Datasets:

ArXiv:
License:
File size: 2,560 Bytes
821e463
 
 
 
 
 
 
 
 
 
 
 
 
 
0e1af0f
821e463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cba128
 
 
 
 
 
 
 
 
821e463
 
 
 
4cba128
 
 
 
 
 
 
 
821e463
 
 
 
4cba128
821e463
 
 
 
 
 
 
0e1af0f
 
 
821e463
 
 
 
4cba128
821e463
 
 
4cba128
821e463
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
import json
import os
import sys

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, "../../"))

from datasets import load_dataset, DownloadMode
from tqdm import tqdm

from language_identification import LANGUAGE_MAP
from project_settings import project_path


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--dataset_path", default="amazon_reviews_multi", type=str)
    parser.add_argument(
        "--dataset_cache_dir",
        default=(project_path / "hub_datasets").as_posix(),
        type=str
    )
    parser.add_argument(
        "--output_file",
        default=(project_path / "data/amazon_reviews_multi.jsonl"),
        type=str
    )

    args = parser.parse_args()
    return args


def main():
    args = get_args()

    dataset_dict = load_dataset(
        path=args.dataset_path,
        cache_dir=args.dataset_cache_dir,
        revision="refs/convert/parquet",
        # download_mode=DownloadMode.FORCE_REDOWNLOAD
    )
    print(dataset_dict)

    split_map = {
        "dev": "validation",
        "validate": "validation"
    }

    language_map = {
        "zh": "zh-cn"
    }

    text_set = set()
    counter = defaultdict(int)
    with open(args.output_file, "w", encoding="utf-8") as f:
        for k, v in dataset_dict.items():
            if k in split_map.keys():
                split = split_map[k]
            else:
                split = k
            if split not in ("train", "validation", "test"):
                print("skip split: {}".format(split))
                continue

            for sample in tqdm(v):

                text = sample["review_body"]
                language = sample["language"]
                language = language_map.get(language, language)

                text = text.strip()

                if text in text_set:
                    continue
                text_set.add(text)

                if language not in LANGUAGE_MAP.keys():
                    raise AssertionError(language)

                row = {
                    "text": text,
                    "language": language,
                    "data_source": "amazon_reviews_multi",
                    "split": split
                }
                row = json.dumps(row, ensure_ascii=False)
                f.write("{}\n".format(row))
                counter[split] += 1

    print("counter: {}".format(counter))

    return


if __name__ == '__main__':
    main()