Datasets:

License:
File size: 41,768 Bytes
3dcad1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
;			XML processing in Scheme
;		     SXPath -- SXML Query Language
;
; SXPath is a query language for SXML, an instance of XML Information
; set (Infoset) in the form of s-expressions. See SSAX.scm for the
; definition of SXML and more details. SXPath is also a translation into
; Scheme of an XML Path Language, XPath:
;	http://www.w3.org/TR/xpath
; XPath and SXPath describe means of selecting a set of Infoset's items
; or their properties.
;
; To facilitate queries, XPath maps the XML Infoset into an explicit
; tree, and introduces important notions of a location path and a
; current, context node. A location path denotes a selection of a set of
; nodes relative to a context node. Any XPath tree has a distinguished,
; root node -- which serves as the context node for absolute location
; paths. Location path is recursively defined as a location step joined
; with a location path. A location step is a simple query of the
; database relative to a context node. A step may include expressions
; that further filter the selected set. Each node in the resulting set
; is used as a context node for the adjoining location path. The result
; of the step is a union of the sets returned by the latter location
; paths.
;
; The SXML representation of the XML Infoset (see SSAX.scm) is rather
; suitable for querying as it is. Bowing to the XPath specification,
; we will refer to SXML information items as 'Nodes':
; 	<Node> ::= <Element> | <attributes-coll> | <attrib>
; 		   | "text string" | <PI>
; This production can also be described as
;	<Node> ::= (name . <Nodeset>) | "text string"
; An (ordered) set of nodes is just a list of the constituent nodes:
; 	<Nodeset> ::= (<Node> ...)
; Nodesets, and Nodes other than text strings are both lists. A
; <Nodeset> however is either an empty list, or a list whose head is not
; a symbol.  A symbol at the head of a node is either an XML name (in
; which case it's a tag of an XML element), or an administrative name
; such as '@'.  This uniform list representation makes processing rather
; simple and elegant, while avoiding confusion. The multi-branch tree
; structure formed by the mutually-recursive datatypes <Node> and
; <Nodeset> lends itself well to processing by functional languages.
;
; A location path is in fact a composite query over an XPath tree or
; its branch. A singe step is a combination of a projection, selection
; or a transitive closure. Multiple steps are combined via join and
; union operations. This insight allows us to _elegantly_ implement
; XPath as a sequence of projection and filtering primitives --
; converters -- joined by _combinators_. Each converter takes a node
; and returns a nodeset which is the result of the corresponding query
; relative to that node. A converter can also be called on a set of
; nodes. In that case it returns a union of the corresponding queries over
; each node in the set. The union is easily implemented as a list
; append operation as all nodes in a SXML tree are considered
; distinct, by XPath conventions. We also preserve the order of the
; members in the union. Query combinators are high-order functions:
; they take converter(s) (which is a Node|Nodeset -> Nodeset function)
; and compose or otherwise combine them. We will be concerned with
; only relative location paths [XPath]: an absolute location path is a
; relative path applied to the root node.
;
; Similarly to XPath, SXPath defines full and abbreviated notations
; for location paths. In both cases, the abbreviated notation can be
; mechanically expanded into the full form by simple rewriting
; rules. In case of SXPath the corresponding rules are given as
; comments to a sxpath function, below. The regression test suite at
; the end of this file shows a representative sample of SXPaths in
; both notations, juxtaposed with the corresponding XPath
; expressions. Most of the samples are borrowed literally from the
; XPath specification, while the others are adjusted for our running
; example, tree1.
;
; To do:
; Rename filter to node-filter or ns-filter
; Use ;=== for chapters, ;--- for sections, and ;^^^ for end sections
;
; $Id: SXPath-old.scm,v 1.4 2004/07/07 16:02:31 sperber Exp $


	; See http://pobox.com/~oleg/ftp/Scheme/myenv.scm
	; See http://pobox.com/~oleg/ftp/Scheme/myenv-scm.scm
	; See http://pobox.com/~oleg/ftp/Scheme/myenv-bigloo.scm
;(module SXPath
;  (include "myenv-bigloo.scm"))		; For use with Bigloo 2.2b
;(load "myenv-scm.scm")		; For use with SCM v5d2
;(include "myenv.scm")		; For use with Gambit-C 3.0



(define (nodeset? x)
  (or (and (pair? x) (not (symbol? (car x)))) (null? x)))

;-------------------------
; Basic converters and applicators
; A converter is a function
;	type Converter = Node|Nodeset -> Nodeset
; A converter can also play a role of a predicate: in that case, if a
; converter, applied to a node or a nodeset, yields a non-empty
; nodeset, the converter-predicate is deemed satisfied. Throughout
; this file a nil nodeset is equivalent to #f in denoting a failure.

; The following function implements a 'Node test' as defined in
; Sec. 2.3 of XPath document. A node test is one of the components of a
; location step. It is also a converter-predicate in SXPath.
;
; The function node-typeof? takes a type criterion and returns a function,
; which, when applied to a node, will tell if the node satisfies
; the test.
;	node-typeof? :: Crit -> Node -> Boolean
;
; The criterion 'crit' is a symbol, one of the following:
;	id		- tests if the Node has the right name (id)
;	@		- tests if the Node is an <attributes-coll>
;	*		- tests if the Node is an <Element>
;	*text*		- tests if the Node is a text node
;	*PI*		- tests if the Node is a PI node
;	*any*		- #t for any type of Node

(define (node-typeof? crit)
  (lambda (node)
    (case crit
      ((*) (and (pair? node) (not (memq (car node) '(@ *PI*)))))
      ((*any*) #t)
      ((*text*) (string? node))
      (else
       (and (pair? node) (eq? crit (car node))))
)))


; Curried equivalence converter-predicates
(define (node-eq? other)
  (lambda (node)
    (eq? other node)))

(define (node-equal? other)
  (lambda (node)
    (equal? other node)))

; node-pos:: N -> Nodeset -> Nodeset, or
; node-pos:: N -> Converter
; Select the N'th element of a Nodeset and return as a singular Nodeset;
; Return an empty nodeset if the Nth element does not exist.
; ((node-pos 1) Nodeset) selects the node at the head of the Nodeset,
; if exists; ((node-pos 2) Nodeset) selects the Node after that, if
; exists.
; N can also be a negative number: in that case the node is picked from
; the tail of the list.
; ((node-pos -1) Nodeset) selects the last node of a non-empty nodeset;
; ((node-pos -2) Nodeset) selects the last but one node, if exists.

(define (node-pos n)
  (lambda (nodeset)
    (cond
     ((not (nodeset? nodeset)) '())
     ((null? nodeset) nodeset)
     ((eqv? n 1) (list (car nodeset)))
     ((negative? n) ((node-pos (+ n 1 (length nodeset))) nodeset))
     (else
      (assert (positive? n))
      ((node-pos (dec n)) (cdr nodeset))))))

; filter:: Converter -> Converter
; A filter applicator, which introduces a filtering context. The argument
; converter is considered a predicate, with either #f or nil result meaning
; failure.
(define (filter pred?)
  (lambda (lst)	; a nodeset or a node (will be converted to a singleton nset)
    (let loop ((lst (if (nodeset? lst) lst (list lst))) (res '()))
      (if (null? lst)
	  (reverse res)
	  (let ((pred-result (pred? (car lst))))
	    (loop (cdr lst)
		  (if (and pred-result (not (null? pred-result)))
		      (cons (car lst) res)
		      res)))))))

; take-until:: Converter -> Converter, or
; take-until:: Pred -> Node|Nodeset -> Nodeset
; Given a converter-predicate and a nodeset, apply the predicate to
; each element of the nodeset, until the predicate yields anything but #f or
; nil. Return the elements of the input nodeset that have been processed
; till that moment (that is, which fail the predicate).
; take-until is a variation of the filter above: take-until passes
; elements of an ordered input set till (but not including) the first
; element that satisfies the predicate.
; The nodeset returned by ((take-until (not pred)) nset) is a subset -- 
; to be more precise, a prefix -- of the nodeset returned by
; ((filter pred) nset)

(define (take-until pred?)
  (lambda (lst)	; a nodeset or a node (will be converted to a singleton nset)
    (let loop ((lst (if (nodeset? lst) lst (list lst))))
      (if (null? lst) lst
	  (let ((pred-result (pred? (car lst))))
	    (if (and pred-result (not (null? pred-result)))
		'()
		(cons (car lst) (loop (cdr lst)))))
	  ))))


; take-after:: Converter -> Converter, or
; take-after:: Pred -> Node|Nodeset -> Nodeset
; Given a converter-predicate and a nodeset, apply the predicate to
; each element of the nodeset, until the predicate yields anything but #f or
; nil. Return the elements of the input nodeset that have not been processed:
; that is, return the elements of the input nodeset that follow the first
; element that satisfied the predicate.
; take-after along with take-until partition an input nodeset into three
; parts: the first element that satisfies a predicate, all preceding
; elements and all following elements.

(define (take-after pred?)
  (lambda (lst)	; a nodeset or a node (will be converted to a singleton nset)
    (let loop ((lst (if (nodeset? lst) lst (list lst))))
      (if (null? lst) lst
	  (let ((pred-result (pred? (car lst))))
	    (if (and pred-result (not (null? pred-result)))
		(cdr lst)
		(loop (cdr lst))))
	  ))))

; Apply proc to each element of lst and return the list of results.
; if proc returns a nodeset, splice it into the result
;
; From another point of view, map-union is a function Converter->Converter,
; which places an argument-converter in a joining context.

(define (map-union proc lst)
  (if (null? lst) lst
      (let ((proc-res (proc (car lst))))
	((if (nodeset? proc-res) append cons)
	 proc-res (map-union proc (cdr lst))))))

; node-reverse :: Converter, or
; node-reverse:: Node|Nodeset -> Nodeset
; Reverses the order of nodes in the nodeset
; This basic converter is needed to implement a reverse document order
; (see the XPath Recommendation).
(define node-reverse 
  (lambda (node-or-nodeset)
    (if (not (nodeset? node-or-nodeset)) (list node-or-nodeset)
	(reverse node-or-nodeset))))

; node-trace:: String -> Converter
; (node-trace title) is an identity converter. In addition it prints out
; a node or nodeset it is applied to, prefixed with the 'title'.
; This converter is very useful for debugging.

(define (node-trace title)
  (lambda (node-or-nodeset)
    (cout nl "-->")
    (display title)
    (display " :")
    (pretty-print node-or-nodeset)
    node-or-nodeset))


;-------------------------
; Converter combinators
;
; Combinators are higher-order functions that transmogrify a converter
; or glue a sequence of converters into a single, non-trivial
; converter. The goal is to arrive at converters that correspond to
; XPath location paths.
;
; From a different point of view, a combinator is a fixed, named
; _pattern_ of applying converters. Given below is a complete set of
; such patterns that together implement XPath location path
; specification. As it turns out, all these combinators can be built
; from a small number of basic blocks: regular functional composition,
; map-union and filter applicators, and the nodeset union.



; select-kids:: Pred -> Node -> Nodeset
; Given a Node, return an (ordered) subset its children that satisfy
; the Pred (a converter, actually)
; select-kids:: Pred -> Nodeset -> Nodeset
; The same as above, but select among children of all the nodes in
; the Nodeset
;
; More succinctly, the signature of this function is
; select-kids:: Converter -> Converter

(define (select-kids test-pred?)
  (lambda (node)		; node or node-set
    (cond 
     ((null? node) node)
     ((not (pair? node)) '())   ; No children
     ((symbol? (car node))
      ((filter test-pred?) (cdr node)))	; it's a single node
     (else (map-union (select-kids test-pred?) node)))))


; node-self:: Pred -> Node -> Nodeset, or
; node-self:: Converter -> Converter
; Similar to select-kids but apply to the Node itself rather
; than to its children. The resulting Nodeset will contain either one
; component, or will be empty (if the Node failed the Pred).
(define node-self filter)


; node-join:: [LocPath] -> Node|Nodeset -> Nodeset, or
; node-join:: [Converter] -> Converter
; join the sequence of location steps or paths as described
; in the title comments above.
(define (node-join . selectors)
  (lambda (nodeset)		; Nodeset or node
    (let loop ((nodeset nodeset) (selectors selectors))
      (if (null? selectors) nodeset
	  (loop 
	   (if (nodeset? nodeset)
	       (map-union (car selectors) nodeset)
	       ((car selectors) nodeset))
	   (cdr selectors))))))


; node-reduce:: [LocPath] -> Node|Nodeset -> Nodeset, or
; node-reduce:: [Converter] -> Converter
; A regular functional composition of converters.
; From a different point of view,
;    ((apply node-reduce converters) nodeset)
; is equivalent to
;    (foldl apply nodeset converters)
; i.e., folding, or reducing, a list of converters with the nodeset
; as a seed.
(define (node-reduce . converters)
  (lambda (nodeset)		; Nodeset or node
    (let loop ((nodeset nodeset) (converters converters))
      (if (null? converters) nodeset
	  (loop ((car converters) nodeset) (cdr converters))))))


; node-or:: [Converter] -> Converter
; This combinator applies all converters to a given node and
; produces the union of their results.
; This combinator corresponds to a union, '|' operation for XPath
; location paths.
; (define (node-or . converters)
;   (lambda (node-or-nodeset)
;     (if (null? converters) node-or-nodeset
; 	(append 
; 	 ((car converters) node-or-nodeset)
; 	 ((apply node-or (cdr converters)) node-or-nodeset)))))
; More optimal implementation follows
(define (node-or . converters)
  (lambda (node-or-nodeset)
    (let loop ((result '()) (converters converters))
      (if (null? converters) result
	  (loop (append result (or ((car converters) node-or-nodeset) '()))
		(cdr converters))))))


; node-closure:: Converter -> Converter
; Select all _descendants_ of a node that satisfy a converter-predicate.
; This combinator is similar to select-kids but applies to
; grand... children as well.
; This combinator implements the "descendant::" XPath axis
; Conceptually, this combinator can be expressed as
; (define (node-closure f)
;      (node-or
;        (select-kids f)
;	 (node-reduce (select-kids (node-typeof? '*)) (node-closure f))))
; This definition, as written, looks somewhat like a fixpoint, and it
; will run forever. It is obvious however that sooner or later
; (select-kids (node-typeof? '*)) will return an empty nodeset. At
; this point further iterations will no longer affect the result and
; can be stopped.

(define (node-closure test-pred?)	    
  (lambda (node)		; Nodeset or node
    (let loop ((parent node) (result '()))
      (if (null? parent) result
	  (loop ((select-kids (node-typeof? '*)) parent)
		(append result
			((select-kids test-pred?) parent)))
	  ))))

; node-parent:: RootNode -> Converter
; (node-parent rootnode) yields a converter that returns a parent of a
; node it is applied to. If applied to a nodeset, it returns the list
; of parents of nodes in the nodeset. The rootnode does not have
; to be the root node of the whole SXML tree -- it may be a root node
; of a branch of interest.
; Given the notation of Philip Wadler's paper on semantics of XSLT,
;  parent(x) = { y | y=subnode*(root), x=subnode(y) }
; Therefore, node-parent is not the fundamental converter: it can be
; expressed through the existing ones.  Yet node-parent is a rather
; convenient converter. It corresponds to a parent:: axis of SXPath.
; Note that the parent:: axis can be used with an attribute node as well!

(define (node-parent rootnode)
  (lambda (node)		; Nodeset or node
    (if (nodeset? node) (map-union (node-parent rootnode) node)
	(let ((pred
	       (node-or
		(node-reduce
		 (node-self (node-typeof? '*))
		 (select-kids (node-eq? node)))
		(node-join
		 (select-kids (node-typeof? '@))
		 (select-kids (node-eq? node))))))
	  ((node-or
	    (node-self pred)
	    (node-closure pred))
	   rootnode)))))

;-------------------------
; Evaluate an abbreviated SXPath
;	sxpath:: AbbrPath -> Converter, or
;	sxpath:: AbbrPath -> Node|Nodeset -> Nodeset
; AbbrPath is a list. It is translated to the full SXPath according
; to the following rewriting rules
; (sxpath '()) -> (node-join)
; (sxpath '(path-component ...)) ->
;		(node-join (sxpath1 path-component) (sxpath '(...)))
; (sxpath1 '//) -> (node-or 
;		     (node-self (node-typeof? '*any*))
;		      (node-closure (node-typeof? '*any*)))
; (sxpath1 '(equal? x)) -> (select-kids (node-equal? x))
; (sxpath1 '(eq? x))    -> (select-kids (node-eq? x))
; (sxpath1 ?symbol)     -> (select-kids (node-typeof? ?symbol)
; (sxpath1 procedure)   -> procedure
; (sxpath1 '(?symbol ...)) -> (sxpath1 '((?symbol) ...))
; (sxpath1 '(path reducer ...)) ->
;		(node-reduce (sxpath path) (sxpathr reducer) ...)
; (sxpathr number)      -> (node-pos number)
; (sxpathr path-filter) -> (filter (sxpath path-filter))

(define (sxpath path)
  (lambda (nodeset)
    (let loop ((nodeset nodeset) (path path))
    (cond
     ((null? path) nodeset)
     ((nodeset? nodeset)
      (map-union (sxpath path) nodeset))
     ((procedure? (car path))
      (loop ((car path) nodeset) (cdr path)))
     ((eq? '// (car path))
      (loop
       ((if (nodeset? nodeset) append cons) nodeset
	((node-closure (node-typeof? '*any*)) nodeset))
       (cdr path)))
     ((symbol? (car path))
      (loop ((select-kids (node-typeof? (car path))) nodeset)
	    (cdr path)))
     ((and (pair? (car path)) (eq? 'equal? (caar path)))
      (loop ((select-kids (apply node-equal? (cdar path))) nodeset)
	    (cdr path)))
     ((and (pair? (car path)) (eq? 'eq? (caar path)))
      (loop ((select-kids (apply node-eq? (cdar path))) nodeset)
	    (cdr path)))
     ((pair? (car path))
      (let reducer ((nodeset 
		     (if (symbol? (caar path))
			 ((select-kids (node-typeof? (caar path))) nodeset)
			 (loop nodeset (caar path))))
		    (reducing-path (cdar path)))
	(cond
	 ((null? reducing-path) (loop nodeset (cdr path)))
	 ((number? (car reducing-path))
	  (reducer ((node-pos (car reducing-path)) nodeset)
		   (cdr reducing-path)))
	 (else
	  (reducer ((filter (sxpath (car reducing-path))) nodeset)
		   (cdr reducing-path))))))
     (else
      (error "Invalid path step: " (car path)))
))))

;------------------------------------------------------------------------
; Sample XPath/SXPath expressions: regression test suite for the
; implementation above.

; A running example

(define tree1 
  '(html
    (head (title "Slides"))
    (body
     (p (@ (align "center"))
	(table (@ (style "font-size: x-large"))
	       (tr
		(td (@ (align "right")) "Talks ")
		(td (@ (align "center")) " = ")
		(td " slides + transition"))
	       (tr (td)
		   (td (@ (align "center")) " = ")
		   (td " data + control"))
	       (tr (td)
		   (td (@ (align "center")) " = ")
		   (td " programs"))))
     (ul
      (li (a (@ (href "slides/slide0001.gif")) "Introduction"))
      (li (a (@ (href "slides/slide0010.gif")) "Summary")))
     )))


; Example from a posting "Re: DrScheme and XML", 
; Shriram Krishnamurthi, comp.lang.scheme, Nov. 26. 1999.
; http://www.deja.com/getdoc.xp?AN=553507805
(define tree3
  '(poem (@ (title "The Lovesong of J. Alfred Prufrock")
	    (poet "T. S. Eliot"))
	 (stanza
	  (line "Let us go then, you and I,")
	  (line "When the evening is spread out against the sky")
	  (line "Like a patient etherized upon a table:"))
	 (stanza
	  (line "In the room the women come and go")
	  (line "Talking of Michaelangelo."))))

; Validation Test harness

(define-syntax run-test
 (syntax-rules (define)
   ((run-test "scan-exp" (define vars body))
    (define vars (run-test "scan-exp" body)))
   ((run-test "scan-exp" ?body)
    (letrec-syntax
      ((scan-exp			; (scan-exp body k)
	 (syntax-rules (quote quasiquote !)
	   ((scan-exp '() (k-head ! . args))
	     (k-head '() . args))
	   ((scan-exp (quote (hd . tl)) k)
	     (scan-lit-lst (hd . tl) (do-wrap ! quasiquote k)))
	   ((scan-exp (quasiquote (hd . tl)) k)
	     (scan-lit-lst (hd . tl) (do-wrap ! quasiquote k)))
	   ((scan-exp (quote x) (k-head ! . args))
	     (k-head 
	       (if (string? (quote x)) (string->symbol (quote x)) (quote x))
	       . args))
	   ((scan-exp (hd . tl) k)
	     (scan-exp hd (do-tl ! scan-exp tl k)))
	   ((scan-exp x (k-head ! . args))
	     (k-head x . args))))
	(do-tl
	  (syntax-rules (!)
	    ((do-tl processed-hd fn () (k-head ! . args))
	      (k-head (processed-hd) . args))
	    ((do-tl processed-hd fn old-tl k)
	      (fn old-tl (do-cons ! processed-hd k)))))
	(do-cons
	  (syntax-rules (!)
	    ((do-cons processed-tl processed-hd (k-head ! . args))
	      (k-head (processed-hd . processed-tl) . args))))
	(do-wrap
	  (syntax-rules (!)
	    ((do-wrap val fn (k-head ! . args))
	      (k-head (fn val) . args))))
	(do-finish
	  (syntax-rules ()
	    ((do-finish new-body) new-body)))

	(scan-lit-lst			; scan literal list
	  (syntax-rules (quote unquote unquote-splicing !)
	   ((scan-lit-lst '() (k-head ! . args))
	     (k-head '() . args))
	   ((scan-lit-lst (quote (hd . tl)) k)
	     (do-tl quote scan-lit-lst ((hd . tl)) k))
	   ((scan-lit-lst (unquote x) k)
	     (scan-exp x (do-wrap ! unquote k)))
	   ((scan-lit-lst (unquote-splicing x) k)
	     (scan-exp x (do-wrap ! unquote-splicing k)))
	   ((scan-lit-lst (quote x) (k-head ! . args))
	     (k-head 
	       ,(if (string? (quote x)) (string->symbol (quote x)) (quote x))
	       . args))
	    ((scan-lit-lst (hd . tl) k)
	      (scan-lit-lst hd (do-tl ! scan-lit-lst tl k)))
	    ((scan-lit-lst x (k-head ! . args))
	      (k-head x . args))))
	)
      (scan-exp ?body (do-finish !))))
  ((run-test body ...)
   (begin
     (run-test "scan-exp" body) ...))
))

; Overwrite the above macro to switch the tests off
; (define-macro (run-test selector node expected-result) #f)

; Location path, full form: child::para 
; Location path, abbreviated form: para
; selects the para element children of the context node

(let ((tree
       '(elem (@) (para (@) "para") (br (@)) "cdata" (para (@) "second par"))
       )
      (expected '((para (@) "para") (para (@) "second par")))
      )
  (run-test (select-kids (node-typeof? 'para)) tree expected)
  (run-test (sxpath '(para)) tree expected)
)

; Location path, full form: child::* 
; Location path, abbreviated form: *
; selects all element children of the context node

(let ((tree
       '(elem (@) (para (@) "para") (br (@)) "cdata" (para "second par"))
       )
      (expected
       '((para (@) "para") (br (@)) (para "second par")))
      )
  (run-test (select-kids (node-typeof? '*)) tree expected)
  (run-test (sxpath '(*)) tree expected)
)



; Location path, full form: child::text() 
; Location path, abbreviated form: text()
; selects all text node children of the context node
(let ((tree
       '(elem (@) (para (@) "para") (br (@)) "cdata" (para "second par"))
       )
      (expected
       '("cdata"))
      )
  (run-test (select-kids (node-typeof? '*text*)) tree expected)
  (run-test (sxpath '(*text*)) tree expected)
)


; Location path, full form: child::node() 
; Location path, abbreviated form: node()
; selects all the children of the context node, whatever their node type
(let* ((tree
       '(elem (@) (para (@) "para") (br (@)) "cdata" (para "second par"))
       )
      (expected (cdr tree))
      )
  (run-test (select-kids (node-typeof? '*any*)) tree expected)
  (run-test (sxpath '(*any*)) tree expected)
)

; Location path, full form: child::*/child::para 
; Location path, abbreviated form: */para
; selects all para grandchildren of the context node

(let ((tree
       '(elem (@) (para (@) "para") (br (@)) "cdata" (para "second par")
	(div (@ (name "aa")) (para "third para")))
       )
      (expected
       '((para "third para")))
      )
  (run-test
   (node-join (select-kids (node-typeof? '*))
	      (select-kids (node-typeof? 'para)))
   tree expected)
  (run-test (sxpath '(* para)) tree expected)
)


; Location path, full form: attribute::name 
; Location path, abbreviated form: @name
; selects the 'name' attribute of the context node

(let ((tree
       '(elem (@ (name "elem") (id "idz")) 
	(para (@) "para") (br (@)) "cdata" (para (@) "second par")
	(div (@ (name "aa")) (para (@) "third para")))
       )
      (expected
       '((name "elem")))
      )
  (run-test
   (node-join (select-kids (node-typeof? '@))
	      (select-kids (node-typeof? 'name)))
   tree expected)
  (run-test (sxpath '(@ name)) tree expected)
)

; Location path, full form:  attribute::* 
; Location path, abbreviated form: @*
; selects all the attributes of the context node
(let ((tree
       '(elem (@ (name "elem") (id "idz")) 
	(para (@) "para") (br (@)) "cdata" (para "second par")
	(div (@ (name "aa")) (para (@) "third para")))
       )
      (expected
       '((name "elem") (id "idz")))
      )
  (run-test
   (node-join (select-kids (node-typeof? '@))
	      (select-kids (node-typeof? '*)))
   tree expected)
  (run-test (sxpath '(@ *)) tree expected)
)


; Location path, full form: descendant::para 
; Location path, abbreviated form: .//para
; selects the para element descendants of the context node

(let ((tree
       '(elem (@ (name "elem") (id "idz")) 
	(para (@) "para") (br (@)) "cdata" (para "second par")
	(div (@ (name "aa")) (para (@) "third para")))
       )
      (expected
       '((para (@) "para") (para "second par") (para (@) "third para")))
      )
  (run-test
   (node-closure (node-typeof? 'para))
   tree expected)
  (run-test (sxpath '(// para)) tree expected)
)

; Location path, full form: self::para 
; Location path, abbreviated form: _none_
; selects the context node if it is a para element; otherwise selects nothing

(let ((tree
       '(elem (@ (name "elem") (id "idz")) 
	(para (@) "para") (br (@)) "cdata" (para "second par")
	(div (@ (name "aa")) (para (@) "third para")))
       )
      )
  (run-test (node-self (node-typeof? 'para)) tree '())
  (run-test (node-self (node-typeof? 'elem)) tree (list tree))
)

; Location path, full form: descendant-or-self::node()
; Location path, abbreviated form: //
; selects the context node, all the children (including attribute nodes)
; of the context node, and all the children of all the (element)
; descendants of the context node.
; This is _almost_ a powerset of the context node.
(let* ((tree
       '(para (@ (name "elem") (id "idz")) 
	(para (@) "para") (br (@)) "cdata" (para "second par")
	(div (@ (name "aa")) (para (@) "third para")))
       )
      (expected
       (cons tree
	(append (cdr tree)
       '((@) "para" (@) "second par"
	 (@ (name "aa")) (para (@) "third para")
	 (@) "third para"))))
      )
  (run-test
   (node-or
    (node-self (node-typeof? '*any*))
    (node-closure (node-typeof? '*any*)))
   tree expected)
  (run-test (sxpath '(//)) tree expected)
)

; Location path, full form: ancestor::div 
; Location path, abbreviated form: _none_
; selects all div ancestors of the context node
; This Location expression is equivalent to the following:
;	/descendant-or-self::div[descendant::node() = curr_node]
; This shows that the ancestor:: axis is actually redundant. Still,
; it can be emulated as the following SXPath expression demonstrates.

; The insight behind "ancestor::div" -- selecting all "div" ancestors
; of the current node -- is
;  S[ancestor::div] context_node =
;    { y | y=subnode*(root), context_node=subnode(subnode*(y)),
;          isElement(y), name(y) = "div" }
; We observe that
;    { y | y=subnode*(root), pred(y) }
; can be expressed in SXPath as 
;    ((node-or (node-self pred) (node-closure pred)) root-node)
; The composite predicate 'isElement(y) & name(y) = "div"' corresponds to 
; (node-self (node-typeof? 'div)) in SXPath. Finally, filter
; context_node=subnode(subnode*(y)) is tantamount to
; (node-closure (node-eq? context-node)), whereas node-reduce denotes the
; the composition of converters-predicates in the filtering context.

(let*
    ((root
	 '(div (@ (name "elem") (id "idz")) 
		(para (@) "para") (br (@)) "cdata" (para (@) "second par")
		(div (@ (name "aa")) (para (@) "third para"))))
     (context-node	; /descendant::any()[child::text() == "third para"]
      (car
       ((node-closure 
	 (select-kids
	  (node-equal? "third para")))
       root)))
    (pred
     (node-reduce (node-self (node-typeof? 'div))
		  (node-closure (node-eq? context-node))
		  ))
     )
  (run-test
   (node-or
     (node-self pred)
     (node-closure pred))
   root 
   (cons root
	 '((div (@ (name "aa")) (para (@) "third para")))))
)



; Location path, full form: child::div/descendant::para 
; Location path, abbreviated form: div//para
; selects the para element descendants of the div element
; children of the context node

(let ((tree
       '(elem (@ (name "elem") (id "idz")) 
	(para (@) "para") (br (@)) "cdata" (para "second par")
	(div (@ (name "aa")) (para (@) "third para")
	     (div (para "fourth para"))))
       )
      (expected
       '((para (@) "third para") (para "fourth para")))
      )
  (run-test
   (node-join 
    (select-kids (node-typeof? 'div))
    (node-closure (node-typeof? 'para)))
   tree expected)
  (run-test (sxpath '(div // para)) tree expected)
)


; Location path, full form: /descendant::olist/child::item 
; Location path, abbreviated form: //olist/item
; selects all the item elements that have an olist parent (which is not root)
; and that are in the same document as the context node
; See the following test.

; Location path, full form: /descendant::td/attribute::align 
; Location path, abbreviated form: //td/@align
; Selects 'align' attributes of all 'td' elements in tree1
(let ((tree tree1)
      (expected
       '((align "right") (align "center") (align "center") (align "center"))
      ))
  (run-test
   (node-join 
    (node-closure (node-typeof? 'td))
    (select-kids (node-typeof? '@))
    (select-kids (node-typeof? 'align)))
   tree expected)
  (run-test (sxpath '(// td @ align)) tree expected)
)


; Location path, full form: /descendant::td[attribute::align] 
; Location path, abbreviated form: //td[@align]
; Selects all td elements that have an attribute 'align' in tree1
(let ((tree tree1)
      (expected
       '((td (@ (align "right")) "Talks ") (td (@ (align "center")) " = ")
	 (td (@ (align "center")) " = ") (td (@ (align "center")) " = "))
       ))
  (run-test
   (node-reduce 
    (node-closure (node-typeof? 'td))
    (filter
     (node-join
      (select-kids (node-typeof? '@))
      (select-kids (node-typeof? 'align)))))
   tree expected)
  (run-test (sxpath `(// td ,(node-self (sxpath '(@ align)))))  tree expected)
  (run-test (sxpath '(// (td (@ align)))) tree expected)
  (run-test (sxpath '(// ((td) (@ align)))) tree expected)
  ; note! (sxpath ...) is a converter. Therefore, it can be used
  ; as any other converter, for example, in the full-form SXPath.
  ; Thus we can mix the full and abbreviated form SXPath's freely.
  (run-test
   (node-reduce 
    (node-closure (node-typeof? 'td))
    (filter
     (sxpath '(@ align))))
   tree expected)
)


; Location path, full form: /descendant::td[attribute::align = "right"] 
; Location path, abbreviated form: //td[@align = "right"]
; Selects all td elements that have an attribute align = "right" in tree1
(let ((tree tree1)
      (expected
       '((td (@ (align "right")) "Talks "))
       ))
  (run-test
   (node-reduce 
    (node-closure (node-typeof? 'td))
    (filter
     (node-join
      (select-kids (node-typeof? '@))
      (select-kids (node-equal? '(align "right"))))))
   tree expected)
  (run-test (sxpath '(// (td (@ (equal? (align "right")))))) tree expected)
)

; Location path, full form: child::para[position()=1] 
; Location path, abbreviated form: para[1]
; selects the first para child of the context node
(let ((tree
       '(elem (@ (name "elem") (id "idz")) 
	(para (@) "para") (br (@)) "cdata" (para "second par")
	(div (@ (name "aa")) (para (@) "third para")))
       )
      (expected
       '((para (@) "para"))
      ))
  (run-test
   (node-reduce
    (select-kids (node-typeof? 'para))
    (node-pos 1))
   tree expected)
  (run-test (sxpath '((para 1))) tree expected)
)

; Location path, full form: child::para[position()=last()] 
; Location path, abbreviated form: para[last()]
; selects the last para child of the context node
(let ((tree
       '(elem (@ (name "elem") (id "idz")) 
	(para (@) "para") (br (@)) "cdata" (para "second par")
	(div (@ (name "aa")) (para (@) "third para")))
       )
      (expected
       '((para "second par"))
      ))
  (run-test
   (node-reduce
    (select-kids (node-typeof? 'para))
    (node-pos -1))
   tree expected)
  (run-test (sxpath '((para -1))) tree expected)
)

; Illustrating the following Note of Sec 2.5 of XPath:
; "NOTE: The location path //para[1] does not mean the same as the
; location path /descendant::para[1]. The latter selects the first
; descendant para element; the former selects all descendant para
; elements that are the first para children of their parents."

(let ((tree
       '(elem (@ (name "elem") (id "idz")) 
	(para (@) "para") (br (@)) "cdata" (para "second par")
	(div (@ (name "aa")) (para (@) "third para")))
       )
      )
  (run-test
   (node-reduce	; /descendant::para[1] in SXPath
    (node-closure (node-typeof? 'para))
    (node-pos 1))
   tree '((para (@) "para")))
  (run-test (sxpath '(// (para 1))) tree
	    '((para (@) "para") (para (@) "third para")))
)

; Location path, full form: parent::node()
; Location path, abbreviated form: ..
; selects the parent of the context node. The context node may be
; an attribute node!
; For the last test:
; Location path, full form: parent::*/attribute::name
; Location path, abbreviated form: ../@name
; Selects the name attribute of the parent of the context node

(let* ((tree
	'(elem (@ (name "elem") (id "idz")) 
	       (para (@) "para") (br (@)) "cdata" (para "second par")
	       (div (@ (name "aa")) (para (@) "third para")))
	)
       (para1		; the first para node
	(car ((sxpath '(para)) tree)))
       (para3		; the third para node
	(car ((sxpath '(div para)) tree)))
       (div		; div node
	(car ((sxpath '(// div)) tree)))
       )
  (run-test
   (node-parent tree)
   para1 (list tree))
  (run-test
   (node-parent tree)
   para3 (list div))
  (run-test		; checking the parent of an attribute node
   (node-parent tree)
   ((sxpath '(@ name)) div) (list div))
  (run-test
   (node-join
    (node-parent tree)
    (select-kids (node-typeof? '@))
    (select-kids (node-typeof? 'name)))
   para3 '((name "aa")))
  (run-test
   (sxpath `(,(node-parent tree) @ name))
   para3 '((name "aa")))
)

; Location path, full form: following-sibling::chapter[position()=1]
; Location path, abbreviated form: none
; selects the next chapter sibling of the context node
; The path is equivalent to
;  let cnode = context-node
;    in
;	parent::* / child::chapter [take-after node_eq(self::*,cnode)] 
;		[position()=1]
(let* ((tree
       '(document
	 (preface "preface")
	 (chapter (@ (id "one")) "Chap 1 text")
	 (chapter (@ (id "two")) "Chap 2 text")
	 (chapter (@ (id "three")) "Chap 3 text")
	 (chapter (@ (id "four")) "Chap 4 text")
	 (epilogue "Epilogue text")
	 (appendix (@ (id "A")) "App A text")
	 (References "References"))
       )
       (a-node	; to be used as a context node
	(car ((sxpath '(// (chapter (@ (equal? (id "two")))))) tree)))
       (expected
       '((chapter (@ (id "three")) "Chap 3 text")))
      )
  (run-test
   (node-reduce
    (node-join
     (node-parent tree)
     (select-kids (node-typeof? 'chapter)))
    (take-after (node-eq? a-node))
    (node-pos 1)
    )
   a-node expected)
)

; preceding-sibling::chapter[position()=1]
; selects the previous chapter sibling of the context node
; The path is equivalent to
;  let cnode = context-node
;    in
;	parent::* / child::chapter [take-until node_eq(self::*,cnode)] 
;		[position()=-1]
(let* ((tree
       '(document
	 (preface "preface")
	 (chapter (@ (id "one")) "Chap 1 text")
	 (chapter (@ (id "two")) "Chap 2 text")
	 (chapter (@ (id "three")) "Chap 3 text")
	 (chapter (@ (id "four")) "Chap 4 text")
	 (epilogue "Epilogue text")
	 (appendix (@ (id "A")) "App A text")
	 (References "References"))
       )
       (a-node	; to be used as a context node
	(car ((sxpath '(// (chapter (@ (equal? (id "three")))))) tree)))
       (expected
       '((chapter (@ (id "two")) "Chap 2 text")))
      )
  (run-test
   (node-reduce
    (node-join
     (node-parent tree)
     (select-kids (node-typeof? 'chapter)))
    (take-until (node-eq? a-node))
    (node-pos -1)
    )
   a-node expected)
)


; /descendant::figure[position()=42]
; selects the forty-second figure element in the document
; See the next example, which is more general.

; Location path, full form:
;    child::table/child::tr[position()=2]/child::td[position()=3] 
; Location path, abbreviated form: table/tr[2]/td[3]
; selects the third td of the second tr of the table
(let ((tree ((node-closure (node-typeof? 'p)) tree1))
      (expected
       '((td " data + control"))
       ))
  (run-test
   (node-join
    (select-kids (node-typeof? 'table))
    (node-reduce (select-kids (node-typeof? 'tr))
		 (node-pos 2))
    (node-reduce (select-kids (node-typeof? 'td))
		 (node-pos 3)))
   tree expected)
  (run-test (sxpath '(table (tr 2) (td 3))) tree expected)
)


; Location path, full form:
;		child::para[attribute::type='warning'][position()=5] 
; Location path, abbreviated form: para[@type='warning'][5]
; selects the fifth para child of the context node that has a type
; attribute with value warning
(let ((tree
       '(chapter
	 (para "para1")
	 (para (@ (type "warning")) "para 2")
	 (para (@ (type "warning")) "para 3")
	 (para (@ (type "warning")) "para 4")
	 (para (@ (type "warning")) "para 5")
	 (para (@ (type "warning")) "para 6"))
       )
      (expected
       '((para (@ (type "warning")) "para 6"))
      ))
  (run-test
   (node-reduce
    (select-kids (node-typeof? 'para))
    (filter
     (node-join
      (select-kids (node-typeof? '@))
      (select-kids (node-equal? '(type "warning")))))
    (node-pos 5))
   tree expected)
  (run-test (sxpath '( (((para (@ (equal? (type "warning"))))) 5 )  ))
	    tree expected)
  (run-test (sxpath '( (para (@ (equal? (type "warning"))) 5 )  ))
	    tree expected)
)


; Location path, full form:
;		child::para[position()=5][attribute::type='warning'] 
; Location path, abbreviated form: para[5][@type='warning']
; selects the fifth para child of the context node if that child has a 'type'
; attribute with value warning
(let ((tree
       '(chapter
	 (para "para1")
	 (para (@ (type "warning")) "para 2")
	 (para (@ (type "warning")) "para 3")
	 (para (@ (type "warning")) "para 4")
	 (para (@ (type "warning")) "para 5")
	 (para (@ (type "warning")) "para 6"))
       )
      (expected
       '((para (@ (type "warning")) "para 5"))
      ))
  (run-test
   (node-reduce
    (select-kids (node-typeof? 'para))
    (node-pos 5)
    (filter
     (node-join
      (select-kids (node-typeof? '@))
      (select-kids (node-equal? '(type "warning"))))))
   tree expected)
  (run-test (sxpath '( (( (para 5))  (@ (equal? (type "warning"))))))
	    tree expected)
  (run-test (sxpath '( (para 5 (@ (equal? (type "warning")))) ))
	    tree expected)
)

; Location path, full form:
;		child::*[self::chapter or self::appendix]
; Location path, semi-abbreviated form: *[self::chapter or self::appendix]
; selects the chapter and appendix children of the context node
(let ((tree
       '(document
	 (preface "preface")
	 (chapter (@ (id "one")) "Chap 1 text")
	 (chapter (@ (id "two")) "Chap 2 text")
	 (chapter (@ (id "three")) "Chap 3 text")
	 (epilogue "Epilogue text")
	 (appendix (@ (id "A")) "App A text")
	 (References "References"))
       )
      (expected
       '((chapter (@ (id "one")) "Chap 1 text")
	 (chapter (@ (id "two")) "Chap 2 text")
	 (chapter (@ (id "three")) "Chap 3 text")
	 (appendix (@ (id "A")) "App A text"))
      ))
  (run-test
   (node-join
    (select-kids (node-typeof? '*))
    (filter
     (node-or
      (node-self (node-typeof? 'chapter))
      (node-self (node-typeof? 'appendix)))))
   tree expected)
  (run-test (sxpath `(* ,(node-or (node-self (node-typeof? 'chapter))
				  (node-self (node-typeof? 'appendix)))))
	    tree expected)
)


; Location path, full form: child::chapter[child::title='Introduction'] 
; Location path, abbreviated form: chapter[title = 'Introduction']
; selects the chapter children of the context node that have one or more
; title children with string-value equal to Introduction
; See a similar example: //td[@align = "right"] above.

; Location path, full form: child::chapter[child::title] 
; Location path, abbreviated form: chapter[title]
; selects the chapter children of the context node that have one or
; more title children
; See a similar example //td[@align] above.

(cerr nl "Example with tree3: extracting the first lines of every stanza" nl)
(let ((tree tree3)
      (expected
       '("Let us go then, you and I," "In the room the women come and go")
      ))
  (run-test
   (node-join
    (node-closure (node-typeof? 'stanza))
    (node-reduce 
     (select-kids (node-typeof? 'line)) (node-pos 1))
    (select-kids (node-typeof? '*text*)))
   tree expected)
  (run-test (sxpath '(// stanza (line 1) *text*)) tree expected)
)