File size: 48,973 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 |
/* Copyright 1995-1998,2000-2014,2018-2019,2023-2024
Free Software Foundation, Inc.
This file is part of Guile.
Guile is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Guile is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Guile. If not, see
<https://www.gnu.org/licenses/>. */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <full-read.h>
#include <nproc.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h> /* for memset used by FD_ZERO on Solaris 10 */
#include <sys/time.h>
#include <sys/select.h> /* from Gnulib */
#include <unistd.h>
#if HAVE_PTHREAD_NP_H
# include <pthread_np.h>
#endif
#include "async.h"
#include "bdw-gc.h"
#include "boolean.h"
#include "continuations.h"
#include "deprecation.h"
#include "dynwind.h"
#include "eval.h"
#include "extensions.h"
#include "fluids.h"
#include "gc-inline.h"
#include "gc.h"
#include "gsubr.h"
#include "hashtab.h"
#include "init.h"
#include "iselect.h"
#include "jit.h"
#include "list.h"
#include "modules.h"
#include "numbers.h"
#include "pairs.h"
#include "ports.h"
#include "scmsigs.h"
#include "strings.h"
#include "symbols.h"
#include "variable.h"
#include "version.h"
#include "vm.h"
#include "threads.h"
#include <gc/gc_mark.h>
/* The GC "kind" for threads that allow them to mark their VM
stacks. */
static int thread_gc_kind;
static struct GC_ms_entry *
thread_mark (GC_word *addr, struct GC_ms_entry *mark_stack_ptr,
struct GC_ms_entry *mark_stack_limit, GC_word env)
{
int word;
struct scm_thread *t = (struct scm_thread *) addr;
if (SCM_UNPACK (t->handle) == 0)
/* T must be on the free-list; ignore. (See warning in
gc_mark.h.) */
return mark_stack_ptr;
/* Mark T. We could be more precise, but it doesn't matter. */
for (word = 0; word * sizeof (*addr) < sizeof (*t); word++)
mark_stack_ptr = GC_MARK_AND_PUSH ((void *) addr[word],
mark_stack_ptr, mark_stack_limit,
NULL);
/* The pointerless freelists are threaded through their first word,
but GC doesn't know to trace them (as they are pointerless), so we
need to do that here. See the comments at the top of libgc's
gc_inline.h. */
for (size_t n = 0; n < SCM_INLINE_GC_FREELIST_COUNT; n++)
{
void *chain = t->pointerless_freelists[n];
if (chain)
{
/* The first link is already marked by the thread itsel, so we
just have to mark the tail. */
while ((chain = *(void **)chain))
mark_stack_ptr = GC_mark_and_push (chain, mark_stack_ptr,
mark_stack_limit, NULL);
}
}
mark_stack_ptr = scm_i_vm_mark_stack (&t->vm, mark_stack_ptr,
mark_stack_limit);
return mark_stack_ptr;
}
static void
to_timespec (SCM t, scm_t_timespec *waittime)
{
if (scm_is_pair (t))
{
waittime->tv_sec = scm_to_ulong (SCM_CAR (t));
waittime->tv_nsec = scm_to_ulong (SCM_CDR (t)) * 1000;
}
else
{
double time = scm_to_double (t);
double sec = scm_c_truncate (time);
waittime->tv_sec = (long) sec;
waittime->tv_nsec = (long) ((time - sec) * 1000000000);
}
}
/*** Queues */
/* Note: We annotate with "GC-robust" assignments whose purpose is to avoid
the risk of false references leading to unbounded retained space as
described in "Bounding Space Usage of Conservative Garbage Collectors",
H.J. Boehm, 2001. */
/* Make an empty queue data structure.
*/
static SCM
make_queue ()
{
return scm_cons (SCM_EOL, SCM_EOL);
}
static scm_i_pthread_mutex_t queue_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
/* Put T at the back of Q and return a handle that can be used with
remqueue to remove T from Q again.
*/
static SCM
enqueue (SCM q, SCM t)
{
SCM c = scm_cons (t, SCM_EOL);
scm_i_pthread_mutex_lock (&queue_lock);
if (scm_is_null (SCM_CDR (q)))
SCM_SETCDR (q, c);
else
SCM_SETCDR (SCM_CAR (q), c);
SCM_SETCAR (q, c);
scm_i_pthread_mutex_unlock (&queue_lock);
return c;
}
/* Remove the element that the handle C refers to from the queue Q. C
must have been returned from a call to enqueue. The return value
is zero when the element referred to by C has already been removed.
Otherwise, 1 is returned.
*/
static int
remqueue (SCM q, SCM c)
{
SCM p, prev = q;
scm_i_pthread_mutex_lock (&queue_lock);
for (p = SCM_CDR (q); !scm_is_null (p); p = SCM_CDR (p))
{
if (scm_is_eq (p, c))
{
if (scm_is_eq (c, SCM_CAR (q)))
SCM_SETCAR (q, scm_is_eq (prev, q) ? SCM_EOL : prev);
SCM_SETCDR (prev, SCM_CDR (c));
/* GC-robust */
SCM_SETCDR (c, SCM_EOL);
scm_i_pthread_mutex_unlock (&queue_lock);
return 1;
}
prev = p;
}
scm_i_pthread_mutex_unlock (&queue_lock);
return 0;
}
/* Remove the front-most element from the queue Q and return it.
Return SCM_BOOL_F when Q is empty.
*/
static SCM
dequeue (SCM q)
{
SCM c;
scm_i_pthread_mutex_lock (&queue_lock);
c = SCM_CDR (q);
if (scm_is_null (c))
{
scm_i_pthread_mutex_unlock (&queue_lock);
return SCM_BOOL_F;
}
else
{
SCM_SETCDR (q, SCM_CDR (c));
if (scm_is_null (SCM_CDR (q)))
SCM_SETCAR (q, SCM_EOL);
scm_i_pthread_mutex_unlock (&queue_lock);
/* GC-robust */
SCM_SETCDR (c, SCM_EOL);
return SCM_CAR (c);
}
}
/*** Thread smob routines */
static int
thread_print (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
{
/* On a Gnu system pthread_t is an unsigned long, but on mingw it's a
struct. A cast like "(unsigned long) t->pthread" is a syntax error in
the struct case, hence we go via a union, and extract according to the
size of pthread_t. */
union {
scm_i_pthread_t p;
unsigned short us;
unsigned int ui;
unsigned long ul;
uintmax_t um;
} u;
scm_thread *t = SCM_I_THREAD_DATA (exp);
scm_i_pthread_t p = t->pthread;
uintmax_t id;
u.p = p;
if (sizeof (p) == sizeof (unsigned short))
id = u.us;
else if (sizeof (p) == sizeof (unsigned int))
id = u.ui;
else if (sizeof (p) == sizeof (unsigned long))
id = u.ul;
else
id = u.um;
scm_puts ("#<thread ", port);
scm_uintprint (id, 10, port);
scm_puts (" (", port);
scm_uintprint ((scm_t_bits)t, 16, port);
scm_puts (")>", port);
return 1;
}
/*** Blocking on queues. */
/* See also scm_system_async_mark_for_thread for how such a block is
interrputed.
*/
/* Put the current thread on QUEUE and go to sleep, waiting for it to
be woken up by a call to 'unblock_from_queue', or to be
interrupted. Upon return of this function, the current thread is
no longer on QUEUE, even when the sleep has been interrupted.
The caller of block_self must hold MUTEX. It will be atomically
unlocked while sleeping, just as with scm_i_pthread_cond_wait.
When WAITTIME is not NULL, the sleep will be aborted at that time.
The return value of block_self is an errno value. It will be zero
when the sleep has been successfully completed by a call to
unblock_from_queue, EINTR when it has been interrupted by the
delivery of a system async, and ETIMEDOUT when the timeout has
expired.
The system asyncs themselves are not executed by block_self.
*/
static int
block_self (SCM queue, scm_i_pthread_mutex_t *mutex,
const scm_t_timespec *waittime)
{
scm_thread *t = SCM_I_CURRENT_THREAD;
SCM q_handle;
int err;
if (scm_i_prepare_to_wait_on_cond (t, mutex, &t->sleep_cond))
return EINTR;
t->block_asyncs++;
q_handle = enqueue (queue, t->handle);
if (waittime == NULL)
err = scm_i_scm_pthread_cond_wait (&t->sleep_cond, mutex);
else
err = scm_i_scm_pthread_cond_timedwait (&t->sleep_cond, mutex, waittime);
/* When we are still on QUEUE, we have been interrupted. We
report this only when no other error (such as a timeout) has
happened above.
*/
if (remqueue (queue, q_handle) && err == 0)
err = EINTR;
t->block_asyncs--;
scm_i_wait_finished (t);
return err;
}
/* Wake up the first thread on QUEUE, if any. The awoken thread is
returned, or #f if the queue was empty.
*/
static SCM
unblock_from_queue (SCM queue)
{
SCM thread = dequeue (queue);
if (scm_is_true (thread))
scm_i_pthread_cond_signal (&SCM_I_THREAD_DATA(thread)->sleep_cond);
return thread;
}
/* Getting into and out of guile mode.
*/
/* Key used to attach a cleanup handler to a given thread. Also, if
thread-local storage is unavailable, this key is used to retrieve the
current thread with `pthread_getspecific ()'. */
scm_i_pthread_key_t scm_i_thread_key;
#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
/* When thread-local storage (TLS) is available, a pointer to the
current-thread object is kept in TLS. Note that storing the thread-object
itself in TLS (rather than a pointer to some malloc'd memory) is not
possible since thread objects may live longer than the actual thread they
represent. */
# ifdef __APPLE__ /* XXX: hack to address <https://bugs.gnu.org/60234> */
SCM_INTERNAL
# endif
SCM_THREAD_LOCAL scm_thread *scm_i_current_thread = NULL;
#endif /* SCM_HAVE_THREAD_STORAGE_CLASS */
static scm_i_pthread_mutex_t thread_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
static scm_thread *all_threads = NULL;
static int thread_count;
static SCM default_dynamic_state;
/* Perform first stage of thread initialisation, in non-guile mode.
*/
static void
guilify_self_1 (struct GC_stack_base *base, int needs_unregister)
{
scm_thread t;
/* We must arrange for SCM_I_CURRENT_THREAD to point to a valid value
before allocating anything in this thread, because allocation could
cause GC to run, and GC could cause finalizers, which could invoke
Scheme functions, which need the current thread to be set. */
memset (&t, 0, sizeof (t));
t.pthread = scm_i_pthread_self ();
t.handle = SCM_BOOL_F;
t.result = SCM_BOOL_F;
t.pending_asyncs = SCM_EOL;
t.block_asyncs = 1;
t.base = base->mem_base;
t.continuation_root = SCM_EOL;
t.continuation_base = t.base;
scm_i_pthread_cond_init (&t.sleep_cond, NULL);
scm_i_vm_prepare_stack (&t.vm);
if (pipe2 (t.sleep_pipe, O_CLOEXEC) != 0)
/* FIXME: Error conditions during the initialization phase are handled
gracelessly since public functions such as `scm_init_guile ()'
currently have type `void'. */
abort ();
t.exited = 0;
t.guile_mode = 0;
t.needs_unregister = needs_unregister;
/* The switcheroo. */
{
scm_thread *t_ptr = &t;
GC_disable ();
t_ptr = GC_generic_malloc (sizeof (*t_ptr), thread_gc_kind);
memcpy (t_ptr, &t, sizeof t);
scm_i_pthread_setspecific (scm_i_thread_key, t_ptr);
#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
/* Cache the current thread in TLS for faster lookup. */
scm_i_current_thread = t_ptr;
#endif
scm_i_pthread_mutex_lock (&thread_admin_mutex);
t_ptr->next_thread = all_threads;
all_threads = t_ptr;
thread_count++;
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
GC_enable ();
}
}
/* Perform second stage of thread initialisation, in guile mode.
*/
static void
guilify_self_2 (SCM dynamic_state)
{
scm_thread *t = SCM_I_CURRENT_THREAD;
t->guile_mode = 1;
SCM_NEWSMOB (t->handle, scm_tc16_thread, t);
t->continuation_root = scm_cons (t->handle, SCM_EOL);
t->continuation_base = t->base;
t->dynamic_state = scm_gc_typed_calloc (scm_t_dynamic_state);
t->dynamic_state->thread_local_values = scm_c_make_hash_table (0);
scm_set_current_dynamic_state (dynamic_state);
t->dynstack.base = scm_gc_malloc (16 * sizeof (scm_t_bits), "dynstack");
t->dynstack.limit = t->dynstack.base + 16;
t->dynstack.top = t->dynstack.base + SCM_DYNSTACK_HEADER_LEN;
t->block_asyncs = 0;
/* See note in finalizers.c:queue_finalizer_async(). */
GC_invoke_finalizers ();
}
static void
on_thread_exit (void *v)
{
/* This handler is executed in non-guile mode. Note that although
libgc isn't guaranteed to see thread-locals, for this thread-local
that isn't an issue as we have the all_threads list. */
scm_thread *t = (scm_thread *) v, **tp;
t->exited = 1;
close (t->sleep_pipe[0]);
close (t->sleep_pipe[1]);
t->sleep_pipe[0] = t->sleep_pipe[1] = -1;
scm_i_pthread_mutex_lock (&thread_admin_mutex);
for (tp = &all_threads; *tp; tp = &(*tp)->next_thread)
if (*tp == t)
{
*tp = t->next_thread;
/* GC-robust */
t->next_thread = NULL;
break;
}
thread_count--;
/* Prevent any concurrent or future marker from visiting this
thread. */
t->handle = SCM_PACK (0);
/* If there's only one other thread, it could be the signal delivery
thread, in which case we should shut it down also by closing its
read pipe. */
if (thread_count <= 1)
scm_i_close_signal_pipe ();
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
/* Although this thread has exited, the thread object might still be
alive. Release unused memory. */
for (size_t n = 0; n < SCM_INLINE_GC_FREELIST_COUNT; n++)
t->freelists[n] = t->pointerless_freelists[n] = NULL;
t->dynamic_state = NULL;
t->dynstack.base = NULL;
t->dynstack.top = NULL;
t->dynstack.limit = NULL;
scm_i_vm_free_stack (&t->vm);
#if ENABLE_JIT
scm_jit_state_free (t->jit_state);
#endif
t->jit_state = NULL;
#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
scm_i_current_thread = NULL;
#endif
#if SCM_USE_PTHREAD_THREADS
if (t->needs_unregister)
GC_unregister_my_thread ();
#endif
}
static scm_i_pthread_once_t init_thread_key_once = SCM_I_PTHREAD_ONCE_INIT;
static void
init_thread_key (void)
{
scm_i_pthread_key_create (&scm_i_thread_key, on_thread_exit);
}
/* Perform any initializations necessary to make the current thread
known to Guile (via SCM_I_CURRENT_THREAD), initializing Guile itself,
if necessary.
BASE is the stack base to use with GC.
DYNAMIC_STATE is the set of fluid values to start with.
Returns zero when the thread was known to guile already; otherwise
return 1.
Note that it could be the case that the thread was known
to Guile, but not in guile mode (because we are within a
scm_without_guile call). Check SCM_I_CURRENT_THREAD->guile_mode to
be sure. New threads are put into guile mode implicitly. */
static int
scm_i_init_thread_for_guile (struct GC_stack_base *base,
SCM dynamic_state)
{
scm_i_pthread_once (&init_thread_key_once, init_thread_key);
if (SCM_I_CURRENT_THREAD)
{
/* Thread is already known to Guile.
*/
return 0;
}
else
{
/* This thread has not been guilified yet.
*/
scm_i_pthread_mutex_lock (&scm_i_init_mutex);
if (scm_initialized_p == 0)
{
/* First thread ever to enter Guile. Run the full
initialization.
*/
scm_i_init_guile (base);
#if SCM_USE_PTHREAD_THREADS
/* Allow other threads to come in later. */
GC_allow_register_threads ();
#endif
scm_i_pthread_mutex_unlock (&scm_i_init_mutex);
}
else
{
int needs_unregister = 0;
/* Guile is already initialized, but this thread enters it for
the first time. Only initialize this thread.
*/
scm_i_pthread_mutex_unlock (&scm_i_init_mutex);
/* Register this thread with libgc. */
#if SCM_USE_PTHREAD_THREADS
if (GC_register_my_thread (base) == GC_SUCCESS)
needs_unregister = 1;
#endif
guilify_self_1 (base, needs_unregister);
guilify_self_2 (dynamic_state);
}
return 1;
}
}
void
scm_init_guile ()
{
struct GC_stack_base stack_base;
if (GC_get_stack_base (&stack_base) == GC_SUCCESS)
scm_i_init_thread_for_guile (&stack_base, default_dynamic_state);
else
{
fprintf (stderr, "Failed to get stack base for current thread.\n");
exit (EXIT_FAILURE);
}
}
struct with_guile_args
{
GC_fn_type func;
void *data;
SCM dynamic_state;
};
static void *
with_guile_trampoline (void *data)
{
struct with_guile_args *args = data;
return scm_c_with_continuation_barrier (args->func, args->data);
}
static void *
with_guile (struct GC_stack_base *base, void *data)
{
void *res;
int new_thread;
scm_thread *t;
struct with_guile_args *args = data;
new_thread = scm_i_init_thread_for_guile (base, args->dynamic_state);
t = SCM_I_CURRENT_THREAD;
if (new_thread)
{
/* We are in Guile mode. */
assert (t->guile_mode);
res = scm_c_with_continuation_barrier (args->func, args->data);
/* Leave Guile mode. */
t->guile_mode = 0;
}
else if (t->guile_mode)
{
/* Already in Guile mode. */
res = scm_c_with_continuation_barrier (args->func, args->data);
}
else
{
/* We are not in Guile mode, either because we are not within a
scm_with_guile, or because we are within a scm_without_guile.
This call to scm_with_guile() could happen from anywhere on the
stack, and in particular lower on the stack than when it was
when this thread was first guilified. Thus, `base' must be
updated. */
#if SCM_STACK_GROWS_UP
if (SCM_STACK_PTR (base->mem_base) < t->base)
t->base = SCM_STACK_PTR (base->mem_base);
#else
if (SCM_STACK_PTR (base->mem_base) > t->base)
t->base = SCM_STACK_PTR (base->mem_base);
#endif
t->guile_mode = 1;
res = GC_call_with_gc_active (with_guile_trampoline, args);
t->guile_mode = 0;
}
return res;
}
static void *
scm_i_with_guile (void *(*func)(void *), void *data, SCM dynamic_state)
{
struct with_guile_args args;
args.func = func;
args.data = data;
args.dynamic_state = dynamic_state;
return GC_call_with_stack_base (with_guile, &args);
}
void *
scm_with_guile (void *(*func)(void *), void *data)
{
return scm_i_with_guile (func, data, default_dynamic_state);
}
void *
scm_without_guile (void *(*func)(void *), void *data)
{
void *result;
scm_thread *t = SCM_I_CURRENT_THREAD;
if (t->guile_mode)
{
SCM_I_CURRENT_THREAD->guile_mode = 0;
result = GC_do_blocking (func, data);
SCM_I_CURRENT_THREAD->guile_mode = 1;
}
else
/* Otherwise we're not in guile mode, so nothing to do. */
result = func (data);
return result;
}
/*** Thread creation */
/* Because (ice-9 boot-9) loads up (ice-9 threads), we know that this
variable will get loaded before a call to scm_call_with_new_thread
and therefore no lock or pthread_once_t is needed. */
static SCM call_with_new_thread_var;
SCM
scm_call_with_new_thread (SCM thunk, SCM handler)
{
SCM call_with_new_thread = scm_variable_ref (call_with_new_thread_var);
if (SCM_UNBNDP (handler))
return scm_call_1 (call_with_new_thread, thunk);
return scm_call_2 (call_with_new_thread, thunk, handler);
}
typedef struct launch_data launch_data;
struct launch_data {
launch_data *prev;
launch_data *next;
SCM dynamic_state;
SCM thunk;
};
/* GC-protect the launch data for new threads. */
static launch_data *protected_launch_data;
static scm_i_pthread_mutex_t protected_launch_data_lock =
SCM_I_PTHREAD_MUTEX_INITIALIZER;
static void
protect_launch_data (launch_data *data)
{
scm_i_pthread_mutex_lock (&protected_launch_data_lock);
data->next = protected_launch_data;
if (protected_launch_data)
protected_launch_data->prev = data;
protected_launch_data = data;
scm_i_pthread_mutex_unlock (&protected_launch_data_lock);
}
static void
unprotect_launch_data (launch_data *data)
{
scm_i_pthread_mutex_lock (&protected_launch_data_lock);
if (data->next)
data->next->prev = data->prev;
if (data->prev)
data->prev->next = data->next;
else
protected_launch_data = data->next;
scm_i_pthread_mutex_unlock (&protected_launch_data_lock);
}
static void *
really_launch (void *d)
{
scm_thread *t = SCM_I_CURRENT_THREAD;
unprotect_launch_data (d);
/* The thread starts with asyncs blocked. */
t->block_asyncs++;
SCM_I_CURRENT_THREAD->result = scm_call_0 (((launch_data *)d)->thunk);
return 0;
}
static void *
launch_thread (void *d)
{
launch_data *data = (launch_data *)d;
scm_i_pthread_detach (scm_i_pthread_self ());
scm_i_with_guile (really_launch, d, data->dynamic_state);
return NULL;
}
SCM_INTERNAL SCM scm_sys_call_with_new_thread (SCM);
SCM_DEFINE (scm_sys_call_with_new_thread, "%call-with-new-thread", 1, 0, 0,
(SCM thunk), "")
#define FUNC_NAME s_scm_sys_call_with_new_thread
{
launch_data *data;
scm_i_pthread_t id;
int err;
SCM_ASSERT (scm_is_true (scm_thunk_p (thunk)), thunk, SCM_ARG1, FUNC_NAME);
GC_collect_a_little ();
data = scm_gc_typed_calloc (launch_data);
data->dynamic_state = scm_current_dynamic_state ();
data->thunk = thunk;
protect_launch_data (data);
err = scm_i_pthread_create (&id, NULL, launch_thread, data);
if (err)
{
errno = err;
scm_syserror (NULL);
}
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM
scm_spawn_thread (scm_t_catch_body body, void *body_data,
scm_t_catch_handler handler, void *handler_data)
{
SCM body_closure, handler_closure;
body_closure = scm_c_make_thunk (body, body_data);
handler_closure = handler == NULL ? SCM_UNDEFINED :
scm_i_make_catch_handler (handler, handler_data);
return scm_call_with_new_thread (body_closure, handler_closure);
}
SCM_DEFINE (scm_yield, "yield", 0, 0, 0,
(),
"Move the calling thread to the end of the scheduling queue.")
#define FUNC_NAME s_scm_yield
{
return scm_from_bool (scm_i_sched_yield ());
}
#undef FUNC_NAME
static SCM cancel_thread_var;
SCM
scm_cancel_thread (SCM thread)
{
scm_call_1 (scm_variable_ref (cancel_thread_var), thread);
return SCM_UNSPECIFIED;
}
static SCM join_thread_var;
SCM
scm_join_thread (SCM thread)
{
return scm_call_1 (scm_variable_ref (join_thread_var), thread);
}
SCM
scm_join_thread_timed (SCM thread, SCM timeout, SCM timeoutval)
{
SCM join_thread = scm_variable_ref (join_thread_var);
if (SCM_UNBNDP (timeout))
return scm_call_1 (join_thread, thread);
else if (SCM_UNBNDP (timeoutval))
return scm_call_2 (join_thread, thread, timeout);
else
return scm_call_3 (join_thread, thread, timeout, timeoutval);
}
SCM_DEFINE (scm_thread_p, "thread?", 1, 0, 0,
(SCM obj),
"Return @code{#t} if @var{obj} is a thread.")
#define FUNC_NAME s_scm_thread_p
{
return SCM_I_IS_THREAD(obj) ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME
/* We implement our own mutex type since we want them to be 'fair', we
want to do fancy things while waiting for them (like running
asyncs) and we might want to add things that are nice for
debugging.
*/
enum scm_mutex_kind {
/* A standard mutex can only be locked once. If you try to lock it
again from the thread that locked it to begin with (the "owner"
thread), it throws an error. It can only be unlocked from the
thread that locked it in the first place. */
SCM_MUTEX_STANDARD,
/* A recursive mutex can be locked multiple times by its owner. It
then has to be unlocked the corresponding number of times, and like
standard mutexes can only be unlocked by the owner thread. */
SCM_MUTEX_RECURSIVE,
/* An unowned mutex is like a standard mutex, except that it can be
unlocked by any thread. A corrolary of this behavior is that a
thread's attempt to lock a mutex that it already owns will block
instead of signaling an error, as it could be that some other
thread unlocks the mutex, allowing the owner thread to proceed.
This kind of mutex is a bit strange and is here for use by
SRFI-18. */
SCM_MUTEX_UNOWNED
};
struct scm_mutex {
scm_i_pthread_mutex_t lock;
/* The thread that owns this mutex, or #f if the mutex is unlocked. */
SCM owner;
/* Queue of threads waiting for this mutex. */
SCM waiting;
/* For SCM_MUTEX_RECURSIVE (and only SCM_MUTEX_RECURSIVE), the
recursive lock count. The first lock does not count. */
int level;
};
#define SCM_MUTEXP(x) SCM_SMOB_PREDICATE (scm_tc16_mutex, x)
#define SCM_MUTEX_DATA(x) ((struct scm_mutex *) SCM_SMOB_DATA (x))
#define SCM_MUTEX_KIND(x) ((enum scm_mutex_kind) (SCM_SMOB_FLAGS (x) & 0x3))
static int
scm_mutex_print (SCM mx, SCM port, scm_print_state *pstate SCM_UNUSED)
{
struct scm_mutex *m = SCM_MUTEX_DATA (mx);
scm_puts ("#<mutex ", port);
scm_uintprint ((scm_t_bits)m, 16, port);
scm_puts (">", port);
return 1;
}
SCM_SYMBOL (allow_external_unlock_sym, "allow-external-unlock");
SCM_SYMBOL (recursive_sym, "recursive");
SCM_DEFINE (scm_make_mutex_with_kind, "make-mutex", 0, 1, 0,
(SCM kind),
"Create a new mutex. If @var{kind} is not given, the mutex\n"
"will be a standard non-recursive mutex. Otherwise pass\n"
"@code{recursive} to make a recursive mutex, or\n"
"@code{allow-external-unlock} to make a non-recursive mutex\n"
"that can be unlocked from any thread.")
#define FUNC_NAME s_scm_make_mutex_with_kind
{
enum scm_mutex_kind mkind = SCM_MUTEX_STANDARD;
struct scm_mutex *m;
scm_i_pthread_mutex_t lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
if (!SCM_UNBNDP (kind))
{
if (scm_is_eq (kind, allow_external_unlock_sym))
mkind = SCM_MUTEX_UNOWNED;
else if (scm_is_eq (kind, recursive_sym))
mkind = SCM_MUTEX_RECURSIVE;
else
SCM_MISC_ERROR ("unsupported mutex kind: ~a", scm_list_1 (kind));
}
m = scm_gc_malloc (sizeof (struct scm_mutex), "mutex");
/* Because PTHREAD_MUTEX_INITIALIZER is static, it's plain old data,
and so we can just copy it. */
memcpy (&m->lock, &lock, sizeof (m->lock));
m->owner = SCM_BOOL_F;
m->level = 0;
m->waiting = make_queue ();
return scm_new_smob (scm_tc16_mutex | (mkind << 16), (scm_t_bits) m);
}
#undef FUNC_NAME
SCM
scm_make_mutex (void)
{
return scm_make_mutex_with_kind (SCM_UNDEFINED);
}
SCM_DEFINE (scm_make_recursive_mutex, "make-recursive-mutex", 0, 0, 0,
(void),
"Create a new recursive mutex. ")
#define FUNC_NAME s_scm_make_recursive_mutex
{
return scm_make_mutex_with_kind (recursive_sym);
}
#undef FUNC_NAME
SCM
scm_lock_mutex (SCM mx)
{
return scm_timed_lock_mutex (mx, SCM_UNDEFINED);
}
static inline SCM
lock_mutex (enum scm_mutex_kind kind, struct scm_mutex *m,
scm_thread *current_thread, scm_t_timespec *waittime)
#define FUNC_NAME "lock-mutex"
{
scm_i_scm_pthread_mutex_lock (&m->lock);
if (scm_is_eq (m->owner, SCM_BOOL_F))
{
m->owner = current_thread->handle;
scm_i_pthread_mutex_unlock (&m->lock);
return SCM_BOOL_T;
}
else if (kind == SCM_MUTEX_RECURSIVE &&
scm_is_eq (m->owner, current_thread->handle))
{
m->level++;
scm_i_pthread_mutex_unlock (&m->lock);
return SCM_BOOL_T;
}
else if (kind == SCM_MUTEX_STANDARD &&
scm_is_eq (m->owner, current_thread->handle))
{
scm_i_pthread_mutex_unlock (&m->lock);
SCM_MISC_ERROR ("mutex already locked by thread", SCM_EOL);
}
else
while (1)
{
int err = block_self (m->waiting, &m->lock, waittime);
if (err == 0)
{
goto maybe_acquire;
}
else if (err == ETIMEDOUT)
{
scm_i_pthread_mutex_unlock (&m->lock);
return SCM_BOOL_F;
}
else if (err == EINTR)
{
scm_i_pthread_mutex_unlock (&m->lock);
scm_async_tick ();
scm_i_scm_pthread_mutex_lock (&m->lock);
goto maybe_acquire;
}
else
{
/* Shouldn't happen. */
scm_i_pthread_mutex_unlock (&m->lock);
errno = err;
SCM_SYSERROR;
}
maybe_acquire:
if (scm_is_eq (m->owner, SCM_BOOL_F))
{
m->owner = current_thread->handle;
scm_i_pthread_mutex_unlock (&m->lock);
return SCM_BOOL_T;
}
}
}
#undef FUNC_NAME
SCM_DEFINE (scm_timed_lock_mutex, "lock-mutex", 1, 1, 0,
(SCM mutex, SCM timeout),
"Lock mutex @var{mutex}. If the mutex is already locked, "
"the calling thread blocks until the mutex becomes available.")
#define FUNC_NAME s_scm_timed_lock_mutex
{
scm_t_timespec cwaittime, *waittime = NULL;
struct scm_mutex *m;
scm_thread *t = SCM_I_CURRENT_THREAD;
SCM ret;
SCM_VALIDATE_MUTEX (1, mutex);
m = SCM_MUTEX_DATA (mutex);
if (! SCM_UNBNDP (timeout) && ! scm_is_false (timeout))
{
to_timespec (timeout, &cwaittime);
waittime = &cwaittime;
}
/* Specialized lock_mutex implementations according to the mutex
kind. */
switch (SCM_MUTEX_KIND (mutex))
{
case SCM_MUTEX_STANDARD:
ret = lock_mutex (SCM_MUTEX_STANDARD, m, t, waittime);
break;
case SCM_MUTEX_RECURSIVE:
ret = lock_mutex (SCM_MUTEX_RECURSIVE, m, t, waittime);
break;
case SCM_MUTEX_UNOWNED:
ret = lock_mutex (SCM_MUTEX_UNOWNED, m, t, waittime);
break;
default:
abort ();
}
scm_remember_upto_here_1 (mutex);
return ret;
}
#undef FUNC_NAME
static void
lock_mutex_return_void (SCM mx)
{
(void) scm_lock_mutex (mx);
}
static void
unlock_mutex_return_void (SCM mx)
{
(void) scm_unlock_mutex (mx);
}
void
scm_dynwind_lock_mutex (SCM mutex)
{
scm_dynwind_unwind_handler_with_scm (unlock_mutex_return_void, mutex,
SCM_F_WIND_EXPLICITLY);
scm_dynwind_rewind_handler_with_scm (lock_mutex_return_void, mutex,
SCM_F_WIND_EXPLICITLY);
}
SCM
scm_try_mutex (SCM mutex)
{
return scm_timed_lock_mutex (mutex, SCM_INUM0);
}
/* This function is static inline so that the compiler can specialize it
against the mutex kind. */
static inline void
unlock_mutex (enum scm_mutex_kind kind, struct scm_mutex *m,
scm_thread *current_thread)
#define FUNC_NAME "unlock-mutex"
{
scm_i_scm_pthread_mutex_lock (&m->lock);
if (!scm_is_eq (m->owner, current_thread->handle))
{
if (scm_is_eq (m->owner, SCM_BOOL_F))
{
scm_i_pthread_mutex_unlock (&m->lock);
SCM_MISC_ERROR ("mutex not locked", SCM_EOL);
}
if (kind != SCM_MUTEX_UNOWNED)
{
scm_i_pthread_mutex_unlock (&m->lock);
SCM_MISC_ERROR ("mutex not locked by current thread", SCM_EOL);
}
}
if (kind == SCM_MUTEX_RECURSIVE && m->level > 0)
m->level--;
else
{
m->owner = SCM_BOOL_F;
/* Wake up one waiter. */
unblock_from_queue (m->waiting);
}
scm_i_pthread_mutex_unlock (&m->lock);
}
#undef FUNC_NAME
SCM_DEFINE (scm_unlock_mutex, "unlock-mutex", 1, 0, 0, (SCM mutex),
"Unlocks @var{mutex}. The calling thread must already hold\n"
"the lock on @var{mutex}, unless the mutex was created with\n"
"the @code{allow-external-unlock} option; otherwise an error\n"
"will be signaled.")
#define FUNC_NAME s_scm_unlock_mutex
{
struct scm_mutex *m;
scm_thread *t = SCM_I_CURRENT_THREAD;
SCM_VALIDATE_MUTEX (1, mutex);
m = SCM_MUTEX_DATA (mutex);
/* Specialized unlock_mutex implementations according to the mutex
kind. */
switch (SCM_MUTEX_KIND (mutex))
{
case SCM_MUTEX_STANDARD:
unlock_mutex (SCM_MUTEX_STANDARD, m, t);
break;
case SCM_MUTEX_RECURSIVE:
unlock_mutex (SCM_MUTEX_RECURSIVE, m, t);
break;
case SCM_MUTEX_UNOWNED:
unlock_mutex (SCM_MUTEX_UNOWNED, m, t);
break;
default:
abort ();
}
scm_remember_upto_here_1 (mutex);
return SCM_BOOL_T;
}
#undef FUNC_NAME
SCM_DEFINE (scm_mutex_p, "mutex?", 1, 0, 0,
(SCM obj),
"Return @code{#t} if @var{obj} is a mutex.")
#define FUNC_NAME s_scm_mutex_p
{
return SCM_MUTEXP (obj) ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME
SCM_DEFINE (scm_mutex_owner, "mutex-owner", 1, 0, 0,
(SCM mx),
"Return the thread owning @var{mx}, or @code{#f}.")
#define FUNC_NAME s_scm_mutex_owner
{
SCM owner;
struct scm_mutex *m = NULL;
SCM_VALIDATE_MUTEX (1, mx);
m = SCM_MUTEX_DATA (mx);
scm_i_pthread_mutex_lock (&m->lock);
owner = m->owner;
scm_i_pthread_mutex_unlock (&m->lock);
return owner;
}
#undef FUNC_NAME
SCM_DEFINE (scm_mutex_level, "mutex-level", 1, 0, 0,
(SCM mx),
"Return the lock level of mutex @var{mx}.")
#define FUNC_NAME s_scm_mutex_level
{
SCM_VALIDATE_MUTEX (1, mx);
if (SCM_MUTEX_KIND (mx) == SCM_MUTEX_RECURSIVE)
return scm_from_int (SCM_MUTEX_DATA (mx)->level + 1);
else if (scm_is_eq (SCM_MUTEX_DATA (mx)->owner, SCM_BOOL_F))
return SCM_INUM0;
else
return SCM_INUM1;
}
#undef FUNC_NAME
SCM_DEFINE (scm_mutex_locked_p, "mutex-locked?", 1, 0, 0,
(SCM mx),
"Returns @code{#t} if the mutex @var{mx} is locked.")
#define FUNC_NAME s_scm_mutex_locked_p
{
SCM_VALIDATE_MUTEX (1, mx);
if (scm_is_eq (SCM_MUTEX_DATA (mx)->owner, SCM_BOOL_F))
return SCM_BOOL_F;
else
return SCM_BOOL_T;
}
#undef FUNC_NAME
struct scm_cond {
scm_i_pthread_mutex_t lock;
SCM waiting; /* the threads waiting for this condition. */
};
#define SCM_CONDVARP(x) SCM_SMOB_PREDICATE (scm_tc16_condvar, x)
#define SCM_CONDVAR_DATA(x) ((struct scm_cond *) SCM_SMOB_DATA (x))
static int
scm_cond_print (SCM cv, SCM port, scm_print_state *pstate SCM_UNUSED)
{
struct scm_cond *c = SCM_CONDVAR_DATA (cv);
scm_puts ("#<condition-variable ", port);
scm_uintprint ((scm_t_bits)c, 16, port);
scm_puts (">", port);
return 1;
}
SCM_DEFINE (scm_make_condition_variable, "make-condition-variable", 0, 0, 0,
(void),
"Make a new condition variable.")
#define FUNC_NAME s_scm_make_condition_variable
{
struct scm_cond *c;
SCM cv;
c = scm_gc_malloc (sizeof (struct scm_cond), "condition variable");
c->waiting = SCM_EOL;
SCM_NEWSMOB (cv, scm_tc16_condvar, (scm_t_bits) c);
c->waiting = make_queue ();
return cv;
}
#undef FUNC_NAME
static inline SCM
timed_wait (enum scm_mutex_kind kind, struct scm_mutex *m, struct scm_cond *c,
scm_thread *current_thread, scm_t_timespec *waittime)
#define FUNC_NAME "wait-condition-variable"
{
scm_i_scm_pthread_mutex_lock (&m->lock);
if (!scm_is_eq (m->owner, current_thread->handle))
{
if (scm_is_eq (m->owner, SCM_BOOL_F))
{
scm_i_pthread_mutex_unlock (&m->lock);
SCM_MISC_ERROR ("mutex not locked", SCM_EOL);
}
if (kind != SCM_MUTEX_UNOWNED)
{
scm_i_pthread_mutex_unlock (&m->lock);
SCM_MISC_ERROR ("mutex not locked by current thread", SCM_EOL);
}
}
while (1)
{
int err = 0;
/* Unlock the mutex. */
if (kind == SCM_MUTEX_RECURSIVE && m->level > 0)
m->level--;
else
{
m->owner = SCM_BOOL_F;
/* Wake up one waiter. */
unblock_from_queue (m->waiting);
}
/* Wait for someone to signal the cond, a timeout, or an
interrupt. */
err = block_self (c->waiting, &m->lock, waittime);
/* We woke up for some reason. Reacquire the mutex before doing
anything else.
FIXME: We disable interrupts while reacquiring the mutex. If
we allow interrupts here, there's the risk of a nonlocal exit
before we reaquire the mutex, which would be visible to user
code.
For example the unwind handler in
(with-mutex m (wait-condition-variable c m))
that tries to unlock M could see M in an already-unlocked
state, if an interrupt while waiting on C caused the wait to
abort and the woke thread lost the race to reacquire M. That's
not great. Maybe it's necessary but for now we just disable
interrupts while reaquiring a mutex after a wait. */
current_thread->block_asyncs++;
if (kind == SCM_MUTEX_RECURSIVE &&
scm_is_eq (m->owner, current_thread->handle))
{
m->level++;
scm_i_pthread_mutex_unlock (&m->lock);
}
else
while (1)
{
if (scm_is_eq (m->owner, SCM_BOOL_F))
{
m->owner = current_thread->handle;
scm_i_pthread_mutex_unlock (&m->lock);
break;
}
block_self (m->waiting, &m->lock, waittime);
}
current_thread->block_asyncs--;
/* Now that we have the mutex again, handle the return value. */
if (err == 0)
return SCM_BOOL_T;
else if (err == ETIMEDOUT)
return SCM_BOOL_F;
else if (err == EINTR)
/* Let caller run scm_async_tick() and loop. */
return SCM_BOOL_T;
else
{
/* Shouldn't happen. */
errno = err;
SCM_SYSERROR;
}
}
}
#undef FUNC_NAME
SCM_DEFINE (scm_timed_wait_condition_variable, "wait-condition-variable", 2, 1, 0,
(SCM cond, SCM mutex, SCM timeout),
"Wait until condition variable @var{cv} has been signaled. While waiting, "
"mutex @var{mx} is atomically unlocked (as with @code{unlock-mutex}) and "
"is locked again when this function returns. When @var{t} is given, "
"it specifies a point in time where the waiting should be aborted. It "
"can be either a integer as returned by @code{current-time} or a pair "
"as returned by @code{gettimeofday}. When the waiting is aborted the "
"mutex is locked and @code{#f} is returned. After the condition "
"variable is signaled, the mutex is locked and @code{#t} is returned. "
"@code{#t} may also be returned spuriously, so any relevant conditions "
"should be re-checked.")
#define FUNC_NAME s_scm_timed_wait_condition_variable
{
scm_t_timespec waittime_val, *waittime = NULL;
struct scm_cond *c;
struct scm_mutex *m;
scm_thread *t = SCM_I_CURRENT_THREAD;
SCM ret;
SCM_VALIDATE_CONDVAR (1, cond);
SCM_VALIDATE_MUTEX (2, mutex);
c = SCM_CONDVAR_DATA (cond);
m = SCM_MUTEX_DATA (mutex);
if (!SCM_UNBNDP (timeout))
{
to_timespec (timeout, &waittime_val);
waittime = &waittime_val;
}
/* Specialized timed_wait implementations according to the mutex
kind. */
switch (SCM_MUTEX_KIND (mutex))
{
case SCM_MUTEX_STANDARD:
ret = timed_wait (SCM_MUTEX_STANDARD, m, c, t, waittime);
break;
case SCM_MUTEX_RECURSIVE:
ret = timed_wait (SCM_MUTEX_RECURSIVE, m, c, t, waittime);
break;
case SCM_MUTEX_UNOWNED:
ret = timed_wait (SCM_MUTEX_UNOWNED, m, c, t, waittime);
break;
default:
abort ();
}
scm_remember_upto_here_2 (mutex, cond);
return ret;
}
#undef FUNC_NAME
SCM_DEFINE (scm_signal_condition_variable, "signal-condition-variable", 1, 0, 0,
(SCM cv),
"Wake up one thread that is waiting for @var{cv}")
#define FUNC_NAME s_scm_signal_condition_variable
{
struct scm_cond *c;
SCM_VALIDATE_CONDVAR (1, cv);
c = SCM_CONDVAR_DATA (cv);
unblock_from_queue (c->waiting);
return SCM_BOOL_T;
}
#undef FUNC_NAME
SCM_DEFINE (scm_broadcast_condition_variable, "broadcast-condition-variable", 1, 0, 0,
(SCM cv),
"Wake up all threads that are waiting for @var{cv}. ")
#define FUNC_NAME s_scm_broadcast_condition_variable
{
struct scm_cond *c;
SCM_VALIDATE_CONDVAR (1, cv);
c = SCM_CONDVAR_DATA (cv);
while (scm_is_true (unblock_from_queue (c->waiting)))
;
return SCM_BOOL_T;
}
#undef FUNC_NAME
SCM_DEFINE (scm_condition_variable_p, "condition-variable?", 1, 0, 0,
(SCM obj),
"Return @code{#t} if @var{obj} is a condition variable.")
#define FUNC_NAME s_scm_condition_variable_p
{
return SCM_CONDVARP(obj) ? SCM_BOOL_T : SCM_BOOL_F;
}
#undef FUNC_NAME
/*** Select */
struct select_args
{
int nfds;
fd_set *read_fds;
fd_set *write_fds;
fd_set *except_fds;
struct timeval *timeout;
int result;
int errno_value;
};
static void *
do_std_select (void *args)
{
struct select_args *select_args;
select_args = (struct select_args *) args;
select_args->result =
select (select_args->nfds,
select_args->read_fds, select_args->write_fds,
select_args->except_fds, select_args->timeout);
select_args->errno_value = errno;
return NULL;
}
int
scm_std_select (int nfds,
fd_set *readfds,
fd_set *writefds,
fd_set *exceptfds,
struct timeval *timeout)
{
fd_set my_readfds;
int res, eno, wakeup_fd;
scm_thread *t = SCM_I_CURRENT_THREAD;
struct select_args args;
if (readfds == NULL)
{
FD_ZERO (&my_readfds);
readfds = &my_readfds;
}
if (scm_i_prepare_to_wait_on_fd (t, t->sleep_pipe[1]))
{
eno = EINTR;
res = -1;
}
else
{
wakeup_fd = t->sleep_pipe[0];
FD_SET (wakeup_fd, readfds);
if (wakeup_fd >= nfds)
nfds = wakeup_fd+1;
args.nfds = nfds;
args.read_fds = readfds;
args.write_fds = writefds;
args.except_fds = exceptfds;
args.timeout = timeout;
/* Explicitly cooperate with the GC. */
scm_without_guile (do_std_select, &args);
res = args.result;
eno = args.errno_value;
scm_i_wait_finished (t);
if (res > 0 && FD_ISSET (wakeup_fd, readfds))
{
char dummy;
full_read (wakeup_fd, &dummy, 1);
FD_CLR (wakeup_fd, readfds);
res -= 1;
if (res == 0)
{
eno = EINTR;
res = -1;
}
}
}
errno = eno;
return res;
}
/* Convenience API for blocking while in guile mode. */
#if SCM_USE_PTHREAD_THREADS
/* It seems reasonable to not run procedures related to mutex and condition
variables within `GC_do_blocking ()' since, (i) the GC can operate even
without it, and (ii) the only potential gain would be GC latency. See
http://thread.gmane.org/gmane.comp.programming.garbage-collection.boehmgc/2245/focus=2251
for a discussion of the pros and cons. */
int
scm_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
{
int res = scm_i_pthread_mutex_lock (mutex);
return res;
}
static void
do_unlock (void *data)
{
scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data);
}
void
scm_dynwind_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
{
scm_i_scm_pthread_mutex_lock (mutex);
scm_dynwind_unwind_handler (do_unlock, mutex, SCM_F_WIND_EXPLICITLY);
}
int
scm_pthread_cond_wait (scm_i_pthread_cond_t *cond, scm_i_pthread_mutex_t *mutex)
{
return scm_i_pthread_cond_wait (cond, mutex);
}
int
scm_pthread_cond_timedwait (scm_i_pthread_cond_t *cond,
scm_i_pthread_mutex_t *mutex,
const scm_t_timespec *wt)
{
return scm_i_pthread_cond_timedwait (cond, mutex, wt);
}
#endif
static void
do_unlock_with_asyncs (void *data)
{
scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data);
SCM_I_CURRENT_THREAD->block_asyncs--;
}
void
scm_i_dynwind_pthread_mutex_lock_block_asyncs (scm_i_pthread_mutex_t *mutex)
{
SCM_I_CURRENT_THREAD->block_asyncs++;
scm_i_scm_pthread_mutex_lock (mutex);
scm_dynwind_unwind_handler (do_unlock_with_asyncs, mutex,
SCM_F_WIND_EXPLICITLY);
}
unsigned long
scm_std_usleep (unsigned long usecs)
{
struct timeval tv;
tv.tv_usec = usecs % 1000000;
tv.tv_sec = usecs / 1000000;
scm_std_select (0, NULL, NULL, NULL, &tv);
return tv.tv_sec * 1000000 + tv.tv_usec;
}
unsigned int
scm_std_sleep (unsigned int secs)
{
struct timeval tv;
tv.tv_usec = 0;
tv.tv_sec = secs;
scm_std_select (0, NULL, NULL, NULL, &tv);
return tv.tv_sec;
}
/*** Misc */
SCM_DEFINE (scm_current_thread, "current-thread", 0, 0, 0,
(void),
"Return the thread that called this function.")
#define FUNC_NAME s_scm_current_thread
{
return SCM_I_CURRENT_THREAD->handle;
}
#undef FUNC_NAME
static SCM
scm_c_make_list (size_t n, SCM fill)
{
SCM res = SCM_EOL;
while (n-- > 0)
res = scm_cons (fill, res);
return res;
}
SCM_DEFINE (scm_all_threads, "all-threads", 0, 0, 0,
(void),
"Return a list of all threads.")
#define FUNC_NAME s_scm_all_threads
{
scm_thread *t;
scm_i_pthread_mutex_lock (&thread_admin_mutex);
int n = thread_count;
SCM list = scm_c_make_list (n, SCM_UNSPECIFIED);
SCM *l = &list;
for (t = all_threads; t && n > 0; t = t->next_thread)
{
if (!t->exited && !scm_i_is_signal_delivery_thread (t))
{
SCM_SETCAR (*l, t->handle);
l = SCM_CDRLOC (*l);
}
n--;
}
*l = SCM_EOL;
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
return list;
}
#undef FUNC_NAME
SCM_DEFINE (scm_thread_exited_p, "thread-exited?", 1, 0, 0,
(SCM thread),
"Return @code{#t} iff @var{thread} has exited.\n")
#define FUNC_NAME s_scm_thread_exited_p
{
return scm_from_bool (scm_c_thread_exited_p (thread));
}
#undef FUNC_NAME
int
scm_c_thread_exited_p (SCM thread)
#define FUNC_NAME s_scm_thread_exited_p
{
scm_thread *t;
SCM_VALIDATE_THREAD (1, thread);
t = SCM_I_THREAD_DATA (thread);
return t->exited;
}
#undef FUNC_NAME
SCM_DEFINE (scm_total_processor_count, "total-processor-count", 0, 0, 0,
(void),
"Return the total number of processors of the machine, which\n"
"is guaranteed to be at least 1. A ``processor'' here is a\n"
"thread execution unit, which can be either:\n\n"
"@itemize\n"
"@item an execution core in a (possibly multi-core) chip, in a\n"
" (possibly multi- chip) module, in a single computer, or\n"
"@item a thread execution unit inside a core in the case of\n"
" @dfn{hyper-threaded} CPUs.\n"
"@end itemize\n\n"
"Which of the two definitions is used, is unspecified.\n")
#define FUNC_NAME s_scm_total_processor_count
{
return scm_from_ulong (num_processors (NPROC_ALL));
}
#undef FUNC_NAME
SCM_DEFINE (scm_current_processor_count, "current-processor-count", 0, 0, 0,
(void),
"Like @code{total-processor-count}, but return the number of\n"
"processors available to the current process. See\n"
"@code{setaffinity} and @code{getaffinity} for more\n"
"information.\n")
#define FUNC_NAME s_scm_current_processor_count
{
return scm_from_ulong (num_processors (NPROC_CURRENT));
}
#undef FUNC_NAME
static scm_i_pthread_cond_t wake_up_cond;
static int threads_initialized_p = 0;
/*** Initialization */
scm_i_pthread_mutex_t scm_i_misc_mutex;
#if SCM_USE_PTHREAD_THREADS
pthread_mutexattr_t scm_i_pthread_mutexattr_recursive[1];
#endif
void
scm_threads_prehistory (void *base)
{
#if SCM_USE_PTHREAD_THREADS
pthread_mutexattr_init (scm_i_pthread_mutexattr_recursive);
pthread_mutexattr_settype (scm_i_pthread_mutexattr_recursive,
PTHREAD_MUTEX_RECURSIVE);
#endif
scm_i_pthread_mutex_init (&scm_i_misc_mutex, NULL);
scm_i_pthread_cond_init (&wake_up_cond, NULL);
thread_gc_kind =
GC_new_kind (GC_new_free_list (),
GC_MAKE_PROC (GC_new_proc (thread_mark), 0),
0, 1);
guilify_self_1 ((struct GC_stack_base *) base, 0);
}
scm_t_bits scm_tc16_thread;
scm_t_bits scm_tc16_mutex;
scm_t_bits scm_tc16_condvar;
static void
scm_init_ice_9_threads (void *unused)
{
#include "threads.x"
cancel_thread_var =
scm_module_variable (scm_current_module (),
scm_from_latin1_symbol ("cancel-thread"));
join_thread_var =
scm_module_variable (scm_current_module (),
scm_from_latin1_symbol ("join-thread"));
call_with_new_thread_var =
scm_module_variable (scm_current_module (),
scm_from_latin1_symbol ("call-with-new-thread"));
}
void
scm_init_threads ()
{
scm_tc16_thread = scm_make_smob_type ("thread", sizeof (scm_thread));
scm_set_smob_print (scm_tc16_thread, thread_print);
scm_tc16_mutex = scm_make_smob_type ("mutex", sizeof (struct scm_mutex));
scm_set_smob_print (scm_tc16_mutex, scm_mutex_print);
scm_tc16_condvar = scm_make_smob_type ("condition-variable",
sizeof (struct scm_cond));
scm_set_smob_print (scm_tc16_condvar, scm_cond_print);
default_dynamic_state = SCM_BOOL_F;
guilify_self_2 (scm_i_make_initial_dynamic_state ());
threads_initialized_p = 1;
scm_c_register_extension ("libguile-" SCM_EFFECTIVE_VERSION,
"scm_init_ice_9_threads",
scm_init_ice_9_threads, NULL);
}
void
scm_init_threads_default_dynamic_state ()
{
default_dynamic_state = scm_current_dynamic_state ();
}
|