Datasets:

License:
File size: 4,470 Bytes
3dcad1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
; This benchmark was obtained from Andrew Wright.
; 970215 / wdc Added lattice-benchmark.

; Given a comparison routine that returns one of
;	less
;	more
;	equal
;	uncomparable
; return a new comparison routine that applies to sequences.
(define lexico
    (lambda (base)
	(define lex-fixed
	    (lambda (fixed lhs rhs)
		(define check
		    (lambda (lhs rhs)
			(if (null? lhs)
			    fixed
			    (let ((probe
					(base (car lhs)
					    (car rhs))))
				(if (or (eq? probe 'equal)
					(eq? probe fixed))
				    (check (cdr lhs)
					(cdr rhs))
				    'uncomparable)))))
		(check lhs rhs)))
	(define lex-first
	    (lambda (lhs rhs)
		(if (null? lhs)
		    'equal
		    (let ((probe
				(base (car lhs)
				    (car rhs))))
			(case probe
			    ((less more)
				(lex-fixed probe
				    (cdr lhs)
				    (cdr rhs)))
			    ((equal)
				(lex-first (cdr lhs)
				    (cdr rhs)))
			    ((uncomparable)
				'uncomparable))))))
	lex-first))

(define (make-lattice elem-list cmp-func)
    (cons elem-list cmp-func))

(define lattice->elements car)

(define lattice->cmp cdr)

; Select elements of a list which pass some test.
(define zulu-select
    (lambda (test lst)
	(define select-a
	    (lambda (ac lst)
		(if (null? lst)
		    (reverse! ac)
		    (select-a
			(let ((head (car lst)))
			    (if (test head)
				(cons head ac)
				ac))
			(cdr lst)))))
	(select-a '() lst)))

(define reverse!
    (letrec ((rotate
		(lambda (fo fum)
		    (let ((next (cdr fo)))
			(set-cdr! fo fum)
			(if (null? next)
			    fo
			    (rotate next fo))))))
	(lambda (lst)
	    (if (null? lst)
		'()
		(rotate lst '())))))

; Select elements of a list which pass some test and map a function
; over the result.  Note, only efficiency prevents this from being the
; composition of select and map.
(define select-map
    (lambda (test func lst)
	(define select-a
	    (lambda (ac lst)
		(if (null? lst)
		    (reverse! ac)
		    (select-a
			(let ((head (car lst)))
			    (if (test head)
				(cons (func head)
				    ac)
				ac))
			(cdr lst)))))
	(select-a '() lst)))



; This version of map-and tail-recurses on the last test.
(define map-and
    (lambda (proc lst)
	(if (null? lst)
	    #T
	    (letrec ((drudge
			(lambda (lst)
			    (let ((rest (cdr lst)))
				(if (null? rest)
				    (proc (car lst))
				    (and (proc (car lst))
					(drudge rest)))))))
		(drudge lst)))))

(define (maps-1 source target pas new)
    (let ((scmp (lattice->cmp source))
	    (tcmp (lattice->cmp target)))
	(let ((less
		    (select-map
			(lambda (p)
			    (eq? 'less
				(scmp (car p) new)))
			cdr
			pas))
		(more
		    (select-map
			(lambda (p)
			    (eq? 'more
				(scmp (car p) new)))
			cdr
			pas)))
	    (zulu-select
		(lambda (t)
		    (and
			(map-and
			    (lambda (t2)
				(memq (tcmp t2 t) '(less equal)))
			    less)
			(map-and
			    (lambda (t2)
				(memq (tcmp t2 t) '(more equal)))
			    more)))
		(lattice->elements target)))))

(define (maps-rest source target pas rest to-1 to-collect)
    (if (null? rest)
	(to-1 pas)
	(let ((next (car rest))
		(rest (cdr rest)))
	    (to-collect
		(map
		    (lambda (x)
			(maps-rest source target
			    (cons
				(cons next x)
				pas)
			    rest
			    to-1
			    to-collect))
		    (maps-1 source target pas next))))))

(define (maps source target)
    (make-lattice
	(maps-rest source
	    target
	    '()
	    (lattice->elements source)
	    (lambda (x) (list (map cdr x)))
	    (lambda (x) (apply append x)))
	(lexico (lattice->cmp target))))

(define print-frequency 10000)

(define (count-maps source target)
    (let ((count 0))
	(maps-rest source
	    target
	    '()
	    (lattice->elements source)
	    (lambda (x)
		(set! count (+ count 1))
		(if (= 0 (remainder count print-frequency))
		    (begin #f))
		1)
	    (lambda (x) (apply + x)))))

(define (lattice-benchmark)
  (run-benchmark "Lattice"
    (lambda ()
      (let* ((l2
	      (make-lattice '(low high)
			    (lambda (lhs rhs)
			      (case lhs
				((low)
				 (case rhs
				   ((low)
				    'equal)
				   ((high)
				    'less)
				   (else
				    (error 'make-lattice "base" rhs))))
				((high)
				 (case rhs
				   ((low)
				    'more)
				   ((high)
				    'equal)
				   (else
				    (error 'make-lattice "base" rhs))))
				(else
				 (error 'make-lattice "base" lhs))))))
	     (l3 (maps l2 l2))
	     (l4 (maps l3 l3)))
	(count-maps l2 l2)
	(count-maps l3 l3)
	(count-maps l2 l3)
	(count-maps l3 l2)
	(count-maps l4 l4)))))