File size: 3,156 Bytes
1ab607b
 
6cc2785
 
 
 
 
 
 
 
 
 
 
8472d60
5516d69
 
8472d60
 
 
5516d69
8cbe332
5516d69
27bb1fd
5516d69
8472d60
6cc2785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8472d60
6cc2785
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8472d60
6cc2785
 
 
1ab607b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from collections import defaultdict
import json
from pathlib import Path
import random
import re
from typing import Any, Dict, List, Tuple

import datasets


_urls = {
    "enron_spam": "data/enron_spam.jsonl",
    "enron_spam_subset": "data/enron_spam_subset.jsonl",
    "ling_spam": "data/ling_spam.jsonl",
    "sms_spam": "data/sms_spam.jsonl",
    "spam_assassin": "data/spam_assassin.jsonl",
    "spam_detection": "data/spam_detection.jsonl",
    "spam_emails": "data/spam_emails.jsonl",
    "spam_message": "data/spam_message.jsonl",
    "spam_message_lr": "data/spam_message_lr.jsonl",
    "trec07p": "data/trec07p.jsonl",
    "youtube_spam_collection": "data/youtube_spam_collection.jsonl",

}


_CITATION = """\
@dataset{spam_detect,
  author       = {Xing Tian},
  title        = {spam_detect},
  month        = sep,
  year         = 2023,
  publisher    = {Xing Tian},
  version      = {1.0},
}
"""


class SpamDetect(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    intent_configs = list()
    for name in _urls.keys():
        config = datasets.BuilderConfig(name=name, version=VERSION, description=name)
        intent_configs.append(config)

    BUILDER_CONFIGS = [
        *intent_configs,
    ]

    def _info(self):
        features = datasets.Features({
            "text": datasets.Value("string"),
            "label": datasets.Value("string"),
            "category": datasets.Value("string"),
            "data_source": datasets.Value("string"),
        })

        return datasets.DatasetInfo(
            features=features,
            supervised_keys=None,
            homepage="",
            license="",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        url = _urls[self.config.name]
        dl_path = dl_manager.download(url)
        archive_path = dl_path

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"archive_path": archive_path, "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"archive_path": archive_path, "split": "validation"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"archive_path": archive_path, "split": "test"},
            ),
        ]

    def _generate_examples(self, archive_path, split):
        """Yields examples."""
        archive_path = Path(archive_path)

        idx = 0

        with open(archive_path, "r", encoding="utf-8") as f:
            for row in f:
                sample = json.loads(row)

                if sample["split"] != split:
                    continue

                yield idx, {
                    "text": sample["text"],
                    "label": sample["label"],
                    "category": sample["category"],
                    "data_source": sample["data_source"],
                }
                idx += 1


if __name__ == '__main__':
    pass