Datasets:

License:
File size: 10,081 Bytes
3dcad1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
;		XML/HTML processing in Scheme
;		SXML expression tree transformers
;
; IMPORT
; A prelude appropriate for your Scheme system
;	(myenv-bigloo.scm, myenv-mit.scm, etc.)
;
; EXPORT
; (provide SRV:send-reply
;	   post-order pre-post-order replace-range)
;
; See vSXML-tree-trans.scm for the validation code, which also
; serves as usage examples.
;
; $Id: SXML-tree-trans.scm,v 1.6 2003/04/25 19:16:15 oleg Exp $


; Output the 'fragments'
; The fragments are a list of strings, characters,
; numbers, thunks, #f, #t -- and other fragments.
; The function traverses the tree depth-first, writes out
; strings and characters, executes thunks, and ignores
; #f and '().
; The function returns #t if anything was written at all;
; otherwise the result is #f
; If #t occurs among the fragments, it is not written out
; but causes the result of SRV:send-reply to be #t

(define (SRV:send-reply . fragments)
  (let loop ((fragments fragments) (result #f))
    (cond
      ((null? fragments) result)
      ((not (car fragments)) (loop (cdr fragments) result))
      ((null? (car fragments)) (loop (cdr fragments) result))
      ((eq? #t (car fragments)) (loop (cdr fragments) #t))
      ((pair? (car fragments))
        (loop (cdr fragments) (loop (car fragments) result)))
      ((procedure? (car fragments))
        ((car fragments))
        (loop (cdr fragments) #t))
      (else
        (display (car fragments))
        (loop (cdr fragments) #t)))))



;------------------------------------------------------------------------
;	          Traversal of an SXML tree or a grove:
;			a <Node> or a <Nodelist>
;
; A <Node> and a <Nodelist> are mutually-recursive datatypes that
; underlie the SXML tree:
;	<Node> ::= (name . <Nodelist>) | "text string"
; An (ordered) set of nodes is just a list of the constituent nodes:
; 	<Nodelist> ::= (<Node> ...)
; Nodelists, and Nodes other than text strings are both lists. A
; <Nodelist> however is either an empty list, or a list whose head is
; not a symbol (an atom in general). A symbol at the head of a node is
; either an XML name (in which case it's a tag of an XML element), or
; an administrative name such as '@'.
; See SXPath.scm and SSAX.scm for more information on SXML.


; Pre-Post-order traversal of a tree and creation of a new tree:
;	pre-post-order:: <tree> x <bindings> -> <new-tree>
; where
; <bindings> ::= (<binding> ...)
; <binding> ::= (<trigger-symbol> *preorder* . <handler>) |
;               (<trigger-symbol> *macro* . <handler>) |
;		(<trigger-symbol> <new-bindings> . <handler>) |
;		(<trigger-symbol> . <handler>)
; <trigger-symbol> ::= XMLname | *text* | *default*
; <handler> :: <trigger-symbol> x [<tree>] -> <new-tree>
;
; The pre-post-order function visits the nodes and nodelists
; pre-post-order (depth-first).  For each <Node> of the form (name
; <Node> ...) it looks up an association with the given 'name' among
; its <bindings>. If failed, pre-post-order tries to locate a
; *default* binding. It's an error if the latter attempt fails as
; well.  Having found a binding, the pre-post-order function first
; checks to see if the binding is of the form
;	(<trigger-symbol> *preorder* . <handler>)
; If it is, the handler is 'applied' to the current node. Otherwise,
; the pre-post-order function first calls itself recursively for each
; child of the current node, with <new-bindings> prepended to the
; <bindings> in effect. The result of these calls is passed to the
; <handler> (along with the head of the current <Node>). To be more
; precise, the handler is _applied_ to the head of the current node
; and its processed children. The result of the handler, which should
; also be a <tree>, replaces the current <Node>. If the current <Node>
; is a text string or other atom, a special binding with a symbol
; *text* is looked up.
;
; A binding can also be of a form
;	(<trigger-symbol> *macro* . <handler>)
; This is equivalent to *preorder* described above. However, the result
; is re-processed again, with the current stylesheet.

(define (pre-post-order tree bindings)
  (let* ((default-binding (assq '*default* bindings))
	 (text-binding (or (assq '*text* bindings) default-binding))
	 (text-handler			; Cache default and text bindings
	   (and text-binding
	     (if (procedure? (cdr text-binding))
	         (cdr text-binding) (cddr text-binding)))))
    (let loop ((tree tree))
      (cond
	((null? tree) '())
	((not (pair? tree))
	  (let ((trigger '*text*))
	    (if text-handler (text-handler trigger tree)
	      (error "Unknown binding for " trigger " and no default"))))
	((not (symbol? (car tree))) (map loop tree)) ; tree is a nodelist
	(else				; tree is an SXML node
	  (let* ((trigger (car tree))
		 (binding (or (assq trigger bindings) default-binding)))
	    (cond
	      ((not binding) 
		(error "Unknown binding for " trigger " and no default"))
	      ((not (pair? (cdr binding)))  ; must be a procedure: handler
		(apply (cdr binding) trigger (map loop (cdr tree))))
	      ((eq? '*preorder* (cadr binding))
		(apply (cddr binding) tree))
	      ((eq? '*macro* (cadr binding))
		(loop (apply (cddr binding) tree)))
	      (else			    ; (cadr binding) is a local binding
		(apply (cddr binding) trigger 
		  (pre-post-order (cdr tree) (append (cadr binding) bindings)))
		))))))))

; post-order is a strict subset of pre-post-order without *preorder*
; (let alone *macro*) traversals. 
; Now pre-post-order is actually faster than the old post-order.
; The function post-order is deprecated and is aliased below for
; backward compatibility.
(define post-order pre-post-order)

;------------------------------------------------------------------------
;			Extended tree fold
; tree = atom | (node-name tree ...)
;
; foldts fdown fup fhere seed (Leaf str) = fhere seed str
; foldts fdown fup fhere seed (Nd kids) =
;         fup seed $ foldl (foldts fdown fup fhere) (fdown seed) kids

; procedure fhere: seed -> atom -> seed
; procedure fdown: seed -> node -> seed
; procedure fup: parent-seed -> last-kid-seed -> node -> seed
; foldts returns the final seed

(define (foldts fdown fup fhere seed tree)
  (cond
   ((null? tree) seed)
   ((not (pair? tree))		; An atom
    (fhere seed tree))
   (else
    (let loop ((kid-seed (fdown seed tree)) (kids (cdr tree)))
      (if (null? kids)
	  (fup seed kid-seed tree)
	  (loop (foldts fdown fup fhere kid-seed (car kids))
		(cdr kids)))))))

;------------------------------------------------------------------------
; Traverse a forest depth-first and cut/replace ranges of nodes.
;
; The nodes that define a range don't have to have the same immediate
; parent, don't have to be on the same level, and the end node of a
; range doesn't even have to exist. A replace-range procedure removes
; nodes from the beginning node of the range up to (but not including)
; the end node of the range.  In addition, the beginning node of the
; range can be replaced by a node or a list of nodes. The range of
; nodes is cut while depth-first traversing the forest. If all
; branches of the node are cut a node is cut as well.  The procedure
; can cut several non-overlapping ranges from a forest.

;	replace-range:: BEG-PRED x END-PRED x FOREST -> FOREST
; where
;	type FOREST = (NODE ...)
;	type NODE = Atom | (Name . FOREST) | FOREST
;
; The range of nodes is specified by two predicates, beg-pred and end-pred.
;	beg-pred:: NODE -> #f | FOREST
;	end-pred:: NODE -> #f | FOREST
; The beg-pred predicate decides on the beginning of the range. The node
; for which the predicate yields non-#f marks the beginning of the range
; The non-#f value of the predicate replaces the node. The value can be a
; list of nodes. The replace-range procedure then traverses the tree and skips
; all the nodes, until the end-pred yields non-#f. The value of the end-pred
; replaces the end-range node. The new end node and its brothers will be
; re-scanned.
; The predicates are evaluated pre-order. We do not descend into a node that
; is marked as the beginning of the range.

(define (replace-range beg-pred end-pred forest)

  ; loop forest keep? new-forest
  ; forest is the forest to traverse
  ; new-forest accumulates the nodes we will keep, in the reverse
  ; order
  ; If keep? is #t, keep the curr node if atomic. If the node is not atomic,
  ; traverse its children and keep those that are not in the skip range.
  ; If keep? is #f, skip the current node if atomic. Otherwise,
  ; traverse its children. If all children are skipped, skip the node
  ; as well.

  (define (loop forest keep? new-forest)
    (if (null? forest) (values (reverse new-forest) keep?)
	(let ((node (car forest)))
	  (if keep?
	      (cond			; accumulate mode
	       ((beg-pred node) =>	; see if the node starts the skip range
		(lambda (repl-branches)	; if so, skip/replace the node
		  (loop (cdr forest) #f 
			(append (reverse repl-branches) new-forest))))
	       ((not (pair? node))	; it's an atom, keep it
		(loop (cdr forest) keep? (cons node new-forest)))
	       (else
		(let*-values
		 (((node?) (symbol? (car node))) ; or is it a nodelist?
		  ((new-kids keep?)		 ; traverse its children
		   (loop (if node? (cdr node) node) #t '())))
		 (loop (cdr forest) keep?
		       (cons 
			(if node? (cons (car node) new-kids) new-kids)
			new-forest)))))
	      ; skip mode
	      (cond
	       ((end-pred node) =>	; end the skip range
		(lambda (repl-branches)	; repl-branches will be re-scanned
		  (loop (append repl-branches (cdr forest)) #t
			new-forest)))
	       ((not (pair? node))	; it's an atom, skip it
		(loop (cdr forest) keep? new-forest))
	       (else
		(let*-values
		 (((node?) (symbol? (car node)))  ; or is it a nodelist?
		  ((new-kids keep?)		  ; traverse its children
		   (loop (if node? (cdr node) node) #f '())))
		 (loop (cdr forest) keep?
		       (if (or keep? (pair? new-kids))
			   (cons
			    (if node? (cons (car node) new-kids) new-kids)
			    new-forest)
			   new-forest)		; if all kids are skipped
		       ))))))))			; skip the node too
  
  (let*-values (((new-forest keep?) (loop forest #t '())))
     new-forest))