Delete loading script auxiliary file
Browse files- cppe_5_backup.py +0 -118
cppe_5_backup.py
DELETED
@@ -1,118 +0,0 @@
|
|
1 |
-
#!/usr/bin/python3
|
2 |
-
# -*- coding: utf-8 -*-
|
3 |
-
from glob import glob
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
from pathlib import Path
|
7 |
-
|
8 |
-
import datasets
|
9 |
-
from PIL import Image
|
10 |
-
|
11 |
-
# _URL = "https://drive.google.com/uc?id=1MGnaAfbckUmigGUvihz7uiHGC6rBIbvr"
|
12 |
-
|
13 |
-
_HOMEPAGE = "https://sites.google.com/view/cppe5"
|
14 |
-
|
15 |
-
_LICENSE = "Unknown"
|
16 |
-
|
17 |
-
_CATEGORIES = ["Coverall", "Face_Shield", "Gloves", "Goggles", "Mask"]
|
18 |
-
|
19 |
-
_CITATION = """\
|
20 |
-
@misc{dagli2021cppe5,
|
21 |
-
title={CPPE-5: Medical Personal Protective Equipment Dataset},
|
22 |
-
author={Rishit Dagli and Ali Mustufa Shaikh},
|
23 |
-
year={2021},
|
24 |
-
eprint={2112.09569},
|
25 |
-
archivePrefix={arXiv},
|
26 |
-
primaryClass={cs.CV}
|
27 |
-
}
|
28 |
-
"""
|
29 |
-
|
30 |
-
_DESCRIPTION = """\
|
31 |
-
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal
|
32 |
-
to allow the study of subordinate categorization of medical personal protective equipments,
|
33 |
-
which is not possible with other popular data sets that focus on broad level categories.
|
34 |
-
"""
|
35 |
-
|
36 |
-
|
37 |
-
class CPPE5(datasets.GeneratorBasedBuilder):
|
38 |
-
"""CPPE - 5 dataset."""
|
39 |
-
|
40 |
-
VERSION = datasets.Version("1.0.0")
|
41 |
-
|
42 |
-
def _info(self):
|
43 |
-
features = datasets.Features(
|
44 |
-
{
|
45 |
-
"image_id": datasets.Value("int64"),
|
46 |
-
"image": datasets.Image(),
|
47 |
-
"width": datasets.Value("int32"),
|
48 |
-
"height": datasets.Value("int32"),
|
49 |
-
"objects": datasets.Sequence(
|
50 |
-
feature=datasets.Features({
|
51 |
-
"id": datasets.Value("int64"),
|
52 |
-
"area": datasets.Value("int64"),
|
53 |
-
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
|
54 |
-
"category": datasets.ClassLabel(names=_CATEGORIES),
|
55 |
-
})
|
56 |
-
),
|
57 |
-
}
|
58 |
-
)
|
59 |
-
return datasets.DatasetInfo(
|
60 |
-
description=_DESCRIPTION,
|
61 |
-
features=features,
|
62 |
-
homepage=_HOMEPAGE,
|
63 |
-
license=_LICENSE,
|
64 |
-
citation=_CITATION,
|
65 |
-
)
|
66 |
-
|
67 |
-
def _split_generators(self, dl_manager):
|
68 |
-
"""Returns SplitGenerators."""
|
69 |
-
train_json = dl_manager.download("data/annotations/train.jsonl")
|
70 |
-
test_json = dl_manager.download("data/annotations/test.jsonl")
|
71 |
-
|
72 |
-
return [
|
73 |
-
datasets.SplitGenerator(
|
74 |
-
name=datasets.Split.TRAIN,
|
75 |
-
gen_kwargs={
|
76 |
-
"archive_path": train_json,
|
77 |
-
"dl_manager": dl_manager,
|
78 |
-
},
|
79 |
-
),
|
80 |
-
datasets.SplitGenerator(
|
81 |
-
name=datasets.Split.TEST,
|
82 |
-
gen_kwargs={
|
83 |
-
"archive_path": test_json,
|
84 |
-
"dl_manager": dl_manager,
|
85 |
-
},
|
86 |
-
),
|
87 |
-
]
|
88 |
-
|
89 |
-
def _generate_examples(self, archive_path, dl_manager):
|
90 |
-
"""Yields examples."""
|
91 |
-
archive_path = Path(archive_path)
|
92 |
-
|
93 |
-
idx = 0
|
94 |
-
|
95 |
-
with open(archive_path, "r", encoding="utf-8") as f:
|
96 |
-
for row in f:
|
97 |
-
sample = json.loads(row)
|
98 |
-
|
99 |
-
file_path = sample["image"]
|
100 |
-
file_path = dl_manager.download(file_path)
|
101 |
-
|
102 |
-
with open(file_path, "rb") as image_f:
|
103 |
-
image_bytes = image_f.read()
|
104 |
-
# image = Image.open(image_f)
|
105 |
-
|
106 |
-
yield idx, {
|
107 |
-
"image_id": sample["image_id"],
|
108 |
-
"image": {"path": file_path, "bytes": image_bytes},
|
109 |
-
# "image": image,
|
110 |
-
"width": sample["width"],
|
111 |
-
"height": sample["height"],
|
112 |
-
"objects": sample["objects"],
|
113 |
-
}
|
114 |
-
idx += 1
|
115 |
-
|
116 |
-
|
117 |
-
if __name__ == '__main__':
|
118 |
-
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|