File size: 24,786 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 |
/* Copyright 1999-2001,2003,2005-2006,2009-2010,2012-2014,2017-2019,2022
Free Software Foundation, Inc.
This file is part of Guile.
Guile is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Guile is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Guile. If not, see
<https://www.gnu.org/licenses/>. */
/* Original Author: Mikael Djurfeldt <[email protected]> */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>
#include "scm.h"
#if SCM_ENABLE_MINI_GMP
#include "mini-gmp.h"
#else
#include <gmp.h>
#endif
#include "arrays.h"
#include "feature.h"
#include "generalized-vectors.h"
#include "gsubr.h"
#include "list.h"
#include "modules.h"
#include "numbers.h"
#include "numbers.h"
#include "pairs.h"
#include "smob.h"
#include "srfi-4.h"
#include "stime.h"
#include "strings.h"
#include "symbols.h"
#include "variable.h"
#include "vectors.h"
#include "random.h"
/*
* A plugin interface for RNGs
*
* Using this interface, it is possible for the application to tell
* libguile to use a different RNG. This is desirable if it is
* necessary to use the same RNG everywhere in the application in
* order to prevent interference, if the application uses RNG
* hardware, or if the application has special demands on the RNG.
*
* Look in random.h and how the default generator is "plugged in" in
* scm_init_random().
*/
scm_t_rng scm_the_rng;
/*
* The prepackaged RNG
*
* This is the MWC (Multiply With Carry) random number generator
* described by George Marsaglia at the Department of Statistics and
* Supercomputer Computations Research Institute, The Florida State
* University (http://stat.fsu.edu/~geo).
*
* It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and
* passes all tests in the DIEHARD test suite
* (http://stat.fsu.edu/~geo/diehard.html)
*/
typedef struct scm_t_i_rstate {
scm_t_rstate rstate;
uint32_t w;
uint32_t c;
} scm_t_i_rstate;
#define A 2131995753UL
#ifndef M_PI
#define M_PI 3.14159265359
#endif
static uint32_t
scm_i_uniform32 (scm_t_rstate *state)
{
scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
uint64_t x = (uint64_t) A * istate->w + istate->c;
uint32_t w = x & 0xffffffffUL;
istate->w = w;
istate->c = x >> 32L;
return w;
}
static void
scm_i_init_rstate (scm_t_rstate *state, const char *seed, int n)
{
scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
uint32_t w = 0L;
uint32_t c = 0L;
int i, m;
for (i = 0; i < n; ++i)
{
m = i % 8;
if (m < 4)
w += seed[i] << (8 * m);
else
c += seed[i] << (8 * (m - 4));
}
if ((w == 0 && c == 0) || (w == -1 && c == A - 1))
++c;
istate->w = w;
istate->c = c;
}
static scm_t_rstate *
scm_i_copy_rstate (scm_t_rstate *state)
{
scm_t_rstate *new_state;
new_state = scm_gc_malloc_pointerless (state->rng->rstate_size,
"random-state");
return memcpy (new_state, state, state->rng->rstate_size);
}
SCM_SYMBOL(scm_i_rstate_tag, "multiply-with-carry");
static void
scm_i_rstate_from_datum (scm_t_rstate *state, SCM value)
#define FUNC_NAME "scm_i_rstate_from_datum"
{
scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
uint32_t w, c;
long length;
SCM_VALIDATE_LIST_COPYLEN (SCM_ARG1, value, length);
SCM_ASSERT (length == 3, value, SCM_ARG1, FUNC_NAME);
SCM_ASSERT (scm_is_eq (SCM_CAR (value), scm_i_rstate_tag),
value, SCM_ARG1, FUNC_NAME);
SCM_VALIDATE_UINT_COPY (SCM_ARG1, SCM_CADR (value), w);
SCM_VALIDATE_UINT_COPY (SCM_ARG1, SCM_CADDR (value), c);
istate->w = w;
istate->c = c;
}
#undef FUNC_NAME
static SCM
scm_i_rstate_to_datum (scm_t_rstate *state)
{
scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
return scm_list_3 (scm_i_rstate_tag,
scm_from_uint32 (istate->w),
scm_from_uint32 (istate->c));
}
/*
* Random number library functions
*/
scm_t_rstate *
scm_c_make_rstate (const char *seed, int n)
{
scm_t_rstate *state;
state = scm_gc_malloc_pointerless (scm_the_rng.rstate_size,
"random-state");
state->rng = &scm_the_rng;
state->normal_next = 0.0;
state->rng->init_rstate (state, seed, n);
return state;
}
scm_t_rstate *
scm_c_rstate_from_datum (SCM datum)
{
scm_t_rstate *state;
state = scm_gc_malloc_pointerless (scm_the_rng.rstate_size,
"random-state");
state->rng = &scm_the_rng;
state->normal_next = 0.0;
state->rng->from_datum (state, datum);
return state;
}
scm_t_rstate *
scm_c_default_rstate ()
#define FUNC_NAME "scm_c_default_rstate"
{
SCM state = SCM_VARIABLE_REF (scm_var_random_state);
if (!SCM_RSTATEP (state))
SCM_MISC_ERROR ("*random-state* contains bogus random state", SCM_EOL);
return SCM_RSTATE (state);
}
#undef FUNC_NAME
double
scm_c_uniform01 (scm_t_rstate *state)
{
double x = (double) state->rng->random_bits (state) / (double) 0xffffffffUL;
return ((x + (double) state->rng->random_bits (state))
/ (double) 0xffffffffUL);
}
double
scm_c_normal01 (scm_t_rstate *state)
{
if (state->normal_next != 0.0)
{
double ret = state->normal_next;
state->normal_next = 0.0;
return ret;
}
else
{
double r, a, n;
r = sqrt (-2.0 * log (scm_c_uniform01 (state)));
a = 2.0 * M_PI * scm_c_uniform01 (state);
n = r * sin (a);
state->normal_next = r * cos (a);
return n;
}
}
double
scm_c_exp1 (scm_t_rstate *state)
{
return - log (scm_c_uniform01 (state));
}
unsigned char scm_masktab[256];
static inline uint32_t
scm_i_mask32 (uint32_t m)
{
return (m < 0x100
? scm_masktab[m]
: (m < 0x10000
? scm_masktab[m >> 8] << 8 | 0xff
: (m < 0x1000000
? scm_masktab[m >> 16] << 16 | 0xffff
: ((uint32_t) scm_masktab[m >> 24]) << 24 | 0xffffff)));
}
uint32_t
scm_c_random (scm_t_rstate *state, uint32_t m)
{
uint32_t r, mask = scm_i_mask32 (m);
while ((r = state->rng->random_bits (state) & mask) >= m);
return r;
}
uint64_t
scm_c_random64 (scm_t_rstate *state, uint64_t m)
{
uint64_t r;
uint32_t mask;
if (m <= UINT32_MAX)
return scm_c_random (state, (uint32_t) m);
mask = scm_i_mask32 (m >> 32);
while ((r = ((uint64_t) (state->rng->random_bits (state) & mask) << 32)
| state->rng->random_bits (state)) >= m)
;
return r;
}
/*
SCM scm_c_random_bignum (scm_t_rstate *state, SCM m)
Takes a random state (source of random bits) and a bignum m.
Returns a bignum b, 0 <= b < m.
It does this by allocating a bignum b with as many base 65536 digits
as m, filling b with random bits (in 32 bit chunks) up to the most
significant 1 in m, and, finally checking if the resultant b is too
large (>= m). If too large, we simply repeat the process again. (It
is important to throw away all generated random bits if b >= m,
otherwise we'll end up with a distorted distribution.)
*/
SCM
scm_c_random_bignum (scm_t_rstate *state, SCM m)
{
mpz_t result, zm;
mpz_init (result);
mpz_init (zm);
scm_to_mpz (m, zm);
const size_t m_bits = mpz_sizeinbase (zm, 2);
/* how many bits would only partially fill the last uint32_t? */
const size_t end_bits = m_bits % (sizeof (uint32_t) * SCM_CHAR_BIT);
uint32_t *random_chunks = NULL;
const uint32_t num_full_chunks =
m_bits / (sizeof (uint32_t) * SCM_CHAR_BIT);
const uint32_t num_chunks = num_full_chunks + ((end_bits) ? 1 : 0);
/* we know the result will be this big */
mpz_realloc2 (result, m_bits);
random_chunks =
(uint32_t *) scm_gc_calloc (num_chunks * sizeof (uint32_t),
"random bignum chunks");
do
{
uint32_t *current_chunk = random_chunks + (num_chunks - 1);
uint32_t chunks_left = num_chunks;
mpz_set_ui (result, 0);
if (end_bits)
{
/* generate a mask with ones in the end_bits position, i.e. if
end_bits is 3, then we'd have a mask of ...0000000111 */
const uint32_t rndbits = state->rng->random_bits (state);
int rshift = (sizeof (uint32_t) * SCM_CHAR_BIT) - end_bits;
uint32_t mask = ((uint32_t)-1) >> rshift;
uint32_t highest_bits = rndbits & mask;
*current_chunk-- = highest_bits;
chunks_left--;
}
while (chunks_left)
{
/* now fill in the remaining uint32_t sized chunks */
*current_chunk-- = state->rng->random_bits (state);
chunks_left--;
}
mpz_import (result,
num_chunks,
-1,
sizeof (uint32_t),
0,
0,
random_chunks);
/* if result >= m, regenerate it (it is important to regenerate
all bits in order not to get a distorted distribution) */
} while (mpz_cmp (result, zm) >= 0);
scm_gc_free (random_chunks,
num_chunks * sizeof (uint32_t),
"random bignum chunks");
mpz_clear (zm);
SCM ret = scm_from_mpz (result);
mpz_clear (result);
return ret;
}
/*
* Scheme level representation of random states.
*/
scm_t_bits scm_tc16_rstate;
static SCM
make_rstate (scm_t_rstate *state)
{
SCM_RETURN_NEWSMOB (scm_tc16_rstate, state);
}
/*
* Scheme level interface.
*/
SCM_GLOBAL_VARIABLE_INIT (scm_var_random_state, "*random-state*",
scm_seed_to_random_state
(scm_from_utf8_string
("URL:http://stat.fsu.edu/~geo/diehard.html")));
SCM_DEFINE (scm_random, "random", 1, 1, 0,
(SCM n, SCM state),
"Return a number in [0, N).\n"
"\n"
"Accepts a positive integer or real n and returns a\n"
"number of the same type between zero (inclusive) and\n"
"N (exclusive). The values returned have a uniform\n"
"distribution.\n"
"\n"
"The optional argument @var{state} must be of the type produced\n"
"by @code{seed->random-state}. It defaults to the value of the\n"
"variable @var{*random-state*}. This object is used to maintain\n"
"the state of the pseudo-random-number generator and is altered\n"
"as a side effect of the random operation.")
#define FUNC_NAME s_scm_random
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (2, state);
if (SCM_I_INUMP (n))
{
scm_t_bits m = (scm_t_bits) SCM_I_INUM (n);
SCM_ASSERT_RANGE (1, n, SCM_I_INUM (n) > 0);
#if SCM_SIZEOF_UINTPTR_T <= 4
return scm_from_uint32 (scm_c_random (SCM_RSTATE (state),
(uint32_t) m));
#elif SCM_SIZEOF_UINTPTR_T <= 8
return scm_from_uint64 (scm_c_random64 (SCM_RSTATE (state),
(uint64_t) m));
#else
#error "Cannot deal with this platform's scm_t_bits size"
#endif
}
if (SCM_REALP (n))
return scm_from_double (SCM_REAL_VALUE (n)
* scm_c_uniform01 (SCM_RSTATE (state)));
if (!SCM_BIGP (n))
SCM_WRONG_TYPE_ARG (1, n);
return scm_c_random_bignum (SCM_RSTATE (state), n);
}
#undef FUNC_NAME
SCM_DEFINE (scm_copy_random_state, "copy-random-state", 0, 1, 0,
(SCM state),
"Return a copy of the random state @var{state}.")
#define FUNC_NAME s_scm_copy_random_state
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (1, state);
return make_rstate (SCM_RSTATE (state)->rng->copy_rstate (SCM_RSTATE (state)));
}
#undef FUNC_NAME
SCM_DEFINE (scm_seed_to_random_state, "seed->random-state", 1, 0, 0,
(SCM seed),
"Return a new random state using @var{seed}.")
#define FUNC_NAME s_scm_seed_to_random_state
{
SCM res;
char *c_str;
size_t len;
if (SCM_NUMBERP (seed))
seed = scm_number_to_string (seed, SCM_UNDEFINED);
SCM_VALIDATE_STRING (1, seed);
if (scm_i_is_narrow_string (seed))
/* This special case of a narrow string, where latin1 is used, is
for backward compatibility during the 2.2 stable series. In
future major releases, we should use UTF-8 uniformly. */
c_str = scm_to_latin1_stringn (seed, &len);
else
c_str = scm_to_utf8_stringn (seed, &len);
/* 'scm_to_*_stringn' returns a 'size_t' for the length in bytes, but
'scm_c_make_rstate' accepts an 'int'. Make sure the length fits in
an 'int'. */
if (len > INT_MAX)
{
free (c_str);
SCM_OUT_OF_RANGE (1, seed);
}
res = make_rstate (scm_c_make_rstate (c_str, len));
free (c_str);
scm_remember_upto_here_1 (seed);
return res;
}
#undef FUNC_NAME
SCM_DEFINE (scm_datum_to_random_state, "datum->random-state", 1, 0, 0,
(SCM datum),
"Return a new random state using @var{datum}, which should have\n"
"been obtained from @code{random-state->datum}.")
#define FUNC_NAME s_scm_datum_to_random_state
{
return make_rstate (scm_c_rstate_from_datum (datum));
}
#undef FUNC_NAME
SCM_DEFINE (scm_random_state_to_datum, "random-state->datum", 1, 0, 0,
(SCM state),
"Return a datum representation of @var{state} that may be\n"
"written out and read back with the Scheme reader.")
#define FUNC_NAME s_scm_random_state_to_datum
{
SCM_VALIDATE_RSTATE (1, state);
return SCM_RSTATE (state)->rng->to_datum (SCM_RSTATE (state));
}
#undef FUNC_NAME
SCM_DEFINE (scm_random_uniform, "random:uniform", 0, 1, 0,
(SCM state),
"Return a uniformly distributed inexact real random number in\n"
"[0,1).")
#define FUNC_NAME s_scm_random_uniform
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (1, state);
return scm_from_double (scm_c_uniform01 (SCM_RSTATE (state)));
}
#undef FUNC_NAME
SCM_DEFINE (scm_random_normal, "random:normal", 0, 1, 0,
(SCM state),
"Return an inexact real in a normal distribution. The\n"
"distribution used has mean 0 and standard deviation 1. For a\n"
"normal distribution with mean m and standard deviation d use\n"
"@code{(+ m (* d (random:normal)))}.")
#define FUNC_NAME s_scm_random_normal
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (1, state);
return scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
}
#undef FUNC_NAME
static void
vector_scale_x (SCM v, double c)
{
scm_t_array_handle handle;
scm_t_array_dim const * dims;
ssize_t i, inc, ubnd;
scm_array_get_handle (v, &handle);
dims = scm_array_handle_dims (&handle);
if (1 == scm_array_handle_rank (&handle))
{
ubnd = dims[0].ubnd;
inc = dims[0].inc;
if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_F64)
{
double *elts = (double *)(handle.writable_elements) + handle.base;
for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc)
*elts *= c;
return;
}
else if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM)
{
SCM *elts = (SCM *)(handle.writable_elements) + handle.base;
for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc)
SCM_REAL_VALUE (*elts) *= c;
return;
}
}
scm_array_handle_release (&handle);
scm_misc_error (NULL, "must be a rank-1 array of type #t or 'f64", scm_list_1 (v));
}
static double
vector_sum_squares (SCM v)
{
double x, sum = 0.0;
scm_t_array_handle handle;
scm_t_array_dim const * dims;
ssize_t i, inc, ubnd;
scm_array_get_handle (v, &handle);
dims = scm_array_handle_dims (&handle);
if (1 == scm_array_handle_rank (&handle))
{
ubnd = dims[0].ubnd;
inc = dims[0].inc;
if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_F64)
{
const double *elts = (const double *)(handle.elements) + handle.base;
for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc)
{
x = *elts;
sum += x * x;
}
return sum;
}
else if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM)
{
const SCM *elts = (const SCM *)(handle.elements) + handle.base;
for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc)
{
x = SCM_REAL_VALUE (*elts);
sum += x * x;
}
return sum;
}
}
scm_array_handle_release (&handle);
scm_misc_error (NULL, "must be an array of type #t or 'f64", scm_list_1 (v));
}
/* For the uniform distribution on the solid sphere, note that in
* this distribution the length r of the vector has cumulative
* distribution r^n; i.e., u=r^n is uniform [0,1], so r can be
* generated as r=u^(1/n).
*/
SCM_DEFINE (scm_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0,
(SCM v, SCM state),
"Fills @var{vect} with inexact real random numbers the sum of\n"
"whose squares is less than 1.0. Thinking of @var{vect} as\n"
"coordinates in space of dimension @var{n} @math{=}\n"
"@code{(vector-length @var{vect})}, the coordinates are\n"
"uniformly distributed within the unit @var{n}-sphere.")
#define FUNC_NAME s_scm_random_solid_sphere_x
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (2, state);
scm_random_normal_vector_x (v, state);
vector_scale_x (v,
pow (scm_c_uniform01 (SCM_RSTATE (state)),
1.0 / scm_c_array_length (v))
/ sqrt (vector_sum_squares (v)));
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0,
(SCM v, SCM state),
"Fills vect with inexact real random numbers\n"
"the sum of whose squares is equal to 1.0.\n"
"Thinking of vect as coordinates in space of\n"
"dimension n = (vector-length vect), the coordinates\n"
"are uniformly distributed over the surface of the\n"
"unit n-sphere.")
#define FUNC_NAME s_scm_random_hollow_sphere_x
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (2, state);
scm_random_normal_vector_x (v, state);
vector_scale_x (v, 1 / sqrt (vector_sum_squares (v)));
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_random_normal_vector_x, "random:normal-vector!", 1, 1, 0,
(SCM v, SCM state),
"Fills vect with inexact real random numbers that are\n"
"independent and standard normally distributed\n"
"(i.e., with mean 0 and variance 1).")
#define FUNC_NAME s_scm_random_normal_vector_x
{
scm_t_array_handle handle;
scm_t_array_dim const * dims;
ssize_t i;
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (2, state);
scm_array_get_handle (v, &handle);
if (1 != scm_array_handle_rank (&handle))
{
scm_array_handle_release (&handle);
scm_wrong_type_arg_msg (NULL, 0, v, "rank 1 array");
}
dims = scm_array_handle_dims (&handle);
if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM)
{
SCM *elts = scm_array_handle_writable_elements (&handle);
for (i = dims->lbnd; i <= dims->ubnd; i++, elts += dims->inc)
*elts = scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
}
else
{
/* must be a f64vector. */
double *elts = scm_array_handle_f64_writable_elements (&handle);
for (i = dims->lbnd; i <= dims->ubnd; i++, elts += dims->inc)
*elts = scm_c_normal01 (SCM_RSTATE (state));
}
scm_array_handle_release (&handle);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_random_exp, "random:exp", 0, 1, 0,
(SCM state),
"Return an inexact real in an exponential distribution with mean\n"
"1. For an exponential distribution with mean u use (* u\n"
"(random:exp)).")
#define FUNC_NAME s_scm_random_exp
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (1, state);
return scm_from_double (scm_c_exp1 (SCM_RSTATE (state)));
}
#undef FUNC_NAME
/* Return a new random-state seeded from the time, date, process ID, an
address from a freshly allocated heap cell, an address from the local
stack frame, and a high-resolution timer if available. This is only
to be used as a last resort, when no better source of entropy is
available. */
static SCM
random_state_of_last_resort (void)
{
SCM state;
SCM time_of_day = scm_gettimeofday ();
SCM sources = scm_list_n
(scm_from_unsigned_integer (SCM_UNPACK (time_of_day)), /* heap addr */
/* Avoid scm_getpid, since it depends on HAVE_POSIX. */
scm_from_unsigned_integer (getpid ()), /* process ID */
scm_get_internal_real_time (), /* high-resolution process timer */
scm_from_unsigned_integer ((scm_t_bits) &time_of_day), /* stack addr */
scm_car (time_of_day), /* seconds since midnight 1970-01-01 UTC */
scm_cdr (time_of_day), /* microsecond component of the above clock */
SCM_UNDEFINED);
/* Concatenate the sources bitwise to form the seed */
SCM seed = SCM_INUM0;
while (scm_is_pair (sources))
{
seed = scm_logxor (seed, scm_ash (scm_car (sources),
scm_integer_length (seed)));
sources = scm_cdr (sources);
}
/* FIXME The following code belongs in `scm_seed_to_random_state',
and here we should simply do:
return scm_seed_to_random_state (seed);
Unfortunately, `scm_seed_to_random_state' only preserves around 32
bits of entropy from the provided seed. I don't know if it's okay
to fix that in 2.0, so for now we have this workaround. */
{
int i, len;
unsigned char *buf;
len = scm_to_int (scm_ceiling_quotient (scm_integer_length (seed),
SCM_I_MAKINUM (8)));
buf = (unsigned char *) malloc (len);
for (i = len-1; i >= 0; --i)
{
buf[i] = scm_to_int (scm_logand (seed, SCM_I_MAKINUM (255)));
seed = scm_ash (seed, SCM_I_MAKINUM (-8));
}
state = make_rstate (scm_c_make_rstate ((char *) buf, len));
free (buf);
}
return state;
}
/* Attempt to fill buffer with random bytes from /dev/urandom.
Return 1 if successful, else return 0. */
static int
read_dev_urandom (unsigned char *buf, size_t len)
{
size_t res = 0;
FILE *f = fopen ("/dev/urandom", "r");
if (f)
{
res = fread(buf, 1, len, f);
fclose (f);
}
return (res == len);
}
/* Fill a buffer with random bytes seeded from a platform-specific
source of entropy. /dev/urandom is used if available. Note that
this function provides no guarantees about the amount of entropy
present in the returned bytes. */
void
scm_i_random_bytes_from_platform (unsigned char *buf, size_t len)
{
if (read_dev_urandom (buf, len))
return;
else /* FIXME: support other platform sources */
{
/* When all else fails, use this (rather weak) fallback */
SCM random_state = random_state_of_last_resort ();
int i;
for (i = len-1; i >= 0; --i)
buf[i] = scm_to_int (scm_random (SCM_I_MAKINUM (256), random_state));
}
}
SCM_DEFINE (scm_random_state_from_platform, "random-state-from-platform", 0, 0, 0,
(void),
"Construct a new random state seeded from a platform-specific\n\
source of entropy, appropriate for use in non-security-critical applications.")
#define FUNC_NAME s_scm_random_state_from_platform
{
unsigned char buf[32];
if (read_dev_urandom (buf, sizeof(buf)))
return make_rstate (scm_c_make_rstate ((char *) buf, sizeof(buf)));
else
return random_state_of_last_resort ();
}
#undef FUNC_NAME
void
scm_init_random ()
{
int i, m;
/* plug in default RNG */
scm_t_rng rng =
{
sizeof (scm_t_i_rstate),
scm_i_uniform32,
scm_i_init_rstate,
scm_i_copy_rstate,
scm_i_rstate_from_datum,
scm_i_rstate_to_datum
};
scm_the_rng = rng;
scm_tc16_rstate = scm_make_smob_type ("random-state", 0);
for (m = 1; m <= 0x100; m <<= 1)
for (i = m >> 1; i < m; ++i)
scm_masktab[i] = m - 1;
#include "random.x"
scm_add_feature ("random");
}
|