File size: 23,045 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 |
/* Copyright 2011-2013,2018
Free Software Foundation, Inc.
This file is part of Guile.
Guile is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Guile is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Guile. If not, see
<https://www.gnu.org/licenses/>. */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <assert.h>
#include <string.h>
#include "bdw-gc.h"
#include "eval.h"
#include "finalizers.h"
#include "hash.h"
#include "pairs.h"
#include "ports.h"
#include "threads.h"
#include "weak-set.h"
#include "weak-list.h"
/* Weak Sets
This file implements weak sets. One example of a weak set is the
symbol table, where you want all instances of the `foo' symbol to map
to one object. So when you load a file and it wants a symbol with
the characters "foo", you one up in the table, using custom hash and
equality predicates. Only if one is not found will you bother to
cons one up and intern it.
Another use case for weak sets is the set of open ports. Guile needs
to be able to flush them all when the process exits, but the set
shouldn't prevent the GC from collecting the port (and thus closing
it).
Weak sets are implemented using an open-addressed hash table.
Basically this means that there is an array of entries, and the item
is expected to be found the slot corresponding to its hash code,
modulo the length of the array.
Collisions are handled using linear probing with the Robin Hood
technique. See Pedro Celis' paper, "Robin Hood Hashing":
http://www.cs.uwaterloo.ca/research/tr/1986/CS-86-14.pdf
The vector of entries is allocated as an "atomic" piece of memory, so
that the GC doesn't trace it. When an item is added to the set, a
disappearing link is registered to its location. If the item is
collected, then that link will be zeroed out.
An entry is not just an item, though; the hash code is also stored in
the entry. We munge hash codes so that they are never 0. In this
way we can detect removed entries (key of zero but nonzero hash
code), and can then reshuffle elements as needed to maintain the
robin hood ordering.
Compared to buckets-and-chains hash tables, open addressing has the
advantage that it is very cache-friendly. It also uses less memory.
Implementation-wise, there are two things to note.
1. We assume that hash codes are evenly distributed across the
range of unsigned longs. The actual hash code stored in the
entry is left-shifted by 1 bit (losing 1 bit of hash precision),
and then or'd with 1. In this way we ensure that the hash field
of an occupied entry is nonzero. To map to an index, we
right-shift the hash by one, divide by the size, and take the
remainder.
2. Since the "keys" (the objects in the set) are stored in an
atomic region with disappearing links, they need to be accessed
with the GC alloc lock. `copy_weak_entry' will do that for
you. The hash code itself can be read outside the lock,
though.
*/
typedef struct {
unsigned long hash;
scm_t_bits key;
} scm_t_weak_entry;
struct weak_entry_data {
scm_t_weak_entry *in;
scm_t_weak_entry *out;
};
static void*
do_copy_weak_entry (void *data)
{
struct weak_entry_data *e = data;
e->out->hash = e->in->hash;
e->out->key = e->in->key;
return NULL;
}
static void
copy_weak_entry (scm_t_weak_entry *src, scm_t_weak_entry *dst)
{
struct weak_entry_data data;
data.in = src;
data.out = dst;
GC_call_with_alloc_lock (do_copy_weak_entry, &data);
}
typedef struct {
scm_t_weak_entry *entries; /* the data */
scm_i_pthread_mutex_t lock; /* the lock */
unsigned long size; /* total number of slots. */
unsigned long n_items; /* number of items in set */
unsigned long lower; /* when to shrink */
unsigned long upper; /* when to grow */
int size_index; /* index into hashset_size */
int min_size_index; /* minimum size_index */
} scm_t_weak_set;
#define SCM_WEAK_SET_P(x) (SCM_HAS_TYP7 (x, scm_tc7_weak_set))
#define SCM_VALIDATE_WEAK_SET(pos, arg) \
SCM_MAKE_VALIDATE_MSG (pos, arg, WEAK_SET_P, "weak-set")
#define SCM_WEAK_SET(x) ((scm_t_weak_set *) SCM_CELL_WORD_1 (x))
static unsigned long
hash_to_index (unsigned long hash, unsigned long size)
{
return (hash >> 1) % size;
}
static unsigned long
entry_distance (unsigned long hash, unsigned long k, unsigned long size)
{
unsigned long origin = hash_to_index (hash, size);
if (k >= origin)
return k - origin;
else
/* The other key was displaced and wrapped around. */
return size - origin + k;
}
#ifndef HAVE_GC_MOVE_DISAPPEARING_LINK
static void
GC_move_disappearing_link (void **from, void **to)
{
GC_unregister_disappearing_link (from);
SCM_I_REGISTER_DISAPPEARING_LINK (to, *to);
}
#endif
static void
move_weak_entry (scm_t_weak_entry *from, scm_t_weak_entry *to)
{
if (from->hash)
{
scm_t_weak_entry copy;
copy_weak_entry (from, ©);
to->hash = copy.hash;
to->key = copy.key;
if (copy.key && SCM_HEAP_OBJECT_P (SCM_PACK (copy.key)))
GC_move_disappearing_link ((void **) &from->key, (void **) &to->key);
}
else
{
to->hash = 0;
to->key = 0;
}
}
static void
rob_from_rich (scm_t_weak_set *set, unsigned long k)
{
unsigned long empty, size;
size = set->size;
/* If we are to free up slot K in the set, we need room to do so. */
assert (set->n_items < size);
empty = k;
do
empty = (empty + 1) % size;
/* Here we access key outside the lock. Is this a problem? At first
glance, I wouldn't think so. */
while (set->entries[empty].key);
do
{
unsigned long last = empty ? (empty - 1) : (size - 1);
move_weak_entry (&set->entries[last], &set->entries[empty]);
empty = last;
}
while (empty != k);
/* Just for sanity. */
set->entries[empty].hash = 0;
set->entries[empty].key = 0;
}
static void
give_to_poor (scm_t_weak_set *set, unsigned long k)
{
/* Slot K was just freed up; possibly shuffle others down. */
unsigned long size = set->size;
while (1)
{
unsigned long next = (k + 1) % size;
unsigned long hash;
scm_t_weak_entry copy;
hash = set->entries[next].hash;
if (!hash || hash_to_index (hash, size) == next)
break;
copy_weak_entry (&set->entries[next], ©);
if (!copy.key)
/* Lost weak reference. */
{
give_to_poor (set, next);
set->n_items--;
continue;
}
move_weak_entry (&set->entries[next], &set->entries[k]);
k = next;
}
/* We have shuffled down any entries that should be shuffled down; now
free the end. */
set->entries[k].hash = 0;
set->entries[k].key = 0;
}
/* Growing or shrinking is triggered when the load factor
*
* L = N / S (N: number of items in set, S: bucket vector length)
*
* passes an upper limit of 0.9 or a lower limit of 0.2.
*
* The implementation stores the upper and lower number of items which
* trigger a resize in the hashset object.
*
* Possible hash set sizes (primes) are stored in the array
* hashset_size.
*/
static unsigned long hashset_size[] = {
31, 61, 113, 223, 443, 883, 1759, 3517, 7027, 14051, 28099, 56197, 112363,
224717, 449419, 898823, 1797641, 3595271, 7190537, 14381041, 28762081,
57524111, 115048217, 230096423
};
#define HASHSET_SIZE_N (sizeof(hashset_size)/sizeof(unsigned long))
static int
compute_size_index (scm_t_weak_set *set)
{
int i = set->size_index;
if (set->n_items < set->lower)
{
/* rehashing is not triggered when i <= min_size */
do
--i;
while (i > set->min_size_index
&& set->n_items < hashset_size[i] / 5);
}
else if (set->n_items > set->upper)
{
++i;
if (i >= HASHSET_SIZE_N)
/* The biggest size currently is 230096423, which for a 32-bit
machine will occupy 1.5GB of memory at a load of 80%. There
is probably something better to do here, but if you have a
weak map of that size, you are hosed in any case. */
abort ();
}
return i;
}
static int
is_acceptable_size_index (scm_t_weak_set *set, int size_index)
{
int computed = compute_size_index (set);
if (size_index == computed)
/* We were going to grow or shrink, and allocating the new vector
didn't change the target size. */
return 1;
if (size_index == computed + 1)
{
/* We were going to enlarge the set, but allocating the new
vector finalized some objects, making an enlargement
unnecessary. It might still be a good idea to use the larger
set, though. (This branch also gets hit if, while allocating
the vector, some other thread was actively removing items from
the set. That is less likely, though.) */
unsigned long new_lower = hashset_size[size_index] / 5;
return set->size > new_lower;
}
if (size_index == computed - 1)
{
/* We were going to shrink the set, but when we dropped the lock
to allocate the new vector, some other thread added elements to
the set. */
return 0;
}
/* The computed size differs from our newly allocated size by more
than one size index -- recalculate. */
return 0;
}
static void
resize_set (scm_t_weak_set *set)
{
scm_t_weak_entry *old_entries, *new_entries;
int new_size_index;
unsigned long old_size, new_size, old_k;
do
{
new_size_index = compute_size_index (set);
if (new_size_index == set->size_index)
return;
new_size = hashset_size[new_size_index];
}
while (!is_acceptable_size_index (set, new_size_index));
new_entries = scm_gc_malloc_pointerless (new_size * sizeof (scm_t_weak_entry),
"weak set");
old_entries = set->entries;
old_size = set->size;
memset (new_entries, 0, new_size * sizeof(scm_t_weak_entry));
set->size_index = new_size_index;
set->size = new_size;
if (new_size_index <= set->min_size_index)
set->lower = 0;
else
set->lower = new_size / 5;
set->upper = 9 * new_size / 10;
set->n_items = 0;
set->entries = new_entries;
for (old_k = 0; old_k < old_size; old_k++)
{
scm_t_weak_entry copy;
unsigned long new_k, distance;
if (!old_entries[old_k].hash)
continue;
copy_weak_entry (&old_entries[old_k], ©);
if (!copy.key)
continue;
new_k = hash_to_index (copy.hash, new_size);
for (distance = 0; ; distance++, new_k = (new_k + 1) % new_size)
{
unsigned long other_hash = new_entries[new_k].hash;
if (!other_hash)
/* Found an empty entry. */
break;
/* Displace the entry if our distance is less, otherwise keep
looking. */
if (entry_distance (other_hash, new_k, new_size) < distance)
{
rob_from_rich (set, new_k);
break;
}
}
set->n_items++;
new_entries[new_k].hash = copy.hash;
new_entries[new_k].key = copy.key;
if (SCM_HEAP_OBJECT_P (SCM_PACK (copy.key)))
SCM_I_REGISTER_DISAPPEARING_LINK ((void **) &new_entries[new_k].key,
(void *) new_entries[new_k].key);
}
}
/* Run from a finalizer via do_vacuum_weak_set, this function runs over
the whole table, removing lost weak references, reshuffling the set
as it goes. It might resize the set if it reaps enough entries. */
static void
vacuum_weak_set (scm_t_weak_set *set)
{
scm_t_weak_entry *entries = set->entries;
unsigned long size = set->size;
unsigned long k;
for (k = 0; k < size; k++)
{
unsigned long hash = entries[k].hash;
if (hash)
{
scm_t_weak_entry copy;
copy_weak_entry (&entries[k], ©);
if (!copy.key)
/* Lost weak reference; reshuffle. */
{
give_to_poor (set, k);
set->n_items--;
}
}
}
if (set->n_items < set->lower)
resize_set (set);
}
static SCM
weak_set_lookup (scm_t_weak_set *set, unsigned long hash,
scm_t_set_predicate_fn pred, void *closure,
SCM dflt)
{
unsigned long k, distance, size;
scm_t_weak_entry *entries;
size = set->size;
entries = set->entries;
hash = (hash << 1) | 0x1;
k = hash_to_index (hash, size);
for (distance = 0; distance < size; distance++, k = (k + 1) % size)
{
unsigned long other_hash;
retry:
other_hash = entries[k].hash;
if (!other_hash)
/* Not found. */
return dflt;
if (hash == other_hash)
{
scm_t_weak_entry copy;
copy_weak_entry (&entries[k], ©);
if (!copy.key)
/* Lost weak reference; reshuffle. */
{
give_to_poor (set, k);
set->n_items--;
goto retry;
}
if (pred (SCM_PACK (copy.key), closure))
/* Found. */
return SCM_PACK (copy.key);
}
/* If the entry's distance is less, our key is not in the set. */
if (entry_distance (other_hash, k, size) < distance)
return dflt;
}
/* If we got here, then we were unfortunate enough to loop through the
whole set. Shouldn't happen, but hey. */
return dflt;
}
static SCM
weak_set_add_x (scm_t_weak_set *set, unsigned long hash,
scm_t_set_predicate_fn pred, void *closure,
SCM obj)
{
unsigned long k, distance, size;
scm_t_weak_entry *entries;
size = set->size;
entries = set->entries;
hash = (hash << 1) | 0x1;
k = hash_to_index (hash, size);
for (distance = 0; ; distance++, k = (k + 1) % size)
{
unsigned long other_hash;
retry:
other_hash = entries[k].hash;
if (!other_hash)
/* Found an empty entry. */
break;
if (other_hash == hash)
{
scm_t_weak_entry copy;
copy_weak_entry (&entries[k], ©);
if (!copy.key)
/* Lost weak reference; reshuffle. */
{
give_to_poor (set, k);
set->n_items--;
goto retry;
}
if (pred (SCM_PACK (copy.key), closure))
/* Found an entry with this key. */
return SCM_PACK (copy.key);
}
if (set->n_items > set->upper)
/* Full set, time to resize. */
{
vacuum_weak_set (set);
resize_set (set);
return weak_set_add_x (set, hash >> 1, pred, closure, obj);
}
/* Displace the entry if our distance is less, otherwise keep
looking. */
if (entry_distance (other_hash, k, size) < distance)
{
rob_from_rich (set, k);
break;
}
}
set->n_items++;
entries[k].hash = hash;
entries[k].key = SCM_UNPACK (obj);
if (SCM_HEAP_OBJECT_P (obj))
SCM_I_REGISTER_DISAPPEARING_LINK ((void **) &entries[k].key,
(void *) SCM2PTR (obj));
return obj;
}
static void
weak_set_remove_x (scm_t_weak_set *set, unsigned long hash,
scm_t_set_predicate_fn pred, void *closure)
{
unsigned long k, distance, size;
scm_t_weak_entry *entries;
size = set->size;
entries = set->entries;
hash = (hash << 1) | 0x1;
k = hash_to_index (hash, size);
for (distance = 0; distance < size; distance++, k = (k + 1) % size)
{
unsigned long other_hash;
retry:
other_hash = entries[k].hash;
if (!other_hash)
/* Not found. */
return;
if (other_hash == hash)
{
scm_t_weak_entry copy;
copy_weak_entry (&entries[k], ©);
if (!copy.key)
/* Lost weak reference; reshuffle. */
{
give_to_poor (set, k);
set->n_items--;
goto retry;
}
if (pred (SCM_PACK (copy.key), closure))
/* Found an entry with this key. */
{
entries[k].hash = 0;
entries[k].key = 0;
if (SCM_HEAP_OBJECT_P (SCM_PACK (copy.key)))
GC_unregister_disappearing_link ((void **) &entries[k].key);
if (--set->n_items < set->lower)
resize_set (set);
else
give_to_poor (set, k);
return;
}
}
/* If the entry's distance is less, our key is not in the set. */
if (entry_distance (other_hash, k, size) < distance)
return;
}
}
static SCM
make_weak_set (unsigned long k)
{
scm_t_weak_set *set;
int i = 0, n = k ? k : 31;
while (i + 1 < HASHSET_SIZE_N && n > hashset_size[i])
++i;
n = hashset_size[i];
set = scm_gc_malloc (sizeof (*set), "weak-set");
set->entries = scm_gc_malloc_pointerless (n * sizeof(scm_t_weak_entry),
"weak-set");
memset (set->entries, 0, n * sizeof(scm_t_weak_entry));
set->n_items = 0;
set->size = n;
set->lower = 0;
set->upper = 9 * n / 10;
set->size_index = i;
set->min_size_index = i;
scm_i_pthread_mutex_init (&set->lock, NULL);
return scm_cell (scm_tc7_weak_set, (scm_t_bits)set);
}
void
scm_i_weak_set_print (SCM exp, SCM port, scm_print_state *pstate)
{
scm_puts ("#<", port);
scm_puts ("weak-set ", port);
scm_uintprint (SCM_WEAK_SET (exp)->n_items, 10, port);
scm_putc ('/', port);
scm_uintprint (SCM_WEAK_SET (exp)->size, 10, port);
scm_puts (">", port);
}
static void
do_vacuum_weak_set (SCM set)
{
scm_t_weak_set *s;
s = SCM_WEAK_SET (set);
/* We should always be able to grab this lock, because we are run from
a finalizer, which runs in another thread (or an async, which is
mostly equivalent). */
scm_i_pthread_mutex_lock (&s->lock);
vacuum_weak_set (s);
scm_i_pthread_mutex_unlock (&s->lock);
}
static scm_i_pthread_mutex_t all_weak_sets_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
static SCM all_weak_sets = SCM_EOL;
static void
vacuum_all_weak_sets (void)
{
scm_i_pthread_mutex_lock (&all_weak_sets_lock);
scm_i_visit_weak_list (&all_weak_sets, do_vacuum_weak_set);
scm_i_pthread_mutex_unlock (&all_weak_sets_lock);
}
SCM
scm_c_make_weak_set (unsigned long k)
{
SCM ret;
ret = make_weak_set (k);
scm_i_pthread_mutex_lock (&all_weak_sets_lock);
all_weak_sets = scm_i_weak_cons (ret, all_weak_sets);
scm_i_pthread_mutex_unlock (&all_weak_sets_lock);
return ret;
}
SCM
scm_weak_set_p (SCM obj)
{
return scm_from_bool (SCM_WEAK_SET_P (obj));
}
SCM
scm_weak_set_clear_x (SCM set)
{
scm_t_weak_set *s = SCM_WEAK_SET (set);
scm_i_pthread_mutex_lock (&s->lock);
memset (s->entries, 0, sizeof (scm_t_weak_entry) * s->size);
s->n_items = 0;
scm_i_pthread_mutex_unlock (&s->lock);
return SCM_UNSPECIFIED;
}
SCM
scm_c_weak_set_lookup (SCM set, unsigned long raw_hash,
scm_t_set_predicate_fn pred,
void *closure, SCM dflt)
{
SCM ret;
scm_t_weak_set *s = SCM_WEAK_SET (set);
scm_i_pthread_mutex_lock (&s->lock);
ret = weak_set_lookup (s, raw_hash, pred, closure, dflt);
scm_i_pthread_mutex_unlock (&s->lock);
return ret;
}
SCM
scm_c_weak_set_add_x (SCM set, unsigned long raw_hash,
scm_t_set_predicate_fn pred,
void *closure, SCM obj)
{
SCM ret;
scm_t_weak_set *s = SCM_WEAK_SET (set);
scm_i_pthread_mutex_lock (&s->lock);
ret = weak_set_add_x (s, raw_hash, pred, closure, obj);
scm_i_pthread_mutex_unlock (&s->lock);
return ret;
}
void
scm_c_weak_set_remove_x (SCM set, unsigned long raw_hash,
scm_t_set_predicate_fn pred,
void *closure)
{
scm_t_weak_set *s = SCM_WEAK_SET (set);
scm_i_pthread_mutex_lock (&s->lock);
weak_set_remove_x (s, raw_hash, pred, closure);
scm_i_pthread_mutex_unlock (&s->lock);
}
static int
eq_predicate (SCM x, void *closure)
{
return scm_is_eq (x, SCM_PACK_POINTER (closure));
}
SCM
scm_weak_set_add_x (SCM set, SCM obj)
{
return scm_c_weak_set_add_x (set, scm_ihashq (obj, -1),
eq_predicate, SCM_UNPACK_POINTER (obj), obj);
}
SCM
scm_weak_set_remove_x (SCM set, SCM obj)
{
scm_c_weak_set_remove_x (set, scm_ihashq (obj, -1),
eq_predicate, SCM_UNPACK_POINTER (obj));
return SCM_UNSPECIFIED;
}
SCM
scm_c_weak_set_fold (scm_t_set_fold_fn proc, void *closure,
SCM init, SCM set)
{
scm_t_weak_set *s;
scm_t_weak_entry *entries;
unsigned long k, size;
s = SCM_WEAK_SET (set);
scm_i_pthread_mutex_lock (&s->lock);
size = s->size;
entries = s->entries;
for (k = 0; k < size; k++)
{
if (entries[k].hash)
{
scm_t_weak_entry copy;
copy_weak_entry (&entries[k], ©);
if (copy.key)
{
/* Release set lock while we call the function. */
scm_i_pthread_mutex_unlock (&s->lock);
init = proc (closure, SCM_PACK (copy.key), init);
scm_i_pthread_mutex_lock (&s->lock);
}
}
}
scm_i_pthread_mutex_unlock (&s->lock);
return init;
}
static SCM
fold_trampoline (void *closure, SCM item, SCM init)
{
return scm_call_2 (SCM_PACK_POINTER (closure), item, init);
}
SCM
scm_weak_set_fold (SCM proc, SCM init, SCM set)
{
return scm_c_weak_set_fold (fold_trampoline, SCM_UNPACK_POINTER (proc), init, set);
}
static SCM
for_each_trampoline (void *closure, SCM item, SCM seed)
{
scm_call_1 (SCM_PACK_POINTER (closure), item);
return seed;
}
SCM
scm_weak_set_for_each (SCM proc, SCM set)
{
scm_c_weak_set_fold (for_each_trampoline, SCM_UNPACK_POINTER (proc), SCM_BOOL_F, set);
return SCM_UNSPECIFIED;
}
static SCM
map_trampoline (void *closure, SCM item, SCM seed)
{
return scm_cons (scm_call_1 (SCM_PACK_POINTER (closure), item), seed);
}
SCM
scm_weak_set_map_to_list (SCM proc, SCM set)
{
return scm_c_weak_set_fold (map_trampoline, SCM_UNPACK_POINTER (proc), SCM_EOL, set);
}
void
scm_init_weak_set ()
{
#include "weak-set.x"
scm_i_register_async_gc_callback (vacuum_all_weak_sets);
}
|