File size: 7,176 Bytes
72d0ac1
614c895
 
 
 
 
72d0ac1
614c895
 
 
 
 
 
 
 
 
 
 
 
 
 
6db22fb
614c895
 
 
72d0ac1
614c895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc8640
b7c0d5d
614c895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc8640
 
614c895
 
 
 
 
 
 
 
 
 
 
 
 
 
8cc8640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
annotations_creators:
- expert-generated
language:
- en
- fr
license: cc-by-sa-4.0
language_creators:
- expert-generated
multilinguality:
- translation
pretty_name: DiscEvalMT
size_categories:
- n<1K
source_datasets:
- original
tags:
- contextual-mt
- document-mt
- anaphora
- lexical-choice
- arxiv:2310.01188
task_categories:
- translation
task_ids: []
---

# Dataset Card for DiscEvalMT

## Table of Contents

- [Dataset Card for DiscEvalMT](#dataset-card-for-discevalmt)
  - [Table of Contents](#table-of-contents)
  - [Dataset Description](#dataset-description)
    - [Dataset Summary](#dataset-summary)
    - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
      - [Machine Translation](#machine-translation)
    - [Languages](#languages)
  - [Dataset Structure](#dataset-structure)
    - [Data Instances](#data-instances)
    - [Dataset Creation](#dataset-creation)
    - [Additional Preprocessing](#additional-preprocessing)
  - [Additional Information](#additional-information)
    - [Dataset Curators](#dataset-curators)
    - [Licensing Information](#licensing-information)
    - [Citation Information](#citation-information)

## Dataset Description

- **Repository:** [Github](https://github.com/rbawden/discourse-mt-test-sets)
- **Paper:** [NAACL 2018](https://www.aclweb.org/anthology/N18-1118)
- **Annotated Version:** [ICLR 2024](https://openreview.net/forum?id=XTHfNGI3zT)
- **Annotated Version:** [Arxiv](arxiv.org/abs/2310.01188)
- **Point of Contact:** [Rachel Bawden](mailto:[email protected])

### Dataset Summary

The DiscEvalMT dataset contains English-to-French translations used for resolving ambiguity in pronoun anaphora resolution and lexical choice (disambiguation and cohesion) context-aware translation. This version of the DiscEvalMT dataset contains further annotations of ambiguous spans and supporting context in the dataset examples to align it with the highlighting scheme of [SCAT](https://huggingface.co/inseq), enabling granular evaluations of context usage in context-aware NMT models.

**Disclaimer**: *The DiscEvalMT corpus was released in the NAACL 2018 paper ["Evaluating Discourse Phenomena in Neural Machine Translation"](https://www.aclweb.org/anthology/N18-1118) by Bawden et al. (2018), and an original version of the corpus is hosted on [Github](https://github.com/rbawden/discourse-mt-test-sets) with CC-BY-SA 4.0 license.*

### Supported Tasks and Leaderboards
#### Machine Translation
Refer to the [original paper](ttps://www.aclweb.org/anthology/N18-1118) for additional details on the evaluation of discourse-level phenomena using DiscEvalMT.
### Languages
The dataset contains handcrafted English-to-French translation examples containing either anaphoric pronouns or lexical choice items. Examples were created using existing [OpenSubtitles 2016](https://aclanthology.org/L16-1147/) sentences as reference for lexicon and syntactic structure.
## Dataset Structure
### Data Instances

The dataset contains two configurations (`anaphora` and `lexical-choice`), each containing only a test set of 200 examples each. Dataset examples have the following format:

```json
{
  "id": 0,
  "context_en": "The buildings will be finished next week.",
  "en": "Soon they will be full of new residents.",
  "context_fr": "Les bâtiments seront terminés la semaine prochaine.",
  "fr": "Ils seront bientôt pleins de nouveaux résidents.",
  "contrast_fr": "Elles seront bientôt pleines de nouveaux résidents.",
  "context_en_with_tags": "The <hon>buildings<hoff> will be finished next week.",
  "en_with_tags": "Soon <p>they</p> will be full of new residents.",
  "context_fr_with_tags": "Les <hon>bâtiments<hoff> seront terminés la semaine prochaine.",
  "fr_with_tags": "<p>Ils</p> seront bientôt pleins de nouveaux résidents.",
  "contrast_fr_with_tags": "<p>Elles</p> seront bientôt pleines de nouveaux résidents.",
  "type": "m.pl"
}
```

In every example, the context-dependent word of interest and its translation are surrounded by `<p>...</p>` tags. These are guaranteed to be found in the `en_with_tags`, `fr_with_tags` and `contrast_fr_with_tags` fields.

Any span surrounded by `<hon>...<hoff>` tags was identified by human annotators as supporting context necessary to correctly translate the pronoun of interest. These spans are found only in the `context_en_with_tags` and `context_fr_with_tags` fields.

In the example above, the translation of the pronoun `they` (field `en`) is ambiguous, and the correct translation to the feminine French pronoun `Ils` (in field `fr`) is only possible thanks to the supporting masculine noun `bâtiments` in the field `context_fr`.

Fields with the `_with_tags` suffix contain tags around pronouns of interest and supporting context, while their counterparts without the suffix contain the same text without tags, to facilitate direct usage with machine translation models.

### Dataset Creation

The dataset was created manually by the original authors, with context usage annotations added by the authors of [Quantifying the Plausibility of Context Reliance in Neural Machine Translation](tbd) for plausibility analysis purposes.

Please refer to the original article [Evaluating Discourse Phenomena in Neural Machine Translation](https://www.aclweb.org/anthology/N18-1118) for additional information on dataset creation.

### Additional Preprocessing

The dataset presents minor adjustments compared to the original DiscEvalMT corpus.

## Additional Information
### Dataset Curators

The original authors of DiscEvalMT are the curators of the original released dataset. For problems or updates on this 🤗 Datasets version, please contact [[email protected]](mailto:[email protected]).

### Licensing Information

The dataset is released under the original CC-BY-SA 4.0 license.

### Citation Information
Please cite the authors if you use these corpus in your work.

#### Original DiscEval-MT

```bibtex
@inproceedings{bawden-etal-2018-evaluating,
    title = "Evaluating Discourse Phenomena in Neural Machine Translation",
    author = "Bawden, Rachel and Sennrich, Rico and Birch, Alexandra and Haddow, Barry",
    booktitle = {{Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)}},
    month = jun,
    year = "2018",
    address = "New Orleans, Louisiana",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/N18-1118",
    doi = "10.18653/v1/N18-1118",
    pages = "1304--1313"
}
```

#### Annotated version

```bibtex
@inproceedings{sarti-etal-2023-quantifying,
    title = "Quantifying the Plausibility of Context Reliance in Neural Machine Translation",
    author = "Sarti, Gabriele and 
        Chrupa{\l}a, Grzegorz and 
        Nissim, Malvina and
        Bisazza, Arianna",
    booktitle = "The Twelfth International Conference on Learning Representations (ICLR 2024)",
    month = may,
    year = "2024",
    address = "Vienna, Austria",
    publisher = "OpenReview",
    url = "https://openreview.net/forum?id=XTHfNGI3zT"
}
```