update
Browse files
README.md
CHANGED
@@ -13,11 +13,12 @@ license: apache-2.0
|
|
13 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|
14 |
| enron_spam | 英语 | 垃圾邮件分类 | [enron_spam_data](https://github.com/MWiechmann/enron_spam_data); [Enron-Spam](https://www2.aueb.gr/users/ion/data/enron-spam/); [spam-mails-dataset](https://www.kaggle.com/datasets/venky73/spam-mails-dataset) | ham: 16545; spam: 17171 | Enron-Spam 数据集是 V. Metsis、I. Androutsopoulos 和 G. Paliouras 收集的绝佳资源 | [SetFit/enron_spam](https://huggingface.co/datasets/SetFit/enron_spam); [enron-spam](https://www.kaggle.com/datasets/wanderfj/enron-spam) |
|
15 |
| enron_spam_subset | 英语 | 垃圾邮件分类 | [email-spam-dataset](https://www.kaggle.com/datasets/nitishabharathi/email-spam-dataset) | ham: 5000; spam: 5000 | | |
|
16 |
-
| ling_spam | 英语 | 垃圾邮件分类 | [email-spam-dataset](https://www.kaggle.com/datasets/nitishabharathi/email-spam-dataset) | ham: 2172; spam: 433 |
|
17 |
-
|
|
|
|
18 |
| spam_assassin | 英语 | 垃圾邮件分类 | [datasets-spam-assassin](https://github.com/stdlib-js/datasets-spam-assassin); [Apache SpamAssassin’s public datasets](https://spamassassin.apache.org/old/publiccorpus/); [Spam or Not Spam Dataset](https://www.kaggle.com/datasets/ozlerhakan/spam-or-not-spam-dataset) | ham: 4150; spam: 1896 | 数据集从[email-spam-dataset](https://www.kaggle.com/datasets/nitishabharathi/email-spam-dataset)的completeSpamAssassin.csv文件而来。 | [email-spam-dataset](https://www.kaggle.com/datasets/nitishabharathi/email-spam-dataset); [talby/SpamAssassin](https://huggingface.co/datasets/talby/spamassassin); [spamassassin-2002](https://www.kaggle.com/datasets/cesaber/spam-email-data-spamassassin-2002) |
|
|
|
19 |
| spam_detection | 英语 | 垃圾短信分类 | [Deysi/spam-detection-dataset](https://huggingface.co/datasets/Deysi/spam-detection-dataset) | ham: 5400; spam: 5500 | | |
|
20 |
-
| sms_spam_collection | 英语 | 垃圾短信分类 | [spam-emails](https://www.kaggle.com/datasets/abdallahwagih/spam-emails) | ham: 4825; spam: 747 | 该数据集包含电子邮件的集合 | [email-spam-detection-dataset-classification](https://www.kaggle.com/datasets/shantanudhakadd/email-spam-detection-dataset-classification); [spam-identification](https://www.kaggle.com/datasets/amirdhavarshinis/spam-identification); [sms-spam-collection](https://www.kaggle.com/datasets/thedevastator/sms-spam-collection-a-more-diverse-dataset); [spam-or-ham](https://www.kaggle.com/datasets/arunasivapragasam/spam-or-ham) |
|
21 |
| spam_message | 汉语 | 垃圾短信分类 | [SpamMessage](https://github.com/hrwhisper/SpamMessage) | ham: 720000; spam: 80000 | 其中spam的数据是正确的数据,但是做了脱敏处理(招生电话:xxxxxxxxxxx),这里的 x 可能会成为显著特征。而ham样本像是从普通文本中截断出来充作样本的,建议不要用这些数据。 | |
|
22 |
| spam_message_lr | 汉语 | 垃圾短信分�� | [SpamMessagesLR](https://github.com/x-hacker/SpamMessagesLR) | ham: 3983; spam: 6990 | | |
|
23 |
| trec_2007 | 英语 | 垃圾邮件分类 | [2007 TREC Public Spam Corpus](https://plg.uwaterloo.ca/~gvcormac/treccorpus07/); [Spam Track](https://trec.nist.gov/data/spam.html) | 样本个数 | 2007 TREC Public Spam Corpus | [trec07p.tar.gz](https://pan.baidu.com/s/1jC9CxVaxwizFCvGtI1JvJA?pwd=g72z) |
|
|
|
13 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|
14 |
| enron_spam | 英语 | 垃圾邮件分类 | [enron_spam_data](https://github.com/MWiechmann/enron_spam_data); [Enron-Spam](https://www2.aueb.gr/users/ion/data/enron-spam/); [spam-mails-dataset](https://www.kaggle.com/datasets/venky73/spam-mails-dataset) | ham: 16545; spam: 17171 | Enron-Spam 数据集是 V. Metsis、I. Androutsopoulos 和 G. Paliouras 收集的绝佳资源 | [SetFit/enron_spam](https://huggingface.co/datasets/SetFit/enron_spam); [enron-spam](https://www.kaggle.com/datasets/wanderfj/enron-spam) |
|
15 |
| enron_spam_subset | 英语 | 垃圾邮件分类 | [email-spam-dataset](https://www.kaggle.com/datasets/nitishabharathi/email-spam-dataset) | ham: 5000; spam: 5000 | | |
|
16 |
+
| ling_spam | 英语 | 垃圾邮件分类 | [lingspam-dataset](https://www.kaggle.com/datasets/mandygu/lingspam-dataset); [email-spam-dataset](https://www.kaggle.com/datasets/nitishabharathi/email-spam-dataset) | ham: 2172; spam: 433 | Ling-Spam 数据集是从语言学家列表中整理的 2,893 条垃圾邮件和非垃圾邮件消息的集合。 | |
|
17 |
+
| sms_spam | 英语 | 垃圾短信分类 | [SMS Spam Collection](https://archive.ics.uci.edu/dataset/228/sms+spam+collection); [SMS Spam Collection Dataset](https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset) | ham: 4827; spam: 747 | SMS 垃圾邮件集合是一组公开的 SMS 标记消息,为移动电话垃圾邮件研究而收集。 | [sms_spam](https://huggingface.co/datasets/sms_spam) |
|
18 |
+
| sms_spam_collection | 英语 | 垃圾短信分类 | [spam-emails](https://www.kaggle.com/datasets/abdallahwagih/spam-emails) | ham: 4825; spam: 747 | 该数据集包含电子邮件的集合 | [email-spam-detection-dataset-classification](https://www.kaggle.com/datasets/shantanudhakadd/email-spam-detection-dataset-classification); [spam-identification](https://www.kaggle.com/datasets/amirdhavarshinis/spam-identification); [sms-spam-collection](https://www.kaggle.com/datasets/thedevastator/sms-spam-collection-a-more-diverse-dataset); [spam-or-ham](https://www.kaggle.com/datasets/arunasivapragasam/spam-or-ham) |
|
19 |
| spam_assassin | 英语 | 垃圾邮件分类 | [datasets-spam-assassin](https://github.com/stdlib-js/datasets-spam-assassin); [Apache SpamAssassin’s public datasets](https://spamassassin.apache.org/old/publiccorpus/); [Spam or Not Spam Dataset](https://www.kaggle.com/datasets/ozlerhakan/spam-or-not-spam-dataset) | ham: 4150; spam: 1896 | 数据集从[email-spam-dataset](https://www.kaggle.com/datasets/nitishabharathi/email-spam-dataset)的completeSpamAssassin.csv文件而来。 | [email-spam-dataset](https://www.kaggle.com/datasets/nitishabharathi/email-spam-dataset); [talby/SpamAssassin](https://huggingface.co/datasets/talby/spamassassin); [spamassassin-2002](https://www.kaggle.com/datasets/cesaber/spam-email-data-spamassassin-2002) |
|
20 |
+
| spam_base | 英语 | 垃圾邮件分类 | [spambase](https://archive.ics.uci.edu/dataset/94/spambase) | 样本个数 | 将电子邮件分类为垃圾邮件或非垃圾邮件 | [spam-email-data-uci](https://www.kaggle.com/datasets/kaggleprollc/spam-email-data-uci) |
|
21 |
| spam_detection | 英语 | 垃圾短信分类 | [Deysi/spam-detection-dataset](https://huggingface.co/datasets/Deysi/spam-detection-dataset) | ham: 5400; spam: 5500 | | |
|
|
|
22 |
| spam_message | 汉语 | 垃圾短信分类 | [SpamMessage](https://github.com/hrwhisper/SpamMessage) | ham: 720000; spam: 80000 | 其中spam的数据是正确的数据,但是做了脱敏处理(招生电话:xxxxxxxxxxx),这里的 x 可能会成为显著特征。而ham样本像是从普通文本中截断出来充作样本的,建议不要用这些数据。 | |
|
23 |
| spam_message_lr | 汉语 | 垃圾短信分�� | [SpamMessagesLR](https://github.com/x-hacker/SpamMessagesLR) | ham: 3983; spam: 6990 | | |
|
24 |
| trec_2007 | 英语 | 垃圾邮件分类 | [2007 TREC Public Spam Corpus](https://plg.uwaterloo.ca/~gvcormac/treccorpus07/); [Spam Track](https://trec.nist.gov/data/spam.html) | 样本个数 | 2007 TREC Public Spam Corpus | [trec07p.tar.gz](https://pan.baidu.com/s/1jC9CxVaxwizFCvGtI1JvJA?pwd=g72z) |
|