File size: 154,148 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 |
;;;; -*-scheme-*-
;;;;
;;;; Copyright (C) 2001, 2003, 2006, 2009, 2010-2022
;;;; Free Software Foundation, Inc.
;;;;
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;;;
;;; Portable implementation of syntax-case
;;; Originally extracted from Chez Scheme Version 5.9f
;;; Authors: R. Kent Dybvig, Oscar Waddell, Bob Hieb, Carl Bruggeman
;;; Copyright (c) 1992-1997 Cadence Research Systems
;;; Permission to copy this software, in whole or in part, to use this
;;; software for any lawful purpose, and to redistribute this software
;;; is granted subject to the restriction that all copies made of this
;;; software must include this copyright notice in full. This software
;;; is provided AS IS, with NO WARRANTY, EITHER EXPRESS OR IMPLIED,
;;; INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
;;; OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL THE
;;; AUTHORS BE LIABLE FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES OF ANY
;;; NATURE WHATSOEVER.
;;; Modified by Mikael Djurfeldt <[email protected]> according
;;; to the ChangeLog distributed in the same directory as this file:
;;; 1997-08-19, 1997-09-03, 1997-09-10, 2000-08-13, 2000-08-24,
;;; 2000-09-12, 2001-03-08
;;; Modified by Andy Wingo <[email protected]> according to the Git
;;; revision control logs corresponding to this file: 2009, 2010.
;;; Modified by Mark H Weaver <[email protected]> according to the Git
;;; revision control logs corresponding to this file: 2012, 2013.
;;; This code is based on "Syntax Abstraction in Scheme"
;;; by R. Kent Dybvig, Robert Hieb, and Carl Bruggeman.
;;; Lisp and Symbolic Computation 5:4, 295-326, 1992.
;;; <http://www.cs.indiana.edu/~dyb/pubs/LaSC-5-4-pp295-326.pdf>
;;; This file defines the syntax-case expander, macroexpand, and a set
;;; of associated syntactic forms and procedures. Of these, the
;;; following are documented in The Scheme Programming Language,
;;; Fourth Edition (R. Kent Dybvig, MIT Press, 2009), and in the
;;; R6RS:
;;;
;;; bound-identifier=?
;;; datum->syntax
;;; define-syntax
;;; syntax-parameterize
;;; free-identifier=?
;;; generate-temporaries
;;; identifier?
;;; identifier-syntax
;;; let-syntax
;;; letrec-syntax
;;; syntax
;;; syntax-case
;;; syntax->datum
;;; syntax-rules
;;; with-syntax
;;;
;;; Additionally, the expander provides definitions for a number of core
;;; Scheme syntactic bindings, such as `let', `lambda', and the like.
;;; The remaining exports are listed below:
;;;
;;; (macroexpand datum)
;;; if datum represents a valid expression, macroexpand returns an
;;; expanded version of datum in a core language that includes no
;;; syntactic abstractions. The core language includes begin,
;;; define, if, lambda, letrec, quote, and set!.
;;; (eval-when situations expr ...)
;;; conditionally evaluates expr ... at compile-time or run-time
;;; depending upon situations (see the Chez Scheme System Manual,
;;; Revision 3, for a complete description)
;;; (syntax-violation who message form [subform])
;;; used to report errors found during expansion
;;; ($sc-dispatch e p)
;;; used by expanded code to handle syntax-case matching
;;; This file is shipped along with an expanded version of itself,
;;; psyntax-pp.scm, which is loaded when psyntax.scm has not yet been
;;; compiled. In this way, psyntax bootstraps off of an expanded
;;; version of itself.
;;; Implementation notes:
;;; Objects with no standard print syntax, including objects containing
;;; cycles and syntax object, are allowed in quoted data as long as they
;;; are contained within a syntax form or produced by datum->syntax.
;;; Such objects are never copied.
;;; All identifiers that don't have macro definitions and are not bound
;;; lexically are assumed to be global variables.
;;; Top-level definitions of macro-introduced identifiers are allowed.
;;; This may not be appropriate for implementations in which the
;;; model is that bindings are created by definitions, as opposed to
;;; one in which initial values are assigned by definitions.
;;; Identifiers and syntax objects are implemented as vectors for
;;; portability. As a result, it is possible to "forge" syntax objects.
;;; The implementation of generate-temporaries assumes that it is
;;; possible to generate globally unique symbols (gensyms).
;;; The source location associated with incoming expressions is tracked
;;; via the source-properties mechanism, a weak map from expression to
;;; source information. At times the source is separated from the
;;; expression; see the note below about "efficiency and confusion".
;;; Bootstrapping:
;;; When changing syntax representations, it is necessary to support
;;; both old and new syntax representations in id-var-name. It
;;; should be sufficient to recognize old representations and treat
;;; them as not lexically bound.
(eval-when (compile)
(set-current-module (resolve-module '(guile))))
(let ((syntax? (module-ref (current-module) 'syntax?))
(make-syntax (module-ref (current-module) 'make-syntax))
(syntax-expression (module-ref (current-module) 'syntax-expression))
(syntax-wrap (module-ref (current-module) 'syntax-wrap))
(syntax-module (module-ref (current-module) 'syntax-module))
(syntax-sourcev (module-ref (current-module) 'syntax-sourcev)))
(define-syntax define-expansion-constructors
(lambda (x)
(syntax-case x ()
((_)
(let lp ((n 0) (out '()))
(if (< n (vector-length %expanded-vtables))
(lp (1+ n)
(let* ((vtable (vector-ref %expanded-vtables n))
(stem (struct-ref vtable (+ vtable-offset-user 0)))
(fields (struct-ref vtable (+ vtable-offset-user 2)))
(sfields (map (lambda (f) (datum->syntax x f)) fields))
(ctor (datum->syntax x (symbol-append 'make- stem))))
(cons #`(define (#,ctor #,@sfields)
(make-struct/simple
(vector-ref %expanded-vtables #,n)
#,@sfields))
out)))
#`(begin #,@(reverse out))))))))
(define-syntax define-expansion-accessors
(lambda (x)
(syntax-case x ()
((_ stem field ...)
(let lp ((n 0))
(let ((vtable (vector-ref %expanded-vtables n))
(stem (syntax->datum #'stem)))
(if (eq? (struct-ref vtable (+ vtable-offset-user 0)) stem)
#`(begin
(define (#,(datum->syntax x (symbol-append stem '?)) x)
(and (struct? x)
(eq? (struct-vtable x)
(vector-ref %expanded-vtables #,n))))
#,@(map
(lambda (f)
(let ((get (datum->syntax x (symbol-append stem '- f)))
(set (datum->syntax x (symbol-append 'set- stem '- f '!)))
(idx (list-index (struct-ref vtable
(+ vtable-offset-user 2))
f)))
#`(begin
(define (#,get x)
(struct-ref x #,idx))
(define (#,set x v)
(struct-set! x #,idx v)))))
(syntax->datum #'(field ...))))
(lp (1+ n)))))))))
(define-syntax define-structure
(lambda (x)
(define construct-name
(lambda (template-identifier . args)
(datum->syntax
template-identifier
(string->symbol
(apply string-append
(map (lambda (x)
(if (string? x)
x
(symbol->string (syntax->datum x))))
args))))))
(syntax-case x ()
((_ (name id1 ...))
(and-map identifier? #'(name id1 ...))
(with-syntax
((constructor (construct-name #'name "make-" #'name))
(predicate (construct-name #'name #'name "?"))
((access ...)
(map (lambda (x) (construct-name x #'name "-" x))
#'(id1 ...)))
((assign ...)
(map (lambda (x)
(construct-name x "set-" #'name "-" x "!"))
#'(id1 ...)))
(structure-length
(+ (length #'(id1 ...)) 1))
((index ...)
(let f ((i 1) (ids #'(id1 ...)))
(if (null? ids)
'()
(cons i (f (+ i 1) (cdr ids)))))))
#'(begin
(define constructor
(lambda (id1 ...)
(vector 'name id1 ... )))
(define predicate
(lambda (x)
(and (vector? x)
(= (vector-length x) structure-length)
(eq? (vector-ref x 0) 'name))))
(define access
(lambda (x)
(vector-ref x index)))
...
(define assign
(lambda (x update)
(vector-set! x index update)))
...))))))
(let ()
(define-expansion-constructors)
(define-expansion-accessors lambda meta)
;; hooks to nonportable run-time helpers
(begin
(define-syntax fx+ (identifier-syntax +))
(define-syntax fx- (identifier-syntax -))
(define-syntax fx= (identifier-syntax =))
(define-syntax fx< (identifier-syntax <))
(define top-level-eval-hook
(lambda (x mod)
(primitive-eval x)))
(define local-eval-hook
(lambda (x mod)
(primitive-eval x)))
;; Capture syntax-session-id before we shove it off into a module.
(define session-id
(let ((v (module-variable (current-module) 'syntax-session-id)))
(lambda ()
((variable-ref v))))))
(define (sourcev-filename s) (vector-ref s 0))
(define (sourcev-line s) (vector-ref s 1))
(define (sourcev-column s) (vector-ref s 2))
(define (sourcev->alist sourcev)
(define (maybe-acons k v tail) (if v (acons k v tail) tail))
(and sourcev
(maybe-acons 'filename (sourcev-filename sourcev)
`((line . ,(sourcev-line sourcev))
(column . ,(sourcev-column sourcev))))))
(define (maybe-name-value! name val)
(if (lambda? val)
(let ((meta (lambda-meta val)))
(if (not (assq 'name meta))
(set-lambda-meta! val (acons 'name name meta))))))
;; output constructors
(define build-void
(lambda (sourcev)
(make-void sourcev)))
(define build-call
(lambda (sourcev fun-exp arg-exps)
(make-call sourcev fun-exp arg-exps)))
(define build-conditional
(lambda (sourcev test-exp then-exp else-exp)
(make-conditional sourcev test-exp then-exp else-exp)))
(define build-lexical-reference
(lambda (type sourcev name var)
(make-lexical-ref sourcev name var)))
(define build-lexical-assignment
(lambda (sourcev name var exp)
(maybe-name-value! name exp)
(make-lexical-set sourcev name var exp)))
(define (analyze-variable mod var modref-cont bare-cont)
(if (not mod)
(bare-cont #f var)
(let ((kind (car mod))
(mod (cdr mod)))
(case kind
((public) (modref-cont mod var #t))
((private hygiene) (if (equal? mod (module-name (current-module)))
(bare-cont mod var)
(modref-cont mod var #f)))
((bare) (bare-cont var))
((primitive)
(syntax-violation #f "primitive not in operator position" var))
(else (syntax-violation #f "bad module kind" var mod))))))
(define build-global-reference
(lambda (sourcev var mod)
(analyze-variable
mod var
(lambda (mod var public?)
(make-module-ref sourcev mod var public?))
(lambda (mod var)
(make-toplevel-ref sourcev mod var)))))
(define build-global-assignment
(lambda (sourcev var exp mod)
(maybe-name-value! var exp)
(analyze-variable
mod var
(lambda (mod var public?)
(make-module-set sourcev mod var public? exp))
(lambda (mod var)
(make-toplevel-set sourcev mod var exp)))))
(define build-global-definition
(lambda (sourcev mod var exp)
(maybe-name-value! var exp)
(make-toplevel-define sourcev (and mod (cdr mod)) var exp)))
(define build-simple-lambda
(lambda (src req rest vars meta exp)
(make-lambda src
meta
;; hah, a case in which kwargs would be nice.
(make-lambda-case
;; src req opt rest kw inits vars body else
src req #f rest #f '() vars exp #f))))
(define build-case-lambda
(lambda (src meta body)
(make-lambda src meta body)))
(define build-lambda-case
;; req := (name ...)
;; opt := (name ...) | #f
;; rest := name | #f
;; kw := (allow-other-keys? (keyword name var) ...) | #f
;; inits: (init ...)
;; vars: (sym ...)
;; vars map to named arguments in the following order:
;; required, optional (positional), rest, keyword.
;; the body of a lambda: anything, already expanded
;; else: lambda-case | #f
(lambda (src req opt rest kw inits vars body else-case)
(make-lambda-case src req opt rest kw inits vars body else-case)))
(define build-primcall
(lambda (src name args)
(make-primcall src name args)))
(define build-primref
(lambda (src name)
(make-primitive-ref src name)))
(define (build-data src exp)
(make-const src exp))
(define build-sequence
(lambda (src exps)
(if (null? (cdr exps))
(car exps)
(make-seq src (car exps) (build-sequence #f (cdr exps))))))
(define build-let
(lambda (src ids vars val-exps body-exp)
(for-each maybe-name-value! ids val-exps)
(if (null? vars)
body-exp
(make-let src ids vars val-exps body-exp))))
(define build-named-let
(lambda (src ids vars val-exps body-exp)
(let ((f (car vars))
(f-name (car ids))
(vars (cdr vars))
(ids (cdr ids)))
(let ((proc (build-simple-lambda src ids #f vars '() body-exp)))
(maybe-name-value! f-name proc)
(for-each maybe-name-value! ids val-exps)
(make-letrec
src #f
(list f-name) (list f) (list proc)
(build-call src (build-lexical-reference 'fun src f-name f)
val-exps))))))
(define build-letrec
(lambda (src in-order? ids vars val-exps body-exp)
(if (null? vars)
body-exp
(begin
(for-each maybe-name-value! ids val-exps)
(make-letrec src in-order? ids vars val-exps body-exp)))))
(define-syntax-rule (build-lexical-var src id)
;; Use a per-module counter instead of the global counter of
;; 'gensym' so that the generated identifier is reproducible.
(module-gensym (symbol->string id)))
(define-syntax no-source (identifier-syntax #f))
(define (datum-sourcev datum)
(let ((props (source-properties datum)))
(and (pair? props)
(vector (assq-ref props 'filename)
(assq-ref props 'line)
(assq-ref props 'column)))))
(define source-annotation
(lambda (x)
;; Normally X is a syntax object. However, if it comes from a
;; read hash extension, X might be a plain sexp with source
;; properties.
(if (syntax? x)
(syntax-sourcev x)
(datum-sourcev x))))
(define-syntax-rule (arg-check pred? e who)
(let ((x e))
(if (not (pred? x)) (syntax-violation who "invalid argument" x))))
;; compile-time environments
;; wrap and environment comprise two level mapping.
;; wrap : id --> label
;; env : label --> <element>
;; environments are represented in two parts: a lexical part and a
;; global part. The lexical part is a simple list of associations
;; from labels to bindings. The global part is implemented by
;; Guile's module system and associates symbols with bindings.
;; global (assumed global variable) and displaced-lexical (see below)
;; do not show up in any environment; instead, they are fabricated by
;; resolve-identifier when it finds no other bindings.
;; <environment> ::= ((<label> . <binding>)*)
;; identifier bindings include a type and a value
;; <binding> ::= (macro . <procedure>) macros
;; (syntax-parameter . <procedure>) syntax parameters
;; (core . <procedure>) core forms
;; (module-ref . <procedure>) @ or @@
;; (begin) begin
;; (define) define
;; (define-syntax) define-syntax
;; (define-syntax-parameter) define-syntax-parameter
;; (local-syntax . rec?) let-syntax/letrec-syntax
;; (eval-when) eval-when
;; (syntax . (<var> . <level>)) pattern variables
;; (global) assumed global variable
;; (lexical . <var>) lexical variables
;; (ellipsis . <identifier>) custom ellipsis
;; (displaced-lexical) displaced lexicals
;; <level> ::= <non-negative integer>
;; <var> ::= variable returned by build-lexical-var
;; a macro is a user-defined syntactic-form. a core is a
;; system-defined syntactic form. begin, define, define-syntax,
;; define-syntax-parameter, and eval-when are treated specially
;; since they are sensitive to whether the form is at top-level and
;; (except for eval-when) can denote valid internal definitions.
;; a pattern variable is a variable introduced by syntax-case and can
;; be referenced only within a syntax form.
;; any identifier for which no top-level syntax definition or local
;; binding of any kind has been seen is assumed to be a global
;; variable.
;; a lexical variable is a lambda- or letrec-bound variable.
;; an ellipsis binding is introduced by the 'with-ellipsis' special
;; form.
;; a displaced-lexical identifier is a lexical identifier removed from
;; it's scope by the return of a syntax object containing the identifier.
;; a displaced lexical can also appear when a letrec-syntax-bound
;; keyword is referenced on the rhs of one of the letrec-syntax clauses.
;; a displaced lexical should never occur with properly written macros.
(define-syntax make-binding
(syntax-rules (quote)
((_ type value) (cons type value))
((_ 'type) '(type))
((_ type) (cons type '()))))
(define-syntax-rule (binding-type x)
(car x))
(define-syntax-rule (binding-value x)
(cdr x))
(define-syntax null-env (identifier-syntax '()))
(define extend-env
(lambda (labels bindings r)
(if (null? labels)
r
(extend-env (cdr labels) (cdr bindings)
(cons (cons (car labels) (car bindings)) r)))))
(define extend-var-env
;; variant of extend-env that forms "lexical" binding
(lambda (labels vars r)
(if (null? labels)
r
(extend-var-env (cdr labels) (cdr vars)
(cons (cons (car labels) (make-binding 'lexical (car vars))) r)))))
;; we use a "macros only" environment in expansion of local macro
;; definitions so that their definitions can use local macros without
;; attempting to use other lexical identifiers.
(define macros-only-env
(lambda (r)
(if (null? r)
'()
(let ((a (car r)))
(if (memq (cadr a) '(macro syntax-parameter ellipsis))
(cons a (macros-only-env (cdr r)))
(macros-only-env (cdr r)))))))
(define global-extend
(lambda (type sym val)
(module-define! (current-module)
sym
(make-syntax-transformer sym type val))))
;; Conceptually, identifiers are always syntax objects. Internally,
;; however, the wrap is sometimes maintained separately (a source of
;; efficiency and confusion), so that symbols are also considered
;; identifiers by id?. Externally, they are always wrapped.
(define nonsymbol-id?
(lambda (x)
(and (syntax? x)
(symbol? (syntax-expression x)))))
(define id?
(lambda (x)
(cond
((symbol? x) #t)
((syntax? x) (symbol? (syntax-expression x)))
(else #f))))
(define-syntax-rule (id-sym-name e)
(let ((x e))
(if (syntax? x)
(syntax-expression x)
x)))
(define id-sym-name&marks
(lambda (x w)
(if (syntax? x)
(values
(syntax-expression x)
(join-marks (wrap-marks w) (wrap-marks (syntax-wrap x))))
(values x (wrap-marks w)))))
;; syntax object wraps
;; <wrap> ::= ((<mark> ...) . (<subst> ...))
;; <subst> ::= shift | <subs>
;; <subs> ::= #(ribcage #(<sym> ...) #(<mark> ...) #(<label> ...))
;; | #(ribcage (<sym> ...) (<mark> ...) (<label> ...))
(define-syntax make-wrap (identifier-syntax cons))
(define-syntax wrap-marks (identifier-syntax car))
(define-syntax wrap-subst (identifier-syntax cdr))
;; labels must be comparable with "eq?", have read-write invariance,
;; and distinct from symbols.
(define (gen-label)
(symbol->string (module-gensym "l")))
(define gen-labels
(lambda (ls)
(if (null? ls)
'()
(cons (gen-label) (gen-labels (cdr ls))))))
(define-structure (ribcage symnames marks labels))
(define-syntax empty-wrap (identifier-syntax '(())))
(define-syntax top-wrap (identifier-syntax '((top))))
;; Marks must be comparable with "eq?" and distinct from pairs and
;; the symbol top. We do not use integers so that marks will remain
;; unique even across file compiles.
(define-syntax the-anti-mark (identifier-syntax #f))
(define anti-mark
(lambda (w)
(make-wrap (cons the-anti-mark (wrap-marks w))
(cons 'shift (wrap-subst w)))))
(define-syntax-rule (new-mark)
(module-gensym "m"))
;; make-empty-ribcage and extend-ribcage maintain list-based ribcages for
;; internal definitions, in which the ribcages are built incrementally
(define-syntax-rule (make-empty-ribcage)
(make-ribcage '() '() '()))
(define extend-ribcage!
;; must receive ids with complete wraps
(lambda (ribcage id label)
(set-ribcage-symnames! ribcage
(cons (syntax-expression id)
(ribcage-symnames ribcage)))
(set-ribcage-marks! ribcage
(cons (wrap-marks (syntax-wrap id))
(ribcage-marks ribcage)))
(set-ribcage-labels! ribcage
(cons label (ribcage-labels ribcage)))))
;; make-binding-wrap creates vector-based ribcages
(define make-binding-wrap
(lambda (ids labels w)
(if (null? ids)
w
(make-wrap
(wrap-marks w)
(cons
(let ((labelvec (list->vector labels)))
(let ((n (vector-length labelvec)))
(let ((symnamevec (make-vector n)) (marksvec (make-vector n)))
(let f ((ids ids) (i 0))
(if (not (null? ids))
(call-with-values
(lambda () (id-sym-name&marks (car ids) w))
(lambda (symname marks)
(vector-set! symnamevec i symname)
(vector-set! marksvec i marks)
(f (cdr ids) (fx+ i 1))))))
(make-ribcage symnamevec marksvec labelvec))))
(wrap-subst w))))))
(define smart-append
(lambda (m1 m2)
(if (null? m2)
m1
(append m1 m2))))
(define join-wraps
(lambda (w1 w2)
(let ((m1 (wrap-marks w1)) (s1 (wrap-subst w1)))
(if (null? m1)
(if (null? s1)
w2
(make-wrap
(wrap-marks w2)
(smart-append s1 (wrap-subst w2))))
(make-wrap
(smart-append m1 (wrap-marks w2))
(smart-append s1 (wrap-subst w2)))))))
(define join-marks
(lambda (m1 m2)
(smart-append m1 m2)))
(define same-marks?
(lambda (x y)
(or (eq? x y)
(and (not (null? x))
(not (null? y))
(eq? (car x) (car y))
(same-marks? (cdr x) (cdr y))))))
(define id-var-name
;; Syntax objects use wraps to associate names with marked
;; identifiers. This function returns the name corresponding to
;; the given identifier and wrap, or the original identifier if no
;; corresponding name was found.
;;
;; The name may be a string created by gen-label, indicating a
;; lexical binding, or another syntax object, indicating a
;; reference to a top-level definition created during a previous
;; macroexpansion.
;;
;; For lexical variables, finding a label simply amounts to
;; looking for an entry with the same symbolic name and the same
;; marks. Finding a toplevel definition is the same, except we
;; also have to compare modules, hence the `mod' parameter.
;; Instead of adding a separate entry in the ribcage for modules,
;; which wouldn't be used for lexicals, we arrange for the entry
;; for the name entry to be a pair with the module in its car, and
;; the name itself in the cdr. So if the name that we find is a
;; pair, we have to check modules.
;;
;; The identifer may be passed in wrapped or unwrapped. In any
;; case, this routine returns either a symbol, a syntax object, or
;; a string label.
;;
(lambda (id w mod)
(define-syntax-rule (first e)
;; Rely on Guile's multiple-values truncation.
e)
(define search
(lambda (sym subst marks mod)
(if (null? subst)
(values #f marks)
(let ((fst (car subst)))
(if (eq? fst 'shift)
(search sym (cdr subst) (cdr marks) mod)
(let ((symnames (ribcage-symnames fst)))
(if (vector? symnames)
(search-vector-rib sym subst marks symnames fst mod)
(search-list-rib sym subst marks symnames fst mod))))))))
(define search-list-rib
(lambda (sym subst marks symnames ribcage mod)
(let f ((symnames symnames)
(rlabels (ribcage-labels ribcage))
(rmarks (ribcage-marks ribcage)))
(cond
((null? symnames) (search sym (cdr subst) marks mod))
((and (eq? (car symnames) sym) (same-marks? marks (car rmarks)))
(let ((n (car rlabels)))
(if (pair? n)
(if (equal? mod (car n))
(values (cdr n) marks)
(f (cdr symnames) (cdr rlabels) (cdr rmarks)))
(values n marks))))
(else (f (cdr symnames) (cdr rlabels) (cdr rmarks)))))))
(define search-vector-rib
(lambda (sym subst marks symnames ribcage mod)
(let ((n (vector-length symnames)))
(let f ((i 0))
(cond
((fx= i n) (search sym (cdr subst) marks mod))
((and (eq? (vector-ref symnames i) sym)
(same-marks? marks (vector-ref (ribcage-marks ribcage) i)))
(let ((n (vector-ref (ribcage-labels ribcage) i)))
(if (pair? n)
(if (equal? mod (car n))
(values (cdr n) marks)
(f (fx+ i 1)))
(values n marks))))
(else (f (fx+ i 1))))))))
(cond
((symbol? id)
(or (first (search id (wrap-subst w) (wrap-marks w) mod)) id))
((syntax? id)
(let ((id (syntax-expression id))
(w1 (syntax-wrap id))
(mod (or (syntax-module id) mod)))
(let ((marks (join-marks (wrap-marks w) (wrap-marks w1))))
(call-with-values (lambda () (search id (wrap-subst w) marks mod))
(lambda (new-id marks)
(or new-id
(first (search id (wrap-subst w1) marks mod))
id))))))
(else (syntax-violation 'id-var-name "invalid id" id)))))
;; A helper procedure for syntax-locally-bound-identifiers, which
;; itself is a helper for transformer procedures.
;; `locally-bound-identifiers' returns a list of all bindings
;; visible to a syntax object with the given wrap. They are in
;; order from outer to inner.
;;
;; The purpose of this procedure is to give a transformer procedure
;; references on bound identifiers, that the transformer can then
;; introduce some of them in its output. As such, the identifiers
;; are anti-marked, so that rebuild-macro-output doesn't apply new
;; marks to them.
;;
(define locally-bound-identifiers
(lambda (w mod)
(define scan
(lambda (subst results)
(if (null? subst)
results
(let ((fst (car subst)))
(if (eq? fst 'shift)
(scan (cdr subst) results)
(let ((symnames (ribcage-symnames fst))
(marks (ribcage-marks fst)))
(if (vector? symnames)
(scan-vector-rib subst symnames marks results)
(scan-list-rib subst symnames marks results))))))))
(define scan-list-rib
(lambda (subst symnames marks results)
(let f ((symnames symnames) (marks marks) (results results))
(if (null? symnames)
(scan (cdr subst) results)
(f (cdr symnames) (cdr marks)
(cons (wrap (car symnames)
(anti-mark (make-wrap (car marks) subst))
mod)
results))))))
(define scan-vector-rib
(lambda (subst symnames marks results)
(let ((n (vector-length symnames)))
(let f ((i 0) (results results))
(if (fx= i n)
(scan (cdr subst) results)
(f (fx+ i 1)
(cons (wrap (vector-ref symnames i)
(anti-mark (make-wrap (vector-ref marks i) subst))
mod)
results)))))))
(scan (wrap-subst w) '())))
;; Returns three values: binding type, binding value, and the module
;; (for resolving toplevel vars).
(define (resolve-identifier id w r mod resolve-syntax-parameters?)
(define (resolve-global var mod)
(when (and (not mod) (current-module))
(warn "module system is booted, we should have a module" var))
(let ((v (and (not (equal? mod '(primitive)))
(module-variable (if mod
(resolve-module (cdr mod))
(current-module))
var))))
;; The expander needs to know when a top-level definition from
;; outside the compilation unit is a macro.
;;
;; Additionally if a macro is actually a syntax-parameter, we
;; might need to resolve its current binding. If the syntax
;; parameter is locally bound (via syntax-parameterize), then
;; its variable will be present in `r', the expand-time
;; environment. It's a kind of double lookup: first we see
;; that a name is bound to a syntax parameter, then we look
;; for the current binding of the syntax parameter.
;;
;; We use the variable (box) holding the syntax parameter
;; definition as the key for the second lookup. We use the
;; variable for two reasons:
;;
;; 1. If the syntax parameter is redefined in parallel
;; (perhaps via a parallel module compilation), the
;; redefinition keeps the same variable. We don't want to
;; use a "key" that could change during a redefinition. See
;; https://debbugs.gnu.org/cgi/bugreport.cgi?bug=27476.
;;
;; 2. Using the variable instead of its (symname, modname)
;; pair allows for syntax parameters to be renamed or
;; aliased while preserving the syntax parameter's identity.
;;
(if (and v (variable-bound? v) (macro? (variable-ref v)))
(let* ((m (variable-ref v))
(type (macro-type m))
(trans (macro-binding m))
(trans (if (pair? trans) (car trans) trans)))
(if (eq? type 'syntax-parameter)
(if resolve-syntax-parameters?
(let ((lexical (assq-ref r v)))
;; A resolved syntax parameter is
;; indistinguishable from a macro.
(values 'macro
(if lexical
(binding-value lexical)
trans)
mod))
;; Return box as value for use in second lookup.
(values type v mod))
(values type trans mod)))
(values 'global var mod))))
(define (resolve-lexical label mod)
(let ((b (assq-ref r label)))
(if b
(let ((type (binding-type b))
(value (binding-value b)))
(if (eq? type 'syntax-parameter)
(if resolve-syntax-parameters?
(values 'macro value mod)
;; If the syntax parameter was defined within
;; this compilation unit, use its label as its
;; lookup key.
(values type label mod))
(values type value mod)))
(values 'displaced-lexical #f #f))))
(let ((n (id-var-name id w mod)))
(cond
((syntax? n)
(cond
((not (eq? n id))
;; This identifier aliased another; recurse to allow
;; syntax-parameterize to override macro-introduced syntax
;; parameters.
(resolve-identifier n w r mod resolve-syntax-parameters?))
(else
;; Resolved to a free variable that was introduced by this
;; macro; continue to resolve this global by name.
(resolve-identifier (syntax-expression n)
(syntax-wrap n)
r
(or (syntax-module n) mod)
resolve-syntax-parameters?))))
((symbol? n)
(resolve-global n (or (and (syntax? id)
(syntax-module id))
mod)))
((string? n)
(resolve-lexical n (or (and (syntax? id)
(syntax-module id))
mod)))
(else
(error "unexpected id-var-name" id w n)))))
(define transformer-environment
(make-fluid
(lambda (k)
(error "called outside the dynamic extent of a syntax transformer"))))
(define (with-transformer-environment k)
((fluid-ref transformer-environment) k))
;; free-id=? must be passed fully wrapped ids since (free-id=? x y)
;; may be true even if (free-id=? (wrap x w) (wrap y w)) is not.
(define free-id=?
(lambda (i j)
(let* ((mi (and (syntax? i) (syntax-module i)))
(mj (and (syntax? j) (syntax-module j)))
(ni (id-var-name i empty-wrap mi))
(nj (id-var-name j empty-wrap mj)))
(define (id-module-binding id mod)
(module-variable
(if mod
;; The normal case.
(resolve-module (cdr mod))
;; Either modules have not been booted, or we have a
;; raw symbol coming in, which is possible.
(current-module))
(id-sym-name id)))
(cond
((syntax? ni) (free-id=? ni j))
((syntax? nj) (free-id=? i nj))
((symbol? ni)
;; `i' is not lexically bound. Assert that `j' is free,
;; and if so, compare their bindings, that they are either
;; bound to the same variable, or both unbound and have
;; the same name.
(and (eq? nj (id-sym-name j))
(let ((bi (id-module-binding i mi)))
(if bi
(eq? bi (id-module-binding j mj))
(and (not (id-module-binding j mj))
(eq? ni nj))))
(eq? (id-module-binding i mi) (id-module-binding j mj))))
(else
;; Otherwise `i' is bound, so check that `j' is bound, and
;; bound to the same thing.
(equal? ni nj))))))
;; bound-id=? may be passed unwrapped (or partially wrapped) ids as
;; long as the missing portion of the wrap is common to both of the ids
;; since (bound-id=? x y) iff (bound-id=? (wrap x w) (wrap y w))
(define bound-id=?
(lambda (i j)
(if (and (syntax? i) (syntax? j))
(and (eq? (syntax-expression i)
(syntax-expression j))
(same-marks? (wrap-marks (syntax-wrap i))
(wrap-marks (syntax-wrap j))))
(eq? i j))))
;; "valid-bound-ids?" returns #t if it receives a list of distinct ids.
;; valid-bound-ids? may be passed unwrapped (or partially wrapped) ids
;; as long as the missing portion of the wrap is common to all of the
;; ids.
(define valid-bound-ids?
(lambda (ids)
(and (let all-ids? ((ids ids))
(or (null? ids)
(and (id? (car ids))
(all-ids? (cdr ids)))))
(distinct-bound-ids? ids))))
;; distinct-bound-ids? expects a list of ids and returns #t if there are
;; no duplicates. It is quadratic on the length of the id list; long
;; lists could be sorted to make it more efficient. distinct-bound-ids?
;; may be passed unwrapped (or partially wrapped) ids as long as the
;; missing portion of the wrap is common to all of the ids.
(define distinct-bound-ids?
(lambda (ids)
(let distinct? ((ids ids))
(or (null? ids)
(and (not (bound-id-member? (car ids) (cdr ids)))
(distinct? (cdr ids)))))))
(define bound-id-member?
(lambda (x list)
(and (not (null? list))
(or (bound-id=? x (car list))
(bound-id-member? x (cdr list))))))
;; wrapping expressions and identifiers
(define wrap
(lambda (x w defmod)
(source-wrap x w #f defmod)))
(define (wrap-syntax x w defmod)
(make-syntax (syntax-expression x)
w
(or (syntax-module x) defmod)
(syntax-sourcev x)))
(define (source-wrap x w s defmod)
(cond
((and (null? (wrap-marks w))
(null? (wrap-subst w))
(not defmod)
(not s))
x)
((syntax? x) (wrap-syntax x (join-wraps w (syntax-wrap x)) defmod))
((null? x) x)
(else (make-syntax x w defmod s))))
;; expanding
(define expand-sequence
(lambda (body r w s mod)
(build-sequence s
(let dobody ((body body) (r r) (w w) (mod mod))
(if (null? body)
'()
(let ((first (expand (car body) r w mod)))
(cons first (dobody (cdr body) r w mod))))))))
;; At top-level, we allow mixed definitions and expressions. Like
;; expand-body we expand in two passes.
;;
;; First, from left to right, we expand just enough to know what
;; expressions are definitions, syntax definitions, and splicing
;; statements (`begin'). If we anything needs evaluating at
;; expansion-time, it is expanded directly.
;;
;; Otherwise we collect expressions to expand, in thunks, and then
;; expand them all at the end. This allows all syntax expanders
;; visible in a toplevel sequence to be visible during the
;; expansions of all normal definitions and expressions in the
;; sequence.
;;
(define expand-top-sequence
(lambda (body r w s m esew mod)
(let* ((r (cons '("placeholder" . (placeholder)) r))
(ribcage (make-empty-ribcage))
(w (make-wrap (wrap-marks w) (cons ribcage (wrap-subst w)))))
(define (record-definition! id var)
(let ((mod (cons 'hygiene (module-name (current-module)))))
;; Ribcages map symbol+marks to names, mostly for
;; resolving lexicals. Here to add a mapping for toplevel
;; definitions we also need to match the module. So, we
;; put it in the name instead, and make id-var-name handle
;; the special case of names that are pairs. See the
;; comments in id-var-name for more.
(extend-ribcage! ribcage id
(cons (or (syntax-module id) mod)
(wrap var top-wrap mod)))))
(define (macro-introduced-identifier? id)
(not (equal? (wrap-marks (syntax-wrap id)) '(top))))
(define (ensure-fresh-name var)
;; If a macro introduces a top-level identifier, we attempt
;; to give it a fresh name by appending the hash of the
;; expression in which it appears. However, this can fail
;; for hash collisions, which is more common that one might
;; think: Guile's hash function stops descending into cdr's
;; at some point. So, within an expansion unit, fall back
;; to appending a uniquifying integer.
(define (ribcage-has-var? var)
(let lp ((labels (ribcage-labels ribcage)))
(and (pair? labels)
(let ((wrapped (cdar labels)))
(or (eq? (syntax-expression wrapped) var)
(lp (cdr labels)))))))
(let lp ((unique var) (n 1))
(if (ribcage-has-var? unique)
(let ((tail (string->symbol (number->string n))))
(lp (symbol-append var '- tail) (1+ n)))
unique)))
(define (fresh-derived-name id orig-form)
(ensure-fresh-name
(symbol-append
(syntax-expression id)
'-
(string->symbol
;; FIXME: This encodes hash values into the ABI of
;; compiled modules; a problem?
(number->string
(hash (syntax->datum orig-form) most-positive-fixnum)
16)))))
(define (parse body r w s m esew mod)
(let lp ((body body) (exps '()))
(if (null? body)
exps
(lp (cdr body)
(append (parse1 (car body) r w s m esew mod)
exps)))))
(define (parse1 x r w s m esew mod)
(define (current-module-for-expansion mod)
(case (car mod)
;; If the module was just put in place for hygiene, in a
;; top-level `begin' always recapture the current
;; module. If a user wants to override, then we need to
;; use @@ or similar.
((hygiene) (cons 'hygiene (module-name (current-module))))
(else mod)))
(call-with-values
(lambda ()
(let ((mod (current-module-for-expansion mod)))
(syntax-type x r w (source-annotation x) ribcage mod #f)))
(lambda (type value form e w s mod)
(case type
((define-form)
(let* ((id (wrap value w mod))
(label (gen-label))
(var (if (macro-introduced-identifier? id)
(fresh-derived-name id x)
(syntax-expression id))))
(record-definition! id var)
(list
(if (eq? m 'c&e)
(let ((x (build-global-definition s mod var (expand e r w mod))))
(top-level-eval-hook x mod)
(lambda () x))
(call-with-values
(lambda () (resolve-identifier id empty-wrap r mod #t))
(lambda (type* value* mod*)
;; If the identifier to be bound is currently bound to a
;; macro, then immediately discard that binding.
(if (eq? type* 'macro)
(top-level-eval-hook (build-global-definition
s mod var (build-void s))
mod))
(lambda ()
(build-global-definition s mod var (expand e r w mod)))))))))
((define-syntax-form define-syntax-parameter-form)
(let* ((id (wrap value w mod))
(label (gen-label))
(var (if (macro-introduced-identifier? id)
(fresh-derived-name id x)
(syntax-expression id))))
(record-definition! id var)
(case m
((c)
(cond
((memq 'compile esew)
(let ((e (expand-install-global mod var type (expand e r w mod))))
(top-level-eval-hook e mod)
(if (memq 'load esew)
(list (lambda () e))
'())))
((memq 'load esew)
(list (lambda ()
(expand-install-global mod var type (expand e r w mod)))))
(else '())))
((c&e)
(let ((e (expand-install-global mod var type (expand e r w mod))))
(top-level-eval-hook e mod)
(list (lambda () e))))
(else
(if (memq 'eval esew)
(top-level-eval-hook
(expand-install-global mod var type (expand e r w mod))
mod))
'()))))
((begin-form)
(syntax-case e ()
((_ e1 ...)
(parse #'(e1 ...) r w s m esew mod))))
((local-syntax-form)
(expand-local-syntax value e r w s mod
(lambda (forms r w s mod)
(parse forms r w s m esew mod))))
((eval-when-form)
(syntax-case e ()
((_ (x ...) e1 e2 ...)
(let ((when-list (parse-when-list e #'(x ...)))
(body #'(e1 e2 ...)))
(define (recurse m esew)
(parse body r w s m esew mod))
(cond
((eq? m 'e)
(if (memq 'eval when-list)
(recurse (if (memq 'expand when-list) 'c&e 'e)
'(eval))
(begin
(if (memq 'expand when-list)
(top-level-eval-hook
(expand-top-sequence body r w s 'e '(eval) mod)
mod))
'())))
((memq 'load when-list)
(if (or (memq 'compile when-list)
(memq 'expand when-list)
(and (eq? m 'c&e) (memq 'eval when-list)))
(recurse 'c&e '(compile load))
(if (memq m '(c c&e))
(recurse 'c '(load))
'())))
((or (memq 'compile when-list)
(memq 'expand when-list)
(and (eq? m 'c&e) (memq 'eval when-list)))
(top-level-eval-hook
(expand-top-sequence body r w s 'e '(eval) mod)
mod)
'())
(else
'()))))))
(else
(list
(if (eq? m 'c&e)
(let ((x (expand-expr type value form e r w s mod)))
(top-level-eval-hook x mod)
(lambda () x))
(lambda ()
(expand-expr type value form e r w s mod)))))))))
(let ((exps (map (lambda (x) (x))
(reverse (parse body r w s m esew mod)))))
(if (null? exps)
(build-void s)
(build-sequence s exps))))))
(define expand-install-global
(lambda (mod name type e)
(build-global-definition
no-source
mod
name
(build-primcall
no-source
'make-syntax-transformer
(list (build-data no-source name)
(build-data no-source
(if (eq? type 'define-syntax-parameter-form)
'syntax-parameter
'macro))
e)))))
(define parse-when-list
(lambda (e when-list)
;; `when-list' is syntax'd version of list of situations. We
;; could match these keywords lexically, via free-id=?, but then
;; we twingle the definition of eval-when to the bindings of
;; eval, load, expand, and compile, which is totally unintended.
;; So do a symbolic match instead.
(let ((result (strip when-list)))
(let lp ((l result))
(if (null? l)
result
(if (memq (car l) '(compile load eval expand))
(lp (cdr l))
(syntax-violation 'eval-when "invalid situation" e
(car l))))))))
;; syntax-type returns seven values: type, value, form, e, w, s, and
;; mod. The first two are described in the table below.
;;
;; type value explanation
;; -------------------------------------------------------------------
;; core procedure core singleton
;; core-form procedure core form
;; module-ref procedure @ or @@ singleton
;; lexical name lexical variable reference
;; global name global variable reference
;; begin none begin keyword
;; define none define keyword
;; define-syntax none define-syntax keyword
;; define-syntax-parameter none define-syntax-parameter keyword
;; local-syntax rec? letrec-syntax/let-syntax keyword
;; eval-when none eval-when keyword
;; syntax level pattern variable
;; displaced-lexical none displaced lexical identifier
;; lexical-call name call to lexical variable
;; global-call name call to global variable
;; primitive-call name call to primitive
;; call none any other call
;; begin-form none begin expression
;; define-form id variable definition
;; define-syntax-form id syntax definition
;; define-syntax-parameter-form id syntax parameter definition
;; local-syntax-form rec? syntax definition
;; eval-when-form none eval-when form
;; constant none self-evaluating datum
;; other none anything else
;;
;; form is the entire form. For definition forms (define-form,
;; define-syntax-form, and define-syntax-parameter-form), e is the
;; rhs expression. For all others, e is the entire form. w is the
;; wrap for both form and e. s is the source for the entire form.
;; mod is the module for both form and e.
;;
;; syntax-type expands macros and unwraps as necessary to get to one
;; of the forms above. It also parses definition forms, although
;; perhaps this should be done by the consumer.
(define syntax-type
(lambda (e r w s rib mod for-car?)
(cond
((symbol? e)
(call-with-values (lambda () (resolve-identifier e w r mod #t))
(lambda (type value mod*)
(case type
((macro)
(if for-car?
(values type value e e w s mod)
(syntax-type (expand-macro value e r w s rib mod)
r empty-wrap s rib mod #f)))
((global)
;; Toplevel definitions may resolve to bindings with
;; different names or in different modules.
(values type value e value w s mod*))
(else (values type value e e w s mod))))))
((pair? e)
(let ((first (car e)))
(call-with-values
(lambda () (syntax-type first r w s rib mod #t))
(lambda (ftype fval fform fe fw fs fmod)
(case ftype
((lexical)
(values 'lexical-call fval e e w s mod))
((global)
(if (equal? fmod '(primitive))
(values 'primitive-call fval e e w s mod)
;; If we got here via an (@@ ...) expansion, we
;; need to make sure the fmod information is
;; propagated back correctly -- hence this
;; consing.
(values 'global-call (make-syntax fval w fmod fs)
e e w s mod)))
((macro)
(syntax-type (expand-macro fval e r w s rib mod)
r empty-wrap s rib mod for-car?))
((module-ref)
(call-with-values (lambda () (fval e r w mod))
(lambda (e r w s mod)
(syntax-type e r w s rib mod for-car?))))
((core)
(values 'core-form fval e e w s mod))
((local-syntax)
(values 'local-syntax-form fval e e w s mod))
((begin)
(values 'begin-form #f e e w s mod))
((eval-when)
(values 'eval-when-form #f e e w s mod))
((define)
(syntax-case e ()
((_ name val)
(id? #'name)
(values 'define-form #'name e #'val w s mod))
((_ (name . args) e1 e2 ...)
(and (id? #'name)
(valid-bound-ids? (lambda-var-list #'args)))
;; need lambda here...
(values 'define-form (wrap #'name w mod)
(wrap e w mod)
(source-wrap
(cons #'lambda (wrap #'(args e1 e2 ...) w mod))
empty-wrap s #f)
empty-wrap s mod))
((_ name)
(id? #'name)
(values 'define-form (wrap #'name w mod)
(wrap e w mod)
#'(if #f #f)
empty-wrap s mod))))
((define-syntax)
(syntax-case e ()
((_ name val)
(id? #'name)
(values 'define-syntax-form #'name e #'val w s mod))))
((define-syntax-parameter)
(syntax-case e ()
((_ name val)
(id? #'name)
(values 'define-syntax-parameter-form #'name e #'val w s mod))))
(else
(values 'call #f e e w s mod)))))))
((syntax? e)
(syntax-type (syntax-expression e)
r
(join-wraps w (syntax-wrap e))
(or (source-annotation e) s) rib
(or (syntax-module e) mod) for-car?))
((self-evaluating? e) (values 'constant #f e e w s mod))
(else (values 'other #f e e w s mod)))))
(define expand
(lambda (e r w mod)
(call-with-values
(lambda () (syntax-type e r w (source-annotation e) #f mod #f))
(lambda (type value form e w s mod)
(expand-expr type value form e r w s mod)))))
(define expand-expr
(lambda (type value form e r w s mod)
(case type
((lexical)
(build-lexical-reference 'value s e value))
((core core-form)
;; apply transformer
(value e r w s mod))
((module-ref)
(call-with-values (lambda () (value e r w mod))
(lambda (e r w s mod)
(expand e r w mod))))
((lexical-call)
(expand-call
(let ((id (car e)))
(build-lexical-reference 'fun (source-annotation id)
(if (syntax? id)
(syntax->datum id)
id)
value))
e r w s mod))
((global-call)
(expand-call
(build-global-reference (or (source-annotation (car e)) s)
(if (syntax? value)
(syntax-expression value)
value)
(or (and (syntax? value)
(syntax-module value))
mod))
e r w s mod))
((primitive-call)
(syntax-case e ()
((_ e ...)
(build-primcall s
value
(map (lambda (e) (expand e r w mod))
#'(e ...))))))
((constant) (build-data s (strip e)))
((global) (build-global-reference s value mod))
((call) (expand-call (expand (car e) r w mod) e r w s mod))
((begin-form)
(syntax-case e ()
((_ e1 e2 ...) (expand-sequence #'(e1 e2 ...) r w s mod))
((_)
(syntax-violation #f "sequence of zero expressions"
(source-wrap e w s mod)))))
((local-syntax-form)
(expand-local-syntax value e r w s mod expand-sequence))
((eval-when-form)
(syntax-case e ()
((_ (x ...) e1 e2 ...)
(let ((when-list (parse-when-list e #'(x ...))))
(if (memq 'eval when-list)
(expand-sequence #'(e1 e2 ...) r w s mod)
(expand-void))))))
((define-form define-syntax-form define-syntax-parameter-form)
(syntax-violation #f "definition in expression context, where definitions are not allowed,"
(source-wrap form w s mod)))
((syntax)
(syntax-violation #f "reference to pattern variable outside syntax form"
(source-wrap e w s mod)))
((displaced-lexical)
(syntax-violation #f "reference to identifier outside its scope"
(source-wrap e w s mod)))
(else (syntax-violation #f "unexpected syntax"
(source-wrap e w s mod))))))
(define expand-call
(lambda (x e r w s mod)
(syntax-case e ()
((e0 e1 ...)
(build-call s x
(map (lambda (e) (expand e r w mod)) #'(e1 ...)))))))
;; (What follows is my interpretation of what's going on here -- Andy)
;;
;; A macro takes an expression, a tree, the leaves of which are identifiers
;; and datums. Identifiers are symbols along with a wrap and a module. For
;; efficiency, subtrees that share wraps and modules may be grouped as one
;; syntax object.
;;
;; Going into the expansion, the expression is given an anti-mark, which
;; logically propagates to all leaves. Then, in the new expression returned
;; from the transfomer, if we see an expression with an anti-mark, we know it
;; pertains to the original expression; conversely, expressions without the
;; anti-mark are known to be introduced by the transformer.
;;
;; OK, good until now. We know this algorithm does lexical scoping
;; appropriately because it's widely known in the literature, and psyntax is
;; widely used. But what about modules? Here we're on our own. What we do is
;; to mark the module of expressions produced by a macro as pertaining to the
;; module that was current when the macro was defined -- that is, free
;; identifiers introduced by a macro are scoped in the macro's module, not in
;; the expansion's module. Seems to work well.
;;
;; The only wrinkle is when we want a macro to expand to code in another
;; module, as is the case for the r6rs `library' form -- the body expressions
;; should be scoped relative the the new module, the one defined by the macro.
;; For that, use `(@@ mod-name body)'.
;;
;; Part of the macro output will be from the site of the macro use and part
;; from the macro definition. We allow source information from the macro use
;; to pass through, but we annotate the parts coming from the macro with the
;; source location information corresponding to the macro use. It would be
;; really nice if we could also annotate introduced expressions with the
;; locations corresponding to the macro definition, but that is not yet
;; possible.
(define expand-macro
(lambda (p e r w s rib mod)
(define (decorate-source x)
(source-wrap x empty-wrap s #f))
(define (map* f x)
(cond
((null? x) x)
((pair? x) (cons (f (car x)) (map* f (cdr x))))
(else (f x))))
(define rebuild-macro-output
(lambda (x m)
(cond ((pair? x)
(decorate-source
(map* (lambda (x) (rebuild-macro-output x m)) x)))
((syntax? x)
(let ((w (syntax-wrap x)))
(let ((ms (wrap-marks w)) (ss (wrap-subst w)))
(if (and (pair? ms) (eq? (car ms) the-anti-mark))
;; output is from original text
(wrap-syntax
x
(make-wrap (cdr ms)
(if rib
(cons rib (cdr ss))
(cdr ss)))
mod)
;; output introduced by macro
(wrap-syntax
x
(make-wrap (cons m ms)
(if rib
(cons rib (cons 'shift ss))
(cons 'shift ss)))
mod)))))
((vector? x)
(let* ((n (vector-length x))
(v (make-vector n)))
(do ((i 0 (fx+ i 1)))
((fx= i n) v)
(vector-set! v i
(rebuild-macro-output (vector-ref x i) m)))
(decorate-source v)))
((symbol? x)
(syntax-violation #f "encountered raw symbol in macro output"
(source-wrap e w (wrap-subst w) mod) x))
(else (decorate-source x)))))
(with-fluids ((transformer-environment
(lambda (k) (k e r w s rib mod))))
(rebuild-macro-output (p (source-wrap e (anti-mark w) s mod))
(new-mark)))))
(define expand-body
;; In processing the forms of the body, we create a new, empty wrap.
;; This wrap is augmented (destructively) each time we discover that
;; the next form is a definition. This is done:
;;
;; (1) to allow the first nondefinition form to be a call to
;; one of the defined ids even if the id previously denoted a
;; definition keyword or keyword for a macro expanding into a
;; definition;
;; (2) to prevent subsequent definition forms (but unfortunately
;; not earlier ones) and the first nondefinition form from
;; confusing one of the bound identifiers for an auxiliary
;; keyword; and
;; (3) so that we do not need to restart the expansion of the
;; first nondefinition form, which is problematic anyway
;; since it might be the first element of a begin that we
;; have just spliced into the body (meaning if we restarted,
;; we'd really need to restart with the begin or the macro
;; call that expanded into the begin, and we'd have to give
;; up allowing (begin <defn>+ <expr>+), which is itself
;; problematic since we don't know if a begin contains only
;; definitions until we've expanded it).
;;
;; Before processing the body, we also create a new environment
;; containing a placeholder for the bindings we will add later and
;; associate this environment with each form. In processing a
;; let-syntax or letrec-syntax, the associated environment may be
;; augmented with local keyword bindings, so the environment may
;; be different for different forms in the body. Once we have
;; gathered up all of the definitions, we evaluate the transformer
;; expressions and splice into r at the placeholder the new variable
;; and keyword bindings. This allows let-syntax or letrec-syntax
;; forms local to a portion or all of the body to shadow the
;; definition bindings.
;;
;; Subforms of a begin, let-syntax, or letrec-syntax are spliced
;; into the body.
;;
;; outer-form is fully wrapped w/source
(lambda (body outer-form r w mod)
(let* ((r (cons '("placeholder" . (placeholder)) r))
(ribcage (make-empty-ribcage))
(w (make-wrap (wrap-marks w) (cons ribcage (wrap-subst w)))))
(let parse ((body (map (lambda (x) (cons r (wrap x w mod))) body))
(ids '()) (labels '())
(var-ids '()) (vars '()) (vals '()) (bindings '())
(expand-tail-expr #f))
(cond
((null? body)
(unless expand-tail-expr
(when (null? ids)
(syntax-violation #f "empty body" outer-form))
(syntax-violation #f "body should end with an expression" outer-form))
(unless (valid-bound-ids? ids)
(syntax-violation
#f "invalid or duplicate identifier in definition"
outer-form))
(set-cdr! r (extend-env labels bindings (cdr r)))
(let ((src (source-annotation outer-form)))
(let lp ((var-ids var-ids) (vars vars) (vals vals)
(tail (expand-tail-expr)))
(cond
((null? var-ids) tail)
((not (car var-ids))
(lp (cdr var-ids) (cdr vars) (cdr vals)
(make-seq src ((car vals)) tail)))
(else
(let ((var-ids (map (lambda (id)
(if id (syntax->datum id) '_))
(reverse var-ids)))
(vars (map (lambda (var) (or var (gen-label)))
(reverse vars)))
(vals (map (lambda (expand-expr id)
(if id
(expand-expr)
(make-seq src
(expand-expr)
(build-void src))))
(reverse vals) (reverse var-ids))))
(build-letrec src #t var-ids vars vals tail)))))))
(expand-tail-expr
(parse body ids labels
(cons #f var-ids)
(cons #f vars)
(cons expand-tail-expr vals)
bindings #f))
(else
(let ((e (cdar body)) (er (caar body)) (body (cdr body)))
(call-with-values
(lambda () (syntax-type e er empty-wrap (source-annotation e) ribcage mod #f))
(lambda (type value form e w s mod)
(case type
((define-form)
(let ((id (wrap value w mod)) (label (gen-label)))
(let ((var (gen-var id)))
(extend-ribcage! ribcage id label)
(parse body
(cons id ids) (cons label labels)
(cons id var-ids)
(cons var vars)
(cons (let ((wrapped (source-wrap e w s mod)))
(lambda ()
(expand wrapped er empty-wrap mod)))
vals)
(cons (make-binding 'lexical var) bindings)
#f))))
((define-syntax-form)
(let ((id (wrap value w mod))
(label (gen-label))
(trans-r (macros-only-env er)))
(extend-ribcage! ribcage id label)
;; As required by R6RS, evaluate the right-hand-sides of internal
;; syntax definition forms and add their transformers to the
;; compile-time environment immediately, so that the newly-defined
;; keywords may be used in definition context within the same
;; lexical contour.
(set-cdr! r (extend-env
(list label)
(list (make-binding
'macro
(eval-local-transformer
(expand e trans-r w mod)
mod)))
(cdr r)))
(parse body (cons id ids)
labels var-ids vars vals bindings #f)))
((define-syntax-parameter-form)
;; Same as define-syntax-form, different binding type though.
(let ((id (wrap value w mod))
(label (gen-label))
(trans-r (macros-only-env er)))
(extend-ribcage! ribcage id label)
(set-cdr! r (extend-env
(list label)
(list (make-binding
'syntax-parameter
(eval-local-transformer
(expand e trans-r w mod)
mod)))
(cdr r)))
(parse body (cons id ids)
labels var-ids vars vals bindings #f)))
((begin-form)
(syntax-case e ()
((_ e1 ...)
(parse (let f ((forms #'(e1 ...)))
(if (null? forms)
body
(cons (cons er (wrap (car forms) w mod))
(f (cdr forms)))))
ids labels var-ids vars vals bindings #f))))
((local-syntax-form)
(expand-local-syntax
value e er w s mod
(lambda (forms er w s mod)
(parse (let f ((forms forms))
(if (null? forms)
body
(cons (cons er (wrap (car forms) w mod))
(f (cdr forms)))))
ids labels var-ids vars vals bindings #f))))
(else ; An expression, not a definition.
(let ((wrapped (source-wrap e w s mod)))
(parse body ids labels var-ids vars vals bindings
(lambda ()
(expand wrapped er empty-wrap mod)))))))))))))))
(define expand-local-syntax
(lambda (rec? e r w s mod k)
(syntax-case e ()
((_ ((id val) ...) e1 e2 ...)
(let ((ids #'(id ...)))
(if (not (valid-bound-ids? ids))
(syntax-violation #f "duplicate bound keyword" e)
(let ((labels (gen-labels ids)))
(let ((new-w (make-binding-wrap ids labels w)))
(k #'(e1 e2 ...)
(extend-env
labels
(let ((w (if rec? new-w w))
(trans-r (macros-only-env r)))
(map (lambda (x)
(make-binding 'macro
(eval-local-transformer
(expand x trans-r w mod)
mod)))
#'(val ...)))
r)
new-w
s
mod))))))
(_ (syntax-violation #f "bad local syntax definition"
(source-wrap e w s mod))))))
(define eval-local-transformer
(lambda (expanded mod)
(let ((p (local-eval-hook expanded mod)))
(if (procedure? p)
p
(syntax-violation #f "nonprocedure transformer" p)))))
(define expand-void
(lambda ()
(build-void no-source)))
(define ellipsis?
(lambda (e r mod)
(and (nonsymbol-id? e)
;; If there is a binding for the special identifier
;; #{ $sc-ellipsis }# in the lexical environment of E,
;; and if the associated binding type is 'ellipsis',
;; then the binding's value specifies the custom ellipsis
;; identifier within that lexical environment, and the
;; comparison is done using 'bound-id=?'.
(call-with-values
(lambda () (resolve-identifier
(make-syntax '#{ $sc-ellipsis }#
(syntax-wrap e)
(or (syntax-module e) mod)
#f)
empty-wrap r mod #f))
(lambda (type value mod)
(if (eq? type 'ellipsis)
(bound-id=? e value)
(free-id=? e #'(... ...))))))))
(define lambda-formals
(lambda (orig-args)
(define (req args rreq)
(syntax-case args ()
(()
(check (reverse rreq) #f))
((a . b) (id? #'a)
(req #'b (cons #'a rreq)))
(r (id? #'r)
(check (reverse rreq) #'r))
(else
(syntax-violation 'lambda "invalid argument list" orig-args args))))
(define (check req rest)
(cond
((distinct-bound-ids? (if rest (cons rest req) req))
(values req #f rest #f))
(else
(syntax-violation 'lambda "duplicate identifier in argument list"
orig-args))))
(req orig-args '())))
(define expand-simple-lambda
(lambda (e r w s mod req rest meta body)
(let* ((ids (if rest (append req (list rest)) req))
(vars (map gen-var ids))
(labels (gen-labels ids)))
(build-simple-lambda
s
(map syntax->datum req) (and rest (syntax->datum rest)) vars
meta
(expand-body body (source-wrap e w s mod)
(extend-var-env labels vars r)
(make-binding-wrap ids labels w)
mod)))))
(define lambda*-formals
(lambda (orig-args)
(define (req args rreq)
(syntax-case args ()
(()
(check (reverse rreq) '() #f '()))
((a . b) (id? #'a)
(req #'b (cons #'a rreq)))
((a . b) (eq? (syntax->datum #'a) #:optional)
(opt #'b (reverse rreq) '()))
((a . b) (eq? (syntax->datum #'a) #:key)
(key #'b (reverse rreq) '() '()))
((a b) (eq? (syntax->datum #'a) #:rest)
(rest #'b (reverse rreq) '() '()))
(r (id? #'r)
(rest #'r (reverse rreq) '() '()))
(else
(syntax-violation 'lambda* "invalid argument list" orig-args args))))
(define (opt args req ropt)
(syntax-case args ()
(()
(check req (reverse ropt) #f '()))
((a . b) (id? #'a)
(opt #'b req (cons #'(a #f) ropt)))
(((a init) . b) (id? #'a)
(opt #'b req (cons #'(a init) ropt)))
((a . b) (eq? (syntax->datum #'a) #:key)
(key #'b req (reverse ropt) '()))
((a b) (eq? (syntax->datum #'a) #:rest)
(rest #'b req (reverse ropt) '()))
(r (id? #'r)
(rest #'r req (reverse ropt) '()))
(else
(syntax-violation 'lambda* "invalid optional argument list"
orig-args args))))
(define (key args req opt rkey)
(syntax-case args ()
(()
(check req opt #f (cons #f (reverse rkey))))
((a . b) (id? #'a)
(with-syntax ((k (symbol->keyword (syntax->datum #'a))))
(key #'b req opt (cons #'(k a #f) rkey))))
(((a init) . b) (id? #'a)
(with-syntax ((k (symbol->keyword (syntax->datum #'a))))
(key #'b req opt (cons #'(k a init) rkey))))
(((a init k) . b) (and (id? #'a)
(keyword? (syntax->datum #'k)))
(key #'b req opt (cons #'(k a init) rkey)))
((aok) (eq? (syntax->datum #'aok) #:allow-other-keys)
(check req opt #f (cons #t (reverse rkey))))
((aok a b) (and (eq? (syntax->datum #'aok) #:allow-other-keys)
(eq? (syntax->datum #'a) #:rest))
(rest #'b req opt (cons #t (reverse rkey))))
((aok . r) (and (eq? (syntax->datum #'aok) #:allow-other-keys)
(id? #'r))
(rest #'r req opt (cons #t (reverse rkey))))
((a b) (eq? (syntax->datum #'a) #:rest)
(rest #'b req opt (cons #f (reverse rkey))))
(r (id? #'r)
(rest #'r req opt (cons #f (reverse rkey))))
(else
(syntax-violation 'lambda* "invalid keyword argument list"
orig-args args))))
(define (rest args req opt kw)
(syntax-case args ()
(r (id? #'r)
(check req opt #'r kw))
(else
(syntax-violation 'lambda* "invalid rest argument"
orig-args args))))
(define (check req opt rest kw)
(cond
((distinct-bound-ids?
(append req (map car opt) (if rest (list rest) '())
(if (pair? kw) (map cadr (cdr kw)) '())))
(values req opt rest kw))
(else
(syntax-violation 'lambda* "duplicate identifier in argument list"
orig-args))))
(req orig-args '())))
(define expand-lambda-case
(lambda (e r w s mod get-formals clauses)
(define (parse-req req opt rest kw body)
(let ((vars (map gen-var req))
(labels (gen-labels req)))
(let ((r* (extend-var-env labels vars r))
(w* (make-binding-wrap req labels w)))
(parse-opt (map syntax->datum req)
opt rest kw body (reverse vars) r* w* '() '()))))
(define (parse-opt req opt rest kw body vars r* w* out inits)
(cond
((pair? opt)
(syntax-case (car opt) ()
((id i)
(let* ((v (gen-var #'id))
(l (gen-labels (list v)))
(r** (extend-var-env l (list v) r*))
(w** (make-binding-wrap (list #'id) l w*)))
(parse-opt req (cdr opt) rest kw body (cons v vars)
r** w** (cons (syntax->datum #'id) out)
(cons (expand #'i r* w* mod) inits))))))
(rest
(let* ((v (gen-var rest))
(l (gen-labels (list v)))
(r* (extend-var-env l (list v) r*))
(w* (make-binding-wrap (list rest) l w*)))
(parse-kw req (if (pair? out) (reverse out) #f)
(syntax->datum rest)
(if (pair? kw) (cdr kw) kw)
body (cons v vars) r* w*
(if (pair? kw) (car kw) #f)
'() inits)))
(else
(parse-kw req (if (pair? out) (reverse out) #f) #f
(if (pair? kw) (cdr kw) kw)
body vars r* w*
(if (pair? kw) (car kw) #f)
'() inits))))
(define (parse-kw req opt rest kw body vars r* w* aok out inits)
(cond
((pair? kw)
(syntax-case (car kw) ()
((k id i)
(let* ((v (gen-var #'id))
(l (gen-labels (list v)))
(r** (extend-var-env l (list v) r*))
(w** (make-binding-wrap (list #'id) l w*)))
(parse-kw req opt rest (cdr kw) body (cons v vars)
r** w** aok
(cons (list (syntax->datum #'k)
(syntax->datum #'id)
v)
out)
(cons (expand #'i r* w* mod) inits))))))
(else
(parse-body req opt rest
(if (or aok (pair? out)) (cons aok (reverse out)) #f)
body (reverse vars) r* w* (reverse inits) '()))))
(define (parse-body req opt rest kw body vars r* w* inits meta)
(syntax-case body ()
((docstring e1 e2 ...) (string? (syntax->datum #'docstring))
(parse-body req opt rest kw #'(e1 e2 ...) vars r* w* inits
(append meta
`((documentation
. ,(syntax->datum #'docstring))))))
((#((k . v) ...) e1 e2 ...)
(parse-body req opt rest kw #'(e1 e2 ...) vars r* w* inits
(append meta (syntax->datum #'((k . v) ...)))))
((e1 e2 ...)
(values meta req opt rest kw inits vars
(expand-body #'(e1 e2 ...) (source-wrap e w s mod)
r* w* mod)))))
(syntax-case clauses ()
(() (values '() #f))
(((args e1 e2 ...) (args* e1* e2* ...) ...)
(call-with-values (lambda () (get-formals #'args))
(lambda (req opt rest kw)
(call-with-values (lambda ()
(parse-req req opt rest kw #'(e1 e2 ...)))
(lambda (meta req opt rest kw inits vars body)
(call-with-values
(lambda ()
(expand-lambda-case e r w s mod get-formals
#'((args* e1* e2* ...) ...)))
(lambda (meta* else*)
(values
(append meta meta*)
(build-lambda-case s req opt rest kw inits vars
body else*))))))))))))
;; data
;; strips syntax objects, recursively.
(define (strip x)
(define (annotate proc datum)
(let ((s (proc x)))
(when (and s (supports-source-properties? datum))
(set-source-properties! datum (sourcev->alist s)))
datum))
(cond
((syntax? x)
(annotate syntax-sourcev (strip (syntax-expression x))))
((pair? x)
(cons (strip (car x)) (strip (cdr x))))
((vector? x)
(list->vector (strip (vector->list x))))
(else x)))
;; lexical variables
(define gen-var
(lambda (id)
(let ((id (if (syntax? id) (syntax-expression id) id)))
(build-lexical-var no-source id))))
;; appears to return a reversed list
(define lambda-var-list
(lambda (vars)
(let lvl ((vars vars) (ls '()) (w empty-wrap))
(cond
((pair? vars) (lvl (cdr vars) (cons (wrap (car vars) w #f) ls) w))
((id? vars) (cons (wrap vars w #f) ls))
((null? vars) ls)
((syntax? vars)
(lvl (syntax-expression vars)
ls
(join-wraps w (syntax-wrap vars))))
;; include anything else to be caught by subsequent error
;; checking
(else (cons vars ls))))))
;; core transformers
(global-extend 'local-syntax 'letrec-syntax #t)
(global-extend 'local-syntax 'let-syntax #f)
(global-extend
'core 'syntax-parameterize
(lambda (e r w s mod)
(syntax-case e ()
((_ ((var val) ...) e1 e2 ...)
(valid-bound-ids? #'(var ...))
(let ((names
(map (lambda (x)
(call-with-values
(lambda () (resolve-identifier x w r mod #f))
(lambda (type value mod)
(case type
((displaced-lexical)
(syntax-violation 'syntax-parameterize
"identifier out of context"
e
(source-wrap x w s mod)))
((syntax-parameter)
value)
(else
(syntax-violation 'syntax-parameterize
"invalid syntax parameter"
e
(source-wrap x w s mod)))))))
#'(var ...)))
(bindings
(let ((trans-r (macros-only-env r)))
(map (lambda (x)
(make-binding
'syntax-parameter
(eval-local-transformer (expand x trans-r w mod) mod)))
#'(val ...)))))
(expand-body #'(e1 e2 ...)
(source-wrap e w s mod)
(extend-env names bindings r)
w
mod)))
(_ (syntax-violation 'syntax-parameterize "bad syntax"
(source-wrap e w s mod))))))
(global-extend 'core 'quote
(lambda (e r w s mod)
(syntax-case e ()
((_ e) (build-data s (strip #'e)))
(_ (syntax-violation 'quote "bad syntax"
(source-wrap e w s mod))))))
(global-extend 'core 'quote-syntax
(lambda (e r w s mod)
(syntax-case (source-wrap e w s mod) ()
((_ e) (build-data s #'e))
(e (syntax-violation 'quote "bad syntax" #'e)))))
(global-extend
'core 'syntax
(let ()
(define gen-syntax
(lambda (src e r maps ellipsis? mod)
(if (id? e)
(call-with-values (lambda ()
(resolve-identifier e empty-wrap r mod #f))
(lambda (type value mod)
(case type
((syntax)
(call-with-values
(lambda () (gen-ref src (car value) (cdr value) maps))
(lambda (var maps)
(values `(ref ,var) maps))))
(else
(if (ellipsis? e r mod)
(syntax-violation 'syntax "misplaced ellipsis" src)
(values `(quote ,e) maps))))))
(syntax-case e ()
((dots e)
(ellipsis? #'dots r mod)
(gen-syntax src #'e r maps (lambda (e r mod) #f) mod))
((x dots . y)
;; this could be about a dozen lines of code, except that we
;; choose to handle #'(x ... ...) forms
(ellipsis? #'dots r mod)
(let f ((y #'y)
(k (lambda (maps)
(call-with-values
(lambda ()
(gen-syntax src #'x r
(cons '() maps) ellipsis? mod))
(lambda (x maps)
(if (null? (car maps))
(syntax-violation 'syntax "extra ellipsis"
src)
(values (gen-map x (car maps))
(cdr maps))))))))
(syntax-case y ()
((dots . y)
(ellipsis? #'dots r mod)
(f #'y
(lambda (maps)
(call-with-values
(lambda () (k (cons '() maps)))
(lambda (x maps)
(if (null? (car maps))
(syntax-violation 'syntax "extra ellipsis" src)
(values (gen-mappend x (car maps))
(cdr maps))))))))
(_ (call-with-values
(lambda () (gen-syntax src y r maps ellipsis? mod))
(lambda (y maps)
(call-with-values
(lambda () (k maps))
(lambda (x maps)
(values (gen-append x y) maps)))))))))
((x . y)
(call-with-values
(lambda () (gen-syntax src #'x r maps ellipsis? mod))
(lambda (x maps)
(call-with-values
(lambda () (gen-syntax src #'y r maps ellipsis? mod))
(lambda (y maps) (values (gen-cons x y) maps))))))
(#(e1 e2 ...)
(call-with-values
(lambda ()
(gen-syntax src #'(e1 e2 ...) r maps ellipsis? mod))
(lambda (e maps) (values (gen-vector e) maps))))
(x (eq? (syntax->datum #'x) #nil) (values '(quote #nil) maps))
(() (values '(quote ()) maps))
(_ (values `(quote ,e) maps))))))
(define gen-ref
(lambda (src var level maps)
(if (fx= level 0)
(values var maps)
(if (null? maps)
(syntax-violation 'syntax "missing ellipsis" src)
(call-with-values
(lambda () (gen-ref src var (fx- level 1) (cdr maps)))
(lambda (outer-var outer-maps)
(let ((b (assq outer-var (car maps))))
(if b
(values (cdr b) maps)
(let ((inner-var (gen-var 'tmp)))
(values inner-var
(cons (cons (cons outer-var inner-var)
(car maps))
outer-maps)))))))))))
(define gen-mappend
(lambda (e map-env)
`(apply (primitive append) ,(gen-map e map-env))))
(define gen-map
(lambda (e map-env)
(let ((formals (map cdr map-env))
(actuals (map (lambda (x) `(ref ,(car x))) map-env)))
(cond
((eq? (car e) 'ref)
;; identity map equivalence:
;; (map (lambda (x) x) y) == y
(car actuals))
((and-map
(lambda (x) (and (eq? (car x) 'ref) (memq (cadr x) formals)))
(cdr e))
;; eta map equivalence:
;; (map (lambda (x ...) (f x ...)) y ...) == (map f y ...)
`(map (primitive ,(car e))
,@(map (let ((r (map cons formals actuals)))
(lambda (x) (cdr (assq (cadr x) r))))
(cdr e))))
(else `(map (lambda ,formals ,e) ,@actuals))))))
(define gen-cons
(lambda (x y)
(case (car y)
((quote)
(if (eq? (car x) 'quote)
`(quote (,(cadr x) . ,(cadr y)))
(if (eq? (cadr y) '())
`(list ,x)
`(cons ,x ,y))))
((list) `(list ,x ,@(cdr y)))
(else `(cons ,x ,y)))))
(define gen-append
(lambda (x y)
(if (equal? y '(quote ()))
x
`(append ,x ,y))))
(define gen-vector
(lambda (x)
(cond
((eq? (car x) 'list) `(vector ,@(cdr x)))
((eq? (car x) 'quote) `(quote #(,@(cadr x))))
(else `(list->vector ,x)))))
(define regen
(lambda (x)
(case (car x)
((ref) (build-lexical-reference 'value no-source (cadr x) (cadr x)))
((primitive) (build-primref no-source (cadr x)))
((quote) (build-data no-source (cadr x)))
((lambda)
(if (list? (cadr x))
(build-simple-lambda no-source (cadr x) #f (cadr x) '() (regen (caddr x)))
(error "how did we get here" x)))
(else (build-primcall no-source (car x) (map regen (cdr x)))))))
(lambda (e r w s mod)
(let ((e (source-wrap e w s mod)))
(syntax-case e ()
((_ x)
(call-with-values
(lambda () (gen-syntax e #'x r '() ellipsis? mod))
(lambda (e maps) (regen e))))
(_ (syntax-violation 'syntax "bad `syntax' form" e)))))))
(global-extend 'core 'lambda
(lambda (e r w s mod)
(syntax-case e ()
((_ args e1 e2 ...)
(call-with-values (lambda () (lambda-formals #'args))
(lambda (req opt rest kw)
(let lp ((body #'(e1 e2 ...)) (meta '()))
(syntax-case body ()
((docstring e1 e2 ...) (string? (syntax->datum #'docstring))
(lp #'(e1 e2 ...)
(append meta
`((documentation
. ,(syntax->datum #'docstring))))))
((#((k . v) ...) e1 e2 ...)
(lp #'(e1 e2 ...)
(append meta (syntax->datum #'((k . v) ...)))))
(_ (expand-simple-lambda e r w s mod req rest meta body)))))))
(_ (syntax-violation 'lambda "bad lambda" e)))))
(global-extend 'core 'lambda*
(lambda (e r w s mod)
(syntax-case e ()
((_ args e1 e2 ...)
(call-with-values
(lambda ()
(expand-lambda-case e r w s mod
lambda*-formals #'((args e1 e2 ...))))
(lambda (meta lcase)
(build-case-lambda s meta lcase))))
(_ (syntax-violation 'lambda "bad lambda*" e)))))
(global-extend 'core 'case-lambda
(lambda (e r w s mod)
(define (build-it meta clauses)
(call-with-values
(lambda ()
(expand-lambda-case e r w s mod
lambda-formals
clauses))
(lambda (meta* lcase)
(build-case-lambda s (append meta meta*) lcase))))
(syntax-case e ()
((_ (args e1 e2 ...) ...)
(build-it '() #'((args e1 e2 ...) ...)))
((_ docstring (args e1 e2 ...) ...)
(string? (syntax->datum #'docstring))
(build-it `((documentation
. ,(syntax->datum #'docstring)))
#'((args e1 e2 ...) ...)))
(_ (syntax-violation 'case-lambda "bad case-lambda" e)))))
(global-extend 'core 'case-lambda*
(lambda (e r w s mod)
(define (build-it meta clauses)
(call-with-values
(lambda ()
(expand-lambda-case e r w s mod
lambda*-formals
clauses))
(lambda (meta* lcase)
(build-case-lambda s (append meta meta*) lcase))))
(syntax-case e ()
((_ (args e1 e2 ...) ...)
(build-it '() #'((args e1 e2 ...) ...)))
((_ docstring (args e1 e2 ...) ...)
(string? (syntax->datum #'docstring))
(build-it `((documentation
. ,(syntax->datum #'docstring)))
#'((args e1 e2 ...) ...)))
(_ (syntax-violation 'case-lambda "bad case-lambda*" e)))))
(global-extend 'core 'with-ellipsis
(lambda (e r w s mod)
(syntax-case e ()
((_ dots e1 e2 ...)
(id? #'dots)
(let ((id (if (symbol? #'dots)
'#{ $sc-ellipsis }#
(make-syntax '#{ $sc-ellipsis }#
(syntax-wrap #'dots)
(syntax-module #'dots)
(syntax-sourcev #'dots)))))
(let ((ids (list id))
(labels (list (gen-label)))
(bindings (list (make-binding 'ellipsis (source-wrap #'dots w s mod)))))
(let ((nw (make-binding-wrap ids labels w))
(nr (extend-env labels bindings r)))
(expand-body #'(e1 e2 ...) (source-wrap e nw s mod) nr nw mod)))))
(_ (syntax-violation 'with-ellipsis "bad syntax"
(source-wrap e w s mod))))))
(global-extend 'core 'let
(let ()
(define (expand-let e r w s mod constructor ids vals exps)
(if (not (valid-bound-ids? ids))
(syntax-violation 'let "duplicate bound variable" e)
(let ((labels (gen-labels ids))
(new-vars (map gen-var ids)))
(let ((nw (make-binding-wrap ids labels w))
(nr (extend-var-env labels new-vars r)))
(constructor s
(map syntax->datum ids)
new-vars
(map (lambda (x) (expand x r w mod)) vals)
(expand-body exps (source-wrap e nw s mod)
nr nw mod))))))
(lambda (e r w s mod)
(syntax-case e ()
((_ ((id val) ...) e1 e2 ...)
(and-map id? #'(id ...))
(expand-let e r w s mod
build-let
#'(id ...)
#'(val ...)
#'(e1 e2 ...)))
((_ f ((id val) ...) e1 e2 ...)
(and (id? #'f) (and-map id? #'(id ...)))
(expand-let e r w s mod
build-named-let
#'(f id ...)
#'(val ...)
#'(e1 e2 ...)))
(_ (syntax-violation 'let "bad let" (source-wrap e w s mod)))))))
(global-extend 'core 'letrec
(lambda (e r w s mod)
(syntax-case e ()
((_ ((id val) ...) e1 e2 ...)
(and-map id? #'(id ...))
(let ((ids #'(id ...)))
(if (not (valid-bound-ids? ids))
(syntax-violation 'letrec "duplicate bound variable" e)
(let ((labels (gen-labels ids))
(new-vars (map gen-var ids)))
(let ((w (make-binding-wrap ids labels w))
(r (extend-var-env labels new-vars r)))
(build-letrec s #f
(map syntax->datum ids)
new-vars
(map (lambda (x) (expand x r w mod)) #'(val ...))
(expand-body #'(e1 e2 ...)
(source-wrap e w s mod) r w mod)))))))
(_ (syntax-violation 'letrec "bad letrec" (source-wrap e w s mod))))))
(global-extend 'core 'letrec*
(lambda (e r w s mod)
(syntax-case e ()
((_ ((id val) ...) e1 e2 ...)
(and-map id? #'(id ...))
(let ((ids #'(id ...)))
(if (not (valid-bound-ids? ids))
(syntax-violation 'letrec* "duplicate bound variable" e)
(let ((labels (gen-labels ids))
(new-vars (map gen-var ids)))
(let ((w (make-binding-wrap ids labels w))
(r (extend-var-env labels new-vars r)))
(build-letrec s #t
(map syntax->datum ids)
new-vars
(map (lambda (x) (expand x r w mod)) #'(val ...))
(expand-body #'(e1 e2 ...)
(source-wrap e w s mod) r w mod)))))))
(_ (syntax-violation 'letrec* "bad letrec*" (source-wrap e w s mod))))))
(global-extend
'core 'set!
(lambda (e r w s mod)
(syntax-case e ()
((_ id val)
(id? #'id)
(call-with-values
(lambda () (resolve-identifier #'id w r mod #t))
(lambda (type value id-mod)
(case type
((lexical)
(build-lexical-assignment s (syntax->datum #'id) value
(expand #'val r w mod)))
((global)
(build-global-assignment s value (expand #'val r w mod) id-mod))
((macro)
(if (procedure-property value 'variable-transformer)
;; As syntax-type does, call expand-macro with
;; the mod of the expression. Hmm.
(expand (expand-macro value e r w s #f mod) r empty-wrap mod)
(syntax-violation 'set! "not a variable transformer"
(wrap e w mod)
(wrap #'id w id-mod))))
((displaced-lexical)
(syntax-violation 'set! "identifier out of context"
(wrap #'id w mod)))
(else
(syntax-violation 'set! "bad set!" (source-wrap e w s mod)))))))
((_ (head tail ...) val)
(call-with-values
(lambda () (syntax-type #'head r empty-wrap no-source #f mod #t))
(lambda (type value ee* ee ww ss modmod)
(case type
((module-ref)
(let ((val (expand #'val r w mod)))
(call-with-values (lambda () (value #'(head tail ...) r w mod))
(lambda (e r w s* mod)
(syntax-case e ()
(e (id? #'e)
(build-global-assignment s (syntax->datum #'e)
val mod)))))))
(else
(build-call s
(expand #'(setter head) r w mod)
(map (lambda (e) (expand e r w mod))
#'(tail ... val))))))))
(_ (syntax-violation 'set! "bad set!" (source-wrap e w s mod))))))
(global-extend 'module-ref '@
(lambda (e r w mod)
(syntax-case e ()
((_ (mod ...) id)
(and (and-map id? #'(mod ...)) (id? #'id))
;; Strip the wrap from the identifier and return top-wrap
;; so that the identifier will not be captured by lexicals.
(values (syntax->datum #'id) r top-wrap #f
(syntax->datum
#'(public mod ...)))))))
(global-extend 'module-ref '@@
(lambda (e r w mod)
(define remodulate
(lambda (x mod)
(cond ((pair? x)
(cons (remodulate (car x) mod)
(remodulate (cdr x) mod)))
((syntax? x)
(make-syntax
(remodulate (syntax-expression x) mod)
(syntax-wrap x)
;; hither the remodulation
mod
(syntax-sourcev x)))
((vector? x)
(let* ((n (vector-length x)) (v (make-vector n)))
(do ((i 0 (fx+ i 1)))
((fx= i n) v)
(vector-set! v i (remodulate (vector-ref x i) mod)))))
(else x))))
(syntax-case e (@@ primitive)
((_ primitive id)
(and (id? #'id)
(equal? (cdr (or (and (syntax? #'id)
(syntax-module #'id))
mod))
'(guile)))
;; Strip the wrap from the identifier and return top-wrap
;; so that the identifier will not be captured by lexicals.
(values (syntax->datum #'id) r top-wrap #f '(primitive)))
((_ (mod ...) id)
(and (and-map id? #'(mod ...)) (id? #'id))
;; Strip the wrap from the identifier and return top-wrap
;; so that the identifier will not be captured by lexicals.
(values (syntax->datum #'id) r top-wrap #f
(syntax->datum
#'(private mod ...))))
((_ @@ (mod ...) exp)
(and-map id? #'(mod ...))
;; This is a special syntax used to support R6RS library forms.
;; Unlike the syntax above, the last item is not restricted to
;; be a single identifier, and the syntax objects are kept
;; intact, with only their module changed.
(let ((mod (syntax->datum #'(private mod ...))))
(values (remodulate #'exp mod)
r w (source-annotation #'exp)
mod))))))
(global-extend 'core 'if
(lambda (e r w s mod)
(syntax-case e ()
((_ test then)
(build-conditional
s
(expand #'test r w mod)
(expand #'then r w mod)
(build-void no-source)))
((_ test then else)
(build-conditional
s
(expand #'test r w mod)
(expand #'then r w mod)
(expand #'else r w mod))))))
(global-extend 'begin 'begin '())
(global-extend 'define 'define '())
(global-extend 'define-syntax 'define-syntax '())
(global-extend 'define-syntax-parameter 'define-syntax-parameter '())
(global-extend 'eval-when 'eval-when '())
(global-extend 'core 'syntax-case
(let ()
(define convert-pattern
;; accepts pattern & keys
;; returns $sc-dispatch pattern & ids
(lambda (pattern keys ellipsis?)
(define cvt*
(lambda (p* n ids)
(syntax-case p* ()
((x . y)
(call-with-values
(lambda () (cvt* #'y n ids))
(lambda (y ids)
(call-with-values
(lambda () (cvt #'x n ids))
(lambda (x ids)
(values (cons x y) ids))))))
(_ (cvt p* n ids)))))
(define (v-reverse x)
(let loop ((r '()) (x x))
(if (not (pair? x))
(values r x)
(loop (cons (car x) r) (cdr x)))))
(define cvt
(lambda (p n ids)
(if (id? p)
(cond
((bound-id-member? p keys)
(values (vector 'free-id p) ids))
((free-id=? p #'_)
(values '_ ids))
(else
(values 'any (cons (cons p n) ids))))
(syntax-case p ()
((x dots)
(ellipsis? (syntax dots))
(call-with-values
(lambda () (cvt (syntax x) (fx+ n 1) ids))
(lambda (p ids)
(values (if (eq? p 'any) 'each-any (vector 'each p))
ids))))
((x dots . ys)
(ellipsis? (syntax dots))
(call-with-values
(lambda () (cvt* (syntax ys) n ids))
(lambda (ys ids)
(call-with-values
(lambda () (cvt (syntax x) (+ n 1) ids))
(lambda (x ids)
(call-with-values
(lambda () (v-reverse ys))
(lambda (ys e)
(values `#(each+ ,x ,ys ,e)
ids))))))))
((x . y)
(call-with-values
(lambda () (cvt (syntax y) n ids))
(lambda (y ids)
(call-with-values
(lambda () (cvt (syntax x) n ids))
(lambda (x ids)
(values (cons x y) ids))))))
(() (values '() ids))
(#(x ...)
(call-with-values
(lambda () (cvt (syntax (x ...)) n ids))
(lambda (p ids) (values (vector 'vector p) ids))))
(x (values (vector 'atom (strip p)) ids))))))
(cvt pattern 0 '())))
(define build-dispatch-call
(lambda (pvars exp y r mod)
(let ((ids (map car pvars)) (levels (map cdr pvars)))
(let ((labels (gen-labels ids)) (new-vars (map gen-var ids)))
(build-primcall
no-source
'apply
(list (build-simple-lambda no-source (map syntax->datum ids) #f new-vars '()
(expand exp
(extend-env
labels
(map (lambda (var level)
(make-binding 'syntax `(,var . ,level)))
new-vars
(map cdr pvars))
r)
(make-binding-wrap ids labels empty-wrap)
mod))
y))))))
(define gen-clause
(lambda (x keys clauses r pat fender exp mod)
(call-with-values
(lambda () (convert-pattern pat keys (lambda (e) (ellipsis? e r mod))))
(lambda (p pvars)
(cond
((not (and-map (lambda (x) (not (ellipsis? (car x) r mod))) pvars))
(syntax-violation 'syntax-case "misplaced ellipsis" pat))
((not (distinct-bound-ids? (map car pvars)))
(syntax-violation 'syntax-case "duplicate pattern variable" pat))
(else
(let ((y (gen-var 'tmp)))
;; fat finger binding and references to temp variable y
(build-call no-source
(build-simple-lambda no-source (list 'tmp) #f (list y) '()
(let ((y (build-lexical-reference 'value no-source
'tmp y)))
(build-conditional no-source
(syntax-case fender ()
(#t y)
(_ (build-conditional no-source
y
(build-dispatch-call pvars fender y r mod)
(build-data no-source #f))))
(build-dispatch-call pvars exp y r mod)
(gen-syntax-case x keys clauses r mod))))
(list (if (eq? p 'any)
(build-primcall no-source 'list (list x))
(build-primcall no-source '$sc-dispatch
(list x (build-data no-source p)))))))))))))
(define gen-syntax-case
(lambda (x keys clauses r mod)
(if (null? clauses)
(build-primcall no-source 'syntax-violation
(list (build-data no-source #f)
(build-data no-source
"source expression failed to match any pattern")
x))
(syntax-case (car clauses) ()
((pat exp)
(if (and (id? #'pat)
(and-map (lambda (x) (not (free-id=? #'pat x)))
(cons #'(... ...) keys)))
(if (free-id=? #'pat #'_)
(expand #'exp r empty-wrap mod)
(let ((labels (list (gen-label)))
(var (gen-var #'pat)))
(build-call no-source
(build-simple-lambda
no-source (list (syntax->datum #'pat)) #f (list var)
'()
(expand #'exp
(extend-env labels
(list (make-binding 'syntax `(,var . 0)))
r)
(make-binding-wrap #'(pat)
labels empty-wrap)
mod))
(list x))))
(gen-clause x keys (cdr clauses) r
#'pat #t #'exp mod)))
((pat fender exp)
(gen-clause x keys (cdr clauses) r
#'pat #'fender #'exp mod))
(_ (syntax-violation 'syntax-case "invalid clause"
(car clauses)))))))
(lambda (e r w s mod)
(let ((e (source-wrap e w s mod)))
(syntax-case e ()
((_ val (key ...) m ...)
(if (and-map (lambda (x) (and (id? x) (not (ellipsis? x r mod))))
#'(key ...))
(let ((x (gen-var 'tmp)))
;; fat finger binding and references to temp variable x
(build-call s
(build-simple-lambda no-source (list 'tmp) #f (list x) '()
(gen-syntax-case (build-lexical-reference 'value no-source
'tmp x)
#'(key ...) #'(m ...)
r
mod))
(list (expand #'val r empty-wrap mod))))
(syntax-violation 'syntax-case "invalid literals list" e))))))))
;; The portable macroexpand seeds expand-top's mode m with 'e (for
;; evaluating) and esew (which stands for "eval syntax expanders
;; when") with '(eval). In Chez Scheme, m is set to 'c instead of e
;; if we are compiling a file, and esew is set to
;; (eval-syntactic-expanders-when), which defaults to the list
;; '(compile load eval). This means that, by default, top-level
;; syntactic definitions are evaluated immediately after they are
;; expanded, and the expanded definitions are also residualized into
;; the object file if we are compiling a file.
(set! macroexpand
(lambda* (x #:optional (m 'e) (esew '(eval)))
(define (unstrip x)
(define (annotate result)
(let ((props (source-properties x)))
(if (pair? props)
(datum->syntax #f result #:source props)
result)))
(cond
((pair? x)
(annotate (cons (unstrip (car x)) (unstrip (cdr x)))))
((vector? x)
(let ((v (make-vector (vector-length x))))
(annotate (list->vector (map unstrip (vector->list x))))))
((syntax? x) x)
(else (annotate x))))
(expand-top-sequence (list (unstrip x)) null-env top-wrap #f m esew
(cons 'hygiene (module-name (current-module))))))
(set! identifier?
(lambda (x)
(nonsymbol-id? x)))
(set! datum->syntax
(lambda* (id datum #:key source)
(define (props->sourcev alist)
(and (pair? alist)
(vector (assq-ref alist 'filename)
(assq-ref alist 'line)
(assq-ref alist 'column))))
(make-syntax datum
(if id
(syntax-wrap id)
empty-wrap)
(if id
(syntax-module id)
#f)
(cond
((not source)
(props->sourcev (source-properties datum)))
((and (list? source) (and-map pair? source))
(props->sourcev source))
((and (vector? source) (= 3 (vector-length source)))
source)
(else (syntax-sourcev source))))))
(set! syntax->datum
;; accepts any object, since syntax objects may consist partially
;; or entirely of unwrapped, nonsymbolic data
(lambda (x)
(strip x)))
(set! generate-temporaries
(lambda (ls)
(arg-check list? ls 'generate-temporaries)
(let ((mod (cons 'hygiene (module-name (current-module)))))
(map (lambda (x)
(wrap (module-gensym "t") top-wrap mod))
ls))))
(set! free-identifier=?
(lambda (x y)
(arg-check nonsymbol-id? x 'free-identifier=?)
(arg-check nonsymbol-id? y 'free-identifier=?)
(free-id=? x y)))
(set! bound-identifier=?
(lambda (x y)
(arg-check nonsymbol-id? x 'bound-identifier=?)
(arg-check nonsymbol-id? y 'bound-identifier=?)
(bound-id=? x y)))
(set! syntax-violation
(lambda* (who message form #:optional subform)
(arg-check (lambda (x) (or (not x) (string? x) (symbol? x)))
who 'syntax-violation)
(arg-check string? message 'syntax-violation)
(throw 'syntax-error who message
(sourcev->alist
(or (source-annotation subform)
(source-annotation form)))
(strip form)
(strip subform))))
(let ()
(define (%syntax-module id)
(arg-check nonsymbol-id? id 'syntax-module)
(let ((mod (syntax-module id)))
(and mod
(not (equal? mod '(primitive)))
(cdr mod))))
(define* (syntax-local-binding id #:key (resolve-syntax-parameters? #t))
(arg-check nonsymbol-id? id 'syntax-local-binding)
(with-transformer-environment
(lambda (e r w s rib mod)
(define (strip-anti-mark w)
(let ((ms (wrap-marks w)) (s (wrap-subst w)))
(if (and (pair? ms) (eq? (car ms) the-anti-mark))
;; output is from original text
(make-wrap (cdr ms) (if rib (cons rib (cdr s)) (cdr s)))
;; output introduced by macro
(make-wrap ms (if rib (cons rib s) s)))))
(call-with-values (lambda ()
(resolve-identifier
(syntax-expression id)
(strip-anti-mark (syntax-wrap id))
r
(or (syntax-module id) mod)
resolve-syntax-parameters?))
(lambda (type value mod)
(case type
((lexical) (values 'lexical value))
((macro) (values 'macro value))
((syntax-parameter) (values 'syntax-parameter value))
((syntax) (values 'pattern-variable value))
((displaced-lexical) (values 'displaced-lexical #f))
((global)
(if (equal? mod '(primitive))
(values 'primitive value)
(values 'global (cons value (cdr mod)))))
((ellipsis)
(values 'ellipsis
(wrap-syntax value (anti-mark (syntax-wrap value))
mod)))
(else (values 'other #f))))))))
(define (syntax-locally-bound-identifiers id)
(arg-check nonsymbol-id? id 'syntax-locally-bound-identifiers)
(locally-bound-identifiers (syntax-wrap id)
(syntax-module id)))
;; Using define! instead of set! to avoid warnings at
;; compile-time, after the variables are stolen away into (system
;; syntax). See the end of boot-9.scm.
;;
(define! '%syntax-module %syntax-module)
(define! 'syntax-local-binding syntax-local-binding)
(define! 'syntax-locally-bound-identifiers syntax-locally-bound-identifiers))
;; $sc-dispatch expects an expression and a pattern. If the expression
;; matches the pattern a list of the matching expressions for each
;; "any" is returned. Otherwise, #f is returned. (This use of #f will
;; not work on r4rs implementations that violate the ieee requirement
;; that #f and () be distinct.)
;; The expression is matched with the pattern as follows:
;; pattern: matches:
;; () empty list
;; any anything
;; (<pattern>1 . <pattern>2) (<pattern>1 . <pattern>2)
;; each-any (any*)
;; #(free-id <key>) <key> with free-identifier=?
;; #(each <pattern>) (<pattern>*)
;; #(each+ p1 (p2_1 ... p2_n) p3) (p1* (p2_n ... p2_1) . p3)
;; #(vector <pattern>) (list->vector <pattern>)
;; #(atom <object>) <object> with "equal?"
;; Vector cops out to pair under assumption that vectors are rare. If
;; not, should convert to:
;; #(vector <pattern>*) #(<pattern>*)
(let ()
(define match-each
(lambda (e p w mod)
(cond
((pair? e)
(let ((first (match (car e) p w '() mod)))
(and first
(let ((rest (match-each (cdr e) p w mod)))
(and rest (cons first rest))))))
((null? e) '())
((syntax? e)
(match-each (syntax-expression e)
p
(join-wraps w (syntax-wrap e))
(or (syntax-module e) mod)))
(else #f))))
(define match-each+
(lambda (e x-pat y-pat z-pat w r mod)
(let f ((e e) (w w))
(cond
((pair? e)
(call-with-values (lambda () (f (cdr e) w))
(lambda (xr* y-pat r)
(if r
(if (null? y-pat)
(let ((xr (match (car e) x-pat w '() mod)))
(if xr
(values (cons xr xr*) y-pat r)
(values #f #f #f)))
(values
'()
(cdr y-pat)
(match (car e) (car y-pat) w r mod)))
(values #f #f #f)))))
((syntax? e)
(f (syntax-expression e)
(join-wraps w (syntax-wrap e))))
(else
(values '() y-pat (match e z-pat w r mod)))))))
(define match-each-any
(lambda (e w mod)
(cond
((pair? e)
(let ((l (match-each-any (cdr e) w mod)))
(and l (cons (wrap (car e) w mod) l))))
((null? e) '())
((syntax? e)
(match-each-any (syntax-expression e)
(join-wraps w (syntax-wrap e))
mod))
(else #f))))
(define match-empty
(lambda (p r)
(cond
((null? p) r)
((eq? p '_) r)
((eq? p 'any) (cons '() r))
((pair? p) (match-empty (car p) (match-empty (cdr p) r)))
((eq? p 'each-any) (cons '() r))
(else
(case (vector-ref p 0)
((each) (match-empty (vector-ref p 1) r))
((each+) (match-empty (vector-ref p 1)
(match-empty
(reverse (vector-ref p 2))
(match-empty (vector-ref p 3) r))))
((free-id atom) r)
((vector) (match-empty (vector-ref p 1) r)))))))
(define combine
(lambda (r* r)
(if (null? (car r*))
r
(cons (map car r*) (combine (map cdr r*) r)))))
(define match*
(lambda (e p w r mod)
(cond
((null? p) (and (null? e) r))
((pair? p)
(and (pair? e) (match (car e) (car p) w
(match (cdr e) (cdr p) w r mod)
mod)))
((eq? p 'each-any)
(let ((l (match-each-any e w mod))) (and l (cons l r))))
(else
(case (vector-ref p 0)
((each)
(if (null? e)
(match-empty (vector-ref p 1) r)
(let ((l (match-each e (vector-ref p 1) w mod)))
(and l
(let collect ((l l))
(if (null? (car l))
r
(cons (map car l) (collect (map cdr l)))))))))
((each+)
(call-with-values
(lambda ()
(match-each+ e (vector-ref p 1) (vector-ref p 2) (vector-ref p 3) w r mod))
(lambda (xr* y-pat r)
(and r
(null? y-pat)
(if (null? xr*)
(match-empty (vector-ref p 1) r)
(combine xr* r))))))
((free-id) (and (id? e) (free-id=? (wrap e w mod) (vector-ref p 1)) r))
((atom) (and (equal? (vector-ref p 1) (strip e)) r))
((vector)
(and (vector? e)
(match (vector->list e) (vector-ref p 1) w r mod))))))))
(define match
(lambda (e p w r mod)
(cond
((not r) #f)
((eq? p '_) r)
((eq? p 'any) (cons (wrap e w mod) r))
((syntax? e)
(match*
(syntax-expression e)
p
(join-wraps w (syntax-wrap e))
r
(or (syntax-module e) mod)))
(else (match* e p w r mod)))))
(set! $sc-dispatch
(lambda (e p)
(cond
((eq? p 'any) (list e))
((eq? p '_) '())
((syntax? e)
(match* (syntax-expression e)
p (syntax-wrap e) '() (syntax-module e)))
(else (match* e p empty-wrap '() #f))))))))
(define-syntax with-syntax
(lambda (x)
(syntax-case x ()
((_ () e1 e2 ...)
#'(let () e1 e2 ...))
((_ ((out in)) e1 e2 ...)
#'(syntax-case in ()
(out (let () e1 e2 ...))))
((_ ((out in) ...) e1 e2 ...)
#'(syntax-case (list in ...) ()
((out ...) (let () e1 e2 ...)))))))
(define-syntax syntax-error
(lambda (x)
(syntax-case x ()
;; Extended internal syntax which provides the original form
;; as the first operand, for improved error reporting.
((_ (keyword . operands) message arg ...)
(string? (syntax->datum #'message))
(syntax-violation (syntax->datum #'keyword)
(string-join (cons (syntax->datum #'message)
(map (lambda (x)
(object->string
(syntax->datum x)))
#'(arg ...))))
(and (syntax->datum #'keyword)
#'(keyword . operands))))
;; Standard R7RS syntax
((_ message arg ...)
(string? (syntax->datum #'message))
#'(syntax-error (#f) message arg ...)))))
(define-syntax syntax-rules
(lambda (xx)
(define (expand-clause clause)
;; Convert a 'syntax-rules' clause into a 'syntax-case' clause.
(syntax-case clause (syntax-error)
;; If the template is a 'syntax-error' form, use the extended
;; internal syntax, which adds the original form as the first
;; operand for improved error reporting.
(((keyword . pattern) (syntax-error message arg ...))
(string? (syntax->datum #'message))
#'((dummy . pattern) #'(syntax-error (dummy . pattern) message arg ...)))
;; Normal case
(((keyword . pattern) template)
#'((dummy . pattern) #'template))))
(define (expand-syntax-rules dots keys docstrings clauses)
(with-syntax
(((k ...) keys)
((docstring ...) docstrings)
((((keyword . pattern) template) ...) clauses)
((clause ...) (map expand-clause clauses)))
(with-syntax
((form #'(lambda (x)
docstring ... ; optional docstring
#((macro-type . syntax-rules)
(patterns pattern ...)) ; embed patterns as procedure metadata
(syntax-case x (k ...)
clause ...))))
(if dots
(with-syntax ((dots dots))
#'(with-ellipsis dots form))
#'form))))
(syntax-case xx ()
((_ (k ...) ((keyword . pattern) template) ...)
(expand-syntax-rules #f #'(k ...) #'() #'(((keyword . pattern) template) ...)))
((_ (k ...) docstring ((keyword . pattern) template) ...)
(string? (syntax->datum #'docstring))
(expand-syntax-rules #f #'(k ...) #'(docstring) #'(((keyword . pattern) template) ...)))
((_ dots (k ...) ((keyword . pattern) template) ...)
(identifier? #'dots)
(expand-syntax-rules #'dots #'(k ...) #'() #'(((keyword . pattern) template) ...)))
((_ dots (k ...) docstring ((keyword . pattern) template) ...)
(and (identifier? #'dots) (string? (syntax->datum #'docstring)))
(expand-syntax-rules #'dots #'(k ...) #'(docstring) #'(((keyword . pattern) template) ...))))))
(define-syntax define-syntax-rule
(lambda (x)
(syntax-case x ()
((_ (name . pattern) template)
#'(define-syntax name
(syntax-rules ()
((_ . pattern) template))))
((_ (name . pattern) docstring template)
(string? (syntax->datum #'docstring))
#'(define-syntax name
(syntax-rules ()
docstring
((_ . pattern) template)))))))
(define-syntax let*
(lambda (x)
(syntax-case x ()
((let* ((x v) ...) e1 e2 ...)
(and-map identifier? #'(x ...))
(let f ((bindings #'((x v) ...)))
(if (null? bindings)
#'(let () e1 e2 ...)
(with-syntax ((body (f (cdr bindings)))
(binding (car bindings)))
#'(let (binding) body))))))))
(define-syntax quasiquote
(let ()
(define (quasi p lev)
(syntax-case p (unquote quasiquote)
((unquote p)
(if (= lev 0)
#'("value" p)
(quasicons #'("quote" unquote) (quasi #'(p) (- lev 1)))))
((quasiquote p) (quasicons #'("quote" quasiquote) (quasi #'(p) (+ lev 1))))
((p . q)
(syntax-case #'p (unquote unquote-splicing)
((unquote p ...)
(if (= lev 0)
(quasilist* #'(("value" p) ...) (quasi #'q lev))
(quasicons
(quasicons #'("quote" unquote) (quasi #'(p ...) (- lev 1)))
(quasi #'q lev))))
((unquote-splicing p ...)
(if (= lev 0)
(quasiappend #'(("value" p) ...) (quasi #'q lev))
(quasicons
(quasicons #'("quote" unquote-splicing) (quasi #'(p ...) (- lev 1)))
(quasi #'q lev))))
(_ (quasicons (quasi #'p lev) (quasi #'q lev)))))
(#(x ...) (quasivector (vquasi #'(x ...) lev)))
(p #'("quote" p))))
(define (vquasi p lev)
(syntax-case p ()
((p . q)
(syntax-case #'p (unquote unquote-splicing)
((unquote p ...)
(if (= lev 0)
(quasilist* #'(("value" p) ...) (vquasi #'q lev))
(quasicons
(quasicons #'("quote" unquote) (quasi #'(p ...) (- lev 1)))
(vquasi #'q lev))))
((unquote-splicing p ...)
(if (= lev 0)
(quasiappend #'(("value" p) ...) (vquasi #'q lev))
(quasicons
(quasicons
#'("quote" unquote-splicing)
(quasi #'(p ...) (- lev 1)))
(vquasi #'q lev))))
(_ (quasicons (quasi #'p lev) (vquasi #'q lev)))))
(() #'("quote" ()))))
(define (quasicons x y)
(with-syntax ((x x) (y y))
(syntax-case #'y ()
(("quote" dy)
(syntax-case #'x ()
(("quote" dx) #'("quote" (dx . dy)))
(_ (if (null? #'dy) #'("list" x) #'("list*" x y)))))
(("list" . stuff) #'("list" x . stuff))
(("list*" . stuff) #'("list*" x . stuff))
(_ #'("list*" x y)))))
(define (quasiappend x y)
(syntax-case y ()
(("quote" ())
(cond
((null? x) #'("quote" ()))
((null? (cdr x)) (car x))
(else (with-syntax (((p ...) x)) #'("append" p ...)))))
(_
(cond
((null? x) y)
(else (with-syntax (((p ...) x) (y y)) #'("append" p ... y)))))))
(define (quasilist* x y)
(let f ((x x))
(if (null? x)
y
(quasicons (car x) (f (cdr x))))))
(define (quasivector x)
(syntax-case x ()
(("quote" (x ...)) #'("quote" #(x ...)))
(_
(let f ((y x) (k (lambda (ls) #`("vector" #,@ls))))
(syntax-case y ()
(("quote" (y ...)) (k #'(("quote" y) ...)))
(("list" y ...) (k #'(y ...)))
(("list*" y ... z) (f #'z (lambda (ls) (k (append #'(y ...) ls)))))
(else #`("list->vector" #,x)))))))
(define (emit x)
(syntax-case x ()
(("quote" x) #''x)
(("list" x ...) #`(list #,@(map emit #'(x ...))))
;; could emit list* for 3+ arguments if implementation supports
;; list*
(("list*" x ... y)
(let f ((x* #'(x ...)))
(if (null? x*)
(emit #'y)
#`(cons #,(emit (car x*)) #,(f (cdr x*))))))
(("append" x ...) #`(append #,@(map emit #'(x ...))))
(("vector" x ...) #`(vector #,@(map emit #'(x ...))))
(("list->vector" x) #`(list->vector #,(emit #'x)))
(("value" x) #'x)))
(lambda (x)
(syntax-case x ()
;; convert to intermediate language, combining introduced (but
;; not unquoted source) quote expressions where possible and
;; choosing optimal construction code otherwise, then emit
;; Scheme code corresponding to the intermediate language forms.
((_ e) (emit (quasi #'e 0)))))))
(define call-with-include-port
(let ((syntax-dirname (lambda (stx)
(define src (syntax-source stx))
(define filename (and src (assq-ref src 'filename)))
(and (string? filename)
(dirname filename)))))
(lambda* (filename proc #:key (dirname (syntax-dirname filename)))
"Like @code{call-with-input-file}, except relative paths are
searched relative to the @var{dirname} instead of the current working
directory. Also, @var{filename} can be a syntax object; in that case,
and if @var{dirname} is not specified, the @code{syntax-source} of
@var{filename} is used to obtain a base directory for relative file
names."
(let* ((filename (syntax->datum filename))
(p (open-input-file
(cond ((absolute-file-name? filename)
filename)
(dirname
(in-vicinity dirname filename))
(else
(error
"attempt to include relative file name but could not determine base dir")))))
(enc (file-encoding p)))
;; Choose the input encoding deterministically.
(set-port-encoding! p (or enc "UTF-8"))
(call-with-values (lambda () (proc p))
(lambda results
(close-port p)
(apply values results)))))))
(define-syntax include
(lambda (stx)
(syntax-case stx ()
((_ filename)
(call-with-include-port
#'filename
(lambda (p)
;; In Guile, (cons #'a #'b) is the same as #'(a . b).
(cons #'begin
(let lp ()
(let ((x (read-syntax p)))
(if (eof-object? x)
#'()
(cons (datum->syntax #'filename x) (lp))))))))))))
(define-syntax include-from-path
(lambda (x)
(syntax-case x ()
((k filename)
(let ((fn (syntax->datum #'filename)))
(with-syntax ((fn (datum->syntax
#'filename
(canonicalize-path
(or (%search-load-path fn)
(syntax-violation 'include-from-path
"file not found in path"
x #'filename))))))
#'(include fn)))))))
(define-syntax unquote
(lambda (x)
(syntax-violation 'unquote
"expression not valid outside of quasiquote"
x)))
(define-syntax unquote-splicing
(lambda (x)
(syntax-violation 'unquote-splicing
"expression not valid outside of quasiquote"
x)))
(define (make-variable-transformer proc)
(if (procedure? proc)
(let ((trans (lambda (x)
#((macro-type . variable-transformer))
(proc x))))
(set-procedure-property! trans 'variable-transformer #t)
trans)
(error "variable transformer not a procedure" proc)))
(define-syntax identifier-syntax
(lambda (xx)
(syntax-case xx (set!)
((_ e)
#'(lambda (x)
#((macro-type . identifier-syntax))
(syntax-case x ()
(id
(identifier? #'id)
#'e)
((_ x (... ...))
#'(e x (... ...))))))
((_ (id exp1) ((set! var val) exp2))
(and (identifier? #'id) (identifier? #'var))
#'(make-variable-transformer
(lambda (x)
#((macro-type . variable-transformer))
(syntax-case x (set!)
((set! var val) #'exp2)
((id x (... ...)) #'(exp1 x (... ...)))
(id (identifier? #'id) #'exp1))))))))
(define-syntax define*
(lambda (x)
(syntax-case x ()
((_ (id . args) b0 b1 ...)
#'(define id (lambda* args b0 b1 ...)))
((_ id val) (identifier? #'id)
#'(define id val)))))
|