Datasets:

License:
File size: 45,445 Bytes
3dcad1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
;;; Continuation-passing style (CPS) intermediate language (IL)

;; Copyright (C) 2015-2021, 2023 Free Software Foundation, Inc.

;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

;;; Commentary:
;;;
;;; Some arithmetic operations have multiple implementations: one
;;; polymorphic implementation that works on all kinds of numbers, like
;;; `add', and one or more specialized variants for unboxed numbers of
;;; some kind, like `fadd'.  If we can replace a polymorphic
;;; implementation with a monomorphic implementation, we should do so --
;;; it will speed up the runtime and avoid boxing numbers.
;;;
;;; A polymorphic operation can be specialized if its result is
;;; specialized.  To specialize an operation, we manually unbox its
;;; arguments and box its return value, relying on CSE to remove boxes
;;; where possible.
;;;
;;; We also want to specialize phi variables.  A phi variable is bound
;;; by a continuation with more than one predecessor.  For example in
;;; this code:
;;;
;;;   (+ 1.0 (if a 2.0 3.0))
;;;
;;; We want to specialize this code to:
;;;
;;;   (f64->scm (fl+ (scm->f64 1.0) (if a (scm->f64 2.0) (scm->f64 3.0))))
;;;
;;; Hopefully later passes will remove the conversions.  In any case,
;;; specialization will likely result in a lower heap-number allocation
;;; rate, and that cost is higher than the extra opcodes to do
;;; conversions.  This transformation is especially important for loop
;;; variables.
;;;
;;; Code:

(define-module (language cps specialize-numbers)
  #:use-module (ice-9 match)
  #:use-module (srfi srfi-1)
  #:use-module (srfi srfi-11)
  #:use-module (system base target)
  #:use-module (language cps)
  #:use-module (language cps intmap)
  #:use-module (language cps intset)
  #:use-module (language cps renumber)
  #:use-module (language cps types)
  #:use-module (language cps utils)
  #:use-module (language cps with-cps)
  #:export (specialize-numbers))

;; A note on how to represent unboxing and boxing operations.  We want
;; to avoid diamond control flows here, like:
;;
;;   s64 x = (if (fixnum? x*) (untag-fixnum x*) (untag-bignum x*))
;;
;; The reason is that the strategy that this specialize-numbers pass
;; uses to unbox values is to reify unboxing and boxing conversions
;; around every newly reified unboxed operation; it then relies heavily
;; on DCE and CSE to remove redundant conversions.  However DCE and CSE
;; really work best when there's a linear control flow, so instead we
;; use a mid-level primcall:
;;
;;   (define (scm->s64 x*)
;;     (if (fixnum? x*) (untag-fixnum x*) (untag-bignum x*)))
;;
;; Then, unless we know that we can reduce directly to `untag-fixnum`,
;; we do:
;;
;;   s64 x = (scm->s64 x*)
;;
;; That way we keep DCE and CSE happy.  We can inline scm->s64 at the
;; backend if we choose to (though we might choose to not do so, for
;; code size reasons).

(define (simple-primcall cps k src op arg)
  (with-cps cps
    (build-term
      ($continue k src
        ($primcall op #f (arg))))))

(define-syntax-rule (define-simple-primcall name)
  (define (name cps k src arg) (simple-primcall cps k src 'name arg)))

(define-simple-primcall untag-fixnum)
(define-simple-primcall scm->s64)
(define-simple-primcall tag-fixnum)
(define-simple-primcall s64->scm)
(define-simple-primcall tag-fixnum/unlikely)
(define-simple-primcall s64->scm/unlikely)

(define (fixnum->u64 cps k src fx)
  (with-cps cps
    (letv s64)
    (letk kcvt ($kargs ('s64) (s64)
                 ($continue k src ($primcall 's64->u64 #f (s64)))))
    ($ (untag-fixnum kcvt src fx))))
(define (u64->fixnum cps k src u64)
  (with-cps cps
    (letv s64)
    (let$ tag-body (tag-fixnum k src s64))
    (letk ks64 ($kargs ('s64) (s64) ,tag-body))
    (build-term
      ($continue ks64 src ($primcall 'u64->s64 #f (u64))))))
(define-simple-primcall scm->u64)
(define-simple-primcall scm->u64/truncate)
(define-simple-primcall u64->scm)
(define-simple-primcall u64->scm/unlikely)

(define-simple-primcall scm->f64)
(define-simple-primcall f64->scm)

(define (fixnum->f64 cps k src fx)
  (with-cps cps
    (letv s64)
    (letk kcvt ($kargs ('s64) (s64)
                 ($continue k src ($primcall 's64->f64 #f (s64)))))
    ($ (untag-fixnum kcvt src fx))))

(define (specialize-unop cps k src op param a unbox-a box-result)
  (with-cps cps
    (letv a* result)
    (let$ box-result-body (box-result k src result))
    (letk kbox ($kargs ('result) (result) ,box-result-body))
    (letk kop ($kargs ('a) (a*)
                ($continue kbox src ($primcall op param (a*)))))
    ($ (unbox-a kop src a))))

(define* (specialize-binop cps k src op a b
                           unbox-a unbox-b box-result)
  (with-cps cps
    (letv a* b* result)
    (let$ box-result-body (box-result k src result))
    (letk kbox ($kargs ('result) (result) ,box-result-body))
    (letk kop ($kargs ('b) (b*)
                ($continue kbox src ($primcall op #f (a* b*)))))
    (let$ unbox-b-body (unbox-b kop src b))
    (letk kunbox-b ($kargs ('a) (a*) ,unbox-b-body))
    ($ (unbox-a kunbox-b src a))))

(define (specialize-comparison cps kf kt src op a b unbox-a unbox-b)
  (with-cps cps
    (letv a* b*)
    (letk kop ($kargs ('b) (b*) ($branch kf kt src op #f (a* b*))))
    (let$ unbox-b-body (unbox-b kop src b))
    (letk kunbox-b ($kargs ('a) (a*) ,unbox-b-body))
    ($ (unbox-a kunbox-b src a))))

(define* (specialize-comparison/immediate cps kf kt src op a imm
                                          unbox-a)
  (with-cps cps
    (letv ia)
    (letk kop ($kargs ('ia) (ia) ($branch kf kt src op imm (ia))))
    ($ (unbox-a kop src a))))

(define (specialize-comparison/s64-integer cps kf kt src op a-s64 b-int
                                           unbox-a rebox-a)
  (let ((s64-op (match op ('= 's64-=) ('< 's64-<))))
    (with-cps cps
      (letv a b sunk)
      (letk kheap ($kargs ('sunk) (sunk)
                    ($branch kf kt src op #f (sunk b-int))))
      ;; Re-box the variable.  FIXME: currently we use a specially
      ;; marked s64->scm to avoid CSE from hoisting the allocation
      ;; again.  Instead we should just use a-s64 directly and implement
      ;; an allocation sinking pass that should handle this..
      (let$ rebox-a-body (rebox-a kheap src a))
      (letk kretag ($kargs () () ,rebox-a-body))
      (letk kb ($kargs ('b) (b) ($branch kf kt src s64-op #f (a b))))
      (letk kfix ($kargs () ()
                   ($continue kb src
                     ($primcall 'untag-fixnum #f (b-int)))))
      (letk ka ($kargs ('a) (a)
                 ($branch kretag kfix src 'fixnum? #f (b-int))))
      ($ (unbox-a ka src a-s64)))))

(define (specialize-comparison/integer-s64 cps kf kt src op a-int b-s64
                                           unbox-b rebox-b)
  (match op
    ('= (specialize-comparison/s64-integer cps kf kt src op b-s64 a-int
                                           unbox-b rebox-b))
    ('<
     (with-cps cps
       (letv a b sunk)
       (letk kheap ($kargs ('sunk) (sunk)
                     ($branch kf kt src '< #f (a-int sunk))))
       ;; FIXME: We should just use b-s64 directly and implement an
       ;; allocation sinking pass so that the box op that creates b-64
       ;; should float down here.  Instead, for now we just rebox the
       ;; variable, relying on the reboxing op not being available for
       ;; CSE.
       (let$ rebox-b-body (rebox-b kheap src b))
       (letk kretag ($kargs () () ,rebox-b-body))
       (letk ka ($kargs ('a) (a) ($branch kf kt src 's64-< #f (a b))))
       (letk kfix ($kargs () ()
                    ($continue ka src
                      ($primcall 'untag-fixnum #f (a-int)))))
       (letk kb ($kargs ('b) (b)
                  ($branch kretag kfix src 'fixnum? #f (a-int))))
       ($ (unbox-b kb src b-s64))))))

(define (specialize-comparison/immediate-s64-integer cps kf kt src op a b-int
                                                     compare-integers)
  (with-cps cps
    (letv b sunk)
    (letk kheap ($kargs ('sunk) (sunk) ,(compare-integers kf kt src sunk)))
    ;; Re-box the variable.  FIXME: currently we use a specially marked
    ;; load-const to avoid CSE from hoisting the constant.  Instead we
    ;; should just use a $const directly and implement an allocation
    ;; sinking pass that should handle this..
    (letk kretag ($kargs () ()
                   ($continue kheap src
                     ($primcall 'load-const/unlikely a ()))))
    (letk kb ($kargs ('b) (b)
               ($branch kf kt src op a (b))))
    (letk kfix ($kargs () ()
                 ($continue kb src
                   ($primcall 'untag-fixnum #f (b-int)))))
    (build-term ($branch kretag kfix src 'fixnum? #f (b-int)))))

;; compute-significant-bits solves a flow equation to compute a
;; least-fixed-point over the lattice VAR -> BITMASK, where X > Y if
;; X[VAR] > Y[VAR] for any VAR.  Adjoining VAR -> BITMASK to X results
;; in a distinct value X' (in the sense of eq?) if and only if X' > X.
;; This property is used in compute-significant-bits to know when to
;; stop iterating, and is ensured by intmaps, provided that the `meet'
;; function passed to `intmap-add' and so on also preserves this
;; property.
;;
;; The meet function for adding bits is `sigbits-union'; the first
;; argument is the existing value, and the second is the bitmask to
;; adjoin.  For fixnums, BITMASK' will indeed be distinct if and only if
;; bits were added.  However for bignums it's possible that (= X' X) but
;; not (eq? X' X).  This preserve-eq? helper does the impedance matching
;; for bignums, returning the first value if the values are =.
(define (preserve-eq? x x*)
  (if (= x x*)
      x
      x*))

(define (sigbits-union x y)
  (and x y
       (preserve-eq? x (logior x y))))

(define (sigbits-intersect x y)
  (cond
   ((not x) y)
   ((not y) x)
   (else (logand x y))))

(define (sigbits-intersect3 a b c)
  (sigbits-intersect a (sigbits-intersect b c)))

(define (next-power-of-two n)
  (let lp ((out 1))
    (if (< n out)
        out
        (lp (ash out 1)))))

(define (range->sigbits min max)
  (cond
   ((or (< min 0) (> max #xffffFFFFffffFFFF)) #f)
   ((eqv? min max) min)
   (else (1- (next-power-of-two max)))))

(define (inferred-sigbits types label var)
  (call-with-values (lambda () (lookup-pre-type types label var))
    (lambda (type min max)
      (and (type<=? type (logior &exact-integer &u64 &s64))
           (range->sigbits min max)))))

(define significant-bits-handlers (make-hash-table))
(define-syntax-rule (define-significant-bits-handler
                      ((primop label types out def ...) param arg ...)
                      body ...)
  (hashq-set! significant-bits-handlers 'primop
              (lambda (label types out param args defs)
                (match args ((arg ...) (match defs ((def ...) body ...)))))))

(define-significant-bits-handler ((logand label types out res) param a b)
  (let ((sigbits (sigbits-intersect3 (inferred-sigbits types label a)
                                     (inferred-sigbits types label b)
                                     (intmap-ref out res (lambda (_) 0)))))
    (intmap-add (intmap-add out a sigbits sigbits-union)
                b sigbits sigbits-union)))
(define-significant-bits-handler ((logand/immediate label types out res) param a)
  (let ((sigbits (sigbits-intersect3 (inferred-sigbits types label a)
                                     param
                                     (intmap-ref out res (lambda (_) 0)))))
    (intmap-add out a sigbits sigbits-union)))

(define (significant-bits-handler primop)
  (hashq-ref significant-bits-handlers primop))

(define (compute-significant-bits cps types kfun)
  "Given the locally inferred types @var{types}, compute a map of VAR ->
BITS indicating the significant bits needed for a variable.  BITS may be
#f to indicate all bits, or a non-negative integer indicating a bitmask."
  (let ((preds (invert-graph (compute-successors cps kfun))))
    (let lp ((worklist (intmap-keys preds)) (visited empty-intset)
             (out empty-intmap))
      (match (intset-prev worklist)
        (#f out)
        (label
         (let ((worklist (intset-remove worklist label))
               (visited* (intset-add visited label)))
           (define (continue out*)
             (if (and (eq? out out*) (eq? visited visited*))
                 (lp worklist visited out)
                 (lp (intset-union worklist (intmap-ref preds label))
                     visited* out*)))
           (define (add-def out var)
             (intmap-add out var 0 sigbits-union))
           (define (add-defs out vars)
             (match vars
               (() out)
               ((var . vars) (add-defs (add-def out var) vars))))
           (define (add-unknown-use out var)
             (intmap-add out var (inferred-sigbits types label var)
                         sigbits-union))
           (define (add-unknown-uses out vars)
             (match vars
               (() out)
               ((var . vars)
                (add-unknown-uses (add-unknown-use out var) vars))))
           (continue
            (match (intmap-ref cps label)
              (($ $kfun src meta self)
               (if self (add-def out self) out))
              (($ $kargs names vars term)
               (let ((out (add-defs out vars)))
                 (match term
                   (($ $continue k src exp)
                    (match exp
                      ((or ($ $const) ($ $prim) ($ $fun) ($ $const-fun)
                           ($ $code) ($ $rec))
                       ;; No uses, so no info added to sigbits.
                       out)
                      (($ $values args)
                       (match (intmap-ref cps k)
                         (($ $kargs _ vars)
                          (if (intset-ref visited k)
                              (fold (lambda (arg var out)
                                      (intmap-add out arg (intmap-ref out var)
                                                  sigbits-union))
                                    out args vars)
                              out))
                         (($ $ktail)
                          (add-unknown-uses out args))))
                      (($ $call proc args)
                       (add-unknown-use (add-unknown-uses out args) proc))
                      (($ $callk label proc args)
                       (let ((out (add-unknown-uses out args)))
                         (if proc
                             (add-unknown-use out proc)
                             out)))
                      (($ $calli args callee)
                       (add-unknown-uses (add-unknown-use out callee) args))
                      (($ $primcall name param args)
                       (let ((h (significant-bits-handler name)))
                         (if h
                             (match (intmap-ref cps k)
                               (($ $kargs _ defs)
                                (h label types out param args defs)))
                             (add-unknown-uses out args))))))
                   (($ $branch kf kt src op param args)
                    (add-unknown-uses out args))
                   (($ $switch kf kt src arg)
                    (add-unknown-use out arg))
                   (($ $prompt k kh src escape? tag)
                    (add-unknown-use out tag))
                   (($ $throw src op param args)
                    (add-unknown-uses out args)))))
              (_ out)))))))))

(define (specialize-operations cps)
  (define (u6-parameter? param)
    (<= 0 param 63))
  (define (s64-parameter? param)
    (<= (ash -1 63) param (1- (ash 1 63))))
  (define (u64-parameter? param)
    (<= 0 param (1- (ash 1 64))))
  (define (visit-cont label cont cps types sigbits)
    (define (operand-in-range? var &type &min &max)
      (call-with-values (lambda ()
                          (lookup-pre-type types label var))
        (lambda (type min max)
          (and (type<=? type &type) (<= &min min max &max)))))
    (define (u64-operand? var)
      (operand-in-range? var &exact-integer 0 (1- (ash 1 64))))
    (define (u6-operand? var)
      ;; This predicate is only used for the "count" argument to
      ;; rsh/lsh, which is already unboxed to &u64.
      (operand-in-range? var &u64 0 63))
    (define (s64-operand? var)
      (operand-in-range? var &exact-integer (ash -1 63) (1- (ash 1 63))))
    (define (fixnum-operand? var)
      (operand-in-range? var &exact-integer
                         (target-most-negative-fixnum)
                         (target-most-positive-fixnum)))
    (define (exact-integer-operand? var)
      (operand-in-range? var &exact-integer -inf.0 +inf.0))
    (define (all-u64-bits-set? var)
      (operand-in-range? var &exact-integer (1- (ash 1 64)) (1- (ash 1 64))))
    (define (only-fixnum-bits-used? var)
      (let ((bits (intmap-ref sigbits var)))
        (and bits (= bits (logand bits (target-most-positive-fixnum))))))
    (define (fixnum-result? result)
      (or (only-fixnum-bits-used? result)
          (call-with-values
              (lambda ()
                (lookup-post-type types label result 0))
            (lambda (type min max)
              (and (type<=? type &exact-integer)
                   (<= (target-most-negative-fixnum)
                       min max
                       (target-most-positive-fixnum)))))))
    (define (only-u64-bits-used? var)
      (let ((bits (intmap-ref sigbits var)))
        (and bits (= bits (logand bits (1- (ash 1 64)))))))
    (define (u64-result? result)
      (or (only-u64-bits-used? result)
          (call-with-values
              (lambda ()
                (lookup-post-type types label result 0))
            (lambda (type min max)
              (and (type<=? type &exact-integer)
                   (<= 0 min max (1- (ash 1 64))))))))
    (define (s64-result? result)
      (call-with-values
          (lambda ()
            (lookup-post-type types label result 0))
        (lambda (type min max)
          (and (type<=? type &exact-integer)
               (<= (ash -1 63) min max (1- (ash 1 63)))))))
    (define (f64-result? result)
      (call-with-values
          (lambda ()
            (lookup-post-type types label result 0))
        (lambda (type min max)
          (eqv? type &flonum))))
    (define (f64-operands? vara varb)
      (let-values (((typea mina maxa) (lookup-pre-type types label vara))
                   ((typeb minb maxb) (lookup-pre-type types label varb)))
        (and (type<=? (logior typea typeb) &real)
             (or (eqv? typea &flonum)
                 (eqv? typeb &flonum)))))
    (define (constant-arg arg)
      (let-values (((type min max) (lookup-pre-type types label arg)))
        (and (= min max) min)))
    (define (fixnum-range? min max)
      (<= (target-most-negative-fixnum) min max (target-most-positive-fixnum)))
    (define (unbox-u64 arg)
      (if (fixnum-operand? arg) fixnum->u64 scm->u64))
    (define (unbox-u64/truncate arg)
      (cond
       ((fixnum-operand? arg) fixnum->u64)
       ((u64-operand? arg) scm->u64)
       (else scm->u64/truncate)))
    (define (unbox-s64 arg)
      (if (fixnum-operand? arg) untag-fixnum scm->s64))
    (define (rebox-s64 arg)
      (if (fixnum-operand? arg) tag-fixnum/unlikely s64->scm/unlikely))
    (define (unbox-f64 arg)
      ;; Could be more precise here.
      (if (fixnum-operand? arg) fixnum->f64 scm->f64))
    (define (box-s64 result)
      (if (fixnum-result? result) tag-fixnum s64->scm))
    (define (box-u64 result)
      (if (fixnum-result? result) u64->fixnum u64->scm))
    (define (box-f64 result)
      f64->scm)

    (define (specialize-primcall cps k src op param args)
      (match (intmap-ref cps k)
        (($ $kargs (_) (result))
         (match (cons* op result param args)
           (((or 'add 'sub 'mul 'div 'atan2)
             (? f64-result?) #f a b)
            (let ((op (match op
                        ('add 'fadd) ('sub 'fsub) ('mul 'fmul) ('div 'fdiv)
                        ('atan2 'fatan2))))
              (specialize-binop cps k src op a b
                                (unbox-f64 a) (unbox-f64 b) (box-f64 result))))

           (((or 'sqrt 'abs 'floor 'ceiling 'sin 'cos 'tan 'asin 'acos 'atan)
             (? f64-result?) #f a)
            (let ((op (match op
                        ('sqrt 'fsqrt) ('abs 'fabs)
                        ('floor 'ffloor) ('ceiling 'fceiling)
                        ('sin 'fsin) ('cos 'fcos) ('tan 'ftan)
                        ('asin 'fasin) ('acos 'facos) ('atan 'fatan))))
              (specialize-unop cps k src op #f a
                               (unbox-f64 a) (box-f64 result))))

           (((or 'add 'sub 'mul 'logand 'logior 'logxor 'logsub)
             (? u64-result?) #f (? u64-operand? a) (? u64-operand? b))
            (let ((op (match op
                        ('add 'uadd) ('sub 'usub) ('mul 'umul)
                        ('logand 'ulogand) ('logior 'ulogior)
                        ('logxor 'ulogxor) ('logsub 'ulogsub))))
              (specialize-binop cps k src op a b
                                (unbox-u64 a) (unbox-u64 b) (box-u64 result))))

           (((or 'logand 'logior 'logxor 'logsub)
             (? u64-result?) #f (? s64-operand? a) (? s64-operand? b))
            (let ((op (match op
                        ('logand 'ulogand) ('logior 'ulogior)
                        ('logxor 'ulogxor) ('logsub 'ulogsub))))
              (define (unbox-u64* x)
                (let ((unbox-s64 (unbox-s64 x)))
                  (lambda (cps k src x)
                    (with-cps cps
                      (letv s64)
                      (letk ks64 ($kargs ('s64) (s64)
                                         ($continue k src
                                                    ($primcall 's64->u64 #f (s64)))))
                      ($ (unbox-s64 k src x))))))
              (specialize-binop cps k src op a b
                                (unbox-u64* a) (unbox-u64* b) (box-u64 result))))

           (((or 'add 'sub 'mul)
             (? s64-result?) #f (? s64-operand? a) (? s64-operand? b))
            (let ((op (match op
                        ('add 'sadd) ('sub 'ssub) ('mul 'smul))))
              (specialize-binop cps k src op a b
                                (unbox-s64 a) (unbox-s64 b) (box-s64 result))))

           (('sub/immediate
             (? f64-result?) param a)
            (specialize-unop cps k src 'fadd/immediate (- param) a
                             (unbox-f64 a) (box-f64 result)))

           (((or 'add/immediate 'mul/immediate)
             (? f64-result?) param a)
            (let ((op (match op
                        ('add/immediate 'fadd/immediate)
                        ('mul/immediate 'fmul/immediate))))
              (specialize-unop cps k src op param a
                               (unbox-f64 a) (box-f64 result))))

           (((or 'add/immediate 'sub/immediate 'mul/immediate)
             (? u64-result?) (? u64-parameter?) (? u64-operand? a))
            (let ((op (match op
                        ('add/immediate 'uadd/immediate)
                        ('sub/immediate 'usub/immediate)
                        ('mul/immediate 'umul/immediate))))
              (specialize-unop cps k src op param a
                               (unbox-u64 a) (box-u64 result))))

           (('logand/immediate (? u64-result? ) param (? u64-operand? a))
            (specialize-unop cps k src 'ulogand/immediate
                             (logand param (1- (ash 1 64)))
                             a
                             (unbox-u64 a) (box-u64 result)))

           (((or 'add/immediate 'sub/immediate 'mul/immediate)
             (? s64-result?) (? s64-parameter?) (? s64-operand? a))
            (let ((op (match op
                        ('add/immediate 'sadd/immediate)
                        ('sub/immediate 'ssub/immediate)
                        ('mul/immediate 'smul/immediate))))
              (specialize-unop cps k src op param a
                               (unbox-s64 a) (box-s64 result))))

           (((or 'lsh 'rsh)
             (? u64-result?) #f (? u64-operand? a) (? u6-operand? b))
            (let ((op (match op ('lsh 'ulsh) ('rsh 'ursh))))
              (define (pass-u64 cps k src b)
                (with-cps cps
                  (build-term ($continue k src ($values (b))))))
              (specialize-binop cps k src op a b
                                (unbox-u64 a) pass-u64 (box-u64 result))))

           (((or 'lsh 'rsh)
             (? s64-result?) #f (? s64-operand? a) (? u6-operand? b))
            (let ((op (match op ('lsh 'slsh) ('rsh 'srsh))))
              (define (pass-u64 cps k src b)
                (with-cps cps
                  (build-term ($continue k src ($values (b))))))
              (specialize-binop cps k src op a b
                                (unbox-s64 a) pass-u64 (box-s64 result))))

           (((or 'lsh/immediate 'rsh/immediate)
             (? u64-result?) (? u6-parameter?) (? u64-operand? a))
            (let ((op (match op
                        ('lsh/immediate 'ulsh/immediate)
                        ('rsh/immediate 'ursh/immediate))))
              (specialize-unop cps k src op param a
                               (unbox-u64 a) (box-u64 result))))

           (((or 'lsh/immediate 'rsh/immediate)
             (? s64-result?) (? u6-parameter?) (? s64-operand? a))
            (let ((op (match op
                        ('lsh/immediate 'slsh/immediate)
                        ('rsh/immediate 'srsh/immediate))))
              (specialize-unop cps k src op param a
                               (unbox-s64 a) (box-s64 result))))

           (_ (with-cps cps #f))))
        (_ (with-cps cps #f))))

    (define (specialize-branch cps kf kt src op param args)
      (match (cons op args)
        (('<= a b)
         (cond
          ((f64-operands? a b)
           (specialize-comparison cps kf kt src 'f64-<= a b
                                  (unbox-f64 a) (unbox-f64 b)))
          ((and (exact-integer-operand? a) (exact-integer-operand? b))
           ;; If NaN is impossible, reduce (<= a b) to (not (< b a)) and
           ;; try again.
           (specialize-branch cps kt kf src '< param (list b a)))
          (else
           (with-cps cps #f))))
        (((or '< '=) a b)
         (cond
          ((f64-operands? a b)
           (let ((op (match op ('= 'f64-=) ('< 'f64-<))))
             (specialize-comparison cps kf kt src op a b
                                    (unbox-f64 a) (unbox-f64 b))))
          ((and (s64-operand? a) (s64-operand? b))
           (cond
            ((constant-arg a)
             => (lambda (a)
                  (let ((op (match op ('= 's64-imm-=) ('< 'imm-s64-<))))
                    (specialize-comparison/immediate cps kf kt src op b a
                                                     (unbox-s64 b)))))
            ((constant-arg b)
             => (lambda (b)
                  (let ((op (match op ('= 's64-imm-=) ('< 's64-imm-<))))
                    (specialize-comparison/immediate cps kf kt src op a b
                                                     (unbox-s64 a)))))
            (else
             (let ((op (match op ('= 's64-=) ('< 's64-<))))
               (specialize-comparison cps kf kt src op a b
                                      (unbox-s64 a) (unbox-s64 b))))))
          ((and (u64-operand? a) (u64-operand? b))
           (cond
            ((constant-arg a)
             => (lambda (a)
                  (let ((op (match op ('= 'u64-imm-=) ('< 'imm-u64-<))))
                    (specialize-comparison/immediate cps kf kt src op b a
                                                     (unbox-u64 b)))))
            ((constant-arg b)
             => (lambda (b)
                  (let ((op (match op ('= 'u64-imm-=) ('< 'u64-imm-<))))
                    (specialize-comparison/immediate cps kf kt src op a b
                                                     (unbox-u64 a)))))
            (else
             (let ((op (match op ('= 'u64-=) ('< 'u64-<))))
               (specialize-comparison cps kf kt src op a b
                                      (unbox-u64 a) (unbox-u64 b))))))
          ((and (exact-integer-operand? a) (exact-integer-operand? b))
           (cond
            ((s64-operand? a)
             (cond
              ((constant-arg a)
               => (lambda (a)
                    (let ((imm-op (match op ('= 's64-imm-=) ('< 'imm-s64-<))))
                      (specialize-comparison/immediate-s64-integer
                       cps kf kt src imm-op a b
                       (lambda (kf kt src a)
                         (build-term ($branch kf kt src op #f (a b))))))))
              (else
               (specialize-comparison/s64-integer cps kf kt src op a b
                                                  (unbox-s64 a)
                                                  (rebox-s64 a)))))
            ((s64-operand? b)
             (cond
              ((constant-arg b)
               => (lambda (b)
                    (let ((imm-op (match op ('= 's64-imm-=) ('< 's64-imm-<))))
                      (specialize-comparison/immediate-s64-integer
                       cps kf kt src imm-op b a
                       (lambda (kf kt src b)
                         (build-term ($branch kf kt src op #f (a b))))))))
              (else
               (specialize-comparison/integer-s64 cps kf kt src op a b
                                                  (unbox-s64 b)
                                                  (rebox-s64 b)))))
            (else (with-cps cps #f))))
          (else (with-cps cps #f))))
        (_ (with-cps cps #f))))

    (match cont
      (($ $kfun)
       (let* ((types (infer-types cps label))
              (sigbits (compute-significant-bits cps types label)))
         (values cps types sigbits)))

      (($ $kargs names vars ($ $continue k src ($ $primcall op param args)))
       (call-with-values
           (lambda () (specialize-primcall cps k src op param args))
         (lambda (cps term)
           (values (if term
                       (with-cps cps
                         (setk label ($kargs names vars ,term)))
                       cps)
                   types sigbits))))

      (($ $kargs names vars ($ $branch kf kt src op param args))
       (call-with-values
           (lambda () (specialize-branch cps kf kt src op param args))
         (lambda (cps term)
           (values (if term
                       (with-cps cps
                         (setk label ($kargs names vars ,term)))
                       cps)
                   types sigbits))))

      (_ (values cps types sigbits))))

  (values (intmap-fold visit-cont cps cps #f #f)))

;; Compute a map from VAR -> LABEL, where LABEL indicates the cont that
;; binds VAR.
(define (compute-defs conts labels)
  (intset-fold
   (lambda (label defs)
     (match (intmap-ref conts label)
       (($ $kfun src meta self tail clause)
        (if self (intmap-add defs self label) defs))
       (($ $kargs names vars)
        (fold1 (lambda (var defs)
                 (intmap-add defs var label))
               vars defs))
       (_ defs)))
   labels empty-intmap))

;; Compute vars whose definitions are all unboxable and whose uses
;; include an unbox operation.
(define (compute-specializable-vars cps body preds defs
                                    exp-result-unboxable?
                                    unbox-ops)
  ;; Compute a map of VAR->LABEL... indicating the set of labels that
  ;; define VAR with unboxable values, given the set of vars
  ;; UNBOXABLE-VARS which is known already to be unboxable.
  (define (collect-unboxable-def-labels unboxable-vars)
    (define (add-unboxable-def unboxable-defs var label)
      (intmap-add unboxable-defs var (intset label) intset-union))
    (intset-fold (lambda (label unboxable-defs)
                   (match (intmap-ref cps label)
                     (($ $kargs _ _ ($ $continue k _ exp))
                      (match exp
                        ((? exp-result-unboxable?)
                         (match (intmap-ref cps k)
                           (($ $kargs (_) (def))
                            (add-unboxable-def unboxable-defs def label))))
                        (($ $values vars)
                         (match (intmap-ref cps k)
                           (($ $kargs _ defs)
                            (fold
                             (lambda (var def unboxable-defs)
                               (if (intset-ref unboxable-vars var)
                                   (add-unboxable-def unboxable-defs def label)
                                   unboxable-defs))
                             unboxable-defs vars defs))
                           ;; Could be $ktail for $values.
                           (_ unboxable-defs)))
                        (_ unboxable-defs)))
                     (_ unboxable-defs)))
                 body empty-intmap))

  ;; Compute the set of vars which are always unboxable.
  (define (compute-unboxable-defs)
    (fixpoint
     (lambda (unboxable-vars)
       (intmap-fold
        (lambda (def unboxable-pred-labels unboxable-vars)
          (if (and (not (intset-ref unboxable-vars def))
                   ;; Are all defining expressions unboxable?
                   (and-map (lambda (pred)
                              (intset-ref unboxable-pred-labels pred))
                            (intmap-ref preds (intmap-ref defs def))))
              (intset-add unboxable-vars def)
              unboxable-vars))
        (collect-unboxable-def-labels unboxable-vars)
        unboxable-vars))
     empty-intset))

  ;; Compute the set of vars that may ever be unboxed.
  (define (compute-unbox-uses unboxable-defs)
    (intset-fold
     (lambda (label unbox-uses)
       (match (intmap-ref cps label)
         (($ $kargs _ _ ($ $continue k _ exp))
          (match exp
            (($ $primcall (? (lambda (op) (memq op unbox-ops))) #f (var))
             (intset-add unbox-uses var))
            (($ $values vars)
             (match (intmap-ref cps k)
               (($ $kargs _ defs)
                (fold (lambda (var def unbox-uses)
                        (if (intset-ref unboxable-defs def)
                            (intset-add unbox-uses var)
                            unbox-uses))
                      unbox-uses vars defs))
               (($ $ktail)
                ;; Assume return is rare and that any unboxable def can
                ;; be reboxed when leaving the procedure.
                (fold (lambda (var unbox-uses)
                        (intset-add unbox-uses var))
                      unbox-uses vars))))
            (_ unbox-uses)))
         (_ unbox-uses)))
     body empty-intset))

  (let ((unboxable-defs (compute-unboxable-defs)))
    (intset-intersect unboxable-defs (compute-unbox-uses unboxable-defs))))

;; Compute vars whose definitions are all inexact reals and whose uses
;; include an unbox operation.
(define (compute-specializable-f64-vars cps body preds defs)
  ;; Can the result of EXP definitely be unboxed as an f64?
  (define (exp-result-f64? exp)
    (match exp
      ((or ($ $primcall 'f64->scm #f (_))
           ($ $const (and (? number?) (? inexact?) (? real?))))
       #t)
      (_ #f)))
  (compute-specializable-vars cps body preds defs exp-result-f64? '(scm->f64)))

;; Compute vars whose definitions are all exact integers in the u64
;; range and whose uses include an unbox operation.
(define (compute-specializable-u64-vars cps body preds defs)
  ;; Can the result of EXP definitely be unboxed as a u64?
  (define (exp-result-u64? exp)
    (define (u64? n)
      (and (number? n) (exact-integer? n)
           (<= 0 n #xffffffffffffffff)))
    (match exp
      ((or ($ $primcall 'u64->scm #f (_))
           ($ $primcall 'u64->scm/unlikely #f (_))
           ($ $primcall 'load-const/unlikely (? u64?) ())
           ($ $const (? u64?)))
       #t)
      (_ #f)))

  (compute-specializable-vars cps body preds defs exp-result-u64?
                              '(scm->u64 scm->u64/truncate)))

;; Compute vars whose definitions are all exact integers in the fixnum
;; range and whose uses include an untag operation.
(define (compute-specializable-fixnum-vars cps body preds defs)
  ;; Is the result of EXP definitely a fixnum?
  (define (exp-result-fixnum? exp)
    (define (fixnum? n)
      (and (number? n) (exact-integer? n)
           (<= (target-most-negative-fixnum)
               n
               (target-most-positive-fixnum))))
    (match exp
      ((or ($ $primcall 'tag-fixnum #f (_))
           ($ $primcall 'tag-fixnum/unlikely #f (_))
           ($ $const (? fixnum?))
           ($ $primcall 'load-const/unlikely (? fixnum?) ()))
       #t)
      (_ #f)))

  (compute-specializable-vars cps body preds defs exp-result-fixnum?
                              '(untag-fixnum)))

;; Compute vars whose definitions are all exact integers in the s64
;; range and whose uses include an untag operation.
(define (compute-specializable-s64-vars cps body preds defs)
  ;; Is the result of EXP definitely a fixnum?
  (define (exp-result-fixnum? exp)
    (define (s64? n)
      (and (number? n) (exact-integer? n)
           (<= (ash -1 63) n (1- (ash 1 63)))))
    (match exp
      ((or ($ $primcall 's64->scm #f (_))
           ($ $const (? s64?))
           ($ $primcall 'load-const/unlikely (? s64?) ()))
       #t)
      (_ #f)))

  (compute-specializable-vars cps body preds defs exp-result-fixnum?
                              '(scm->s64)))

(define (compute-phi-vars cps preds)
  (intmap-fold (lambda (label preds phis)
                 (match preds
                   (() phis)
                   ((_) phis)
                   (_
                    (match (intmap-ref cps label)
                      (($ $kargs names vars)
                       (fold1 (lambda (var phis)
                                (intset-add phis var))
                              vars phis))
                      (_ phis)))))
               preds empty-intset))

;; Compute the set of variables which have more than one definition,
;; whose definitions are always f64-valued or u64-valued, and which have
;; at least one use that is an unbox operation.
(define (compute-specializable-phis cps body preds defs)
  (let ((phi-vars (compute-phi-vars cps preds)))
    (fold1 (lambda (in out)
             (match in
               ((kind vars)
                (intset-fold
                 (lambda (var out)
                   (intmap-add out var kind (lambda (old new) old)))
                 (intset-intersect phi-vars vars)
                 out))))
           `((f64 ,(compute-specializable-f64-vars cps body preds defs))
             (fx ,(compute-specializable-fixnum-vars cps body preds defs))
             (s64 ,(compute-specializable-s64-vars cps body preds defs))
             (u64 ,(compute-specializable-u64-vars cps body preds defs)))
           empty-intmap)))

;; Each definition of a f64/u64 variable should unbox that variable.
;; The cont that binds the variable should re-box it under its original
;; name, and rely on CSE to remove the boxing as appropriate.
(define (apply-specialization cps kfun body preds defs phis)
  (define (compute-unbox-labels)
    (intmap-fold (lambda (phi kind labels)
                   (fold1 (lambda (pred labels)
                            (intset-add labels pred))
                          (intmap-ref preds (intmap-ref defs phi))
                          labels))
                 phis empty-intset))
  (define (unbox-op var)
    (match (intmap-ref phis var)
      ('f64 'scm->f64)
      ('fx 'untag-fixnum)
      ('s64 'scm->s64)
      ('u64 'scm->u64)))
  (define (box-op var)
    (match (intmap-ref phis var)
      ('f64 'f64->scm)
      ('fx 'tag-fixnum)
      ('s64 's64->scm)
      ('u64 'u64->scm)))
  (define (unbox-operands)
    (define (unbox-arg cps arg def-var have-arg)
      (if (intmap-ref phis def-var (lambda (_) #f))
          (with-cps cps
            (letv unboxed)
            (let$ body (have-arg unboxed))
            (letk kunboxed ($kargs ('unboxed) (unboxed) ,body))
            (build-term
              ($continue kunboxed #f ($primcall (unbox-op def-var) #f (arg)))))
          (have-arg cps arg)))
    (define (unbox-args cps args def-vars have-args)
      (match args
        (() (have-args cps '()))
        ((arg . args)
         (match def-vars
           ((def-var . def-vars)
            (unbox-arg cps arg def-var
                       (lambda (cps arg)
                         (unbox-args cps args def-vars
                                     (lambda (cps args)
                                       (have-args cps (cons arg args)))))))))))
    (intset-fold
     (lambda (label cps)
       (match (intmap-ref cps label)
         (($ $kargs names vars ($ $continue k src exp))
          (match (intmap-ref cps k)
            (($ $kargs _ defs)
             (match exp
               ;; For expressions that define a single value, we know we need
               ;; to unbox that value.  For $values though we might have to
               ;; unbox just a subset of values.
               (($ $values args)
                (with-cps cps
                  (let$ term (unbox-args
                              args defs
                              (lambda (cps args)
                                (with-cps cps
                                  (build-term
                                    ($continue k src ($values args)))))))
                  (setk label ($kargs names vars ,term))))
               (_
                (match defs
                  ((def)
                   (with-cps cps
                     (letv boxed)
                     (letk kunbox ($kargs ('boxed) (boxed)
                                    ($continue k src
                                      ($primcall (unbox-op def) #f (boxed)))))
                     (setk label ($kargs names vars
                                   ($continue kunbox src ,exp)))))))))))))
     (compute-unbox-labels)
     cps))
  (define (compute-box-labels)
    (intmap-fold (lambda (phi kind labels)
                   (intset-add labels (intmap-ref defs phi)))
                 phis empty-intset))
  (define (box-results cps)
    (intset-fold
     (lambda (label cps)
       (match (intmap-ref cps label)
         (($ $kargs names vars term)
          (let* ((boxed (fold1 (lambda (var boxed)
                                 (if (intmap-ref phis var (lambda (_) #f))
                                     (intmap-add boxed var (fresh-var))
                                     boxed))
                               vars empty-intmap))
                 (bound-vars (map (lambda (var)
                                    (intmap-ref boxed var (lambda (var) var)))
                                  vars)))
            (define (box-var cps name var done)
              (let ((unboxed (intmap-ref boxed var (lambda (_) #f))))
                (if unboxed
                    (with-cps cps
                      (let$ term (done))
                      (letk kboxed ($kargs (name) (var) ,term))
                      (build-term
                        ($continue kboxed #f
                          ($primcall (box-op var) #f (unboxed)))))
                    (done cps))))
            (define (box-vars cps names vars done)
              (match vars
                (() (done cps))
                ((var . vars)
                 (match names
                   ((name . names)
                    (box-var cps name var
                             (lambda (cps)
                               (box-vars cps names vars done))))))))
            (with-cps cps
              (let$ box-term (box-vars names vars
                                       (lambda (cps)
                                         (with-cps cps term))))
              (setk label ($kargs names bound-vars ,box-term)))))))
     (compute-box-labels)
     cps))
  (box-results (unbox-operands)))

(define (specialize-phis cps)
  (intmap-fold
   (lambda (kfun body cps)
     (let* ((preds (compute-predecessors cps kfun #:labels body))
            (defs (compute-defs cps body))
            (phis (compute-specializable-phis cps body preds defs)))
       (if (eq? phis empty-intmap)
           cps
           (apply-specialization cps kfun body preds defs phis))))
   (compute-reachable-functions cps)
   cps))

(define (specialize-numbers cps)
  ;; Type inference wants a renumbered graph; OK.
  (let ((cps (renumber cps)))
    (with-fresh-name-state cps
      (specialize-phis (specialize-operations cps)))))