#!/usr/bin/python3 # -*- coding: utf-8 -*- import argparse from collections import defaultdict import json import os from pathlib import Path import random import re import sys pwd = os.path.abspath(os.path.dirname(__file__)) sys.path.append(os.path.join(pwd, '../../')) import pandas as pd from tqdm import tqdm from project_settings import project_path def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--data_dir", default="data/youtube_spam_collection", type=str) parser.add_argument( "--output_file", default=(project_path / "data/youtube_spam_collection.jsonl"), type=str ) args = parser.parse_args() return args def main(): args = get_args() data_dir = Path(args.data_dir) with open(args.output_file, "w", encoding="utf-8") as f: for filename in data_dir.glob("*.csv"): df = pd.read_csv(filename.as_posix()) for i, row in tqdm(df.iterrows(), total=len(df)): # print(row) text = row["CONTENT"] label = row["CLASS"] text = text.replace("", "") label = "spam" if label == 1 else "ham" if label not in ("spam", "ham"): raise AssertionError num = random.random() if num < 0.9: split = "train" elif num < 0.95: split = "validation" else: split = "test" row = { "text": text, "label": label, "category": filename.stem, "data_source": "youtube_spam_collection", "split": split } row = json.dumps(row, ensure_ascii=False) f.write("{}\n".format(row)) return if __name__ == '__main__': main()