|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""DiscEvalMT: Contrastive test sets for the evaluation of discourse in machine translation (v2)""" |
|
|
|
from typing import Dict |
|
|
|
import datasets |
|
from datasets.utils.download_manager import DownloadManager |
|
|
|
_CITATION = """\ |
|
@inproceedings{bawden-etal-2018-evaluating, |
|
title = "Evaluating Discourse Phenomena in Neural Machine Translation", |
|
author = "Bawden, Rachel and Sennrich, Rico and Birch, Alexandra and Haddow, Barry", |
|
booktitle = {{Proceedings of the 2018 Conference of the North {A}merican Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)}}, |
|
month = jun, |
|
year = "2018", |
|
address = "New Orleans, Louisiana", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://www.aclweb.org/anthology/N18-1118", |
|
doi = "10.18653/v1/N18-1118", |
|
pages = "1304--1313" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The test sets comprise hand-crafted examples that are inspired by similar examples in the parallel corpus OpenSubtitles2016 (in terms of vocabulary usage, style and syntactic formulation) |
|
for the evaluation of discourse in English-to-French machine translation. |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/inseq/disc_eval_mt/raw/main/examples" |
|
|
|
_HOMEPAGE = "https://github.com/rbawden/discourse-mt-test-sets" |
|
|
|
_LICENSE = "CC-BY-SA-4.0" |
|
|
|
_CONFIGS = ["anaphora", "lexical-choice"] |
|
|
|
|
|
class DiscEvalMTConfig(datasets.BuilderConfig): |
|
def __init__(self, source_language: str, target_language: str, **kwargs): |
|
"""BuilderConfig for DiscEvalMT. |
|
Args: |
|
source_language: `str`, source language for translation. |
|
target_language: `str`, translation language. |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(**kwargs) |
|
self.source_language = source_language |
|
self.target_language = target_language |
|
|
|
|
|
class DiscEvalMT(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
DiscEvalMTConfig( |
|
name=cfg, |
|
source_language="en", |
|
target_language="fr", |
|
) |
|
for cfg in _CONFIGS |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "anaphora" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"context_en": datasets.Value("string"), |
|
"en": datasets.Value("string"), |
|
"context_fr": datasets.Value("string"), |
|
"fr": datasets.Value("string"), |
|
"contrast_fr": datasets.Value("string"), |
|
"context_en_with_tags": datasets.Value("string"), |
|
"en_with_tags": datasets.Value("string"), |
|
"context_fr_with_tags": datasets.Value("string"), |
|
"fr_with_tags": datasets.Value("string"), |
|
"contrast_fr_with_tags": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
@staticmethod |
|
def clean_string(txt: str): |
|
return txt.replace("<p>", "").replace("</p>", "").replace("<hon>", "").replace("<hoff>", "") |
|
|
|
def _split_generators(self, dl_manager: DownloadManager): |
|
"""Returns SplitGenerators.""" |
|
filepaths = {} |
|
for lang in ["en", "fr"]: |
|
for ftype in ["context", "current"]: |
|
fname = f"{self.config.name}.{ftype}.{lang}" |
|
filepaths[f"{ftype}_{lang}"] = dl_manager.download_and_extract(f"{_URL}/{fname}") |
|
filepaths["contrast_fr"] = dl_manager.download_and_extract(f"{_URL}/{self.config.name}.contrast.fr") |
|
filepaths["type"] = dl_manager.download_and_extract(f"{_URL}/{self.config.name}.type") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepaths": filepaths, |
|
"cfg_name": self.config.name, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepaths: Dict[str, str], cfg_name: str): |
|
"""Yields examples as (key, example) tuples.""" |
|
|
|
with open(filepaths["current_en"]) as f: |
|
current_en = f.read().splitlines() |
|
with open(filepaths["current_fr"]) as f: |
|
current_fr = f.read().splitlines() |
|
with open(filepaths["context_en"]) as f: |
|
context_en = f.read().splitlines() |
|
with open(filepaths["context_fr"]) as f: |
|
context_fr = f.read().splitlines() |
|
with open(filepaths["contrast_fr"]) as f: |
|
contrast_fr = f.read().splitlines() |
|
with open(filepaths["type"]) as f: |
|
alltyp = f.read().splitlines() |
|
for i, (curr_en, curr_fr, ctx_en, ctx_fr, con_fr, typ) in enumerate( |
|
zip(current_en, current_fr, context_en, context_fr, contrast_fr, alltyp) |
|
): |
|
yield i, { |
|
"id": i, |
|
"context_en": self.clean_string(ctx_en), |
|
"en": self.clean_string(curr_en), |
|
"context_fr": self.clean_string(ctx_fr), |
|
"fr": self.clean_string(curr_fr), |
|
"contrast_fr": self.clean_string(con_fr), |
|
"context_en_with_tags": ctx_en, |
|
"en_with_tags": curr_en, |
|
"context_fr_with_tags": ctx_fr, |
|
"fr_with_tags": curr_fr, |
|
"contrast_fr_with_tags": con_fr, |
|
"type": typ, |
|
} |
|
|