File size: 5,295 Bytes
a559968 1242793 6b86f1d a559968 63a9689 245a842 23b1045 0425c6a 23b1045 63a9689 0425c6a 63a9689 b7f7b60 7a3e648 63a9689 5d48856 63a9689 7a3e648 63a9689 7a3e648 b7f7b60 7a3e648 63a9689 5d48856 27ce514 63a9689 b7f7b60 63a9689 0425c6a b7f7b60 0425c6a 23b1045 245a842 b7f7b60 245a842 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
license: mit
language_bcp47:
- ru-RU
tags:
- spellcheck
language:
- ru
size_categories:
- 100K<n<1M
task_categories:
- text2text-generation
---
### Dataset Summary
This dataset is a set of samples for testing the spell checker, grammar error correction and ungrammatical text detection models.
The dataset contains two splits:
test.json contains samples hand-selected to evaluate the quality of models.
train.json contains synthetic samples generated in various ways.
The purpose of creating the dataset was to test an internal spellchecker for [a generative poetry project](https://github.com/Koziev/verslibre), but it can also be useful in other projects, since it does not have an explicit specialization for poetry.
You can consider this dataset as an extension of [RuCOLA](https://huggingface.co/datasets/RussianNLP/rucola).
In addition, for some samples there is a corrected version of the text ("fixed_sentence" field), so it can be used as an extension of datasets in [ai-forever/spellcheck_benchmark](https://huggingface.co/datasets/ai-forever/spellcheck_benchmark).
### Example
```
{
"id": 1483,
"sentence": "Разучи стихов по больше",
"fixed_sentence": "Разучи стихов побольше",
"label": 0,
"error_type": "Tokenization",
"domain": "prose"
}
```
### Notes
The test split contains only examples of mistakes made by people. There are no synthetics among these mistakes.
The examples of errors in the test split come from different people in terms of gender, age, education, context, and social context.
The input and output text can be not only one sentence, but also 1) part of a sentence, 2) several sentences - a paragraph, 3) a fragment of a poem, usually a quatrain or two quatrains.
The texts may include offensive texts, texts that offend religious or political feelings, texts that contradict moral standards, etc. Such samples are only needed to make the corpus as representative as possible for the tasks of processing messages in various media such as blogs, comments, etc.
One sample may contain several errors of different types.
### Uncensoring samples
A number of samples contain text with explicit obscenities:
```
{
"id": 1,
"sentence": "Но не простого - с лёгкой еб@нцой.",
"fixed_sentence": "Но не простого - с лёгкой ебанцой.",
"label": 0,
"error_type": "Misspelling",
"domain": "prose"
}
```
### Poetry samples
A few poetry samples are included in this version:
```
{
"id": 24,
"sentence": "Чему научит забытьё?\nСмерть формы д'арует литьё.\nРезец мгновенье любит стружка...\nСмерть безобидная подружка!",
"fixed_sentence": null,
"label": 0,
"error_type": "Grammar",
"domain": "poetry"
}
```
### Dataset fields
**id** (int64): the sentence's id, starting 1.
**sentence** (str): the original sentence.
**fixed_sentence** (str): the corrected version of original sentence.
**label** (str): the target class. "1" for "acceptable", "0" for "unacceptable".
**error_type** (str): the violation category: Spelling, Grammar, Tokenization, Punctuation, Mixture, Unknown.
**domain** (str): domain: "prose" or "poetry".
### Error types
**Tokenization**: a word is split into two tokens, or two words are merged into one word.
```
{
"id": 6,
"sentence": "Я подбираю по проще слова",
"fixed_sentence": "Я подбираю попроще слова",
"label": 0,
"error_type": "Tokenization",
"domain": "prose"
}
```
**Punctuation**: missing or extra comma, hyphen or other punctuation mark
```
{
"id": 5,
"sentence": "И швырнуть по-дальше",
"fixed_sentence": "И швырнуть подальше",
"label": 0,
"error_type": "Punctuation",
"domain": "prose"
}
```
**Spelling**:
```
{
"id": 38,
"sentence": "И ведь что интересно, русские официально ни в одном крестовом позоде не участвовали.",
"fixed_sentence": "И ведь что интересно, русские официально ни в одном крестовом походе не участвовали.",
"label": 0,
"error_type": "Spelling",
"domain": "prose"
}
```
**Grammar**: One of the words is in the wrong grammatical form, for example the verb is in the infinitive instead of the personal form.
```
{
"id": 61,
"sentence": "на него никто не польститься",
"fixed_sentence": "на него никто не польстится",
"label": 0,
"error_type": "Grammar",
"domain": "prose"
}
```
Please note that error categories are not always set accurately, so you should not use
the "error_type" field to train classifiers.
### Statistics
Total number of samples in test split: **6244**
Total number of samples in train split: **435538**
Statistics for test split.
Domains:
prose 5635
poetry 609
|