Datasets:

Modalities:
Text
Formats:
json
ArXiv:
Tags:
code
Libraries:
Datasets
pandas
License:
File size: 1,079 Bytes
33d41fc
 
9e3f136
 
33d41fc
 
 
 
 
 
 
 
 
9e3f136
33d41fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e3f136
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
---
license: mit
size_categories:
- 100K<n<1M
task_categories:
- text-generation
tags:
- code
---

# SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution

<p align="left">
<a href="https://hf.co/papers/2501.05040">πŸ“ƒ Paper </a> |
<a href="https://github.com/InternLM/SWE-Fixer" > πŸš€ GitHub</a>
</p>

SWE-Fixer is a simple yet effective solution for addressing real-world GitHub issues by training open-source LLMs. It features a streamlined retrieve-then-edit pipeline with two core components: a code file retriever and a code editor.

This repo holds the data **SWE-Fixer-Train-110K** we curated for SWE-Fixer training.

For more information, please visit our [project page](https://github.com/InternLM/SWE-Fixer).

## πŸ“š Citation
```
@article{xie2025swefixer,
  title={SWE-Fixer: Training Open-Source LLMs for Effective and Efficient GitHub Issue Resolution}, 
  author={Xie, Chengxing and Li, Bowen and Gao, Chang and Du, He and Lam, Wai and Zou, Difan and Chen, Kai},
  journal={arXiv preprint arXiv:2501.05040},
  year={2025}
}
```