url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_diagonal
[48, 1]
[62, 10]
rfl
case hs.h m : Type ?u.8318 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.8330 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n f : n → ℝ hf : ∀ (i : n), 0 < f i x : n → ℝ hx : ∀ (x_1 : n), x x_1 * (diagonal f).mulVec x x_1 ≤ 0 i : n this✝ : f i * (x i * x i) ≤ 0 this : x i * x i ≤ 0 ⊢ 0 = 0 i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.conjTranspose_mul_mul
[64, 1]
[69, 81]
refine' ⟨isHermitian_conjTranspose_mul_mul _ hM.1, _⟩
m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef ⊢ (N.conjTranspose * M * N).PosSemidef
m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.conjTranspose_mul_mul
[64, 1]
[69, 81]
intro x
m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.conjTranspose_mul_mul
[64, 1]
[69, 81]
convert hM.2 (N.mulVec x) using 1
m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
case h.e'_4 m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef x : n → 𝕜 ⊢ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x = star (N.mulVec x) ⬝ᵥ M.mulVec (N.mulVec x)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.conjTranspose_mul_mul
[64, 1]
[69, 81]
rw [mul_assoc, mulVec_mulVec, ← mulVec_mulVec, dotProduct_mulVec, star_mulVec]
case h.e'_4 m : Type ?u.23145 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef x : n → 𝕜 ⊢ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x = star (N.mulVec x) ⬝ᵥ M.mulVec (N.mulVec x)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.conjTranspose_mul_mul
[71, 1]
[78, 17]
refine' ⟨isHermitian_conjTranspose_mul_mul _ hM.1, _⟩
m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 ⊢ (N.conjTranspose * M * N).PosDef
m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 ⊢ ∀ (x : n → 𝕜), x ≠ 0 → 0 < star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.conjTranspose_mul_mul
[71, 1]
[78, 17]
intros x hx
m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 ⊢ ∀ (x : n → 𝕜), x ≠ 0 → 0 < star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 x : n → 𝕜 hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.conjTranspose_mul_mul
[71, 1]
[78, 17]
convert hM.2 (N.mulVec x) (fun h => hx (eq_zero_of_mulVec_eq_zero hN h)) using 1
m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 x : n → 𝕜 hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x
case h.e'_4 m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 x : n → 𝕜 hx : x ≠ 0 ⊢ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x = star (N.mulVec x) ⬝ᵥ M.mulVec (N.mulVec x)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.conjTranspose_mul_mul
[71, 1]
[78, 17]
rw [Matrix.mul_assoc, mulVec_mulVec, ← mulVec_mulVec, dotProduct_mulVec, star_mulVec]
case h.e'_4 m : Type ?u.28307 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M N : Matrix n n 𝕜 hM : M.PosDef hN : N.det ≠ 0 x : n → 𝕜 hx : x ≠ 0 ⊢ star x ⬝ᵥ (N.conjTranspose * M * N).mulVec x = star (N.mulVec x) ⬝ᵥ M.mulVec (N.mulVec x)
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.IsHermitian.nonsingular_inv
[80, 1]
[83, 65]
refine' (Matrix.inv_eq_right_inv _).symm
m : Type ?u.34280 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.IsHermitian hMdet : IsUnit M.det ⊢ M⁻¹.IsHermitian
m : Type ?u.34280 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.IsHermitian hMdet : IsUnit M.det ⊢ M * M⁻¹.conjTranspose = 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.IsHermitian.nonsingular_inv
[80, 1]
[83, 65]
rw [conjTranspose_nonsing_inv, hM.eq, mul_nonsing_inv _ hMdet]
m : Type ?u.34280 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.IsHermitian hMdet : IsUnit M.det ⊢ M * M⁻¹.conjTranspose = 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.conj_symm
[85, 1]
[88, 43]
nth_rewrite 1 [star_dotProduct, star_mulVec]
m : Type ?u.36361 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 x : n → 𝕜 M : Matrix n n 𝕜 hM : M.IsHermitian ⊢ star (star x ⬝ᵥ M.mulVec x) = star x ⬝ᵥ M.mulVec x
m : Type ?u.36361 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 x : n → 𝕜 M : Matrix n n 𝕜 hM : M.IsHermitian ⊢ star (star (star x ᵥ* M.conjTranspose ⬝ᵥ x)) = star x ⬝ᵥ M.mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.conj_symm
[85, 1]
[88, 43]
rw [star_star, dotProduct_mulVec, hM.eq]
m : Type ?u.36361 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 x : n → 𝕜 M : Matrix n n 𝕜 hM : M.IsHermitian ⊢ star (star (star x ᵥ* M.conjTranspose ⬝ᵥ x)) = star x ⬝ᵥ M.mulVec x
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
refine' ⟨hM.1.nonsingular_inv (isUnit_iff_ne_zero.2 hM.det_ne_zero), _⟩
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ M⁻¹.PosDef
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ ∀ (x : n → 𝕜), x ≠ 0 → 0 < star x ⬝ᵥ M⁻¹.mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
intros x hx
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef ⊢ ∀ (x : n → 𝕜), x ≠ 0 → 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
have hMMinv := mul_nonsing_inv _ (isUnit_iff_ne_zero.2 hM.det_ne_zero)
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
have hMinvdet : M⁻¹.det ≠ 0 := det_ne_zero_of_left_inverse hMMinv
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
have hres := hM.2 (M⁻¹.mulVec x) (fun h => hx (eq_zero_of_mulVec_eq_zero hMinvdet h))
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star (M⁻¹.mulVec x) ⬝ᵥ M.mulVec (M⁻¹.mulVec x) ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
rw [mulVec_mulVec, hMMinv, one_mulVec, star_dotProduct] at hres
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star (M⁻¹.mulVec x) ⬝ᵥ M.mulVec (M⁻¹.mulVec x) ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star (star x ⬝ᵥ M⁻¹.mulVec x) ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
rw [conj_symm ((@isHermitian_inv _ _ _ _ _ _ M hM.Invertible).2 hM.1)] at hres
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star (star x ⬝ᵥ M⁻¹.mulVec x) ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star x ⬝ᵥ M⁻¹.mulVec x ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef.nonsingular_inv
[90, 1]
[99, 13]
exact hres
m : Type ?u.40080 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type u_2 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n 𝕜 hM : M.PosDef x : n → 𝕜 hx : x ≠ 0 hMMinv : M * M⁻¹ = 1 hMinvdet : M⁻¹.det ≠ 0 hres : 0 < star x ⬝ᵥ M⁻¹.mulVec x ⊢ 0 < star x ⬝ᵥ M⁻¹.mulVec x
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.mul_mul_of_IsHermitian
[101, 1]
[103, 54]
convert hM.conjTranspose_mul_mul M N
m : Type ?u.45085 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.IsHermitian ⊢ (N * M * N).PosSemidef
case h.e'_8.h.e'_5.h.e'_5 m : Type ?u.45085 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.IsHermitian ⊢ N = N.conjTranspose
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.mul_mul_of_IsHermitian
[101, 1]
[103, 54]
exact hN.symm
case h.e'_8.h.e'_5.h.e'_5 m : Type ?u.45085 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.IsHermitian ⊢ N = N.conjTranspose
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.add
[105, 1]
[110, 37]
refine' ⟨hM.1.add hN.1, _⟩
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef ⊢ (M + N).PosSemidef
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (M + N).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.add
[105, 1]
[110, 37]
intros x
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef ⊢ ∀ (x : n → 𝕜), 0 ≤ star x ⬝ᵥ (M + N).mulVec x
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (M + N).mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.add
[105, 1]
[110, 37]
simp only [add_mulVec, dotProduct_add, map_add]
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ (M + N).mulVec x
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ M.mulVec x + star x ⬝ᵥ N.mulVec x
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemidef.add
[105, 1]
[110, 37]
apply add_nonneg (hM.2 x) (hN.2 x)
m : Type ?u.47670 n : Type u_1 inst✝⁶ : Fintype m inst✝⁵ : Fintype n 𝕜 : Type u_2 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 M N : Matrix n n 𝕜 hM : M.PosSemidef hN : N.PosSemidef x : n → 𝕜 ⊢ 0 ≤ star x ⬝ᵥ M.mulVec x + star x ⬝ᵥ N.mulVec x
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.isUnit_det_of_PosDef_inv
[112, 1]
[117, 28]
apply isUnit_iff_ne_zero.2
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef ⊢ IsUnit M.det
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef ⊢ M.det ≠ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.isUnit_det_of_PosDef_inv
[112, 1]
[117, 28]
have := h.isUnit_det
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef ⊢ M.det ≠ 0
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef this : IsUnit M⁻¹.det ⊢ M.det ≠ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.isUnit_det_of_PosDef_inv
[112, 1]
[117, 28]
rw [det_nonsing_inv, isUnit_ring_inverse] at this
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef this : IsUnit M⁻¹.det ⊢ M.det ≠ 0
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef this : IsUnit M.det ⊢ M.det ≠ 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.isUnit_det_of_PosDef_inv
[112, 1]
[117, 28]
apply IsUnit.ne_zero this
m : Type ?u.49238 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.49250 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ h : M⁻¹.PosDef this : IsUnit M.det ⊢ M.det ≠ 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
constructor
m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M⁻¹.PosDef ↔ M.PosDef
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M⁻¹.PosDef → M.PosDef case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
{ intros hM rw [← Matrix.nonsing_inv_nonsing_inv M (isUnit_det_of_PosDef_inv hM)] apply hM.nonsingular_inv }
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M⁻¹.PosDef → M.PosDef case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef
case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
{ intros hM exact hM.nonsingular_inv }
case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
intros hM
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M⁻¹.PosDef → M.PosDef
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M⁻¹.PosDef ⊢ M.PosDef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
rw [← Matrix.nonsing_inv_nonsing_inv M (isUnit_det_of_PosDef_inv hM)]
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M⁻¹.PosDef ⊢ M.PosDef
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M⁻¹.PosDef ⊢ M⁻¹⁻¹.PosDef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
apply hM.nonsingular_inv
case mp m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M⁻¹.PosDef ⊢ M⁻¹⁻¹.PosDef
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
intros hM
case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ ⊢ M.PosDef → M⁻¹.PosDef
case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosDef ⊢ M⁻¹.PosDef
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosDef_inv_iff_PosDef
[119, 1]
[125, 31]
exact hM.nonsingular_inv
case mpr m : Type ?u.50670 n : Type u_1 inst✝⁷ : Fintype m inst✝⁶ : Fintype n 𝕜 : Type ?u.50682 inst✝⁵ : NormedField 𝕜 inst✝⁴ : PartialOrder 𝕜 inst✝³ : StarRing 𝕜 inst✝² : StarOrderedRing 𝕜 inst✝¹ : RCLike 𝕜 inst✝ : DecidableEq n M : Matrix n n ℝ hM : M.PosDef ⊢ M⁻¹.PosDef
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
let h_A_IsHermitian := hA.1
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef ⊢ A.IsSymm
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : A.IsHermitian := hA.left ⊢ A.IsSymm
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
rw [Matrix.isHermitian_iff_isSymmetric] at h_A_IsHermitian
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : A.IsHermitian := hA.left ⊢ A.IsSymm
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : (toEuclideanLin A).IsSymmetric ⊢ A.IsSymm
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
simp [LinearMap.IsSymmetric, toEuclideanLin] at h_A_IsHermitian
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : (toEuclideanLin A).IsSymmetric ⊢ A.IsSymm
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 ⊢ A.IsSymm
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
apply IsSymm.ext
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 ⊢ A.IsSymm
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 ⊢ ∀ (i j : Fin n), A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
intros i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 ⊢ ∀ (i j : Fin n), A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
have hAij := h_A_IsHermitian (fun k => if k = i then 1 else 0) (fun k => if k = j then 1 else 0)
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n ⊢ A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
have hi : (Finset.sum Finset.univ fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i := by simp
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x ⊢ A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
have hj : (Finset.sum Finset.univ fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j := by simp
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i ⊢ A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
simp [WithLp.equiv, mulVec, dotProduct] at hAij
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j ⊢ A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j hAij : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
erw [hi, hj] at hAij
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j hAij : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x ⊢ A j i = A i j
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j hAij : A j i = A i j ⊢ A j i = A i j
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
rw [hAij]
case a m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i hj : (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j hAij : A j i = A i j ⊢ A j i = A i j
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
simp
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x ⊢ (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Math/LinearAlgebra/Matrix/PosDef.lean
Matrix.PosSemiDef.IsSymm
[127, 1]
[140, 12]
simp
m : Type ?u.51903 n✝ : Type ?u.51906 inst✝⁶ : Fintype m inst✝⁵ : Fintype n✝ 𝕜 : Type ?u.51915 inst✝⁴ : NormedField 𝕜 inst✝³ : PartialOrder 𝕜 inst✝² : StarRing 𝕜 inst✝¹ : StarOrderedRing 𝕜 inst✝ : RCLike 𝕜 n : ℕ A : Matrix (Fin n) (Fin n) ℝ hA : A.PosSemidef h_A_IsHermitian : ∀ (x y : EuclideanSpace ℝ (Fin n)), (Finset.univ.sum fun x_1 => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) x) x_1 * y x_1) = Finset.univ.sum fun x_1 => x x_1 * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) y) x_1 i j : Fin n hAij : (Finset.univ.sum fun x => A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = i then 1 else 0) x * if x = j then 1 else 0) = Finset.univ.sum fun x => (if x = i then 1 else 0) * A.mulVec ((WithLp.equiv 2 (Fin n → ℝ)) fun k => if k = j then 1 else 0) x hi : (Finset.univ.sum fun x => A j x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = i then 1 else 0) x) = A j i ⊢ (Finset.univ.sum fun x => A i x * (Equiv.refl (WithLp 2 (Fin n → ℝ))) (fun k => if k = j then 1 else 0) x) = A i j
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Tactic/DCP/AtomLibrary/Fns/Norm.lean
CvxLean.norm2₂_eq_norm2
[57, 1]
[58, 36]
simp [Norm.norm, sqrt_eq_rpow]
x y : ℝ ⊢ ‖![x, y]‖ = (x ^ 2 + y ^ 2).sqrt
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.hminₚ_pos
[180, 1]
[182, 25]
unfold hminₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < hminₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.hminₚ_pos
[180, 1]
[182, 25]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.hminₚ_le_hmaxₚ
[184, 1]
[185, 31]
unfold hminₚ hmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ hminₚ ≤ hmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 1 ≤ 100
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.hminₚ_le_hmaxₚ
[184, 1]
[185, 31]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 1 ≤ 100
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.wminₚ_pos
[193, 1]
[195, 25]
unfold wminₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < wminₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 1
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.wminₚ_pos
[193, 1]
[195, 25]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 1
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.wminₚ_le_wmaxₚ
[197, 1]
[198, 31]
unfold wminₚ wmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ wminₚ ≤ wmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 1 ≤ 100
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.wminₚ_le_wmaxₚ
[197, 1]
[198, 31]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 1 ≤ 100
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.Rmaxₚ_pos
[203, 1]
[205, 25]
unfold Rmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < Rmaxₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 10
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.Rmaxₚ_pos
[203, 1]
[205, 25]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 10
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.σₚ_pos
[210, 1]
[212, 22]
unfold σₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < σₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 0.5
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.σₚ_pos
[210, 1]
[212, 22]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 0.5
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.F₁ₚ_pos
[217, 1]
[219, 23]
unfold F₁ₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < F₁ₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 10
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.F₁ₚ_pos
[217, 1]
[219, 23]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 10
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.F₂ₚ_pos
[224, 1]
[226, 23]
unfold F₂ₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < F₂ₚ
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 20
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Examples/TrussDesign.lean
TrussDesign.F₂ₚ_pos
[224, 1]
[226, 23]
norm_num
hmin hmax : ℝ hmin_pos : 0 < hmin hmin_le_hmax : hmin ≤ hmax wmin wmax : ℝ wmin_pos : 0 < wmin wmin_le_wmax : wmin ≤ wmax Rmax σ F₁ F₂ : ℝ ⊢ 0 < 20
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
simp [rotatedSoCone, rotateSoCone]
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x ⊢ match t.rotateSoCone x with | (v, w, x) => v.rotatedSoCone w x
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) / √2 * ((t - x 0) / √2) * 2 ∧ 0 ≤ (t + x 0) / √2 ∧ 0 ≤ (t - x 0) / √2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
have habsx0t : |x 0| ≤ t := by rw [soCone, Fin.sum_univ_succ] at h have hS : 0 ≤ ∑ i : Fin n, x (Fin.succ i) ^ 2 := Finset.sum_nonneg (fun i _ => (rpow_two (x i.succ)).symm ▸ sq_nonneg (x i.succ)) exact abs_le_of_sqrt_sq_add_nonneg_le hS h
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) / √2 * ((t - x 0) / √2) * 2 ∧ 0 ≤ (t + x 0) / √2 ∧ 0 ≤ (t - x 0) / √2
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) / √2 * ((t - x 0) / √2) * 2 ∧ 0 ≤ (t + x 0) / √2 ∧ 0 ≤ (t - x 0) / √2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
have ht : 0 ≤ t := le_trans (abs_nonneg _) habsx0t
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) / √2 * ((t - x 0) / √2) * 2 ∧ 0 ≤ (t + x 0) / √2 ∧ 0 ≤ (t - x 0) / √2
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) / √2 * ((t - x 0) / √2) * 2 ∧ 0 ≤ (t + x 0) / √2 ∧ 0 ≤ (t - x 0) / √2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
replace ⟨hx0t, hnx0t⟩ := abs_le.mp habsx0t
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) / √2 * ((t - x 0) / √2) * 2 ∧ 0 ≤ (t + x 0) / √2 ∧ 0 ≤ (t - x 0) / √2
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) / √2 * ((t - x 0) / √2) * 2 ∧ 0 ≤ (t + x 0) / √2 ∧ 0 ≤ (t - x 0) / √2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
split_ands
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) / √2 * ((t - x 0) / √2) * 2 ∧ 0 ≤ (t + x 0) / √2 ∧ 0 ≤ (t - x 0) / √2
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) / √2 * ((t - x 0) / √2) * 2 case refine_2.refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t + x 0) / √2 case refine_2.refine_2 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t - x 0) / √2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
{ field_simp have hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 := by norm_cast; ring rw [hrw, le_sub_iff_add_le, add_comm] unfold soCone at h; norm_cast at h ⊢ rw [← Fin.sum_univ_succ (f := fun i => (x i) ^ 2)] rw [← sqrt_le_left ht] exact h }
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) / √2 * ((t - x 0) / √2) * 2 case refine_2.refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t + x 0) / √2 case refine_2.refine_2 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t - x 0) / √2
case refine_2.refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t + x 0) / √2 case refine_2.refine_2 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t - x 0) / √2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
{ simp [le_div_iff]; linarith }
case refine_2.refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t + x 0) / √2 case refine_2.refine_2 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t - x 0) / √2
case refine_2.refine_2 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t - x 0) / √2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
{ simp [le_div_iff]; linarith }
case refine_2.refine_2 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t - x 0) / √2
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
rw [soCone, Fin.sum_univ_succ] at h
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x ⊢ |x 0| ≤ t
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : (x 0 ^ 2 + ∑ i : Fin n, x i.succ ^ 2).sqrt ≤ t ⊢ |x 0| ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
have hS : 0 ≤ ∑ i : Fin n, x (Fin.succ i) ^ 2 := Finset.sum_nonneg (fun i _ => (rpow_two (x i.succ)).symm ▸ sq_nonneg (x i.succ))
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : (x 0 ^ 2 + ∑ i : Fin n, x i.succ ^ 2).sqrt ≤ t ⊢ |x 0| ≤ t
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : (x 0 ^ 2 + ∑ i : Fin n, x i.succ ^ 2).sqrt ≤ t hS : 0 ≤ ∑ i : Fin n, x i.succ ^ 2 ⊢ |x 0| ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
exact abs_le_of_sqrt_sq_add_nonneg_le hS h
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : (x 0 ^ 2 + ∑ i : Fin n, x i.succ ^ 2).sqrt ≤ t hS : 0 ≤ ∑ i : Fin n, x i.succ ^ 2 ⊢ |x 0| ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
field_simp
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) / √2 * ((t - x 0) / √2) * 2
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) * (t - x 0)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
have hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 := by norm_cast; ring
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) * (t - x 0)
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) * (t - x 0)
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
rw [hrw, le_sub_iff_add_le, add_comm]
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 ⊢ ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ (t + x 0) * (t - x 0)
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 ⊢ x 0 ^ 2 + ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ t ^ 2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
unfold soCone at h
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 ⊢ x 0 ^ 2 + ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ t ^ 2
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : (∑ i : Fin n.succ, x i ^ 2).sqrt ≤ t habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 ⊢ x 0 ^ 2 + ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ t ^ 2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
norm_cast at h ⊢
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : (∑ i : Fin n.succ, x i ^ 2).sqrt ≤ t habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 ⊢ x 0 ^ 2 + ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ t ^ 2
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 h : (∑ x_1 : Fin n.succ, x x_1 ^ 2).sqrt ≤ t ⊢ x 0 ^ 2 + ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ t ^ 2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
rw [← Fin.sum_univ_succ (f := fun i => (x i) ^ 2)]
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 h : (∑ x_1 : Fin n.succ, x x_1 ^ 2).sqrt ≤ t ⊢ x 0 ^ 2 + ∑ x_1 : Fin n, x x_1.succ ^ 2 ≤ t ^ 2
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 h : (∑ x_1 : Fin n.succ, x x_1 ^ 2).sqrt ≤ t ⊢ ∑ i : Fin (n + 1), x i ^ 2 ≤ t ^ 2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
rw [← sqrt_le_left ht]
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 h : (∑ x_1 : Fin n.succ, x x_1 ^ 2).sqrt ≤ t ⊢ ∑ i : Fin (n + 1), x i ^ 2 ≤ t ^ 2
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 h : (∑ x_1 : Fin n.succ, x x_1 ^ 2).sqrt ≤ t ⊢ (∑ i : Fin (n + 1), x i ^ 2).sqrt ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
exact h
case refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t hrw : (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2 h : (∑ x_1 : Fin n.succ, x x_1 ^ 2).sqrt ≤ t ⊢ (∑ i : Fin (n + 1), x i ^ 2).sqrt ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
ring
n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ (t + x 0) * (t - x 0) = t ^ 2 - x 0 ^ 2
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
simp [le_div_iff]
case refine_2.refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t + x 0) / √2
case refine_2.refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ t + x 0
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
linarith
case refine_2.refine_1 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ t + x 0
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
simp [le_div_iff]
case refine_2.refine_2 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ 0 ≤ (t - x 0) / √2
case refine_2.refine_2 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ x 0 ≤ t
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.rotateSoCone_rotatedSoCone
[43, 1]
[62, 34]
linarith
case refine_2.refine_2 n✝ : Type ?u.2341 m : Type ?u.2338 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ t : ℝ x : Fin n.succ → ℝ h : t.soCone x habsx0t : |x 0| ≤ t ht : 0 ≤ t hx0t : -t ≤ x 0 hnx0t : x 0 ≤ t ⊢ x 0 ≤ t
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
simp [soCone, unrotateSoCone]
n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : v.rotatedSoCone w x ⊢ match v.unrotateSoCone w x with | (t, x) => t.soCone x
n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : v.rotatedSoCone w x ⊢ (∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2).sqrt ≤ (v + w) / √2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
replace ⟨h, hv, hw⟩ := h
n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : v.rotatedSoCone w x ⊢ (∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2).sqrt ≤ (v + w) / √2
n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ (∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2).sqrt ≤ (v + w) / √2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
rw [sqrt_le_iff]
n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ (∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2).sqrt ≤ (v + w) / √2
n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ 0 ≤ (v + w) / √2 ∧ ∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2 ≤ ((v + w) / √2) ^ 2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
split_ands
n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ 0 ≤ (v + w) / √2 ∧ ∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2 ≤ ((v + w) / √2) ^ 2
case refine_1 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ 0 ≤ (v + w) / √2 case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2 ≤ ((v + w) / √2) ^ 2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
{ simp [le_div_iff]; linarith }
case refine_1 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ 0 ≤ (v + w) / √2 case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2 ≤ ((v + w) / √2) ^ 2
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2 ≤ ((v + w) / √2) ^ 2
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
{ rw [Fin.sum_univ_succ] simp [Matrix.vecCons] rw [add_comm, ← le_sub_iff_add_le] field_simp have hrw : ((v + w) ^ 2 - (v - w) ^ 2) / 2 = v * w * 2 := by norm_cast; ring norm_cast at hrw h rwa [hrw] }
case refine_2 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ ∑ x_1 : Fin (n + 1), Matrix.vecCons ((v - w) / √2) x x_1 ^ 2 ≤ ((v + w) / √2) ^ 2
no goals
https://github.com/verified-optimization/CvxLean.git
c62c2f292c6420f31a12e738ebebdfed50f6f840
CvxLean/Lib/Cones/SOCone.lean
Real.unrotateSoCone_soCone
[68, 1]
[81, 16]
simp [le_div_iff]
case refine_1 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ 0 ≤ (v + w) / √2
case refine_1 n✝ : Type ?u.32056 m : Type ?u.32053 inst✝¹ : Fintype m inst✝ : Fintype n✝ n : ℕ v w : ℝ x : Fin n → ℝ h : ∑ i : Fin n, x i ^ 2 ≤ v * w * 2 hv : 0 ≤ v hw : 0 ≤ w ⊢ 0 ≤ v + w