File size: 41,768 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 |
; XML processing in Scheme
; SXPath -- SXML Query Language
;
; SXPath is a query language for SXML, an instance of XML Information
; set (Infoset) in the form of s-expressions. See SSAX.scm for the
; definition of SXML and more details. SXPath is also a translation into
; Scheme of an XML Path Language, XPath:
; http://www.w3.org/TR/xpath
; XPath and SXPath describe means of selecting a set of Infoset's items
; or their properties.
;
; To facilitate queries, XPath maps the XML Infoset into an explicit
; tree, and introduces important notions of a location path and a
; current, context node. A location path denotes a selection of a set of
; nodes relative to a context node. Any XPath tree has a distinguished,
; root node -- which serves as the context node for absolute location
; paths. Location path is recursively defined as a location step joined
; with a location path. A location step is a simple query of the
; database relative to a context node. A step may include expressions
; that further filter the selected set. Each node in the resulting set
; is used as a context node for the adjoining location path. The result
; of the step is a union of the sets returned by the latter location
; paths.
;
; The SXML representation of the XML Infoset (see SSAX.scm) is rather
; suitable for querying as it is. Bowing to the XPath specification,
; we will refer to SXML information items as 'Nodes':
; <Node> ::= <Element> | <attributes-coll> | <attrib>
; | "text string" | <PI>
; This production can also be described as
; <Node> ::= (name . <Nodeset>) | "text string"
; An (ordered) set of nodes is just a list of the constituent nodes:
; <Nodeset> ::= (<Node> ...)
; Nodesets, and Nodes other than text strings are both lists. A
; <Nodeset> however is either an empty list, or a list whose head is not
; a symbol. A symbol at the head of a node is either an XML name (in
; which case it's a tag of an XML element), or an administrative name
; such as '@'. This uniform list representation makes processing rather
; simple and elegant, while avoiding confusion. The multi-branch tree
; structure formed by the mutually-recursive datatypes <Node> and
; <Nodeset> lends itself well to processing by functional languages.
;
; A location path is in fact a composite query over an XPath tree or
; its branch. A singe step is a combination of a projection, selection
; or a transitive closure. Multiple steps are combined via join and
; union operations. This insight allows us to _elegantly_ implement
; XPath as a sequence of projection and filtering primitives --
; converters -- joined by _combinators_. Each converter takes a node
; and returns a nodeset which is the result of the corresponding query
; relative to that node. A converter can also be called on a set of
; nodes. In that case it returns a union of the corresponding queries over
; each node in the set. The union is easily implemented as a list
; append operation as all nodes in a SXML tree are considered
; distinct, by XPath conventions. We also preserve the order of the
; members in the union. Query combinators are high-order functions:
; they take converter(s) (which is a Node|Nodeset -> Nodeset function)
; and compose or otherwise combine them. We will be concerned with
; only relative location paths [XPath]: an absolute location path is a
; relative path applied to the root node.
;
; Similarly to XPath, SXPath defines full and abbreviated notations
; for location paths. In both cases, the abbreviated notation can be
; mechanically expanded into the full form by simple rewriting
; rules. In case of SXPath the corresponding rules are given as
; comments to a sxpath function, below. The regression test suite at
; the end of this file shows a representative sample of SXPaths in
; both notations, juxtaposed with the corresponding XPath
; expressions. Most of the samples are borrowed literally from the
; XPath specification, while the others are adjusted for our running
; example, tree1.
;
; To do:
; Rename filter to node-filter or ns-filter
; Use ;=== for chapters, ;--- for sections, and ;^^^ for end sections
;
; $Id: SXPath-old.scm,v 1.4 2004/07/07 16:02:31 sperber Exp $
; See http://pobox.com/~oleg/ftp/Scheme/myenv.scm
; See http://pobox.com/~oleg/ftp/Scheme/myenv-scm.scm
; See http://pobox.com/~oleg/ftp/Scheme/myenv-bigloo.scm
;(module SXPath
; (include "myenv-bigloo.scm")) ; For use with Bigloo 2.2b
;(load "myenv-scm.scm") ; For use with SCM v5d2
;(include "myenv.scm") ; For use with Gambit-C 3.0
(define (nodeset? x)
(or (and (pair? x) (not (symbol? (car x)))) (null? x)))
;-------------------------
; Basic converters and applicators
; A converter is a function
; type Converter = Node|Nodeset -> Nodeset
; A converter can also play a role of a predicate: in that case, if a
; converter, applied to a node or a nodeset, yields a non-empty
; nodeset, the converter-predicate is deemed satisfied. Throughout
; this file a nil nodeset is equivalent to #f in denoting a failure.
; The following function implements a 'Node test' as defined in
; Sec. 2.3 of XPath document. A node test is one of the components of a
; location step. It is also a converter-predicate in SXPath.
;
; The function node-typeof? takes a type criterion and returns a function,
; which, when applied to a node, will tell if the node satisfies
; the test.
; node-typeof? :: Crit -> Node -> Boolean
;
; The criterion 'crit' is a symbol, one of the following:
; id - tests if the Node has the right name (id)
; @ - tests if the Node is an <attributes-coll>
; * - tests if the Node is an <Element>
; *text* - tests if the Node is a text node
; *PI* - tests if the Node is a PI node
; *any* - #t for any type of Node
(define (node-typeof? crit)
(lambda (node)
(case crit
((*) (and (pair? node) (not (memq (car node) '(@ *PI*)))))
((*any*) #t)
((*text*) (string? node))
(else
(and (pair? node) (eq? crit (car node))))
)))
; Curried equivalence converter-predicates
(define (node-eq? other)
(lambda (node)
(eq? other node)))
(define (node-equal? other)
(lambda (node)
(equal? other node)))
; node-pos:: N -> Nodeset -> Nodeset, or
; node-pos:: N -> Converter
; Select the N'th element of a Nodeset and return as a singular Nodeset;
; Return an empty nodeset if the Nth element does not exist.
; ((node-pos 1) Nodeset) selects the node at the head of the Nodeset,
; if exists; ((node-pos 2) Nodeset) selects the Node after that, if
; exists.
; N can also be a negative number: in that case the node is picked from
; the tail of the list.
; ((node-pos -1) Nodeset) selects the last node of a non-empty nodeset;
; ((node-pos -2) Nodeset) selects the last but one node, if exists.
(define (node-pos n)
(lambda (nodeset)
(cond
((not (nodeset? nodeset)) '())
((null? nodeset) nodeset)
((eqv? n 1) (list (car nodeset)))
((negative? n) ((node-pos (+ n 1 (length nodeset))) nodeset))
(else
(assert (positive? n))
((node-pos (dec n)) (cdr nodeset))))))
; filter:: Converter -> Converter
; A filter applicator, which introduces a filtering context. The argument
; converter is considered a predicate, with either #f or nil result meaning
; failure.
(define (filter pred?)
(lambda (lst) ; a nodeset or a node (will be converted to a singleton nset)
(let loop ((lst (if (nodeset? lst) lst (list lst))) (res '()))
(if (null? lst)
(reverse res)
(let ((pred-result (pred? (car lst))))
(loop (cdr lst)
(if (and pred-result (not (null? pred-result)))
(cons (car lst) res)
res)))))))
; take-until:: Converter -> Converter, or
; take-until:: Pred -> Node|Nodeset -> Nodeset
; Given a converter-predicate and a nodeset, apply the predicate to
; each element of the nodeset, until the predicate yields anything but #f or
; nil. Return the elements of the input nodeset that have been processed
; till that moment (that is, which fail the predicate).
; take-until is a variation of the filter above: take-until passes
; elements of an ordered input set till (but not including) the first
; element that satisfies the predicate.
; The nodeset returned by ((take-until (not pred)) nset) is a subset --
; to be more precise, a prefix -- of the nodeset returned by
; ((filter pred) nset)
(define (take-until pred?)
(lambda (lst) ; a nodeset or a node (will be converted to a singleton nset)
(let loop ((lst (if (nodeset? lst) lst (list lst))))
(if (null? lst) lst
(let ((pred-result (pred? (car lst))))
(if (and pred-result (not (null? pred-result)))
'()
(cons (car lst) (loop (cdr lst)))))
))))
; take-after:: Converter -> Converter, or
; take-after:: Pred -> Node|Nodeset -> Nodeset
; Given a converter-predicate and a nodeset, apply the predicate to
; each element of the nodeset, until the predicate yields anything but #f or
; nil. Return the elements of the input nodeset that have not been processed:
; that is, return the elements of the input nodeset that follow the first
; element that satisfied the predicate.
; take-after along with take-until partition an input nodeset into three
; parts: the first element that satisfies a predicate, all preceding
; elements and all following elements.
(define (take-after pred?)
(lambda (lst) ; a nodeset or a node (will be converted to a singleton nset)
(let loop ((lst (if (nodeset? lst) lst (list lst))))
(if (null? lst) lst
(let ((pred-result (pred? (car lst))))
(if (and pred-result (not (null? pred-result)))
(cdr lst)
(loop (cdr lst))))
))))
; Apply proc to each element of lst and return the list of results.
; if proc returns a nodeset, splice it into the result
;
; From another point of view, map-union is a function Converter->Converter,
; which places an argument-converter in a joining context.
(define (map-union proc lst)
(if (null? lst) lst
(let ((proc-res (proc (car lst))))
((if (nodeset? proc-res) append cons)
proc-res (map-union proc (cdr lst))))))
; node-reverse :: Converter, or
; node-reverse:: Node|Nodeset -> Nodeset
; Reverses the order of nodes in the nodeset
; This basic converter is needed to implement a reverse document order
; (see the XPath Recommendation).
(define node-reverse
(lambda (node-or-nodeset)
(if (not (nodeset? node-or-nodeset)) (list node-or-nodeset)
(reverse node-or-nodeset))))
; node-trace:: String -> Converter
; (node-trace title) is an identity converter. In addition it prints out
; a node or nodeset it is applied to, prefixed with the 'title'.
; This converter is very useful for debugging.
(define (node-trace title)
(lambda (node-or-nodeset)
(cout nl "-->")
(display title)
(display " :")
(pretty-print node-or-nodeset)
node-or-nodeset))
;-------------------------
; Converter combinators
;
; Combinators are higher-order functions that transmogrify a converter
; or glue a sequence of converters into a single, non-trivial
; converter. The goal is to arrive at converters that correspond to
; XPath location paths.
;
; From a different point of view, a combinator is a fixed, named
; _pattern_ of applying converters. Given below is a complete set of
; such patterns that together implement XPath location path
; specification. As it turns out, all these combinators can be built
; from a small number of basic blocks: regular functional composition,
; map-union and filter applicators, and the nodeset union.
; select-kids:: Pred -> Node -> Nodeset
; Given a Node, return an (ordered) subset its children that satisfy
; the Pred (a converter, actually)
; select-kids:: Pred -> Nodeset -> Nodeset
; The same as above, but select among children of all the nodes in
; the Nodeset
;
; More succinctly, the signature of this function is
; select-kids:: Converter -> Converter
(define (select-kids test-pred?)
(lambda (node) ; node or node-set
(cond
((null? node) node)
((not (pair? node)) '()) ; No children
((symbol? (car node))
((filter test-pred?) (cdr node))) ; it's a single node
(else (map-union (select-kids test-pred?) node)))))
; node-self:: Pred -> Node -> Nodeset, or
; node-self:: Converter -> Converter
; Similar to select-kids but apply to the Node itself rather
; than to its children. The resulting Nodeset will contain either one
; component, or will be empty (if the Node failed the Pred).
(define node-self filter)
; node-join:: [LocPath] -> Node|Nodeset -> Nodeset, or
; node-join:: [Converter] -> Converter
; join the sequence of location steps or paths as described
; in the title comments above.
(define (node-join . selectors)
(lambda (nodeset) ; Nodeset or node
(let loop ((nodeset nodeset) (selectors selectors))
(if (null? selectors) nodeset
(loop
(if (nodeset? nodeset)
(map-union (car selectors) nodeset)
((car selectors) nodeset))
(cdr selectors))))))
; node-reduce:: [LocPath] -> Node|Nodeset -> Nodeset, or
; node-reduce:: [Converter] -> Converter
; A regular functional composition of converters.
; From a different point of view,
; ((apply node-reduce converters) nodeset)
; is equivalent to
; (foldl apply nodeset converters)
; i.e., folding, or reducing, a list of converters with the nodeset
; as a seed.
(define (node-reduce . converters)
(lambda (nodeset) ; Nodeset or node
(let loop ((nodeset nodeset) (converters converters))
(if (null? converters) nodeset
(loop ((car converters) nodeset) (cdr converters))))))
; node-or:: [Converter] -> Converter
; This combinator applies all converters to a given node and
; produces the union of their results.
; This combinator corresponds to a union, '|' operation for XPath
; location paths.
; (define (node-or . converters)
; (lambda (node-or-nodeset)
; (if (null? converters) node-or-nodeset
; (append
; ((car converters) node-or-nodeset)
; ((apply node-or (cdr converters)) node-or-nodeset)))))
; More optimal implementation follows
(define (node-or . converters)
(lambda (node-or-nodeset)
(let loop ((result '()) (converters converters))
(if (null? converters) result
(loop (append result (or ((car converters) node-or-nodeset) '()))
(cdr converters))))))
; node-closure:: Converter -> Converter
; Select all _descendants_ of a node that satisfy a converter-predicate.
; This combinator is similar to select-kids but applies to
; grand... children as well.
; This combinator implements the "descendant::" XPath axis
; Conceptually, this combinator can be expressed as
; (define (node-closure f)
; (node-or
; (select-kids f)
; (node-reduce (select-kids (node-typeof? '*)) (node-closure f))))
; This definition, as written, looks somewhat like a fixpoint, and it
; will run forever. It is obvious however that sooner or later
; (select-kids (node-typeof? '*)) will return an empty nodeset. At
; this point further iterations will no longer affect the result and
; can be stopped.
(define (node-closure test-pred?)
(lambda (node) ; Nodeset or node
(let loop ((parent node) (result '()))
(if (null? parent) result
(loop ((select-kids (node-typeof? '*)) parent)
(append result
((select-kids test-pred?) parent)))
))))
; node-parent:: RootNode -> Converter
; (node-parent rootnode) yields a converter that returns a parent of a
; node it is applied to. If applied to a nodeset, it returns the list
; of parents of nodes in the nodeset. The rootnode does not have
; to be the root node of the whole SXML tree -- it may be a root node
; of a branch of interest.
; Given the notation of Philip Wadler's paper on semantics of XSLT,
; parent(x) = { y | y=subnode*(root), x=subnode(y) }
; Therefore, node-parent is not the fundamental converter: it can be
; expressed through the existing ones. Yet node-parent is a rather
; convenient converter. It corresponds to a parent:: axis of SXPath.
; Note that the parent:: axis can be used with an attribute node as well!
(define (node-parent rootnode)
(lambda (node) ; Nodeset or node
(if (nodeset? node) (map-union (node-parent rootnode) node)
(let ((pred
(node-or
(node-reduce
(node-self (node-typeof? '*))
(select-kids (node-eq? node)))
(node-join
(select-kids (node-typeof? '@))
(select-kids (node-eq? node))))))
((node-or
(node-self pred)
(node-closure pred))
rootnode)))))
;-------------------------
; Evaluate an abbreviated SXPath
; sxpath:: AbbrPath -> Converter, or
; sxpath:: AbbrPath -> Node|Nodeset -> Nodeset
; AbbrPath is a list. It is translated to the full SXPath according
; to the following rewriting rules
; (sxpath '()) -> (node-join)
; (sxpath '(path-component ...)) ->
; (node-join (sxpath1 path-component) (sxpath '(...)))
; (sxpath1 '//) -> (node-or
; (node-self (node-typeof? '*any*))
; (node-closure (node-typeof? '*any*)))
; (sxpath1 '(equal? x)) -> (select-kids (node-equal? x))
; (sxpath1 '(eq? x)) -> (select-kids (node-eq? x))
; (sxpath1 ?symbol) -> (select-kids (node-typeof? ?symbol)
; (sxpath1 procedure) -> procedure
; (sxpath1 '(?symbol ...)) -> (sxpath1 '((?symbol) ...))
; (sxpath1 '(path reducer ...)) ->
; (node-reduce (sxpath path) (sxpathr reducer) ...)
; (sxpathr number) -> (node-pos number)
; (sxpathr path-filter) -> (filter (sxpath path-filter))
(define (sxpath path)
(lambda (nodeset)
(let loop ((nodeset nodeset) (path path))
(cond
((null? path) nodeset)
((nodeset? nodeset)
(map-union (sxpath path) nodeset))
((procedure? (car path))
(loop ((car path) nodeset) (cdr path)))
((eq? '// (car path))
(loop
((if (nodeset? nodeset) append cons) nodeset
((node-closure (node-typeof? '*any*)) nodeset))
(cdr path)))
((symbol? (car path))
(loop ((select-kids (node-typeof? (car path))) nodeset)
(cdr path)))
((and (pair? (car path)) (eq? 'equal? (caar path)))
(loop ((select-kids (apply node-equal? (cdar path))) nodeset)
(cdr path)))
((and (pair? (car path)) (eq? 'eq? (caar path)))
(loop ((select-kids (apply node-eq? (cdar path))) nodeset)
(cdr path)))
((pair? (car path))
(let reducer ((nodeset
(if (symbol? (caar path))
((select-kids (node-typeof? (caar path))) nodeset)
(loop nodeset (caar path))))
(reducing-path (cdar path)))
(cond
((null? reducing-path) (loop nodeset (cdr path)))
((number? (car reducing-path))
(reducer ((node-pos (car reducing-path)) nodeset)
(cdr reducing-path)))
(else
(reducer ((filter (sxpath (car reducing-path))) nodeset)
(cdr reducing-path))))))
(else
(error "Invalid path step: " (car path)))
))))
;------------------------------------------------------------------------
; Sample XPath/SXPath expressions: regression test suite for the
; implementation above.
; A running example
(define tree1
'(html
(head (title "Slides"))
(body
(p (@ (align "center"))
(table (@ (style "font-size: x-large"))
(tr
(td (@ (align "right")) "Talks ")
(td (@ (align "center")) " = ")
(td " slides + transition"))
(tr (td)
(td (@ (align "center")) " = ")
(td " data + control"))
(tr (td)
(td (@ (align "center")) " = ")
(td " programs"))))
(ul
(li (a (@ (href "slides/slide0001.gif")) "Introduction"))
(li (a (@ (href "slides/slide0010.gif")) "Summary")))
)))
; Example from a posting "Re: DrScheme and XML",
; Shriram Krishnamurthi, comp.lang.scheme, Nov. 26. 1999.
; http://www.deja.com/getdoc.xp?AN=553507805
(define tree3
'(poem (@ (title "The Lovesong of J. Alfred Prufrock")
(poet "T. S. Eliot"))
(stanza
(line "Let us go then, you and I,")
(line "When the evening is spread out against the sky")
(line "Like a patient etherized upon a table:"))
(stanza
(line "In the room the women come and go")
(line "Talking of Michaelangelo."))))
; Validation Test harness
(define-syntax run-test
(syntax-rules (define)
((run-test "scan-exp" (define vars body))
(define vars (run-test "scan-exp" body)))
((run-test "scan-exp" ?body)
(letrec-syntax
((scan-exp ; (scan-exp body k)
(syntax-rules (quote quasiquote !)
((scan-exp '() (k-head ! . args))
(k-head '() . args))
((scan-exp (quote (hd . tl)) k)
(scan-lit-lst (hd . tl) (do-wrap ! quasiquote k)))
((scan-exp (quasiquote (hd . tl)) k)
(scan-lit-lst (hd . tl) (do-wrap ! quasiquote k)))
((scan-exp (quote x) (k-head ! . args))
(k-head
(if (string? (quote x)) (string->symbol (quote x)) (quote x))
. args))
((scan-exp (hd . tl) k)
(scan-exp hd (do-tl ! scan-exp tl k)))
((scan-exp x (k-head ! . args))
(k-head x . args))))
(do-tl
(syntax-rules (!)
((do-tl processed-hd fn () (k-head ! . args))
(k-head (processed-hd) . args))
((do-tl processed-hd fn old-tl k)
(fn old-tl (do-cons ! processed-hd k)))))
(do-cons
(syntax-rules (!)
((do-cons processed-tl processed-hd (k-head ! . args))
(k-head (processed-hd . processed-tl) . args))))
(do-wrap
(syntax-rules (!)
((do-wrap val fn (k-head ! . args))
(k-head (fn val) . args))))
(do-finish
(syntax-rules ()
((do-finish new-body) new-body)))
(scan-lit-lst ; scan literal list
(syntax-rules (quote unquote unquote-splicing !)
((scan-lit-lst '() (k-head ! . args))
(k-head '() . args))
((scan-lit-lst (quote (hd . tl)) k)
(do-tl quote scan-lit-lst ((hd . tl)) k))
((scan-lit-lst (unquote x) k)
(scan-exp x (do-wrap ! unquote k)))
((scan-lit-lst (unquote-splicing x) k)
(scan-exp x (do-wrap ! unquote-splicing k)))
((scan-lit-lst (quote x) (k-head ! . args))
(k-head
,(if (string? (quote x)) (string->symbol (quote x)) (quote x))
. args))
((scan-lit-lst (hd . tl) k)
(scan-lit-lst hd (do-tl ! scan-lit-lst tl k)))
((scan-lit-lst x (k-head ! . args))
(k-head x . args))))
)
(scan-exp ?body (do-finish !))))
((run-test body ...)
(begin
(run-test "scan-exp" body) ...))
))
; Overwrite the above macro to switch the tests off
; (define-macro (run-test selector node expected-result) #f)
; Location path, full form: child::para
; Location path, abbreviated form: para
; selects the para element children of the context node
(let ((tree
'(elem (@) (para (@) "para") (br (@)) "cdata" (para (@) "second par"))
)
(expected '((para (@) "para") (para (@) "second par")))
)
(run-test (select-kids (node-typeof? 'para)) tree expected)
(run-test (sxpath '(para)) tree expected)
)
; Location path, full form: child::*
; Location path, abbreviated form: *
; selects all element children of the context node
(let ((tree
'(elem (@) (para (@) "para") (br (@)) "cdata" (para "second par"))
)
(expected
'((para (@) "para") (br (@)) (para "second par")))
)
(run-test (select-kids (node-typeof? '*)) tree expected)
(run-test (sxpath '(*)) tree expected)
)
; Location path, full form: child::text()
; Location path, abbreviated form: text()
; selects all text node children of the context node
(let ((tree
'(elem (@) (para (@) "para") (br (@)) "cdata" (para "second par"))
)
(expected
'("cdata"))
)
(run-test (select-kids (node-typeof? '*text*)) tree expected)
(run-test (sxpath '(*text*)) tree expected)
)
; Location path, full form: child::node()
; Location path, abbreviated form: node()
; selects all the children of the context node, whatever their node type
(let* ((tree
'(elem (@) (para (@) "para") (br (@)) "cdata" (para "second par"))
)
(expected (cdr tree))
)
(run-test (select-kids (node-typeof? '*any*)) tree expected)
(run-test (sxpath '(*any*)) tree expected)
)
; Location path, full form: child::*/child::para
; Location path, abbreviated form: */para
; selects all para grandchildren of the context node
(let ((tree
'(elem (@) (para (@) "para") (br (@)) "cdata" (para "second par")
(div (@ (name "aa")) (para "third para")))
)
(expected
'((para "third para")))
)
(run-test
(node-join (select-kids (node-typeof? '*))
(select-kids (node-typeof? 'para)))
tree expected)
(run-test (sxpath '(* para)) tree expected)
)
; Location path, full form: attribute::name
; Location path, abbreviated form: @name
; selects the 'name' attribute of the context node
(let ((tree
'(elem (@ (name "elem") (id "idz"))
(para (@) "para") (br (@)) "cdata" (para (@) "second par")
(div (@ (name "aa")) (para (@) "third para")))
)
(expected
'((name "elem")))
)
(run-test
(node-join (select-kids (node-typeof? '@))
(select-kids (node-typeof? 'name)))
tree expected)
(run-test (sxpath '(@ name)) tree expected)
)
; Location path, full form: attribute::*
; Location path, abbreviated form: @*
; selects all the attributes of the context node
(let ((tree
'(elem (@ (name "elem") (id "idz"))
(para (@) "para") (br (@)) "cdata" (para "second par")
(div (@ (name "aa")) (para (@) "third para")))
)
(expected
'((name "elem") (id "idz")))
)
(run-test
(node-join (select-kids (node-typeof? '@))
(select-kids (node-typeof? '*)))
tree expected)
(run-test (sxpath '(@ *)) tree expected)
)
; Location path, full form: descendant::para
; Location path, abbreviated form: .//para
; selects the para element descendants of the context node
(let ((tree
'(elem (@ (name "elem") (id "idz"))
(para (@) "para") (br (@)) "cdata" (para "second par")
(div (@ (name "aa")) (para (@) "third para")))
)
(expected
'((para (@) "para") (para "second par") (para (@) "third para")))
)
(run-test
(node-closure (node-typeof? 'para))
tree expected)
(run-test (sxpath '(// para)) tree expected)
)
; Location path, full form: self::para
; Location path, abbreviated form: _none_
; selects the context node if it is a para element; otherwise selects nothing
(let ((tree
'(elem (@ (name "elem") (id "idz"))
(para (@) "para") (br (@)) "cdata" (para "second par")
(div (@ (name "aa")) (para (@) "third para")))
)
)
(run-test (node-self (node-typeof? 'para)) tree '())
(run-test (node-self (node-typeof? 'elem)) tree (list tree))
)
; Location path, full form: descendant-or-self::node()
; Location path, abbreviated form: //
; selects the context node, all the children (including attribute nodes)
; of the context node, and all the children of all the (element)
; descendants of the context node.
; This is _almost_ a powerset of the context node.
(let* ((tree
'(para (@ (name "elem") (id "idz"))
(para (@) "para") (br (@)) "cdata" (para "second par")
(div (@ (name "aa")) (para (@) "third para")))
)
(expected
(cons tree
(append (cdr tree)
'((@) "para" (@) "second par"
(@ (name "aa")) (para (@) "third para")
(@) "third para"))))
)
(run-test
(node-or
(node-self (node-typeof? '*any*))
(node-closure (node-typeof? '*any*)))
tree expected)
(run-test (sxpath '(//)) tree expected)
)
; Location path, full form: ancestor::div
; Location path, abbreviated form: _none_
; selects all div ancestors of the context node
; This Location expression is equivalent to the following:
; /descendant-or-self::div[descendant::node() = curr_node]
; This shows that the ancestor:: axis is actually redundant. Still,
; it can be emulated as the following SXPath expression demonstrates.
; The insight behind "ancestor::div" -- selecting all "div" ancestors
; of the current node -- is
; S[ancestor::div] context_node =
; { y | y=subnode*(root), context_node=subnode(subnode*(y)),
; isElement(y), name(y) = "div" }
; We observe that
; { y | y=subnode*(root), pred(y) }
; can be expressed in SXPath as
; ((node-or (node-self pred) (node-closure pred)) root-node)
; The composite predicate 'isElement(y) & name(y) = "div"' corresponds to
; (node-self (node-typeof? 'div)) in SXPath. Finally, filter
; context_node=subnode(subnode*(y)) is tantamount to
; (node-closure (node-eq? context-node)), whereas node-reduce denotes the
; the composition of converters-predicates in the filtering context.
(let*
((root
'(div (@ (name "elem") (id "idz"))
(para (@) "para") (br (@)) "cdata" (para (@) "second par")
(div (@ (name "aa")) (para (@) "third para"))))
(context-node ; /descendant::any()[child::text() == "third para"]
(car
((node-closure
(select-kids
(node-equal? "third para")))
root)))
(pred
(node-reduce (node-self (node-typeof? 'div))
(node-closure (node-eq? context-node))
))
)
(run-test
(node-or
(node-self pred)
(node-closure pred))
root
(cons root
'((div (@ (name "aa")) (para (@) "third para")))))
)
; Location path, full form: child::div/descendant::para
; Location path, abbreviated form: div//para
; selects the para element descendants of the div element
; children of the context node
(let ((tree
'(elem (@ (name "elem") (id "idz"))
(para (@) "para") (br (@)) "cdata" (para "second par")
(div (@ (name "aa")) (para (@) "third para")
(div (para "fourth para"))))
)
(expected
'((para (@) "third para") (para "fourth para")))
)
(run-test
(node-join
(select-kids (node-typeof? 'div))
(node-closure (node-typeof? 'para)))
tree expected)
(run-test (sxpath '(div // para)) tree expected)
)
; Location path, full form: /descendant::olist/child::item
; Location path, abbreviated form: //olist/item
; selects all the item elements that have an olist parent (which is not root)
; and that are in the same document as the context node
; See the following test.
; Location path, full form: /descendant::td/attribute::align
; Location path, abbreviated form: //td/@align
; Selects 'align' attributes of all 'td' elements in tree1
(let ((tree tree1)
(expected
'((align "right") (align "center") (align "center") (align "center"))
))
(run-test
(node-join
(node-closure (node-typeof? 'td))
(select-kids (node-typeof? '@))
(select-kids (node-typeof? 'align)))
tree expected)
(run-test (sxpath '(// td @ align)) tree expected)
)
; Location path, full form: /descendant::td[attribute::align]
; Location path, abbreviated form: //td[@align]
; Selects all td elements that have an attribute 'align' in tree1
(let ((tree tree1)
(expected
'((td (@ (align "right")) "Talks ") (td (@ (align "center")) " = ")
(td (@ (align "center")) " = ") (td (@ (align "center")) " = "))
))
(run-test
(node-reduce
(node-closure (node-typeof? 'td))
(filter
(node-join
(select-kids (node-typeof? '@))
(select-kids (node-typeof? 'align)))))
tree expected)
(run-test (sxpath `(// td ,(node-self (sxpath '(@ align))))) tree expected)
(run-test (sxpath '(// (td (@ align)))) tree expected)
(run-test (sxpath '(// ((td) (@ align)))) tree expected)
; note! (sxpath ...) is a converter. Therefore, it can be used
; as any other converter, for example, in the full-form SXPath.
; Thus we can mix the full and abbreviated form SXPath's freely.
(run-test
(node-reduce
(node-closure (node-typeof? 'td))
(filter
(sxpath '(@ align))))
tree expected)
)
; Location path, full form: /descendant::td[attribute::align = "right"]
; Location path, abbreviated form: //td[@align = "right"]
; Selects all td elements that have an attribute align = "right" in tree1
(let ((tree tree1)
(expected
'((td (@ (align "right")) "Talks "))
))
(run-test
(node-reduce
(node-closure (node-typeof? 'td))
(filter
(node-join
(select-kids (node-typeof? '@))
(select-kids (node-equal? '(align "right"))))))
tree expected)
(run-test (sxpath '(// (td (@ (equal? (align "right")))))) tree expected)
)
; Location path, full form: child::para[position()=1]
; Location path, abbreviated form: para[1]
; selects the first para child of the context node
(let ((tree
'(elem (@ (name "elem") (id "idz"))
(para (@) "para") (br (@)) "cdata" (para "second par")
(div (@ (name "aa")) (para (@) "third para")))
)
(expected
'((para (@) "para"))
))
(run-test
(node-reduce
(select-kids (node-typeof? 'para))
(node-pos 1))
tree expected)
(run-test (sxpath '((para 1))) tree expected)
)
; Location path, full form: child::para[position()=last()]
; Location path, abbreviated form: para[last()]
; selects the last para child of the context node
(let ((tree
'(elem (@ (name "elem") (id "idz"))
(para (@) "para") (br (@)) "cdata" (para "second par")
(div (@ (name "aa")) (para (@) "third para")))
)
(expected
'((para "second par"))
))
(run-test
(node-reduce
(select-kids (node-typeof? 'para))
(node-pos -1))
tree expected)
(run-test (sxpath '((para -1))) tree expected)
)
; Illustrating the following Note of Sec 2.5 of XPath:
; "NOTE: The location path //para[1] does not mean the same as the
; location path /descendant::para[1]. The latter selects the first
; descendant para element; the former selects all descendant para
; elements that are the first para children of their parents."
(let ((tree
'(elem (@ (name "elem") (id "idz"))
(para (@) "para") (br (@)) "cdata" (para "second par")
(div (@ (name "aa")) (para (@) "third para")))
)
)
(run-test
(node-reduce ; /descendant::para[1] in SXPath
(node-closure (node-typeof? 'para))
(node-pos 1))
tree '((para (@) "para")))
(run-test (sxpath '(// (para 1))) tree
'((para (@) "para") (para (@) "third para")))
)
; Location path, full form: parent::node()
; Location path, abbreviated form: ..
; selects the parent of the context node. The context node may be
; an attribute node!
; For the last test:
; Location path, full form: parent::*/attribute::name
; Location path, abbreviated form: ../@name
; Selects the name attribute of the parent of the context node
(let* ((tree
'(elem (@ (name "elem") (id "idz"))
(para (@) "para") (br (@)) "cdata" (para "second par")
(div (@ (name "aa")) (para (@) "third para")))
)
(para1 ; the first para node
(car ((sxpath '(para)) tree)))
(para3 ; the third para node
(car ((sxpath '(div para)) tree)))
(div ; div node
(car ((sxpath '(// div)) tree)))
)
(run-test
(node-parent tree)
para1 (list tree))
(run-test
(node-parent tree)
para3 (list div))
(run-test ; checking the parent of an attribute node
(node-parent tree)
((sxpath '(@ name)) div) (list div))
(run-test
(node-join
(node-parent tree)
(select-kids (node-typeof? '@))
(select-kids (node-typeof? 'name)))
para3 '((name "aa")))
(run-test
(sxpath `(,(node-parent tree) @ name))
para3 '((name "aa")))
)
; Location path, full form: following-sibling::chapter[position()=1]
; Location path, abbreviated form: none
; selects the next chapter sibling of the context node
; The path is equivalent to
; let cnode = context-node
; in
; parent::* / child::chapter [take-after node_eq(self::*,cnode)]
; [position()=1]
(let* ((tree
'(document
(preface "preface")
(chapter (@ (id "one")) "Chap 1 text")
(chapter (@ (id "two")) "Chap 2 text")
(chapter (@ (id "three")) "Chap 3 text")
(chapter (@ (id "four")) "Chap 4 text")
(epilogue "Epilogue text")
(appendix (@ (id "A")) "App A text")
(References "References"))
)
(a-node ; to be used as a context node
(car ((sxpath '(// (chapter (@ (equal? (id "two")))))) tree)))
(expected
'((chapter (@ (id "three")) "Chap 3 text")))
)
(run-test
(node-reduce
(node-join
(node-parent tree)
(select-kids (node-typeof? 'chapter)))
(take-after (node-eq? a-node))
(node-pos 1)
)
a-node expected)
)
; preceding-sibling::chapter[position()=1]
; selects the previous chapter sibling of the context node
; The path is equivalent to
; let cnode = context-node
; in
; parent::* / child::chapter [take-until node_eq(self::*,cnode)]
; [position()=-1]
(let* ((tree
'(document
(preface "preface")
(chapter (@ (id "one")) "Chap 1 text")
(chapter (@ (id "two")) "Chap 2 text")
(chapter (@ (id "three")) "Chap 3 text")
(chapter (@ (id "four")) "Chap 4 text")
(epilogue "Epilogue text")
(appendix (@ (id "A")) "App A text")
(References "References"))
)
(a-node ; to be used as a context node
(car ((sxpath '(// (chapter (@ (equal? (id "three")))))) tree)))
(expected
'((chapter (@ (id "two")) "Chap 2 text")))
)
(run-test
(node-reduce
(node-join
(node-parent tree)
(select-kids (node-typeof? 'chapter)))
(take-until (node-eq? a-node))
(node-pos -1)
)
a-node expected)
)
; /descendant::figure[position()=42]
; selects the forty-second figure element in the document
; See the next example, which is more general.
; Location path, full form:
; child::table/child::tr[position()=2]/child::td[position()=3]
; Location path, abbreviated form: table/tr[2]/td[3]
; selects the third td of the second tr of the table
(let ((tree ((node-closure (node-typeof? 'p)) tree1))
(expected
'((td " data + control"))
))
(run-test
(node-join
(select-kids (node-typeof? 'table))
(node-reduce (select-kids (node-typeof? 'tr))
(node-pos 2))
(node-reduce (select-kids (node-typeof? 'td))
(node-pos 3)))
tree expected)
(run-test (sxpath '(table (tr 2) (td 3))) tree expected)
)
; Location path, full form:
; child::para[attribute::type='warning'][position()=5]
; Location path, abbreviated form: para[@type='warning'][5]
; selects the fifth para child of the context node that has a type
; attribute with value warning
(let ((tree
'(chapter
(para "para1")
(para (@ (type "warning")) "para 2")
(para (@ (type "warning")) "para 3")
(para (@ (type "warning")) "para 4")
(para (@ (type "warning")) "para 5")
(para (@ (type "warning")) "para 6"))
)
(expected
'((para (@ (type "warning")) "para 6"))
))
(run-test
(node-reduce
(select-kids (node-typeof? 'para))
(filter
(node-join
(select-kids (node-typeof? '@))
(select-kids (node-equal? '(type "warning")))))
(node-pos 5))
tree expected)
(run-test (sxpath '( (((para (@ (equal? (type "warning"))))) 5 ) ))
tree expected)
(run-test (sxpath '( (para (@ (equal? (type "warning"))) 5 ) ))
tree expected)
)
; Location path, full form:
; child::para[position()=5][attribute::type='warning']
; Location path, abbreviated form: para[5][@type='warning']
; selects the fifth para child of the context node if that child has a 'type'
; attribute with value warning
(let ((tree
'(chapter
(para "para1")
(para (@ (type "warning")) "para 2")
(para (@ (type "warning")) "para 3")
(para (@ (type "warning")) "para 4")
(para (@ (type "warning")) "para 5")
(para (@ (type "warning")) "para 6"))
)
(expected
'((para (@ (type "warning")) "para 5"))
))
(run-test
(node-reduce
(select-kids (node-typeof? 'para))
(node-pos 5)
(filter
(node-join
(select-kids (node-typeof? '@))
(select-kids (node-equal? '(type "warning"))))))
tree expected)
(run-test (sxpath '( (( (para 5)) (@ (equal? (type "warning"))))))
tree expected)
(run-test (sxpath '( (para 5 (@ (equal? (type "warning")))) ))
tree expected)
)
; Location path, full form:
; child::*[self::chapter or self::appendix]
; Location path, semi-abbreviated form: *[self::chapter or self::appendix]
; selects the chapter and appendix children of the context node
(let ((tree
'(document
(preface "preface")
(chapter (@ (id "one")) "Chap 1 text")
(chapter (@ (id "two")) "Chap 2 text")
(chapter (@ (id "three")) "Chap 3 text")
(epilogue "Epilogue text")
(appendix (@ (id "A")) "App A text")
(References "References"))
)
(expected
'((chapter (@ (id "one")) "Chap 1 text")
(chapter (@ (id "two")) "Chap 2 text")
(chapter (@ (id "three")) "Chap 3 text")
(appendix (@ (id "A")) "App A text"))
))
(run-test
(node-join
(select-kids (node-typeof? '*))
(filter
(node-or
(node-self (node-typeof? 'chapter))
(node-self (node-typeof? 'appendix)))))
tree expected)
(run-test (sxpath `(* ,(node-or (node-self (node-typeof? 'chapter))
(node-self (node-typeof? 'appendix)))))
tree expected)
)
; Location path, full form: child::chapter[child::title='Introduction']
; Location path, abbreviated form: chapter[title = 'Introduction']
; selects the chapter children of the context node that have one or more
; title children with string-value equal to Introduction
; See a similar example: //td[@align = "right"] above.
; Location path, full form: child::chapter[child::title]
; Location path, abbreviated form: chapter[title]
; selects the chapter children of the context node that have one or
; more title children
; See a similar example //td[@align] above.
(cerr nl "Example with tree3: extracting the first lines of every stanza" nl)
(let ((tree tree3)
(expected
'("Let us go then, you and I," "In the room the women come and go")
))
(run-test
(node-join
(node-closure (node-typeof? 'stanza))
(node-reduce
(select-kids (node-typeof? 'line)) (node-pos 1))
(select-kids (node-typeof? '*text*)))
tree expected)
(run-test (sxpath '(// stanza (line 1) *text*)) tree expected)
)
|