File size: 38,223 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 |
;;;; match.scm -- portable hygienic pattern matcher -*- coding: utf-8 -*-
;;
;; This code is written by Alex Shinn and placed in the
;; Public Domain. All warranties are disclaimed.
;;> @example-import[(srfi 9)]
;;> This is a full superset of the popular @hyperlink[
;;> "http://www.cs.indiana.edu/scheme-repository/code.match.html"]{match}
;;> package by Andrew Wright, written in fully portable @scheme{syntax-rules}
;;> and thus preserving hygiene.
;;> The most notable extensions are the ability to use @emph{non-linear}
;;> patterns - patterns in which the same identifier occurs multiple
;;> times, tail patterns after ellipsis, and the experimental tree patterns.
;;> @subsubsection{Patterns}
;;> Patterns are written to look like the printed representation of
;;> the objects they match. The basic usage is
;;> @scheme{(match expr (pat body ...) ...)}
;;> where the result of @var{expr} is matched against each pattern in
;;> turn, and the corresponding body is evaluated for the first to
;;> succeed. Thus, a list of three elements matches a list of three
;;> elements.
;;> @example{(let ((ls (list 1 2 3))) (match ls ((1 2 3) #t)))}
;;> If no patterns match an error is signaled.
;;> Identifiers will match anything, and make the corresponding
;;> binding available in the body.
;;> @example{(match (list 1 2 3) ((a b c) b))}
;;> If the same identifier occurs multiple times, the first instance
;;> will match anything, but subsequent instances must match a value
;;> which is @scheme{equal?} to the first.
;;> @example{(match (list 1 2 1) ((a a b) 1) ((a b a) 2))}
;;> The special identifier @scheme{_} matches anything, no matter how
;;> many times it is used, and does not bind the result in the body.
;;> @example{(match (list 1 2 1) ((_ _ b) 1) ((a b a) 2))}
;;> To match a literal identifier (or list or any other literal), use
;;> @scheme{quote}.
;;> @example{(match 'a ('b 1) ('a 2))}
;;> Analogous to its normal usage in scheme, @scheme{quasiquote} can
;;> be used to quote a mostly literally matching object with selected
;;> parts unquoted.
;;> @example|{(match (list 1 2 3) (`(1 ,b ,c) (list b c)))}|
;;> Often you want to match any number of a repeated pattern. Inside
;;> a list pattern you can append @scheme{...} after an element to
;;> match zero or more of that pattern (like a regexp Kleene star).
;;> @example{(match (list 1 2) ((1 2 3 ...) #t))}
;;> @example{(match (list 1 2 3) ((1 2 3 ...) #t))}
;;> @example{(match (list 1 2 3 3 3) ((1 2 3 ...) #t))}
;;> Pattern variables matched inside the repeated pattern are bound to
;;> a list of each matching instance in the body.
;;> @example{(match (list 1 2) ((a b c ...) c))}
;;> @example{(match (list 1 2 3) ((a b c ...) c))}
;;> @example{(match (list 1 2 3 4 5) ((a b c ...) c))}
;;> More than one @scheme{...} may not be used in the same list, since
;;> this would require exponential backtracking in the general case.
;;> However, @scheme{...} need not be the final element in the list,
;;> and may be succeeded by a fixed number of patterns.
;;> @example{(match (list 1 2 3 4) ((a b c ... d e) c))}
;;> @example{(match (list 1 2 3 4 5) ((a b c ... d e) c))}
;;> @example{(match (list 1 2 3 4 5 6 7) ((a b c ... d e) c))}
;;> @scheme{___} is provided as an alias for @scheme{...} when it is
;;> inconvenient to use the ellipsis (as in a syntax-rules template).
;;> The @scheme{..1} syntax is exactly like the @scheme{...} except
;;> that it matches one or more repetitions (like a regexp "+").
;;> @example{(match (list 1 2) ((a b c ..1) c))}
;;> @example{(match (list 1 2 3) ((a b c ..1) c))}
;;> The boolean operators @scheme{and}, @scheme{or} and @scheme{not}
;;> can be used to group and negate patterns analogously to their
;;> Scheme counterparts.
;;> The @scheme{and} operator ensures that all subpatterns match.
;;> This operator is often used with the idiom @scheme{(and x pat)} to
;;> bind @var{x} to the entire value that matches @var{pat}
;;> (c.f. "as-patterns" in ML or Haskell). Another common use is in
;;> conjunction with @scheme{not} patterns to match a general case
;;> with certain exceptions.
;;> @example{(match 1 ((and) #t))}
;;> @example{(match 1 ((and x) x))}
;;> @example{(match 1 ((and x 1) x))}
;;> The @scheme{or} operator ensures that at least one subpattern
;;> matches. If the same identifier occurs in different subpatterns,
;;> it is matched independently. All identifiers from all subpatterns
;;> are bound if the @scheme{or} operator matches, but the binding is
;;> only defined for identifiers from the subpattern which matched.
;;> @example{(match 1 ((or) #t) (else #f))}
;;> @example{(match 1 ((or x) x))}
;;> @example{(match 1 ((or x 2) x))}
;;> The @scheme{not} operator succeeds if the given pattern doesn't
;;> match. None of the identifiers used are available in the body.
;;> @example{(match 1 ((not 2) #t))}
;;> The more general operator @scheme{?} can be used to provide a
;;> predicate. The usage is @scheme{(? predicate pat ...)} where
;;> @var{predicate} is a Scheme expression evaluating to a predicate
;;> called on the value to match, and any optional patterns after the
;;> predicate are then matched as in an @scheme{and} pattern.
;;> @example{(match 1 ((? odd? x) x))}
;;> The field operator @scheme{=} is used to extract an arbitrary
;;> field and match against it. It is useful for more complex or
;;> conditional destructuring that can't be more directly expressed in
;;> the pattern syntax. The usage is @scheme{(= field pat)}, where
;;> @var{field} can be any expression, and should result in a
;;> procedure of one argument, which is applied to the value to match
;;> to generate a new value to match against @var{pat}.
;;> Thus the pattern @scheme{(and (= car x) (= cdr y))} is equivalent
;;> to @scheme{(x . y)}, except it will result in an immediate error
;;> if the value isn't a pair.
;;> @example{(match '(1 . 2) ((= car x) x))}
;;> @example{(match 4 ((= sqrt x) x))}
;;> The record operator @scheme{$} is used as a concise way to match
;;> records defined by SRFI-9 (or SRFI-99). The usage is
;;> @scheme{($ rtd field ...)}, where @var{rtd} should be the record
;;> type descriptor specified as the first argument to
;;> @scheme{define-record-type}, and each @var{field} is a subpattern
;;> matched against the fields of the record in order. Not all fields
;;> must be present.
;;> @example{
;;> (let ()
;;> (define-record-type employee
;;> (make-employee name title)
;;> employee?
;;> (name get-name)
;;> (title get-title))
;;> (match (make-employee "Bob" "Doctor")
;;> (($ employee n t) (list t n))))
;;> }
;;> The @scheme{set!} and @scheme{get!} operators are used to bind an
;;> identifier to the setter and getter of a field, respectively. The
;;> setter is a procedure of one argument, which mutates the field to
;;> that argument. The getter is a procedure of no arguments which
;;> returns the current value of the field.
;;> @example{(let ((x (cons 1 2))) (match x ((1 . (set! s)) (s 3) x)))}
;;> @example{(match '(1 . 2) ((1 . (get! g)) (g)))}
;;> The new operator @scheme{***} can be used to search a tree for
;;> subpatterns. A pattern of the form @scheme{(x *** y)} represents
;;> the subpattern @var{y} located somewhere in a tree where the path
;;> from the current object to @var{y} can be seen as a list of the
;;> form @scheme{(x ...)}. @var{y} can immediately match the current
;;> object in which case the path is the empty list. In a sense it's
;;> a 2-dimensional version of the @scheme{...} pattern.
;;> As a common case the pattern @scheme{(_ *** y)} can be used to
;;> search for @var{y} anywhere in a tree, regardless of the path
;;> used.
;;> @example{(match '(a (a (a b))) ((x *** 'b) x))}
;;> @example{(match '(a (b) (c (d e) (f g))) ((x *** 'g) x))}
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Notes
;; The implementation is a simple generative pattern matcher - each
;; pattern is expanded into the required tests, calling a failure
;; continuation if the tests fail. This makes the logic easy to
;; follow and extend, but produces sub-optimal code in cases where you
;; have many similar clauses due to repeating the same tests.
;; Nonetheless a smart compiler should be able to remove the redundant
;; tests. For MATCH-LET and DESTRUCTURING-BIND type uses there is no
;; performance hit.
;; The original version was written on 2006/11/29 and described in the
;; following Usenet post:
;; http://groups.google.com/group/comp.lang.scheme/msg/0941234de7112ffd
;; and is still available at
;; http://synthcode.com/scheme/match-simple.scm
;; It's just 80 lines for the core MATCH, and an extra 40 lines for
;; MATCH-LET, MATCH-LAMBDA and other syntactic sugar.
;;
;; A variant of this file which uses COND-EXPAND in a few places for
;; performance can be found at
;; http://synthcode.com/scheme/match-cond-expand.scm
;;
;; 2021/06/21 - fix for `(a ...)' patterns where `a' is already bound
;; (thanks to Andy Wingo)
;; 2020/09/04 - [OMITTED IN GUILE] perf fix for `not`; rename `..=', `..=', `..1' per SRFI 204
;; 2020/08/21 - [OMITTED IN GUILE] fixing match-letrec with unhygienic insertion
;; 2020/07/06 - [OMITTED IN GUILE] adding `..=' and `..=' patterns; fixing ,@ patterns
;; 2016/10/05 - [OMITTED IN GUILE] treat keywords as literals, not identifiers, in Chicken
;; 2016/03/06 - fixing named match-let (thanks to Stefan Israelsson Tampe)
;; 2015/05/09 - fixing bug in var extraction of quasiquote patterns
;; 2014/11/24 - [OMITTED IN GUILE] adding Gauche's `@' pattern for named record field matching
;; 2012/12/26 - wrapping match-let&co body in lexical closure
;; 2012/11/28 - fixing typo s/vetor/vector in largely unused set! code
;; 2012/05/23 - fixing combinatorial explosion of code in certain or patterns
;; 2011/09/25 - fixing bug when directly matching an identifier repeated in
;; the pattern (thanks to Stefan Israelsson Tampe)
;; 2011/01/27 - fixing bug when matching tail patterns against improper lists
;; 2010/09/26 - adding `..1' patterns (thanks to Ludovic Courtès)
;; 2010/09/07 - fixing identifier extraction in some `...' and `***' patterns
;; 2009/11/25 - adding `***' tree search patterns
;; 2008/03/20 - fixing bug where (a ...) matched non-lists
;; 2008/03/15 - removing redundant check in vector patterns
;; 2008/03/06 - you can use `...' portably now (thanks to Taylor Campbell)
;; 2007/09/04 - fixing quasiquote patterns
;; 2007/07/21 - allowing ellipsis patterns in non-final list positions
;; 2007/04/10 - fixing potential hygiene issue in match-check-ellipsis
;; (thanks to Taylor Campbell)
;; 2007/04/08 - clean up, commenting
;; 2006/12/24 - bugfixes
;; 2006/12/01 - non-linear patterns, shared variables in OR, get!/set!
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; force compile-time syntax errors with useful messages
(define-syntax match-syntax-error
(syntax-rules ()
((_) (match-syntax-error "invalid match-syntax-error usage"))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;> @subsubsection{Syntax}
;;> @subsubsubsection{@rawcode{(match expr (pattern . body) ...)@br{}
;;> (match expr (pattern (=> failure) . body) ...)}}
;;> The result of @var{expr} is matched against each @var{pattern} in
;;> turn, according to the pattern rules described in the previous
;;> section, until the the first @var{pattern} matches. When a match is
;;> found, the corresponding @var{body}s are evaluated in order,
;;> and the result of the last expression is returned as the result
;;> of the entire @scheme{match}. If a @var{failure} is provided,
;;> then it is bound to a procedure of no arguments which continues,
;;> processing at the next @var{pattern}. If no @var{pattern} matches,
;;> an error is signaled.
;; The basic interface. MATCH just performs some basic syntax
;; validation, binds the match expression to a temporary variable `v',
;; and passes it on to MATCH-NEXT. It's a constant throughout the
;; code below that the binding `v' is a direct variable reference, not
;; an expression.
(define-syntax match
(syntax-rules ()
((match)
(match-syntax-error "missing match expression"))
((match atom)
(match-syntax-error "no match clauses"))
((match (app ...) (pat . body) ...)
(let ((v (app ...)))
(match-next v ((app ...) (set! (app ...))) (pat . body) ...)))
((match #(vec ...) (pat . body) ...)
(let ((v #(vec ...)))
(match-next v (v (set! v)) (pat . body) ...)))
((match atom (pat . body) ...)
(let ((v atom))
(match-next v (atom (set! atom)) (pat . body) ...)))
))
;; MATCH-NEXT passes each clause to MATCH-ONE in turn with its failure
;; thunk, which is expanded by recursing MATCH-NEXT on the remaining
;; clauses. `g+s' is a list of two elements, the get! and set!
;; expressions respectively.
(define-syntax match-next
(syntax-rules (=>)
;; no more clauses, the match failed
((match-next v g+s)
;; Here we call error in non-tail context, so that the backtrace
;; can show the source location of the failing match form.
(begin
(throw 'match-error "match" "no matching pattern" v)
#f))
;; named failure continuation
((match-next v g+s (pat (=> failure) . body) . rest)
(let ((failure (lambda () (match-next v g+s . rest))))
;; match-one analyzes the pattern for us
(match-one v pat g+s (match-drop-ids (begin . body)) (failure) ())))
;; anonymous failure continuation, give it a dummy name
((match-next v g+s (pat . body) . rest)
(match-next v g+s (pat (=> failure) . body) . rest))))
;; MATCH-ONE first checks for ellipsis patterns, otherwise passes on to
;; MATCH-TWO.
(define-syntax match-one
(syntax-rules ()
;; If it's a list of two or more values, check to see if the
;; second one is an ellipsis and handle accordingly, otherwise go
;; to MATCH-TWO.
((match-one v (p q . r) g+s sk fk i)
(match-check-ellipsis
q
(match-extract-vars p (match-gen-ellipsis v p r g+s sk fk i) i ())
(match-two v (p q . r) g+s sk fk i)))
;; Go directly to MATCH-TWO.
((match-one . x)
(match-two . x))))
;; This is the guts of the pattern matcher. We are passed a lot of
;; information in the form:
;;
;; (match-two var pattern getter setter success-k fail-k (ids ...))
;;
;; usually abbreviated
;;
;; (match-two v p g+s sk fk i)
;;
;; where VAR is the symbol name of the current variable we are
;; matching, PATTERN is the current pattern, getter and setter are the
;; corresponding accessors (e.g. CAR and SET-CAR! of the pair holding
;; VAR), SUCCESS-K is the success continuation, FAIL-K is the failure
;; continuation (which is just a thunk call and is thus safe to expand
;; multiple times) and IDS are the list of identifiers bound in the
;; pattern so far.
(define-syntax match-two
(syntax-rules (_ ___ ..1 *** quote quasiquote ? $ = and or not set! get!)
((match-two v () g+s (sk ...) fk i)
(if (null? v) (sk ... i) fk))
((match-two v (quote p) g+s (sk ...) fk i)
(if (equal? v 'p) (sk ... i) fk))
((match-two v (quasiquote p) . x)
(match-quasiquote v p . x))
((match-two v (and) g+s (sk ...) fk i) (sk ... i))
((match-two v (and p q ...) g+s sk fk i)
(match-one v p g+s (match-one v (and q ...) g+s sk fk) fk i))
((match-two v (or) g+s sk fk i) fk)
((match-two v (or p) . x)
(match-one v p . x))
((match-two v (or p ...) g+s sk fk i)
(match-extract-vars (or p ...) (match-gen-or v (p ...) g+s sk fk i) i ()))
((match-two v (not p) g+s (sk ...) fk i)
(match-one v p g+s (match-drop-ids fk) (sk ... i) i))
((match-two v (get! getter) (g s) (sk ...) fk i)
(let ((getter (lambda () g))) (sk ... i)))
((match-two v (set! setter) (g (s ...)) (sk ...) fk i)
(let ((setter (lambda (x) (s ... x)))) (sk ... i)))
((match-two v (? pred . p) g+s sk fk i)
(if (pred v) (match-one v (and . p) g+s sk fk i) fk))
((match-two v (= proc p) . x)
(let ((w (proc v))) (match-one w p . x)))
((match-two v (p ___ . r) g+s sk fk i)
(match-extract-vars p (match-gen-ellipsis v p r g+s sk fk i) i ()))
((match-two v (p) g+s sk fk i)
(if (and (pair? v) (null? (cdr v)))
(let ((w (car v)))
(match-one w p ((car v) (set-car! v)) sk fk i))
fk))
((match-two v (p *** q) g+s sk fk i)
(match-extract-vars p (match-gen-search v p q g+s sk fk i) i ()))
((match-two v (p *** . q) g+s sk fk i)
(match-syntax-error "invalid use of ***" (p *** . q)))
((match-two v (p ..1) g+s sk fk i)
(if (pair? v)
(match-one v (p ___) g+s sk fk i)
fk))
((match-two v ($ rec p ...) g+s sk fk i)
(if (is-a? v rec)
(match-record-refs v rec 0 (p ...) g+s sk fk i)
fk))
((match-two v (p . q) g+s sk fk i)
(if (pair? v)
(let ((w (car v)) (x (cdr v)))
(match-one w p ((car v) (set-car! v))
(match-one x q ((cdr v) (set-cdr! v)) sk fk)
fk
i))
fk))
((match-two v #(p ...) g+s . x)
(match-vector v 0 () (p ...) . x))
((match-two v _ g+s (sk ...) fk i) (sk ... i))
;; Not a pair or vector or special literal, test to see if it's a
;; new symbol, in which case we just bind it, or if it's an
;; already bound symbol or some other literal, in which case we
;; compare it with EQUAL?.
((match-two v x g+s (sk ...) fk (id ...))
(let-syntax
((new-sym?
(syntax-rules (id ...)
((new-sym? x sk2 fk2) sk2)
((new-sym? y sk2 fk2) fk2))))
(new-sym? random-sym-to-match
(let ((x v)) (sk ... (id ... x)))
(if (equal? v x) (sk ... (id ...)) fk))))
))
;; QUASIQUOTE patterns
(define-syntax match-quasiquote
(syntax-rules (unquote unquote-splicing quasiquote)
((_ v (unquote p) g+s sk fk i)
(match-one v p g+s sk fk i))
((_ v ((unquote-splicing p) . rest) g+s sk fk i)
(if (pair? v)
(match-one v
(p . tmp)
(match-quasiquote tmp rest g+s sk fk)
fk
i)
fk))
((_ v (quasiquote p) g+s sk fk i . depth)
(match-quasiquote v p g+s sk fk i #f . depth))
((_ v (unquote p) g+s sk fk i x . depth)
(match-quasiquote v p g+s sk fk i . depth))
((_ v (unquote-splicing p) g+s sk fk i x . depth)
(match-quasiquote v p g+s sk fk i . depth))
((_ v (p . q) g+s sk fk i . depth)
(if (pair? v)
(let ((w (car v)) (x (cdr v)))
(match-quasiquote
w p g+s
(match-quasiquote-step x q g+s sk fk depth)
fk i . depth))
fk))
((_ v #(elt ...) g+s sk fk i . depth)
(if (vector? v)
(let ((ls (vector->list v)))
(match-quasiquote ls (elt ...) g+s sk fk i . depth))
fk))
((_ v x g+s sk fk i . depth)
(match-one v 'x g+s sk fk i))))
(define-syntax match-quasiquote-step
(syntax-rules ()
((match-quasiquote-step x q g+s sk fk depth i)
(match-quasiquote x q g+s sk fk i . depth))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Utilities
;; Takes two values and just expands into the first.
(define-syntax match-drop-ids
(syntax-rules ()
((_ expr ids ...) expr)))
(define-syntax match-tuck-ids
(syntax-rules ()
((_ (letish args (expr ...)) ids ...)
(letish args (expr ... ids ...)))))
(define-syntax match-drop-first-arg
(syntax-rules ()
((_ arg expr) expr)))
;; To expand an OR group we try each clause in succession, passing the
;; first that succeeds to the success continuation. On failure for
;; any clause, we just try the next clause, finally resorting to the
;; failure continuation fk if all clauses fail. The only trick is
;; that we want to unify the identifiers, so that the success
;; continuation can refer to a variable from any of the OR clauses.
(define-syntax match-gen-or
(syntax-rules ()
((_ v p g+s (sk ...) fk (i ...) ((id id-ls) ...))
(let ((sk2 (lambda (id ...) (sk ... (i ... id ...)))))
(match-gen-or-step v p g+s (match-drop-ids (sk2 id ...)) fk (i ...))))))
(define-syntax match-gen-or-step
(syntax-rules ()
((_ v () g+s sk fk . x)
;; no OR clauses, call the failure continuation
fk)
((_ v (p) . x)
;; last (or only) OR clause, just expand normally
(match-one v p . x))
((_ v (p . q) g+s sk fk i)
;; match one and try the remaining on failure
(let ((fk2 (lambda () (match-gen-or-step v q g+s sk fk i))))
(match-one v p g+s sk (fk2) i)))
))
;; We match a pattern (p ...) by matching the pattern p in a loop on
;; each element of the variable, accumulating the bound ids into lists.
;; Look at the body of the simple case - it's just a named let loop,
;; matching each element in turn to the same pattern. The only trick
;; is that we want to keep track of the lists of each extracted id, so
;; when the loop recurses we cons the ids onto their respective list
;; variables, and on success we bind the ids (what the user input and
;; expects to see in the success body) to the reversed accumulated
;; list IDs.
(define-syntax match-gen-ellipsis
(syntax-rules ()
((_ v p () g+s (sk ...) fk i ((id id-ls) ...))
(match-check-identifier p
;; simplest case equivalent to (p ...), just bind the list
(let ((w v))
(if (list? w)
(match-one w p g+s (sk ...) fk i)
fk))
;; simple case, match all elements of the list
(let loop ((ls v) (id-ls '()) ...)
(cond
((null? ls)
(let ((id (reverse id-ls)) ...) (sk ... i)))
((pair? ls)
(let ((w (car ls)))
(match-one w p ((car ls) (set-car! ls))
(match-drop-ids (loop (cdr ls) (cons id id-ls) ...))
fk i)))
(else
fk)))))
((_ v p r g+s sk fk (i ...) ((id id-ls) ...))
(match-verify-no-ellipsis
r
(match-bound-identifier-memv
p
(i ...)
;; p is bound, match the list up to the known length, then
;; match the trailing patterns
(let loop ((ls v) (expect p))
(cond
((null? expect)
(match-one ls r (#f #f) sk fk (i ...)))
((pair? ls)
(let ((w (car ls))
(e (car expect)))
(if (equal? (car ls) (car expect))
(match-drop-ids (loop (cdr ls) (cdr expect)))
fk)))
(else
fk)))
;; general case, trailing patterns to match, keep track of the
;; remaining list length so we don't need any backtracking
(let* ((tail-len (length 'r))
(ls v)
(len (and (list? ls) (length ls))))
(if (or (not len) (< len tail-len))
fk
(let loop ((ls ls) (n len) (id-ls '()) ...)
(cond
((= n tail-len)
(let ((id (reverse id-ls)) ...)
(match-one ls r (#f #f) sk fk (i ... id ...))))
((pair? ls)
(let ((w (car ls)))
(match-one w p ((car ls) (set-car! ls))
(match-drop-ids
(loop (cdr ls) (- n 1) (cons id id-ls) ...))
fk
(i ...))))
(else
fk))))))))))
;; This is just a safety check. Although unlike syntax-rules we allow
;; trailing patterns after an ellipsis, we explicitly disable multiple
;; ellipses at the same level. This is because in the general case
;; such patterns are exponential in the number of ellipses, and we
;; don't want to make it easy to construct very expensive operations
;; with simple looking patterns. For example, it would be O(n^2) for
;; patterns like (a ... b ...) because we must consider every trailing
;; element for every possible break for the leading "a ...".
(define-syntax match-verify-no-ellipsis
(syntax-rules ()
((_ (x . y) sk)
(match-check-ellipsis
x
(match-syntax-error
"multiple ellipsis patterns not allowed at same level")
(match-verify-no-ellipsis y sk)))
((_ () sk)
sk)
((_ x sk)
(match-syntax-error "dotted tail not allowed after ellipsis" x))))
;; To implement the tree search, we use two recursive procedures. TRY
;; attempts to match Y once, and on success it calls the normal SK on
;; the accumulated list ids as in MATCH-GEN-ELLIPSIS. On failure, we
;; call NEXT which first checks if the current value is a list
;; beginning with X, then calls TRY on each remaining element of the
;; list. Since TRY will recursively call NEXT again on failure, this
;; effects a full depth-first search.
;;
;; The failure continuation throughout is a jump to the next step in
;; the tree search, initialized with the original failure continuation
;; FK.
(define-syntax match-gen-search
(syntax-rules ()
((match-gen-search v p q g+s sk fk i ((id id-ls) ...))
(letrec ((try (lambda (w fail id-ls ...)
(match-one w q g+s
(match-tuck-ids
(let ((id (reverse id-ls)) ...)
sk))
(next w fail id-ls ...) i)))
(next (lambda (w fail id-ls ...)
(if (not (pair? w))
(fail)
(let ((u (car w)))
(match-one
u p ((car w) (set-car! w))
(match-drop-ids
;; accumulate the head variables from
;; the p pattern, and loop over the tail
(let ((id-ls (cons id id-ls)) ...)
(let lp ((ls (cdr w)))
(if (pair? ls)
(try (car ls)
(lambda () (lp (cdr ls)))
id-ls ...)
(fail)))))
(fail) i))))))
;; the initial id-ls binding here is a dummy to get the right
;; number of '()s
(let ((id-ls '()) ...)
(try v (lambda () fk) id-ls ...))))))
;; Vector patterns are just more of the same, with the slight
;; exception that we pass around the current vector index being
;; matched.
(define-syntax match-vector
(syntax-rules (___)
((_ v n pats (p q) . x)
(match-check-ellipsis q
(match-gen-vector-ellipsis v n pats p . x)
(match-vector-two v n pats (p q) . x)))
((_ v n pats (p ___) sk fk i)
(match-gen-vector-ellipsis v n pats p sk fk i))
((_ . x)
(match-vector-two . x))))
;; Check the exact vector length, then check each element in turn.
(define-syntax match-vector-two
(syntax-rules ()
((_ v n ((pat index) ...) () sk fk i)
(if (vector? v)
(let ((len (vector-length v)))
(if (= len n)
(match-vector-step v ((pat index) ...) sk fk i)
fk))
fk))
((_ v n (pats ...) (p . q) . x)
(match-vector v (+ n 1) (pats ... (p n)) q . x))))
(define-syntax match-vector-step
(syntax-rules ()
((_ v () (sk ...) fk i) (sk ... i))
((_ v ((pat index) . rest) sk fk i)
(let ((w (vector-ref v index)))
(match-one w pat ((vector-ref v index) (vector-set! v index))
(match-vector-step v rest sk fk)
fk i)))))
;; With a vector ellipsis pattern we first check to see if the vector
;; length is at least the required length.
(define-syntax match-gen-vector-ellipsis
(syntax-rules ()
((_ v n ((pat index) ...) p sk fk i)
(if (vector? v)
(let ((len (vector-length v)))
(if (>= len n)
(match-vector-step v ((pat index) ...)
(match-vector-tail v p n len sk fk)
fk i)
fk))
fk))))
(define-syntax match-vector-tail
(syntax-rules ()
((_ v p n len sk fk i)
(match-extract-vars p (match-vector-tail-two v p n len sk fk i) i ()))))
(define-syntax match-vector-tail-two
(syntax-rules ()
((_ v p n len (sk ...) fk i ((id id-ls) ...))
(let loop ((j n) (id-ls '()) ...)
(if (>= j len)
(let ((id (reverse id-ls)) ...) (sk ... i))
(let ((w (vector-ref v j)))
(match-one w p ((vector-ref v j) (vector-set! v j))
(match-drop-ids (loop (+ j 1) (cons id id-ls) ...))
fk i)))))))
(define-syntax match-record-refs
(syntax-rules ()
((_ v rec n (p . q) g+s sk fk i)
(let ((w (slot-ref rec v n)))
(match-one w p ((slot-ref rec v n) (slot-set! rec v n))
(match-record-refs v rec (+ n 1) q g+s sk fk) fk i)))
((_ v rec n () g+s (sk ...) fk i)
(sk ... i))))
;; Extract all identifiers in a pattern. A little more complicated
;; than just looking for symbols, we need to ignore special keywords
;; and non-pattern forms (such as the predicate expression in ?
;; patterns), and also ignore previously bound identifiers.
;;
;; Calls the continuation with all new vars as a list of the form
;; ((orig-var tmp-name) ...), where tmp-name can be used to uniquely
;; pair with the original variable (e.g. it's used in the ellipsis
;; generation for list variables).
;;
;; (match-extract-vars pattern continuation (ids ...) (new-vars ...))
(define-syntax match-extract-vars
(syntax-rules (_ ___ ..1 *** ? $ = quote quasiquote and or not get! set!)
((match-extract-vars (? pred . p) . x)
(match-extract-vars p . x))
((match-extract-vars ($ rec . p) . x)
(match-extract-vars p . x))
((match-extract-vars (= proc p) . x)
(match-extract-vars p . x))
((match-extract-vars (quote x) (k ...) i v)
(k ... v))
((match-extract-vars (quasiquote x) k i v)
(match-extract-quasiquote-vars x k i v (#t)))
((match-extract-vars (and . p) . x)
(match-extract-vars p . x))
((match-extract-vars (or . p) . x)
(match-extract-vars p . x))
((match-extract-vars (not . p) . x)
(match-extract-vars p . x))
;; A non-keyword pair, expand the CAR with a continuation to
;; expand the CDR.
((match-extract-vars (p q . r) k i v)
(match-check-ellipsis
q
(match-extract-vars (p . r) k i v)
(match-extract-vars p (match-extract-vars-step (q . r) k i v) i ())))
((match-extract-vars (p . q) k i v)
(match-extract-vars p (match-extract-vars-step q k i v) i ()))
((match-extract-vars #(p ...) . x)
(match-extract-vars (p ...) . x))
((match-extract-vars _ (k ...) i v) (k ... v))
((match-extract-vars ___ (k ...) i v) (k ... v))
((match-extract-vars *** (k ...) i v) (k ... v))
((match-extract-vars ..1 (k ...) i v) (k ... v))
;; This is the main part, the only place where we might add a new
;; var if it's an unbound symbol.
((match-extract-vars p (k ...) (i ...) v)
(let-syntax
((new-sym?
(syntax-rules (i ...)
((new-sym? p sk fk) sk)
((new-sym? any sk fk) fk))))
(new-sym? random-sym-to-match
(k ... ((p p-ls) . v))
(k ... v))))
))
;; Stepper used in the above so it can expand the CAR and CDR
;; separately.
(define-syntax match-extract-vars-step
(syntax-rules ()
((_ p k i v ((v2 v2-ls) ...))
(match-extract-vars p k (v2 ... . i) ((v2 v2-ls) ... . v)))
))
(define-syntax match-extract-quasiquote-vars
(syntax-rules (quasiquote unquote unquote-splicing)
((match-extract-quasiquote-vars (quasiquote x) k i v d)
(match-extract-quasiquote-vars x k i v (#t . d)))
((match-extract-quasiquote-vars (unquote-splicing x) k i v d)
(match-extract-quasiquote-vars (unquote x) k i v d))
((match-extract-quasiquote-vars (unquote x) k i v (#t))
(match-extract-vars x k i v))
((match-extract-quasiquote-vars (unquote x) k i v (#t . d))
(match-extract-quasiquote-vars x k i v d))
((match-extract-quasiquote-vars (x . y) k i v d)
(match-extract-quasiquote-vars
x
(match-extract-quasiquote-vars-step y k i v d) i () d))
((match-extract-quasiquote-vars #(x ...) k i v d)
(match-extract-quasiquote-vars (x ...) k i v d))
((match-extract-quasiquote-vars x (k ...) i v d)
(k ... v))
))
(define-syntax match-extract-quasiquote-vars-step
(syntax-rules ()
((_ x k i v d ((v2 v2-ls) ...))
(match-extract-quasiquote-vars x k (v2 ... . i) ((v2 v2-ls) ... . v) d))
))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Gimme some sugar baby.
;;> Shortcut for @scheme{lambda} + @scheme{match}. Creates a
;;> procedure of one argument, and matches that argument against each
;;> clause.
(define-syntax match-lambda
(syntax-rules ()
((_ (pattern . body) ...) (lambda (expr) (match expr (pattern . body) ...)))))
;;> Similar to @scheme{match-lambda}. Creates a procedure of any
;;> number of arguments, and matches the argument list against each
;;> clause.
(define-syntax match-lambda*
(syntax-rules ()
((_ (pattern . body) ...) (lambda expr (match expr (pattern . body) ...)))))
;;> Matches each var to the corresponding expression, and evaluates
;;> the body with all match variables in scope. Raises an error if
;;> any of the expressions fail to match. Syntax analogous to named
;;> let can also be used for recursive functions which match on their
;;> arguments as in @scheme{match-lambda*}.
(define-syntax match-let
(syntax-rules ()
((_ ((var value) ...) . body)
(match-let/helper let () () ((var value) ...) . body))
((_ loop ((var init) ...) . body)
(match-named-let loop () ((var init) ...) . body))))
;;> Similar to @scheme{match-let}, but analogously to @scheme{letrec}
;;> matches and binds the variables with all match variables in scope.
(define-syntax match-letrec
(syntax-rules ()
((_ ((var value) ...) . body)
(match-let/helper letrec () () ((var value) ...) . body))))
(define-syntax match-let/helper
(syntax-rules ()
((_ let ((var expr) ...) () () . body)
(let ((var expr) ...) . body))
((_ let ((var expr) ...) ((pat tmp) ...) () . body)
(let ((var expr) ...)
(match-let* ((pat tmp) ...)
. body)))
((_ let (v ...) (p ...) (((a . b) expr) . rest) . body)
(match-let/helper
let (v ... (tmp expr)) (p ... ((a . b) tmp)) rest . body))
((_ let (v ...) (p ...) ((#(a ...) expr) . rest) . body)
(match-let/helper
let (v ... (tmp expr)) (p ... (#(a ...) tmp)) rest . body))
((_ let (v ...) (p ...) ((a expr) . rest) . body)
(match-let/helper let (v ... (a expr)) (p ...) rest . body))))
(define-syntax match-named-let
(syntax-rules ()
((_ loop ((pat expr var) ...) () . body)
(let loop ((var expr) ...)
(match-let ((pat var) ...)
. body)))
((_ loop (v ...) ((pat expr) . rest) . body)
(match-named-let loop (v ... (pat expr tmp)) rest . body))))
;;> @subsubsubsection{@rawcode{(match-let* ((var value) ...) body ...)}}
;;> Similar to @scheme{match-let}, but analogously to @scheme{let*}
;;> matches and binds the variables in sequence, with preceding match
;;> variables in scope.
(define-syntax match-let*
(syntax-rules ()
((_ () . body)
(let () . body))
((_ ((pat expr) . rest) . body)
(match expr (pat (match-let* rest . body))))))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Otherwise COND-EXPANDed bits.
;; This *should* work, but doesn't :(
;; (define-syntax match-check-ellipsis
;; (syntax-rules (...)
;; ((_ ... sk fk) sk)
;; ((_ x sk fk) fk)))
;; This is a little more complicated, and introduces a new let-syntax,
;; but should work portably in any R[56]RS Scheme. Taylor Campbell
;; originally came up with the idea.
(define-syntax match-check-ellipsis
(syntax-rules ()
;; these two aren't necessary but provide fast-case failures
((match-check-ellipsis (a . b) success-k failure-k) failure-k)
((match-check-ellipsis #(a ...) success-k failure-k) failure-k)
;; matching an atom
((match-check-ellipsis id success-k failure-k)
(let-syntax ((ellipsis? (syntax-rules ()
;; iff `id' is `...' here then this will
;; match a list of any length
((ellipsis? (foo id) sk fk) sk)
((ellipsis? other sk fk) fk))))
;; this list of three elements will only match the (foo id) list
;; above if `id' is `...'
(ellipsis? (a b c) success-k failure-k)))))
;; This is portable but can be more efficient with non-portable
;; extensions. This trick was originally discovered by Oleg Kiselyov.
(define-syntax match-check-identifier
(syntax-rules ()
;; fast-case failures, lists and vectors are not identifiers
((_ (x . y) success-k failure-k) failure-k)
((_ #(x ...) success-k failure-k) failure-k)
;; x is an atom
((_ x success-k failure-k)
(let-syntax
((sym?
(syntax-rules ()
;; if the symbol `abracadabra' matches x, then x is a
;; symbol
((sym? x sk fk) sk)
;; otherwise x is a non-symbol datum
((sym? y sk fk) fk))))
(sym? abracadabra success-k failure-k)))))
(define-syntax match-bound-identifier-memv
(syntax-rules ()
((match-bound-identifier-memv a (id ...) sk fk)
(match-check-identifier
a
(let-syntax
((memv?
(syntax-rules (id ...)
((memv? a sk2 fk2) fk2)
((memv? anything-else sk2 fk2) sk2))))
(memv? random-sym-to-match sk fk))
fk))))
|