int = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def _snake_case ( self ,a_ ,a_=False ) -> str: _UpperCAmelCase : Union[str, Any] = self.sp_model.EncodeAsPieces(a_ ) return pieces def _snake_case ( self ,a_ ) -> Optional[int]: return self.sp_model.PieceToId(a_ ) def _snake_case ( self ,a_ ) -> str: return self.sp_model.IdToPiece(a_ ) def _snake_case ( self ,a_ ) -> List[str]: _UpperCAmelCase : str = self.sp_model.decode_pieces(a_ ) return out_string def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: _UpperCAmelCase : Union[str, Any] = [self.sep_token_id] _UpperCAmelCase : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _snake_case ( self ,a_ ,a_ = None ,a_ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] def _snake_case ( self ,a_ ,a_ = None ) -> List[int]: _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self ,a_ ,a_ = None ) -> Tuple[str]: if not os.path.isdir(a_ ): logger.error("""Vocabulary path ({}) should be a directory""".format(a_ ) ) return _UpperCAmelCase : List[Any] = os.path.join( a_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file ,a_ ) return (out_vocab_file,)
349
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ : Union[str, Any] = logging.get_logger(__name__) A_ : Any = { """hustvl/yolos-small""": """https://huggingface.co/hustvl/yolos-small/resolve/main/config.json""", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = """yolos""" def __init__( self ,a_=768 ,a_=12 ,a_=12 ,a_=3_072 ,a_="gelu" ,a_=0.0 ,a_=0.0 ,a_=0.02 ,a_=1E-1_2 ,a_=[512, 864] ,a_=16 ,a_=3 ,a_=True ,a_=100 ,a_=True ,a_=False ,a_=1 ,a_=5 ,a_=2 ,a_=5 ,a_=2 ,a_=0.1 ,**a_ ,) -> List[str]: super().__init__(**a_ ) _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : Tuple = num_attention_heads _UpperCAmelCase : Optional[Any] = intermediate_size _UpperCAmelCase : Union[str, Any] = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Optional[int] = attention_probs_dropout_prob _UpperCAmelCase : List[Any] = initializer_range _UpperCAmelCase : Union[str, Any] = layer_norm_eps _UpperCAmelCase : int = image_size _UpperCAmelCase : Dict = patch_size _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : Optional[Any] = qkv_bias _UpperCAmelCase : List[Any] = num_detection_tokens _UpperCAmelCase : Tuple = use_mid_position_embeddings _UpperCAmelCase : int = auxiliary_loss # Hungarian matcher _UpperCAmelCase : Dict = class_cost _UpperCAmelCase : Dict = bbox_cost _UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients _UpperCAmelCase : int = bbox_loss_coefficient _UpperCAmelCase : Optional[Any] = giou_loss_coefficient _UpperCAmelCase : Union[str, Any] = eos_coefficient class lowercase ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = version.parse("""1.11""" ) @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _snake_case ( self ) -> float: return 1E-4 @property def _snake_case ( self ) -> int: return 12
349
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Any = [10, 20, 30, 40, 50, 60] _UpperCAmelCase : Dict = [2, 4, 6, 8, 10, 12] _UpperCAmelCase : Optional[int] = 100 self.assertEqual(kp.calc_profit(a_ ,a_ ,a_ ) ,210 ) def _snake_case ( self ) -> Union[str, Any]: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Any: self.assertRaisesRegex(a_ ,"""Weight can not be negative.""" ) def _snake_case ( self ) -> Optional[Any]: self.assertRaisesRegex(a_ ,"""Profit can not be negative.""" ) def _snake_case ( self ) -> Dict: self.assertRaisesRegex(a_ ,"""max_weight must greater than zero.""" ) def _snake_case ( self ) -> Tuple: self.assertRaisesRegex( a_ ,"""The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
349
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() A_ : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' if "resnet-50" in model_name: _UpperCAmelCase : str = ResNetConfig.from_pretrained("""microsoft/resnet-50""" ) elif "resnet-101" in model_name: _UpperCAmelCase : List[Any] = ResNetConfig.from_pretrained("""microsoft/resnet-101""" ) else: raise ValueError("""Model name should include either resnet50 or resnet101""" ) _UpperCAmelCase : Optional[Any] = DetrConfig(use_timm_backbone=lowerCAmelCase_ , backbone_config=lowerCAmelCase_ ) # set label attributes _UpperCAmelCase : List[Any] = """panoptic""" in model_name if is_panoptic: _UpperCAmelCase : Dict = 250 else: _UpperCAmelCase : Dict = 91 _UpperCAmelCase : List[Any] = """huggingface/label-files""" _UpperCAmelCase : str = """coco-detection-id2label.json""" _UpperCAmelCase : Any = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) _UpperCAmelCase : str = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase : Dict = idalabel _UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} return config, is_panoptic def snake_case_ ( lowerCAmelCase_ )-> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple = [] # stem # fmt: off rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") ) rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") ) rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") ) rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") ) rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : int = val def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=False )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = """""" if is_panoptic: _UpperCAmelCase : Optional[int] = """detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase : Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCAmelCase : Any = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Optional[Any] = in_proj_weight[:256, :] _UpperCAmelCase : Optional[Any] = in_proj_bias[:256] _UpperCAmelCase : List[str] = in_proj_weight[256:512, :] _UpperCAmelCase : Dict = in_proj_bias[256:512] _UpperCAmelCase : List[Any] = in_proj_weight[-256:, :] _UpperCAmelCase : Union[str, Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase : int = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCAmelCase : List[str] = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : Dict = in_proj_weight[:256, :] _UpperCAmelCase : Optional[int] = in_proj_bias[:256] _UpperCAmelCase : Dict = in_proj_weight[256:512, :] _UpperCAmelCase : List[Any] = in_proj_bias[256:512] _UpperCAmelCase : List[str] = in_proj_weight[-256:, :] _UpperCAmelCase : int = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _UpperCAmelCase : List[str] = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) _UpperCAmelCase : Dict = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCAmelCase : Dict = in_proj_weight_cross_attn[:256, :] _UpperCAmelCase : int = in_proj_bias_cross_attn[:256] _UpperCAmelCase : List[Any] = in_proj_weight_cross_attn[256:512, :] _UpperCAmelCase : Dict = in_proj_bias_cross_attn[256:512] _UpperCAmelCase : List[Any] = in_proj_weight_cross_attn[-256:, :] _UpperCAmelCase : int = in_proj_bias_cross_attn[-256:] def snake_case_ ( )-> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" _UpperCAmelCase : Optional[int] = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=False )-> Any: '''simple docstring''' _UpperCAmelCase ,_UpperCAmelCase : List[Any] = get_detr_config(lowerCAmelCase_ ) # load original model from torch hub _UpperCAmelCase : Optional[int] = { """detr-resnet-50""": """detr_resnet50""", """detr-resnet-101""": """detr_resnet101""", } logger.info(F'''Converting model {model_name}...''' ) _UpperCAmelCase : str = torch.hub.load("""facebookresearch/detr""" , model_name_to_original_name[model_name] , pretrained=lowerCAmelCase_ ).eval() _UpperCAmelCase : Optional[int] = detr.state_dict() # rename keys for src, dest in create_rename_keys(lowerCAmelCase_ ): if is_panoptic: _UpperCAmelCase : Dict = """detr.""" + src rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCAmelCase_ , is_panoptic=lowerCAmelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase : Optional[int] = """detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("""detr""" ) and not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ) ): _UpperCAmelCase : List[Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _UpperCAmelCase : Optional[Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = val elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ): continue else: _UpperCAmelCase : Union[str, Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = val else: if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): _UpperCAmelCase : Union[str, Any] = state_dict.pop(lowerCAmelCase_ ) _UpperCAmelCase : str = val # finally, create HuggingFace model and load state dict _UpperCAmelCase : Optional[int] = DetrForSegmentation(lowerCAmelCase_ ) if is_panoptic else DetrForObjectDetection(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # verify our conversion on an image _UpperCAmelCase : Optional[Any] = """coco_panoptic""" if is_panoptic else """coco_detection""" _UpperCAmelCase : Dict = DetrImageProcessor(format=lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = processor(images=prepare_img() , return_tensors="""pt""" ) _UpperCAmelCase : List[Any] = encoding["""pixel_values"""] _UpperCAmelCase : Optional[int] = detr(lowerCAmelCase_ ) _UpperCAmelCase : int = model(lowerCAmelCase_ ) assert torch.allclose(outputs.logits , original_outputs["""pred_logits"""] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["""pred_boxes"""] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["""pred_masks"""] , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: # Upload model and image processor to the hub logger.info("""Uploading PyTorch model and image processor to the hub...""" ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": A_ : Any = argparse.ArgumentParser() parser.add_argument( """--model_name""", default="""detr-resnet-50""", type=str, choices=["""detr-resnet-50""", """detr-resnet-101"""], help="""Name of the DETR model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub or not.""") A_ : int = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
349
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = KandinskyImgaImgPipeline UpperCAmelCase = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] UpperCAmelCase = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] UpperCAmelCase = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase = False @property def _snake_case ( self ) -> List[str]: return 32 @property def _snake_case ( self ) -> Optional[Any]: return 32 @property def _snake_case ( self ) -> Any: return self.time_input_dim @property def _snake_case ( self ) -> List[Any]: return self.time_input_dim * 4 @property def _snake_case ( self ) -> Optional[int]: return 100 @property def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : List[Any] = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def _snake_case ( self ) -> int: torch.manual_seed(0 ) _UpperCAmelCase : Any = MCLIPConfig( numDims=self.cross_attention_dim ,transformerDimensions=self.text_embedder_hidden_size ,hidden_size=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_hidden_layers=5 ,vocab_size=1_005 ,) _UpperCAmelCase : List[Any] = MultilingualCLIP(a_ ) _UpperCAmelCase : List[str] = text_encoder.eval() return text_encoder @property def _snake_case ( self ) -> int: torch.manual_seed(0 ) _UpperCAmelCase : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _UpperCAmelCase : Optional[Any] = UNetaDConditionModel(**a_ ) return model @property def _snake_case ( self ) -> Optional[int]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _snake_case ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _UpperCAmelCase : int = VQModel(**self.dummy_movq_kwargs ) return model def _snake_case ( self ) -> Union[str, Any]: _UpperCAmelCase : Union[str, Any] = self.dummy_text_encoder _UpperCAmelCase : Dict = self.dummy_tokenizer _UpperCAmelCase : List[str] = self.dummy_unet _UpperCAmelCase : Union[str, Any] = self.dummy_movq _UpperCAmelCase : Union[str, Any] = { """num_train_timesteps""": 1_000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _UpperCAmelCase : Optional[Any] = DDIMScheduler(**a_ ) _UpperCAmelCase : Union[str, Any] = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _snake_case ( self ,a_ ,a_=0 ) -> int: _UpperCAmelCase : Dict = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(a_ ) ).to(a_ ) _UpperCAmelCase : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) ,rng=random.Random(seed + 1 ) ).to(a_ ) # create init_image _UpperCAmelCase : Dict = floats_tensor((1, 3, 64, 64) ,rng=random.Random(a_ ) ).to(a_ ) _UpperCAmelCase : Union[str, Any] = image.cpu().permute(0 ,2 ,3 ,1 )[0] _UpperCAmelCase : List[str] = Image.fromarray(np.uinta(a_ ) ).convert("""RGB""" ).resize((256, 256) ) if str(a_ ).startswith("""mps""" ): _UpperCAmelCase : int = torch.manual_seed(a_ ) else: _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(a_ ) _UpperCAmelCase : int = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Tuple = """cpu""" _UpperCAmelCase : str = self.get_dummy_components() _UpperCAmelCase : Tuple = self.pipeline_class(**a_ ) _UpperCAmelCase : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = pipe(**self.get_dummy_inputs(a_ ) ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : Optional[int] = pipe( **self.get_dummy_inputs(a_ ) ,return_dict=a_ ,)[0] _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Dict = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) _UpperCAmelCase : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) _UpperCAmelCase : List[Any] = """A red cartoon frog, 4k""" _UpperCAmelCase : Optional[int] = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" ,torch_dtype=torch.floataa ) pipe_prior.to(a_ ) _UpperCAmelCase : int = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" ,torch_dtype=torch.floataa ) _UpperCAmelCase : str = pipeline.to(a_ ) pipeline.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = pipe_prior( a_ ,generator=a_ ,num_inference_steps=5 ,negative_prompt="""""" ,).to_tuple() _UpperCAmelCase : int = pipeline( a_ ,image=a_ ,image_embeds=a_ ,negative_image_embeds=a_ ,generator=a_ ,num_inference_steps=100 ,height=768 ,width=768 ,strength=0.2 ,output_type="""np""" ,) _UpperCAmelCase : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a_ ,a_ )
349
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ ,a_ = None ,a_ = None ,a_ = True ,a_ = None ,a_ = False ,a_ = None ,a_ = True ,a_ = "arrow" ,**a_ ,) -> str: super().__init__( split=a_ ,features=a_ ,cache_dir=a_ ,keep_in_memory=a_ ,streaming=a_ ,**a_ ,) _UpperCAmelCase : Any = load_from_cache_file _UpperCAmelCase : Optional[int] = file_format _UpperCAmelCase : int = Spark( df=a_ ,features=a_ ,cache_dir=a_ ,working_dir=a_ ,**a_ ,) def _snake_case ( self ) -> int: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _UpperCAmelCase : str = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=a_ ,file_format=self._file_format ,) return self.builder.as_dataset(split=self.split )
349
1
'''simple docstring''' def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> list: '''simple docstring''' _UpperCAmelCase : Optional[int] = len(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = [[0] * n for i in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): _UpperCAmelCase : Optional[Any] = y_points[i] for i in range(2 , lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase : str = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
349
'''simple docstring''' A_ : Optional[Any] = """0.21.0""" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
349
1
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging A_ : Optional[Any] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase ( _lowerCamelCase ): """simple docstring""" def __init__( self ,a_ = 101 ) -> List[str]: _UpperCAmelCase : Dict = length def __len__( self ) -> Any: return self.length def __getitem__( self ,a_ ) -> int: return i class lowercase : """simple docstring""" def __call__( self ,a_ ) -> Any: return {"input_ids": torch.tensor(a_ ), "labels": torch.tensor(a_ )} class lowercase ( nn.Module ): """simple docstring""" def __init__( self ) -> Dict: super().__init__() # Add some (unused) params otherwise DDP will complain. _UpperCAmelCase : Any = nn.Linear(120 ,80 ) def _snake_case ( self ,a_ ,a_=None ) -> Any: if labels is not None: return torch.tensor(0.0 ,device=input_ids.device ), input_ids else: return input_ids class lowercase ( _lowerCamelCase ): """simple docstring""" @require_torch_neuroncore def _snake_case ( self ) -> List[str]: _UpperCAmelCase : int = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _UpperCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : Tuple = f'''--output_dir {output_dir}'''.split() _UpperCAmelCase : Any = ["""torchrun"""] + distributed_args + args execute_subprocess_async(a_ ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowercase ( _lowerCamelCase ): """simple docstring""" @require_torch_multi_gpu def _snake_case ( self ) -> str: _UpperCAmelCase : Union[str, Any] = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() _UpperCAmelCase : Union[str, Any] = self.get_auto_remove_tmp_dir() _UpperCAmelCase : str = f'''--output_dir {output_dir}'''.split() _UpperCAmelCase : List[str] = ["""torchrun"""] + distributed_args + args execute_subprocess_async(a_ ,env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py A_ : str = HfArgumentParser((TrainingArguments,)) A_ : Any = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: A_ : List[Any] = DummyDataset(dataset_length) def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] = list(range(len(lowerCAmelCase_ ) ) ) _UpperCAmelCase : Optional[int] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ F'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} A_ : Dict = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) A_ : Optional[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A_ : Dict = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A_ : Any = 2 A_ : int = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A_ : Union[str, Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A_ : Any = None
349
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def snake_case_ ( )-> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[int] = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) _UpperCAmelCase : str = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase_ ) # Let's go _UpperCAmelCase : Union[str, Any] = parser.parse_args() if not hasattr(lowerCAmelCase_ , """func""" ): parser.print_help() exit(1 ) # Run _UpperCAmelCase : Optional[int] = args.func(lowerCAmelCase_ ) service.run() if __name__ == "__main__": main()
349
1
'''simple docstring''' import re def snake_case_ ( lowerCAmelCase_ )-> list: '''simple docstring''' return [char.split() for char in re.split(R"""[^ a-z A-Z 0-9 \s]""" , str_ )] def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' _UpperCAmelCase : Optional[Any] = split_input(str_ ) return "".join( ["""""".join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' try: _UpperCAmelCase : Tuple = split_input(lowerCAmelCase_ ) if upper: _UpperCAmelCase : str = """""".join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: _UpperCAmelCase : Tuple = """""".join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' return to_simple_case(lowerCAmelCase_ ) def snake_case_ ( lowerCAmelCase_ )-> str: '''simple docstring''' try: _UpperCAmelCase : Any = to_simple_case(lowerCAmelCase_ ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' return to_complex_case(lowerCAmelCase_ , lowerCAmelCase_ , """_""" ) def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> str: '''simple docstring''' return to_complex_case(lowerCAmelCase_ , lowerCAmelCase_ , """-""" ) if __name__ == "__main__": __import__("""doctest""").testmod()
349
'''simple docstring''' import math def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : str = len(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) _UpperCAmelCase : int = 0 while arr[min(lowerCAmelCase_ , lowerCAmelCase_ ) - 1] < x: _UpperCAmelCase : Optional[int] = step step += int(math.floor(math.sqrt(lowerCAmelCase_ ) ) ) if prev >= n: return -1 while arr[prev] < x: _UpperCAmelCase : List[Any] = prev + 1 if prev == min(lowerCAmelCase_ , lowerCAmelCase_ ): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": A_ : str = input("""Enter numbers separated by a comma:\n""").strip() A_ : Union[str, Any] = [int(item) for item in user_input.split(""",""")] A_ : int = int(input("""Enter the number to be searched:\n""")) A_ : Any = jump_search(arr, x) if res == -1: print("""Number not found!""") else: print(f"""Number {x} is at index {res}""")
349
1
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=5 )-> Optional[int]: '''simple docstring''' assert masked_input.count("""<mask>""" ) == 1 _UpperCAmelCase : Dict = torch.tensor(tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) ).unsqueeze(0 ) # Batch size 1 _UpperCAmelCase : Any = model(lowerCAmelCase_ )[0] # The last hidden-state is the first element of the output tuple _UpperCAmelCase : Optional[int] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _UpperCAmelCase : Tuple = logits[0, masked_index, :] _UpperCAmelCase : List[str] = logits.softmax(dim=0 ) _UpperCAmelCase ,_UpperCAmelCase : int = prob.topk(k=lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : List[str] = """ """.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(lowerCAmelCase_ ) )] ) _UpperCAmelCase : Tuple = tokenizer.mask_token _UpperCAmelCase : List[Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(""" """ ) ): _UpperCAmelCase : str = predicted_token_bpe.replace("""\u2581""" , """ """ ) if " {0}".format(lowerCAmelCase_ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(""" {0}""".format(lowerCAmelCase_ ) , lowerCAmelCase_ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(lowerCAmelCase_ , lowerCAmelCase_ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs A_ : Union[str, Any] = CamembertTokenizer.from_pretrained("""camembert-base""") A_ : List[Any] = CamembertForMaskedLM.from_pretrained("""camembert-base""") model.eval() A_ : Any = """Le camembert est <mask> :)""" print(fill_mask(masked_input, model, tokenizer, topk=3))
349
'''simple docstring''' import argparse import copy def snake_case_ ( lowerCAmelCase_ )-> Dict: '''simple docstring''' _UpperCAmelCase : Dict = {} with open(lowerCAmelCase_ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: _UpperCAmelCase : Optional[int] = [] _list.append([line.split()[1], line.split()[2]] ) _UpperCAmelCase : List[str] = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: _UpperCAmelCase : List[str] = [] _list.append([line.split()[0], line.split()[2]] ) _UpperCAmelCase : Optional[int] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: '''simple docstring''' with open(lowerCAmelCase_ ) as f: _UpperCAmelCase : List[Any] = f.read(1 ) _UpperCAmelCase : int = start_node _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : Dict = start_node _UpperCAmelCase : Any = 0 while visiting not in first_solution: _UpperCAmelCase : Optional[int] = 10000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(lowerCAmelCase_ ) and k[0] not in first_solution: _UpperCAmelCase : Optional[int] = k[1] _UpperCAmelCase : List[str] = k[0] first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = distance_of_first_solution + int(lowerCAmelCase_ ) _UpperCAmelCase : Dict = best_node first_solution.append(lowerCAmelCase_ ) _UpperCAmelCase : List[str] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 _UpperCAmelCase : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10000 ) return first_solution, distance_of_first_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : int = [] for n in solution[1:-1]: _UpperCAmelCase : Tuple = solution.index(lowerCAmelCase_ ) for kn in solution[1:-1]: _UpperCAmelCase : int = solution.index(lowerCAmelCase_ ) if n == kn: continue _UpperCAmelCase : Tuple = copy.deepcopy(lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = kn _UpperCAmelCase : List[str] = n _UpperCAmelCase : Optional[int] = 0 for k in _tmp[:-1]: _UpperCAmelCase : List[str] = _tmp[_tmp.index(lowerCAmelCase_ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: _UpperCAmelCase : Dict = distance + int(i[1] ) _tmp.append(lowerCAmelCase_ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) _UpperCAmelCase : Dict = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda lowerCAmelCase_ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )-> int: '''simple docstring''' _UpperCAmelCase : List[Any] = 1 _UpperCAmelCase : Optional[Any] = first_solution _UpperCAmelCase : List[Any] = [] _UpperCAmelCase : List[Any] = distance_of_first_solution _UpperCAmelCase : Dict = solution while count <= iters: _UpperCAmelCase : Any = find_neighborhood(lowerCAmelCase_ , lowerCAmelCase_ ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[Any] = neighborhood[index_of_best_solution] _UpperCAmelCase : Optional[Any] = len(lowerCAmelCase_ ) - 1 _UpperCAmelCase : Optional[Any] = False while not found: _UpperCAmelCase : Tuple = 0 while i < len(lowerCAmelCase_ ): if best_solution[i] != solution[i]: _UpperCAmelCase : Any = best_solution[i] _UpperCAmelCase : str = solution[i] break _UpperCAmelCase : int = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) _UpperCAmelCase : Tuple = True _UpperCAmelCase : List[Any] = best_solution[:-1] _UpperCAmelCase : str = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: _UpperCAmelCase : Tuple = cost _UpperCAmelCase : List[Any] = solution else: _UpperCAmelCase : Any = index_of_best_solution + 1 _UpperCAmelCase : Dict = neighborhood[index_of_best_solution] if len(lowerCAmelCase_ ) >= size: tabu_list.pop(0 ) _UpperCAmelCase : Optional[Any] = count + 1 return best_solution_ever, best_cost def snake_case_ ( lowerCAmelCase_=None )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple = generate_neighbours(args.File ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = generate_first_solution( args.File , lowerCAmelCase_ ) _UpperCAmelCase ,_UpperCAmelCase : str = tabu_search( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , args.Iterations , args.Size , ) print(F'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser(description="""Tabu Search""") parser.add_argument( """-f""", """--File""", type=str, help="""Path to the file containing the data""", required=True, ) parser.add_argument( """-i""", """--Iterations""", type=int, help="""How many iterations the algorithm should perform""", required=True, ) parser.add_argument( """-s""", """--Size""", type=int, help="""Size of the tabu list""", required=True ) # Pass the arguments to main method main(parser.parse_args())
349
1
'''simple docstring''' import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , )-> List[Any]: '''simple docstring''' _UpperCAmelCase : int = {} if train_file is not None: _UpperCAmelCase : int = [train_file] if eval_file is not None: _UpperCAmelCase : List[Any] = [eval_file] if test_file is not None: _UpperCAmelCase : Optional[int] = [test_file] _UpperCAmelCase : str = datasets.load_dataset("""csv""" , data_files=lowerCAmelCase_ ) _UpperCAmelCase : Optional[int] = list(ds[list(files.keys() )[0]].features.keys() ) _UpperCAmelCase : Any = features_name.pop(lowerCAmelCase_ ) _UpperCAmelCase : Tuple = list(set(ds[list(files.keys() )[0]][label_name] ) ) _UpperCAmelCase : List[str] = {label: i for i, label in enumerate(lowerCAmelCase_ )} _UpperCAmelCase : Dict = tokenizer.model_input_names _UpperCAmelCase : List[Any] = {} if len(lowerCAmelCase_ ) == 1: for k in files.keys(): _UpperCAmelCase : List[str] = ds[k].map( lambda lowerCAmelCase_ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" ) , batched=lowerCAmelCase_ , ) elif len(lowerCAmelCase_ ) == 2: for k in files.keys(): _UpperCAmelCase : str = ds[k].map( lambda lowerCAmelCase_ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ , padding="""max_length""" , ) , batched=lowerCAmelCase_ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: _UpperCAmelCase : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} _UpperCAmelCase : Optional[Any] = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: _UpperCAmelCase : Any = {k: v for k, v in ex.items() if k in input_names} _UpperCAmelCase : str = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: _UpperCAmelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names} _UpperCAmelCase : List[Any] = labelaid[ex[label_name]] yield (d, label) _UpperCAmelCase : Union[str, Any] = ( tf.data.Dataset.from_generator( lowerCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: _UpperCAmelCase : List[str] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) _UpperCAmelCase : Dict = ( tf.data.Dataset.from_generator( lowerCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: _UpperCAmelCase : Optional[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) _UpperCAmelCase : Optional[int] = ( tf.data.Dataset.from_generator( lowerCAmelCase_ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: _UpperCAmelCase : Dict = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid A_ : str = logging.getLogger(__name__) @dataclass class lowercase : """simple docstring""" UpperCAmelCase = field(metadata={"""help""": """Which column contains the label"""} ) UpperCAmelCase = field(default=_lowerCamelCase , metadata={"""help""": """The path of the training file"""} ) UpperCAmelCase = field(default=_lowerCamelCase , metadata={"""help""": """The path of the development file"""} ) UpperCAmelCase = field(default=_lowerCamelCase , metadata={"""help""": """The path of the test file"""} ) UpperCAmelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) @dataclass class lowercase : """simple docstring""" UpperCAmelCase = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCAmelCase = field(default=_lowerCamelCase , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase = field( default=_lowerCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) def snake_case_ ( )-> List[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( F'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' F'''16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCAmelCase_ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) _UpperCAmelCase : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCAmelCase_ ) , labelaid=lowerCAmelCase_ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): _UpperCAmelCase : int = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCAmelCase_ ) -> Dict: _UpperCAmelCase : int = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer _UpperCAmelCase : List[str] = TFTrainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCAmelCase : Tuple = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : Tuple = trainer.evaluate() _UpperCAmelCase : int = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(lowerCAmelCase_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(F''' {key} = {value}''' ) writer.write(F'''{key} = {value}\n''' ) results.update(lowerCAmelCase_ ) return results if __name__ == "__main__": main()
349
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 class lowercase : """simple docstring""" def __init__( self ,a_ ) -> List[str]: _UpperCAmelCase : list[list[Edge]] = [[] for _ in range(a_ )] _UpperCAmelCase : int = size def __getitem__( self ,a_ ) -> Iterator[Edge]: return iter(self._graph[vertex] ) @property def _snake_case ( self ) -> List[Any]: return self._size def _snake_case ( self ,a_ ,a_ ,a_ ) -> Tuple: if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(a_ ,a_ ) ) def _snake_case ( self ,a_ ,a_ ) -> int | None: _UpperCAmelCase : Union[str, Any] = deque([start_vertex] ) _UpperCAmelCase : list[int | None] = [None] * self.size _UpperCAmelCase : Union[str, Any] = 0 while queue: _UpperCAmelCase : Union[str, Any] = queue.popleft() _UpperCAmelCase : Union[str, Any] = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _UpperCAmelCase : List[Any] = current_distance + edge.weight _UpperCAmelCase : List[Any] = distances[edge.destination_vertex] if ( isinstance(a_ ,a_ ) and new_distance >= dest_vertex_distance ): continue _UpperCAmelCase : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
349
1
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class lowercase : """simple docstring""" def __init__( self ,a_ ,a_=14 ,a_=7 ,a_=True ,a_=True ,a_=False ,a_=True ,a_=99 ,a_=32 ,a_=4 ,a_=4 ,a_=4 ,a_=37 ,a_="gelu" ,a_=0.1 ,a_=0.1 ,a_=512 ,a_=0.02 ,) -> Dict: _UpperCAmelCase : int = parent _UpperCAmelCase : List[Any] = batch_size _UpperCAmelCase : Dict = seq_length _UpperCAmelCase : Union[str, Any] = is_training _UpperCAmelCase : List[Any] = use_input_mask _UpperCAmelCase : Dict = use_token_type_ids _UpperCAmelCase : List[str] = use_labels _UpperCAmelCase : List[Any] = vocab_size _UpperCAmelCase : str = hidden_size _UpperCAmelCase : Optional[int] = rotary_dim _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : Optional[int] = intermediate_size _UpperCAmelCase : List[str] = hidden_act _UpperCAmelCase : int = hidden_dropout_prob _UpperCAmelCase : List[str] = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : Any = vocab_size - 1 _UpperCAmelCase : List[Any] = vocab_size - 1 _UpperCAmelCase : Union[str, Any] = vocab_size - 1 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) _UpperCAmelCase : Optional[int] = None if self.use_input_mask: _UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : Optional[Any] = GPTJConfig( vocab_size=self.vocab_size ,n_embd=self.hidden_size ,n_layer=self.num_hidden_layers ,n_head=self.num_attention_heads ,n_positions=self.max_position_embeddings ,use_cache=a_ ,bos_token_id=self.bos_token_id ,eos_token_id=self.eos_token_id ,pad_token_id=self.pad_token_id ,rotary_dim=self.rotary_dim ,) return (config, input_ids, input_mask) def _snake_case ( self ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = config_and_inputs _UpperCAmelCase : Dict = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ) -> Dict: _UpperCAmelCase : int = 20 _UpperCAmelCase : Optional[int] = model_class_name(a_ ) _UpperCAmelCase : str = model.init_cache(input_ids.shape[0] ,a_ ) _UpperCAmelCase : Optional[int] = jnp.ones((input_ids.shape[0], max_decoder_length) ,dtype="""i4""" ) _UpperCAmelCase : Union[str, Any] = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] ,(input_ids.shape[0], input_ids.shape[-1] - 1) ) _UpperCAmelCase : Union[str, Any] = model( input_ids[:, :-1] ,attention_mask=a_ ,past_key_values=a_ ,position_ids=a_ ,) _UpperCAmelCase : Tuple = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] ,dtype="""i4""" ) _UpperCAmelCase : int = model( input_ids[:, -1:] ,attention_mask=a_ ,past_key_values=outputs_cache.past_key_values ,position_ids=a_ ,) _UpperCAmelCase : List[Any] = model(a_ ) _UpperCAmelCase : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 ,msg=f'''Max diff is {diff}''' ) def _snake_case ( self ,a_ ,a_ ,a_ ,a_ ) -> Any: _UpperCAmelCase : Dict = 20 _UpperCAmelCase : Dict = model_class_name(a_ ) _UpperCAmelCase : Union[str, Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] ,axis=-1 ,) _UpperCAmelCase : Tuple = model.init_cache(input_ids.shape[0] ,a_ ) _UpperCAmelCase : str = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] ,(input_ids.shape[0], input_ids.shape[-1] - 1) ) _UpperCAmelCase : int = model( input_ids[:, :-1] ,attention_mask=a_ ,past_key_values=a_ ,position_ids=a_ ,) _UpperCAmelCase : Optional[int] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] ,dtype="""i4""" ) _UpperCAmelCase : Dict = model( input_ids[:, -1:] ,past_key_values=outputs_cache.past_key_values ,attention_mask=a_ ,position_ids=a_ ,) _UpperCAmelCase : List[str] = model(a_ ,attention_mask=a_ ) _UpperCAmelCase : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 ,msg=f'''Max diff is {diff}''' ) @require_flax class lowercase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () UpperCAmelCase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def _snake_case ( self ) -> int: _UpperCAmelCase : Optional[int] = FlaxGPTJModelTester(self ) def _snake_case ( self ) -> str: for model_class_name in self.all_model_classes: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(a_ ,a_ ,a_ ,a_ ) def _snake_case ( self ) -> Any: for model_class_name in self.all_model_classes: _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( a_ ,a_ ,a_ ,a_ ) @tooslow def _snake_case ( self ) -> str: _UpperCAmelCase : Dict = GPTaTokenizer.from_pretrained("""gpt2""" ,pad_token="""<|endoftext|>""" ,padding_side="""left""" ) _UpperCAmelCase : str = tokenizer(["""Hello this is a long string""", """Hey"""] ,return_tensors="""np""" ,padding=a_ ,truncation=a_ ) _UpperCAmelCase : int = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) _UpperCAmelCase : Tuple = False _UpperCAmelCase : Union[str, Any] = model.config.eos_token_id _UpperCAmelCase : Tuple = jax.jit(model.generate ) _UpperCAmelCase : Optional[Any] = jit_generate( inputs["""input_ids"""] ,attention_mask=inputs["""attention_mask"""] ,pad_token_id=tokenizer.pad_token_id ).sequences _UpperCAmelCase : List[str] = tokenizer.batch_decode(a_ ,skip_special_tokens=a_ ) _UpperCAmelCase : int = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(a_ ,a_ ) @is_pt_flax_cross_test def _snake_case ( self ) -> List[str]: _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _UpperCAmelCase : Optional[Any] = self._prepare_for_class(a_ ,a_ ) _UpperCAmelCase : int = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _UpperCAmelCase : List[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _UpperCAmelCase : Union[str, Any] = getattr(a_ ,a_ ) _UpperCAmelCase ,_UpperCAmelCase : int = pt_inputs["""input_ids"""].shape _UpperCAmelCase : Tuple = np.random.randint(0 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(a_ ): _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Optional[int] = 1 _UpperCAmelCase : str = 0 _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Optional[int] = pt_model_class(a_ ).eval() _UpperCAmelCase : int = model_class(a_ ,dtype=jnp.floataa ) _UpperCAmelCase : List[Any] = convert_pytorch_state_dict_to_flax(pt_model.state_dict() ,a_ ) _UpperCAmelCase : Dict = fx_state with torch.no_grad(): _UpperCAmelCase : Optional[Any] = pt_model(**a_ ).to_tuple() _UpperCAmelCase : str = fx_model(**a_ ).to_tuple() self.assertEqual(len(a_ ) ,len(a_ ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(a_ ,a_ ): self.assert_almost_equals(fx_output[:, -1] ,pt_output[:, -1].numpy() ,4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(a_ ) _UpperCAmelCase : Optional[int] = model_class.from_pretrained(a_ ,from_pt=a_ ) _UpperCAmelCase : int = fx_model_loaded(**a_ ).to_tuple() self.assertEqual( len(a_ ) ,len(a_ ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(a_ ,a_ ): self.assert_almost_equals(fx_output_loaded[:, -1] ,pt_output[:, -1].numpy() ,4E-2 ) @is_pt_flax_cross_test def _snake_case ( self ) -> str: _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs _UpperCAmelCase : Union[str, Any] = self._prepare_for_class(a_ ,a_ ) _UpperCAmelCase : str = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class _UpperCAmelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _UpperCAmelCase : Any = getattr(a_ ,a_ ) _UpperCAmelCase : Any = pt_model_class(a_ ).eval() _UpperCAmelCase : Optional[int] = model_class(a_ ,dtype=jnp.floataa ) _UpperCAmelCase : Union[str, Any] = load_flax_weights_in_pytorch_model(a_ ,fx_model.params ) _UpperCAmelCase ,_UpperCAmelCase : Tuple = pt_inputs["""input_ids"""].shape _UpperCAmelCase : Any = np.random.randint(0 ,seq_length - 1 ,size=(batch_size,) ) for batch_idx, start_index in enumerate(a_ ): _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[Any] = 1 _UpperCAmelCase : Any = 0 _UpperCAmelCase : Optional[int] = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): _UpperCAmelCase : List[Any] = pt_model(**a_ ).to_tuple() _UpperCAmelCase : Optional[int] = fx_model(**a_ ).to_tuple() self.assertEqual(len(a_ ) ,len(a_ ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(a_ ,a_ ): self.assert_almost_equals(fx_output[:, -1] ,pt_output[:, -1].numpy() ,4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(a_ ) _UpperCAmelCase : str = pt_model_class.from_pretrained(a_ ,from_flax=a_ ) with torch.no_grad(): _UpperCAmelCase : str = pt_model_loaded(**a_ ).to_tuple() self.assertEqual( len(a_ ) ,len(a_ ) ,"""Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(a_ ,a_ ): self.assert_almost_equals(fx_output[:, -1] ,pt_output[:, -1].numpy() ,4E-2 ) @tooslow def _snake_case ( self ) -> int: for model_class_name in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) _UpperCAmelCase : Any = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ )
349
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## A_ : Any = 1_6 A_ : Union[str, Any] = 3_2 def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 16 )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _UpperCAmelCase : str = DatasetDict( { """train""": dataset["""train"""].select(lowerCAmelCase_ ), """validation""": dataset["""train"""].select(lowerCAmelCase_ ), """test""": dataset["""validation"""], } ) def tokenize_function(lowerCAmelCase_ ): # max_length=None => use the model max length (it's actually the default) _UpperCAmelCase : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _UpperCAmelCase : Optional[int] = datasets.map( lowerCAmelCase_ , batched=lowerCAmelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _UpperCAmelCase : List[Any] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(lowerCAmelCase_ ): # On TPU it's best to pad everything to the same length or training will be very slow. _UpperCAmelCase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _UpperCAmelCase : List[str] = 16 elif accelerator.mixed_precision != "no": _UpperCAmelCase : Any = 8 else: _UpperCAmelCase : Dict = None return tokenizer.pad( lowerCAmelCase_ , padding="""longest""" , max_length=lowerCAmelCase_ , pad_to_multiple_of=lowerCAmelCase_ , return_tensors="""pt""" , ) # Instantiate dataloaders. _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) _UpperCAmelCase : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=lowerCAmelCase_ , collate_fn=lowerCAmelCase_ , batch_size=lowerCAmelCase_ ) return train_dataloader, eval_dataloader, test_dataloader def snake_case_ ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: '''simple docstring''' _UpperCAmelCase : Optional[int] = [] # Download the dataset _UpperCAmelCase : Dict = load_dataset("""glue""" , """mrpc""" ) # Create our splits _UpperCAmelCase : Optional[Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _UpperCAmelCase : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _UpperCAmelCase : Dict = config["""lr"""] _UpperCAmelCase : List[Any] = int(config["""num_epochs"""] ) _UpperCAmelCase : str = int(config["""seed"""] ) _UpperCAmelCase : List[Any] = int(config["""batch_size"""] ) _UpperCAmelCase : int = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _UpperCAmelCase : List[Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _UpperCAmelCase : Dict = batch_size // MAX_GPU_BATCH_SIZE _UpperCAmelCase : Tuple = MAX_GPU_BATCH_SIZE set_seed(lowerCAmelCase_ ) # New Code # # Create our folds: _UpperCAmelCase : Any = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _UpperCAmelCase : Tuple = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(lowerCAmelCase_ ): _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = get_fold_dataloaders( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _UpperCAmelCase : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=lowerCAmelCase_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _UpperCAmelCase : List[Any] = model.to(accelerator.device ) # Instantiate optimizer _UpperCAmelCase : int = AdamW(params=model.parameters() , lr=lowerCAmelCase_ ) # Instantiate scheduler _UpperCAmelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase_ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = accelerator.prepare( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Now we train the model for epoch in range(lowerCAmelCase_ ): model.train() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _UpperCAmelCase : Union[str, Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Dict = outputs.loss _UpperCAmelCase : int = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[str] = model(**lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) _UpperCAmelCase ,_UpperCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=lowerCAmelCase_ , references=lowerCAmelCase_ , ) _UpperCAmelCase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowerCAmelCase_ ) # New Code # # We also run predictions on the test set at the very end _UpperCAmelCase : Tuple = [] for step, batch in enumerate(lowerCAmelCase_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _UpperCAmelCase : List[Any] = model(**lowerCAmelCase_ ) _UpperCAmelCase : Any = outputs.logits _UpperCAmelCase ,_UpperCAmelCase : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(lowerCAmelCase_ , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _UpperCAmelCase : List[Any] = torch.cat(lowerCAmelCase_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.stack(lowerCAmelCase_ , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _UpperCAmelCase : List[str] = metric.compute(predictions=lowerCAmelCase_ , references=lowerCAmelCase_ ) accelerator.print("""Average test metrics from all folds:""" , lowerCAmelCase_ ) def snake_case_ ( )-> Any: '''simple docstring''' _UpperCAmelCase : List[str] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=lowerCAmelCase_ , default=lowerCAmelCase_ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=lowerCAmelCase_ , default=3 , help="""The number of splits to perform across the dataset""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() _UpperCAmelCase : Tuple = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase_ , lowerCAmelCase_ ) if __name__ == "__main__": main()
349
1