File size: 1,640 Bytes
5516d69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse
from collections import defaultdict
import json
import os
from pathlib import Path
import random
import re
import sys

pwd = os.path.abspath(os.path.dirname(__file__))
sys.path.append(os.path.join(pwd, '../../'))

import pandas as pd
from tqdm import tqdm

from project_settings import project_path


def get_args():
    parser = argparse.ArgumentParser()

    parser.add_argument("--data_file", default="data/sms_spam_collection/spam.csv", type=str)

    parser.add_argument(
        "--output_file",
        default=(project_path / "data/sms_spam_collection.jsonl"),
        type=str
    )
    args = parser.parse_args()
    return args


def main():
    args = get_args()

    df = pd.read_csv(args.data_file)

    with open(args.output_file, "w", encoding="utf-8") as f:
        for i, row in tqdm(df.iterrows(), total=len(df)):
            # print(row)
            text = row["Message"]
            label = row["Category"]

            if label not in ("spam", "ham"):
                raise AssertionError

            num = random.random()
            if num < 0.9:
                split = "train"
            elif num < 0.95:
                split = "validation"
            else:
                split = "test"

            row = {
                "text": text,
                "label": label,
                "category": None,
                "data_source": "sms_spam_collection",
                "split": split
            }
            row = json.dumps(row, ensure_ascii=False)
            f.write("{}\n".format(row))

    return


if __name__ == '__main__':
    main()