File size: 4,297 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
;;;; q.scm --- Queues
;;;;
;;;; Copyright (C) 1995, 2001, 2004, 2006 Free Software Foundation, Inc.
;;;;
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;;;
;;; Commentary:
;;; Q: Based on the interface to
;;;
;;; "queue.scm" Queues/Stacks for Scheme
;;; Written by Andrew Wilcox ([email protected]) on April 1, 1992.
;;; {Q}
;;;
;;; A list is just a bunch of cons pairs that follows some constrains,
;;; right? Association lists are the same. Hash tables are just
;;; vectors and association lists. You can print them, read them,
;;; write them as constants, pun them off as other data structures
;;; etc. This is good. This is lisp. These structures are fast and
;;; compact and easy to manipulate arbitrarily because of their
;;; simple, regular structure and non-disjointedness (associations
;;; being lists and so forth).
;;;
;;; So I figured, queues should be the same -- just a "subtype" of cons-pair
;;; structures in general.
;;;
;;; A queue is a cons pair:
;;; ( <the-q> . <last-pair> )
;;;
;;; <the-q> is a list of things in the q. New elements go at the end
;;; of that list.
;;;
;;; <last-pair> is #f if the q is empty, and otherwise is the last
;;; pair of <the-q>.
;;;
;;; q's print nicely, but alas, they do not read well because the
;;; eq?-ness of <last-pair> and (last-pair <the-q>) is lost by read.
;;;
;;; All the functions that aren't explicitly defined to return
;;; something else (a queue element; a boolean value) return the queue
;;; object itself.
;;; Code:
(define-module (ice-9 q)
:export (sync-q! make-q q? q-empty? q-empty-check q-front q-rear
q-remove! q-push! enq! q-pop! deq! q-length))
;;; sync-q!
;;; The procedure
;;;
;;; (sync-q! q)
;;;
;;; recomputes and resets the <last-pair> component of a queue.
;;;
(define (sync-q! q)
(set-cdr! q (if (pair? (car q)) (last-pair (car q))
#f))
q)
;;; make-q
;;; return a new q.
;;;
(define (make-q) (cons '() #f))
;;; q? obj
;;; Return true if obj is a Q.
;;; An object is a queue if it is equal? to '(() . #f)
;;; or it is a pair P with (list? (car P))
;;; and (eq? (cdr P) (last-pair (car P))).
;;;
(define (q? obj)
(and (pair? obj)
(if (pair? (car obj))
(eq? (cdr obj) (last-pair (car obj)))
(and (null? (car obj))
(not (cdr obj))))))
;;; q-empty? obj
;;;
(define (q-empty? obj) (null? (car obj)))
;;; q-empty-check q
;;; Throw a q-empty exception if Q is empty.
(define (q-empty-check q) (if (q-empty? q) (throw 'q-empty q)))
;;; q-front q
;;; Return the first element of Q.
(define (q-front q) (q-empty-check q) (caar q))
;;; q-rear q
;;; Return the last element of Q.
(define (q-rear q) (q-empty-check q) (cadr q))
;;; q-remove! q obj
;;; Remove all occurences of obj from Q.
(define (q-remove! q obj)
(set-car! q (delq! obj (car q)))
(sync-q! q))
;;; q-push! q obj
;;; Add obj to the front of Q
(define (q-push! q obj)
(let ((h (cons obj (car q))))
(set-car! q h)
(or (cdr q) (set-cdr! q h)))
q)
;;; enq! q obj
;;; Add obj to the rear of Q
(define (enq! q obj)
(let ((h (cons obj '())))
(if (null? (car q))
(set-car! q h)
(set-cdr! (cdr q) h))
(set-cdr! q h))
q)
;;; q-pop! q
;;; Take the front of Q and return it.
(define (q-pop! q)
(q-empty-check q)
(let ((it (caar q))
(next (cdar q)))
(if (null? next)
(set-cdr! q #f))
(set-car! q next)
it))
;;; deq! q
;;; Take the front of Q and return it.
(define deq! q-pop!)
;;; q-length q
;;; Return the number of enqueued elements.
;;;
(define (q-length q) (length (car q)))
;;; q.scm ends here
|