|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H |
|
# include <config.h> |
|
#endif |
|
|
|
#include <assert.h> |
|
#include <math.h> |
|
#include <stdarg.h> |
|
#include <string.h> |
|
#include <unicase.h> |
|
#include <unictype.h> |
|
#include <verify.h> |
|
|
|
#if HAVE_COMPLEX_H |
|
#include <complex.h> |
|
#endif |
|
|
|
#include "bdw-gc.h" |
|
#include "boolean.h" |
|
#include "deprecation.h" |
|
#include "dynwind.h" |
|
#include "eq.h" |
|
#include "feature.h" |
|
#include "finalizers.h" |
|
#include "goops.h" |
|
#include "gsubr.h" |
|
#include "integers.h" |
|
#include "modules.h" |
|
#include "pairs.h" |
|
#include "ports.h" |
|
#include "simpos.h" |
|
#include "smob.h" |
|
#include "strings.h" |
|
#include "values.h" |
|
|
|
#include "numbers.h" |
|
|
|
|
|
#ifndef M_LOG10E |
|
#define M_LOG10E 0.43429448190325182765 |
|
#endif |
|
#ifndef M_LN2 |
|
#define M_LN2 0.69314718055994530942 |
|
#endif |
|
#ifndef M_PI |
|
#define M_PI 3.14159265358979323846 |
|
#endif |
|
|
|
|
|
verify (FLT_RADIX == 2); |
|
|
|
|
|
verify (sizeof (scm_t_inum) <= sizeof (scm_t_bits)); |
|
|
|
|
|
|
|
|
|
verify (SCM_I_FIXNUM_BIT <= SCM_LONG_BIT - 2); |
|
|
|
|
|
|
|
verify (SCM_MOST_POSITIVE_FIXNUM <= (mp_limb_t) -1); |
|
|
|
#define scm_from_inum(x) (scm_from_signed_integer (x)) |
|
|
|
|
|
|
|
|
|
|
|
#define INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE(n) \ |
|
(SCM_I_FIXNUM_BIT-1 <= DBL_MANT_DIG \ |
|
|| ((n) ^ ((n) >> (SCM_I_FIXNUM_BIT-1))) < (1L << DBL_MANT_DIG)) |
|
|
|
#if (! HAVE_DECL_MPZ_INITS) || SCM_ENABLE_MINI_GMP |
|
|
|
|
|
|
|
|
|
#define VARARG_MPZ_ITERATOR(func) \ |
|
static void \ |
|
func ## s (mpz_t x, ...) \ |
|
{ \ |
|
va_list ap; \ |
|
\ |
|
va_start (ap, x); \ |
|
while (x != NULL) \ |
|
{ \ |
|
func (x); \ |
|
x = va_arg (ap, mpz_ptr); \ |
|
} \ |
|
va_end (ap); \ |
|
} |
|
|
|
VARARG_MPZ_ITERATOR (mpz_init) |
|
VARARG_MPZ_ITERATOR (mpz_clear) |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static SCM flo0; |
|
static SCM exactly_one_half; |
|
static SCM flo_log10e; |
|
|
|
#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0) |
|
|
|
|
|
|
|
|
|
#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10) |
|
|
|
|
|
#if !defined (HAVE_ASINH) |
|
static double asinh (double x) { return log (x + sqrt (x * x + 1)); } |
|
#endif |
|
#if !defined (HAVE_ACOSH) |
|
static double acosh (double x) { return log (x + sqrt (x * x - 1)); } |
|
#endif |
|
#if !defined (HAVE_ATANH) |
|
static double atanh (double x) { return 0.5 * log ((1 + x) / (1 - x)); } |
|
#endif |
|
|
|
|
|
|
|
|
|
#if 1 |
|
#define xmpz_cmp_d(z, d) \ |
|
(isinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d)) |
|
#else |
|
#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d) |
|
#endif |
|
|
|
|
|
#if defined (GUILE_I) |
|
#if defined HAVE_COMPLEX_DOUBLE |
|
|
|
|
|
|
|
#define SCM_COMPLEX_VALUE(z) \ |
|
(SCM_COMPLEX_REAL (z) + GUILE_I * SCM_COMPLEX_IMAG (z)) |
|
|
|
static inline SCM scm_from_complex_double (complex double z) SCM_UNUSED; |
|
|
|
|
|
static inline SCM |
|
scm_from_complex_double (complex double z) |
|
{ |
|
return scm_c_make_rectangular (creal (z), cimag (z)); |
|
} |
|
|
|
#endif |
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
static SCM |
|
scm_i_make_ratio_already_reduced (SCM numerator, SCM denominator) |
|
{ |
|
|
|
if (scm_is_false (scm_positive_p (denominator))) |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (denominator, SCM_INUM0))) |
|
scm_num_overflow ("make-ratio"); |
|
else |
|
{ |
|
numerator = scm_difference (numerator, SCM_UNDEFINED); |
|
denominator = scm_difference (denominator, SCM_UNDEFINED); |
|
} |
|
} |
|
|
|
|
|
if (scm_is_eq (denominator, SCM_INUM1)) |
|
return numerator; |
|
|
|
return scm_double_cell (scm_tc16_fraction, |
|
SCM_UNPACK (numerator), |
|
SCM_UNPACK (denominator), 0); |
|
} |
|
|
|
static SCM scm_exact_integer_quotient (SCM x, SCM y); |
|
|
|
|
|
static SCM |
|
scm_i_make_ratio (SCM numerator, SCM denominator) |
|
#define FUNC_NAME "make-ratio" |
|
{ |
|
if (!scm_is_exact_integer (numerator)) |
|
abort(); |
|
if (!scm_is_exact_integer (denominator)) |
|
abort(); |
|
|
|
SCM the_gcd = scm_gcd (numerator, denominator); |
|
if (!(scm_is_eq (the_gcd, SCM_INUM1))) |
|
{ |
|
|
|
numerator = scm_exact_integer_quotient (numerator, the_gcd); |
|
denominator = scm_exact_integer_quotient (denominator, the_gcd); |
|
} |
|
return scm_i_make_ratio_already_reduced (numerator, denominator); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static mpz_t scm_i_divide2double_lo2b; |
|
|
|
|
|
|
|
|
|
static double |
|
scm_i_divide2double (SCM n, SCM d) |
|
{ |
|
int neg; |
|
mpz_t nn, dd, lo, hi, x; |
|
ssize_t e; |
|
|
|
if (SCM_I_INUMP (d)) |
|
{ |
|
if (SCM_I_INUMP (n) |
|
&& INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (n)) |
|
&& INUM_LOSSLESSLY_CONVERTIBLE_TO_DOUBLE (SCM_I_INUM (d))) |
|
|
|
|
|
|
|
return ((double) SCM_I_INUM (n)) / ((double) SCM_I_INUM (d)); |
|
|
|
if (scm_is_eq (d, SCM_INUM0)) |
|
{ |
|
if (scm_is_true (scm_positive_p (n))) |
|
return 1.0 / 0.0; |
|
else if (scm_is_true (scm_negative_p (n))) |
|
return -1.0 / 0.0; |
|
else |
|
return 0.0 / 0.0; |
|
} |
|
|
|
mpz_init_set_si (dd, SCM_I_INUM (d)); |
|
} |
|
else |
|
scm_integer_init_set_mpz_z (scm_bignum (d), dd); |
|
|
|
if (SCM_I_INUMP (n)) |
|
mpz_init_set_si (nn, SCM_I_INUM (n)); |
|
else |
|
scm_integer_init_set_mpz_z (scm_bignum (n), nn); |
|
|
|
neg = (mpz_sgn (nn) < 0) ^ (mpz_sgn (dd) < 0); |
|
mpz_abs (nn, nn); |
|
mpz_abs (dd, dd); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
e = mpz_sizeinbase (nn, 2) - mpz_sizeinbase (dd, 2) - (DBL_MANT_DIG-1); |
|
if (e < DBL_MIN_EXP - DBL_MANT_DIG) |
|
e = DBL_MIN_EXP - DBL_MANT_DIG; |
|
|
|
|
|
|
|
mpz_inits (lo, hi, x, NULL); |
|
mpz_mul_2exp (x, nn, 2 + ((e < 0) ? -e : 0)); |
|
mpz_mul (lo, dd, scm_i_divide2double_lo2b); |
|
if (e > 0) |
|
mpz_mul_2exp (lo, lo, e); |
|
mpz_mul_2exp (hi, lo, 1); |
|
|
|
|
|
|
|
while (mpz_cmp (x, lo) < 0 && e > DBL_MIN_EXP - DBL_MANT_DIG) |
|
{ |
|
mpz_mul_2exp (x, x, 1); |
|
e--; |
|
} |
|
while (mpz_cmp (x, hi) >= 0) |
|
{ |
|
|
|
|
|
mpz_mul_2exp (hi, hi, 1); |
|
e++; |
|
} |
|
|
|
|
|
|
|
|
|
{ |
|
int cmp; |
|
double result; |
|
|
|
if (e < 0) |
|
mpz_mul_2exp (nn, nn, -e); |
|
else |
|
mpz_mul_2exp (dd, dd, e); |
|
|
|
|
|
|
|
|
|
|
|
mpz_fdiv_qr (hi, lo, nn, dd); |
|
|
|
|
|
|
|
|
|
|
|
|
|
mpz_mul_2exp (lo, lo, 1); |
|
cmp = mpz_cmp (lo, dd); |
|
if (cmp > 0 || (cmp == 0 && mpz_odd_p (hi))) |
|
mpz_add_ui (hi, hi, 1); |
|
|
|
result = ldexp (mpz_get_d (hi), e); |
|
if (neg) |
|
result = -result; |
|
|
|
mpz_clears (nn, dd, lo, hi, x, NULL); |
|
return result; |
|
} |
|
} |
|
|
|
double |
|
scm_i_fraction2double (SCM z) |
|
{ |
|
return scm_i_divide2double (SCM_FRACTION_NUMERATOR (z), |
|
SCM_FRACTION_DENOMINATOR (z)); |
|
} |
|
|
|
static SCM |
|
scm_i_from_double (double val) |
|
{ |
|
SCM z; |
|
|
|
z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_double), "real")); |
|
|
|
SCM_SET_CELL_TYPE (z, scm_tc16_real); |
|
SCM_REAL_VALUE (z) = val; |
|
|
|
return z; |
|
} |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_exact_p, "exact?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if @var{x} is an exact number, @code{#f}\n" |
|
"otherwise.") |
|
#define FUNC_NAME s_scm_exact_p |
|
{ |
|
if (SCM_INEXACTP (x)) |
|
return SCM_BOOL_F; |
|
else if (SCM_NUMBERP (x)) |
|
return SCM_BOOL_T; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_exact_p, x, 1, s_scm_exact_p); |
|
} |
|
#undef FUNC_NAME |
|
|
|
int |
|
scm_is_exact (SCM val) |
|
{ |
|
return scm_is_true (scm_exact_p (val)); |
|
} |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_inexact_p, "inexact?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if @var{x} is an inexact number, @code{#f}\n" |
|
"else.") |
|
#define FUNC_NAME s_scm_inexact_p |
|
{ |
|
if (SCM_INEXACTP (x)) |
|
return SCM_BOOL_T; |
|
else if (SCM_NUMBERP (x)) |
|
return SCM_BOOL_F; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_inexact_p, x, 1, s_scm_inexact_p); |
|
} |
|
#undef FUNC_NAME |
|
|
|
int |
|
scm_is_inexact (SCM val) |
|
{ |
|
return scm_is_true (scm_inexact_p (val)); |
|
} |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_odd_p, "odd?", 1, 0, 0, |
|
(SCM n), |
|
"Return @code{#t} if @var{n} is an odd number, @code{#f}\n" |
|
"otherwise.") |
|
#define FUNC_NAME s_scm_odd_p |
|
{ |
|
if (SCM_I_INUMP (n)) |
|
return scm_from_bool (scm_is_integer_odd_i (SCM_I_INUM (n))); |
|
else if (SCM_BIGP (n)) |
|
return scm_from_bool (scm_is_integer_odd_z (scm_bignum (n))); |
|
else if (SCM_REALP (n)) |
|
{ |
|
double val = SCM_REAL_VALUE (n); |
|
if (isfinite (val)) |
|
{ |
|
double rem = fabs (fmod (val, 2.0)); |
|
if (rem == 1.0) |
|
return SCM_BOOL_T; |
|
else if (rem == 0.0) |
|
return SCM_BOOL_F; |
|
} |
|
} |
|
return scm_wta_dispatch_1 (g_scm_odd_p, n, 1, s_scm_odd_p); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_even_p, "even?", 1, 0, 0, |
|
(SCM n), |
|
"Return @code{#t} if @var{n} is an even number, @code{#f}\n" |
|
"otherwise.") |
|
#define FUNC_NAME s_scm_even_p |
|
{ |
|
if (SCM_I_INUMP (n)) |
|
return scm_from_bool (!scm_is_integer_odd_i (SCM_I_INUM (n))); |
|
else if (SCM_BIGP (n)) |
|
return scm_from_bool (!scm_is_integer_odd_z (scm_bignum (n))); |
|
else if (SCM_REALP (n)) |
|
{ |
|
double val = SCM_REAL_VALUE (n); |
|
if (isfinite (val)) |
|
{ |
|
double rem = fabs (fmod (val, 2.0)); |
|
if (rem == 1.0) |
|
return SCM_BOOL_F; |
|
else if (rem == 0.0) |
|
return SCM_BOOL_T; |
|
} |
|
} |
|
return scm_wta_dispatch_1 (g_scm_even_p, n, 1, s_scm_even_p); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_finite_p, "finite?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if the real number @var{x} is neither\n" |
|
"infinite nor a NaN, @code{#f} otherwise.") |
|
#define FUNC_NAME s_scm_finite_p |
|
{ |
|
if (SCM_REALP (x)) |
|
return scm_from_bool (isfinite (SCM_REAL_VALUE (x))); |
|
else if (scm_is_real (x)) |
|
return SCM_BOOL_T; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_finite_p, x, 1, s_scm_finite_p); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_inf_p, "inf?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if the real number @var{x} is @samp{+inf.0} or\n" |
|
"@samp{-inf.0}. Otherwise return @code{#f}.") |
|
#define FUNC_NAME s_scm_inf_p |
|
{ |
|
if (SCM_REALP (x)) |
|
return scm_from_bool (isinf (SCM_REAL_VALUE (x))); |
|
else if (scm_is_real (x)) |
|
return SCM_BOOL_F; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_inf_p, x, 1, s_scm_inf_p); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_nan_p, "nan?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if the real number @var{x} is a NaN,\n" |
|
"or @code{#f} otherwise.") |
|
#define FUNC_NAME s_scm_nan_p |
|
{ |
|
if (SCM_REALP (x)) |
|
return scm_from_bool (isnan (SCM_REAL_VALUE (x))); |
|
else if (scm_is_real (x)) |
|
return SCM_BOOL_F; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_nan_p, x, 1, s_scm_nan_p); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
static double guile_Inf; |
|
|
|
|
|
static double guile_NaN; |
|
|
|
static void |
|
guile_ieee_init (void) |
|
{ |
|
|
|
|
|
|
|
#ifdef INFINITY |
|
|
|
|
|
|
|
|
|
|
|
guile_Inf = INFINITY; |
|
#elif defined HAVE_DINFINITY |
|
|
|
extern unsigned int DINFINITY[2]; |
|
guile_Inf = (*((double *) (DINFINITY))); |
|
#else |
|
double tmp = 1e+10; |
|
guile_Inf = tmp; |
|
for (;;) |
|
{ |
|
guile_Inf *= 1e+10; |
|
if (guile_Inf == tmp) |
|
break; |
|
tmp = guile_Inf; |
|
} |
|
#endif |
|
|
|
#ifdef NAN |
|
|
|
guile_NaN = NAN; |
|
#elif defined HAVE_DQNAN |
|
{ |
|
|
|
extern unsigned int DQNAN[2]; |
|
guile_NaN = (*((double *)(DQNAN))); |
|
} |
|
#else |
|
guile_NaN = guile_Inf / guile_Inf; |
|
#endif |
|
} |
|
|
|
SCM_DEFINE (scm_inf, "inf", 0, 0, 0, |
|
(void), |
|
"Return Inf.") |
|
#define FUNC_NAME s_scm_inf |
|
{ |
|
static int initialized = 0; |
|
if (! initialized) |
|
{ |
|
guile_ieee_init (); |
|
initialized = 1; |
|
} |
|
return scm_i_from_double (guile_Inf); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_nan, "nan", 0, 0, 0, |
|
(void), |
|
"Return NaN.") |
|
#define FUNC_NAME s_scm_nan |
|
{ |
|
static int initialized = 0; |
|
if (!initialized) |
|
{ |
|
guile_ieee_init (); |
|
initialized = 1; |
|
} |
|
return scm_i_from_double (guile_NaN); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0, |
|
(SCM x), |
|
"Return the absolute value of @var{x}.") |
|
#define FUNC_NAME s_scm_abs |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
return scm_integer_abs_i (SCM_I_INUM (x)); |
|
else if (SCM_LIKELY (SCM_REALP (x))) |
|
return scm_i_from_double (copysign (SCM_REAL_VALUE (x), 1.0)); |
|
else if (SCM_BIGP (x)) |
|
return scm_integer_abs_z (scm_bignum (x)); |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x)))) |
|
return x; |
|
return scm_i_make_ratio_already_reduced |
|
(scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED), |
|
SCM_FRACTION_DENOMINATOR (x)); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_abs, x, 1, s_scm_abs); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_quotient, "quotient", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the quotient of the numbers @var{x} and @var{y}.") |
|
#define FUNC_NAME s_scm_quotient |
|
{ |
|
if (SCM_LIKELY (scm_is_integer (x))) |
|
{ |
|
if (SCM_LIKELY (scm_is_integer (y))) |
|
return scm_truncate_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG2, s_scm_quotient); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_quotient, x, y, SCM_ARG1, s_scm_quotient); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_remainder, "remainder", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the remainder of the numbers @var{x} and @var{y}.\n" |
|
"@lisp\n" |
|
"(remainder 13 4) @result{} 1\n" |
|
"(remainder -13 4) @result{} -1\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_remainder |
|
{ |
|
if (SCM_LIKELY (scm_is_integer (x))) |
|
{ |
|
if (SCM_LIKELY (scm_is_integer (y))) |
|
return scm_truncate_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG2, s_scm_remainder); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_remainder, x, y, SCM_ARG1, s_scm_remainder); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_modulo, "modulo", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the modulo of the numbers @var{x} and @var{y}.\n" |
|
"@lisp\n" |
|
"(modulo 13 4) @result{} 1\n" |
|
"(modulo -13 4) @result{} 3\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_modulo |
|
{ |
|
if (SCM_LIKELY (scm_is_integer (x))) |
|
{ |
|
if (SCM_LIKELY (scm_is_integer (y))) |
|
return scm_floor_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG2, s_scm_modulo); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_modulo, x, y, SCM_ARG1, s_scm_modulo); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
|
|
|
|
|
|
static SCM |
|
scm_exact_integer_quotient (SCM n, SCM d) |
|
#define FUNC_NAME "exact-integer-quotient" |
|
{ |
|
if (SCM_I_INUMP (n)) |
|
{ |
|
if (scm_is_eq (n, d)) |
|
return SCM_INUM1; |
|
if (SCM_I_INUMP (d)) |
|
return scm_integer_exact_quotient_ii (SCM_I_INUM (n), SCM_I_INUM (d)); |
|
else if (SCM_BIGP (d)) |
|
return scm_integer_exact_quotient_iz (SCM_I_INUM (n), scm_bignum (d)); |
|
else |
|
abort (); |
|
} |
|
else if (SCM_BIGP (n)) |
|
{ |
|
if (scm_is_eq (n, d)) |
|
return SCM_INUM1; |
|
if (SCM_I_INUMP (d)) |
|
return scm_integer_exact_quotient_zi (scm_bignum (n), SCM_I_INUM (d)); |
|
else if (SCM_BIGP (d)) |
|
return scm_integer_exact_quotient_zz (scm_bignum (n), scm_bignum (d)); |
|
else |
|
abort (); |
|
} |
|
else |
|
abort (); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void |
|
two_valued_wta_dispatch_2 (SCM gf, SCM a1, SCM a2, int pos, |
|
const char *subr, SCM *rp1, SCM *rp2) |
|
{ |
|
SCM vals = scm_wta_dispatch_2 (gf, a1, a2, pos, subr); |
|
|
|
scm_i_extract_values_2 (vals, rp1, rp2); |
|
} |
|
|
|
SCM_DEFINE (scm_euclidean_quotient, "euclidean-quotient", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the integer @var{q} such that\n" |
|
"@math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"where @math{0 <= @var{r} < abs(@var{y})}.\n" |
|
"@lisp\n" |
|
"(euclidean-quotient 123 10) @result{} 12\n" |
|
"(euclidean-quotient 123 -10) @result{} -12\n" |
|
"(euclidean-quotient -123 10) @result{} -13\n" |
|
"(euclidean-quotient -123 -10) @result{} 13\n" |
|
"(euclidean-quotient -123.2 -63.5) @result{} 2.0\n" |
|
"(euclidean-quotient 16/3 -10/7) @result{} -3\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_euclidean_quotient |
|
{ |
|
if (scm_is_false (scm_negative_p (y))) |
|
return scm_floor_quotient (x, y); |
|
else |
|
return scm_ceiling_quotient (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_euclidean_remainder, "euclidean-remainder", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the real number @var{r} such that\n" |
|
"@math{0 <= @var{r} < abs(@var{y})} and\n" |
|
"@math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"for some integer @var{q}.\n" |
|
"@lisp\n" |
|
"(euclidean-remainder 123 10) @result{} 3\n" |
|
"(euclidean-remainder 123 -10) @result{} 3\n" |
|
"(euclidean-remainder -123 10) @result{} 7\n" |
|
"(euclidean-remainder -123 -10) @result{} 7\n" |
|
"(euclidean-remainder -123.2 -63.5) @result{} 3.8\n" |
|
"(euclidean-remainder 16/3 -10/7) @result{} 22/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_euclidean_remainder |
|
{ |
|
if (scm_is_false (scm_negative_p (y))) |
|
return scm_floor_remainder (x, y); |
|
else |
|
return scm_ceiling_remainder (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_i_euclidean_divide, "euclidean/", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the integer @var{q} and the real number @var{r}\n" |
|
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"and @math{0 <= @var{r} < abs(@var{y})}.\n" |
|
"@lisp\n" |
|
"(euclidean/ 123 10) @result{} 12 and 3\n" |
|
"(euclidean/ 123 -10) @result{} -12 and 3\n" |
|
"(euclidean/ -123 10) @result{} -13 and 7\n" |
|
"(euclidean/ -123 -10) @result{} 13 and 7\n" |
|
"(euclidean/ -123.2 -63.5) @result{} 2.0 and 3.8\n" |
|
"(euclidean/ 16/3 -10/7) @result{} -3 and 22/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_i_euclidean_divide |
|
{ |
|
if (scm_is_false (scm_negative_p (y))) |
|
return scm_i_floor_divide (x, y); |
|
else |
|
return scm_i_ceiling_divide (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
void |
|
scm_euclidean_divide (SCM x, SCM y, SCM *qp, SCM *rp) |
|
{ |
|
if (scm_is_false (scm_negative_p (y))) |
|
scm_floor_divide (x, y, qp, rp); |
|
else |
|
scm_ceiling_divide (x, y, qp, rp); |
|
} |
|
|
|
static SCM scm_i_inexact_floor_quotient (double x, double y); |
|
static SCM scm_i_exact_rational_floor_quotient (SCM x, SCM y); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_floor_quotient, "floor-quotient", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the floor of @math{@var{x} / @var{y}}.\n" |
|
"@lisp\n" |
|
"(floor-quotient 123 10) @result{} 12\n" |
|
"(floor-quotient 123 -10) @result{} -13\n" |
|
"(floor-quotient -123 10) @result{} -13\n" |
|
"(floor-quotient -123 -10) @result{} 12\n" |
|
"(floor-quotient -123.2 -63.5) @result{} 1.0\n" |
|
"(floor-quotient 16/3 -10/7) @result{} -4\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_floor_quotient |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_floor_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_floor_quotient_iz (SCM_I_INUM (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_floor_quotient (SCM_I_INUM (x), SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_floor_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2, |
|
s_scm_floor_quotient); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_floor_quotient_zi (scm_bignum (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_floor_quotient_zz (scm_bignum (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_floor_quotient |
|
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_floor_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2, |
|
s_scm_floor_quotient); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_inexact_floor_quotient |
|
(SCM_REAL_VALUE (x), scm_to_double (y)); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2, |
|
s_scm_floor_quotient); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_inexact_floor_quotient |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y)); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_floor_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG2, |
|
s_scm_floor_quotient); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_floor_quotient, x, y, SCM_ARG1, |
|
s_scm_floor_quotient); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
scm_i_inexact_floor_quotient (double x, double y) |
|
{ |
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_floor_quotient); |
|
else |
|
return scm_i_from_double (floor (x / y)); |
|
} |
|
|
|
static SCM |
|
scm_i_exact_rational_floor_quotient (SCM x, SCM y) |
|
{ |
|
return scm_floor_quotient |
|
(scm_product (scm_numerator (x), scm_denominator (y)), |
|
scm_product (scm_numerator (y), scm_denominator (x))); |
|
} |
|
|
|
static SCM scm_i_inexact_floor_remainder (double x, double y); |
|
static SCM scm_i_exact_rational_floor_remainder (SCM x, SCM y); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_floor_remainder, "floor-remainder", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the real number @var{r} such that\n" |
|
"@math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"where @math{@var{q} = floor(@var{x} / @var{y})}.\n" |
|
"@lisp\n" |
|
"(floor-remainder 123 10) @result{} 3\n" |
|
"(floor-remainder 123 -10) @result{} -7\n" |
|
"(floor-remainder -123 10) @result{} 7\n" |
|
"(floor-remainder -123 -10) @result{} -3\n" |
|
"(floor-remainder -123.2 -63.5) @result{} -59.7\n" |
|
"(floor-remainder 16/3 -10/7) @result{} -8/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_floor_remainder |
|
{ |
|
if (SCM_LIKELY (SCM_I_INUMP (x))) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_floor_remainder_ii (SCM_I_INUM (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_floor_remainder_iz (SCM_I_INUM (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_floor_remainder (SCM_I_INUM (x), |
|
SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_floor_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2, |
|
s_scm_floor_remainder); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_floor_remainder_zi (scm_bignum (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_floor_remainder_zz (scm_bignum (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_floor_remainder |
|
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_floor_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2, |
|
s_scm_floor_remainder); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_inexact_floor_remainder |
|
(SCM_REAL_VALUE (x), scm_to_double (y)); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2, |
|
s_scm_floor_remainder); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_inexact_floor_remainder |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y)); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_floor_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG2, |
|
s_scm_floor_remainder); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_floor_remainder, x, y, SCM_ARG1, |
|
s_scm_floor_remainder); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
scm_i_inexact_floor_remainder (double x, double y) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_floor_remainder); |
|
else |
|
return scm_i_from_double (x - y * floor (x / y)); |
|
} |
|
|
|
static SCM |
|
scm_i_exact_rational_floor_remainder (SCM x, SCM y) |
|
{ |
|
SCM xd = scm_denominator (x); |
|
SCM yd = scm_denominator (y); |
|
SCM r1 = scm_floor_remainder (scm_product (scm_numerator (x), yd), |
|
scm_product (scm_numerator (y), xd)); |
|
return scm_divide (r1, scm_product (xd, yd)); |
|
} |
|
|
|
|
|
static void scm_i_inexact_floor_divide (double x, double y, |
|
SCM *qp, SCM *rp); |
|
static void scm_i_exact_rational_floor_divide (SCM x, SCM y, |
|
SCM *qp, SCM *rp); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_floor_divide, "floor/", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the integer @var{q} and the real number @var{r}\n" |
|
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"and @math{@var{q} = floor(@var{x} / @var{y})}.\n" |
|
"@lisp\n" |
|
"(floor/ 123 10) @result{} 12 and 3\n" |
|
"(floor/ 123 -10) @result{} -13 and -7\n" |
|
"(floor/ -123 10) @result{} -13 and 7\n" |
|
"(floor/ -123 -10) @result{} 12 and -3\n" |
|
"(floor/ -123.2 -63.5) @result{} 1.0 and -59.7\n" |
|
"(floor/ 16/3 -10/7) @result{} -4 and -8/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_i_floor_divide |
|
{ |
|
SCM q, r; |
|
|
|
scm_floor_divide(x, y, &q, &r); |
|
return scm_values_2 (q, r); |
|
} |
|
#undef FUNC_NAME |
|
|
|
#define s_scm_floor_divide s_scm_i_floor_divide |
|
#define g_scm_floor_divide g_scm_i_floor_divide |
|
|
|
void |
|
scm_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
scm_integer_floor_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp); |
|
else if (SCM_BIGP (y)) |
|
scm_integer_floor_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp); |
|
else if (SCM_REALP (y)) |
|
scm_i_inexact_floor_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_floor_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2, |
|
s_scm_floor_divide, qp, rp); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
scm_integer_floor_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp); |
|
else if (SCM_BIGP (y)) |
|
scm_integer_floor_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp); |
|
else if (SCM_REALP (y)) |
|
scm_i_inexact_floor_divide (scm_integer_to_double_z (scm_bignum (x)), |
|
SCM_REAL_VALUE (y), |
|
qp, rp); |
|
else if (SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_floor_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2, |
|
s_scm_floor_divide, qp, rp); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
scm_i_inexact_floor_divide (SCM_REAL_VALUE (x), scm_to_double (y), |
|
qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2, |
|
s_scm_floor_divide, qp, rp); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
scm_i_inexact_floor_divide |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_floor_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG2, |
|
s_scm_floor_divide, qp, rp); |
|
} |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_floor_divide, x, y, SCM_ARG1, |
|
s_scm_floor_divide, qp, rp); |
|
} |
|
|
|
static void |
|
scm_i_inexact_floor_divide (double x, double y, SCM *qp, SCM *rp) |
|
{ |
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_floor_divide); |
|
else |
|
{ |
|
double q = floor (x / y); |
|
double r = x - q * y; |
|
*qp = scm_i_from_double (q); |
|
*rp = scm_i_from_double (r); |
|
} |
|
} |
|
|
|
static void |
|
scm_i_exact_rational_floor_divide (SCM x, SCM y, SCM *qp, SCM *rp) |
|
{ |
|
SCM r1; |
|
SCM xd = scm_denominator (x); |
|
SCM yd = scm_denominator (y); |
|
|
|
scm_floor_divide (scm_product (scm_numerator (x), yd), |
|
scm_product (scm_numerator (y), xd), |
|
qp, &r1); |
|
*rp = scm_divide (r1, scm_product (xd, yd)); |
|
} |
|
|
|
static SCM scm_i_inexact_ceiling_quotient (double x, double y); |
|
static SCM scm_i_exact_rational_ceiling_quotient (SCM x, SCM y); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_ceiling_quotient, "ceiling-quotient", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the ceiling of @math{@var{x} / @var{y}}.\n" |
|
"@lisp\n" |
|
"(ceiling-quotient 123 10) @result{} 13\n" |
|
"(ceiling-quotient 123 -10) @result{} -12\n" |
|
"(ceiling-quotient -123 10) @result{} -12\n" |
|
"(ceiling-quotient -123 -10) @result{} 13\n" |
|
"(ceiling-quotient -123.2 -63.5) @result{} 2.0\n" |
|
"(ceiling-quotient 16/3 -10/7) @result{} -3\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_ceiling_quotient |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_ceiling_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_ceiling_quotient_iz (SCM_I_INUM (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_ceiling_quotient (SCM_I_INUM (x), |
|
SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_ceiling_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2, |
|
s_scm_ceiling_quotient); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_ceiling_quotient_zi (scm_bignum (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_ceiling_quotient_zz (scm_bignum (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_ceiling_quotient |
|
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_ceiling_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2, |
|
s_scm_ceiling_quotient); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_inexact_ceiling_quotient |
|
(SCM_REAL_VALUE (x), scm_to_double (y)); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2, |
|
s_scm_ceiling_quotient); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_inexact_ceiling_quotient |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y)); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_ceiling_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG2, |
|
s_scm_ceiling_quotient); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_ceiling_quotient, x, y, SCM_ARG1, |
|
s_scm_ceiling_quotient); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
scm_i_inexact_ceiling_quotient (double x, double y) |
|
{ |
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_ceiling_quotient); |
|
else |
|
return scm_i_from_double (ceil (x / y)); |
|
} |
|
|
|
static SCM |
|
scm_i_exact_rational_ceiling_quotient (SCM x, SCM y) |
|
{ |
|
return scm_ceiling_quotient |
|
(scm_product (scm_numerator (x), scm_denominator (y)), |
|
scm_product (scm_numerator (y), scm_denominator (x))); |
|
} |
|
|
|
static SCM scm_i_inexact_ceiling_remainder (double x, double y); |
|
static SCM scm_i_exact_rational_ceiling_remainder (SCM x, SCM y); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_ceiling_remainder, "ceiling-remainder", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the real number @var{r} such that\n" |
|
"@math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"where @math{@var{q} = ceiling(@var{x} / @var{y})}.\n" |
|
"@lisp\n" |
|
"(ceiling-remainder 123 10) @result{} -7\n" |
|
"(ceiling-remainder 123 -10) @result{} 3\n" |
|
"(ceiling-remainder -123 10) @result{} -3\n" |
|
"(ceiling-remainder -123 -10) @result{} 7\n" |
|
"(ceiling-remainder -123.2 -63.5) @result{} 3.8\n" |
|
"(ceiling-remainder 16/3 -10/7) @result{} 22/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_ceiling_remainder |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_ceiling_remainder_ii (SCM_I_INUM (x), |
|
SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_ceiling_remainder_iz (SCM_I_INUM (x), |
|
scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_ceiling_remainder (SCM_I_INUM (x), |
|
SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_ceiling_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2, |
|
s_scm_ceiling_remainder); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_ceiling_remainder_zi (scm_bignum (x), |
|
SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_ceiling_remainder_zz (scm_bignum (x), |
|
scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_ceiling_remainder |
|
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_ceiling_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2, |
|
s_scm_ceiling_remainder); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_inexact_ceiling_remainder |
|
(SCM_REAL_VALUE (x), scm_to_double (y)); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2, |
|
s_scm_ceiling_remainder); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_inexact_ceiling_remainder |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y)); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_ceiling_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG2, |
|
s_scm_ceiling_remainder); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_ceiling_remainder, x, y, SCM_ARG1, |
|
s_scm_ceiling_remainder); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
scm_i_inexact_ceiling_remainder (double x, double y) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_ceiling_remainder); |
|
else |
|
return scm_i_from_double (x - y * ceil (x / y)); |
|
} |
|
|
|
static SCM |
|
scm_i_exact_rational_ceiling_remainder (SCM x, SCM y) |
|
{ |
|
SCM xd = scm_denominator (x); |
|
SCM yd = scm_denominator (y); |
|
SCM r1 = scm_ceiling_remainder (scm_product (scm_numerator (x), yd), |
|
scm_product (scm_numerator (y), xd)); |
|
return scm_divide (r1, scm_product (xd, yd)); |
|
} |
|
|
|
static void scm_i_inexact_ceiling_divide (double x, double y, |
|
SCM *qp, SCM *rp); |
|
static void scm_i_exact_rational_ceiling_divide (SCM x, SCM y, |
|
SCM *qp, SCM *rp); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_ceiling_divide, "ceiling/", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the integer @var{q} and the real number @var{r}\n" |
|
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"and @math{@var{q} = ceiling(@var{x} / @var{y})}.\n" |
|
"@lisp\n" |
|
"(ceiling/ 123 10) @result{} 13 and -7\n" |
|
"(ceiling/ 123 -10) @result{} -12 and 3\n" |
|
"(ceiling/ -123 10) @result{} -12 and -3\n" |
|
"(ceiling/ -123 -10) @result{} 13 and 7\n" |
|
"(ceiling/ -123.2 -63.5) @result{} 2.0 and 3.8\n" |
|
"(ceiling/ 16/3 -10/7) @result{} -3 and 22/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_i_ceiling_divide |
|
{ |
|
SCM q, r; |
|
|
|
scm_ceiling_divide(x, y, &q, &r); |
|
return scm_values_2 (q, r); |
|
} |
|
#undef FUNC_NAME |
|
|
|
#define s_scm_ceiling_divide s_scm_i_ceiling_divide |
|
#define g_scm_ceiling_divide g_scm_i_ceiling_divide |
|
|
|
void |
|
scm_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
scm_integer_ceiling_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp); |
|
else if (SCM_BIGP (y)) |
|
scm_integer_ceiling_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp); |
|
else if (SCM_REALP (y)) |
|
scm_i_inexact_ceiling_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_ceiling_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2, |
|
s_scm_ceiling_divide, qp, rp); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
scm_integer_ceiling_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp); |
|
else if (SCM_BIGP (y)) |
|
scm_integer_ceiling_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp); |
|
else if (SCM_REALP (y)) |
|
scm_i_inexact_ceiling_divide (scm_integer_to_double_z (scm_bignum (x)), |
|
SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_ceiling_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2, |
|
s_scm_ceiling_divide, qp, rp); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
scm_i_inexact_ceiling_divide (SCM_REAL_VALUE (x), scm_to_double (y), |
|
qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2, |
|
s_scm_ceiling_divide, qp, rp); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
scm_i_inexact_ceiling_divide |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_ceiling_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG2, |
|
s_scm_ceiling_divide, qp, rp); |
|
} |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_ceiling_divide, x, y, SCM_ARG1, |
|
s_scm_ceiling_divide, qp, rp); |
|
} |
|
|
|
static void |
|
scm_i_inexact_ceiling_divide (double x, double y, SCM *qp, SCM *rp) |
|
{ |
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_ceiling_divide); |
|
else |
|
{ |
|
double q = ceil (x / y); |
|
double r = x - q * y; |
|
*qp = scm_i_from_double (q); |
|
*rp = scm_i_from_double (r); |
|
} |
|
} |
|
|
|
static void |
|
scm_i_exact_rational_ceiling_divide (SCM x, SCM y, SCM *qp, SCM *rp) |
|
{ |
|
SCM r1; |
|
SCM xd = scm_denominator (x); |
|
SCM yd = scm_denominator (y); |
|
|
|
scm_ceiling_divide (scm_product (scm_numerator (x), yd), |
|
scm_product (scm_numerator (y), xd), |
|
qp, &r1); |
|
*rp = scm_divide (r1, scm_product (xd, yd)); |
|
} |
|
|
|
static SCM scm_i_inexact_truncate_quotient (double x, double y); |
|
static SCM scm_i_exact_rational_truncate_quotient (SCM x, SCM y); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_truncate_quotient, "truncate-quotient", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return @math{@var{x} / @var{y}} rounded toward zero.\n" |
|
"@lisp\n" |
|
"(truncate-quotient 123 10) @result{} 12\n" |
|
"(truncate-quotient 123 -10) @result{} -12\n" |
|
"(truncate-quotient -123 10) @result{} -12\n" |
|
"(truncate-quotient -123 -10) @result{} 12\n" |
|
"(truncate-quotient -123.2 -63.5) @result{} 1.0\n" |
|
"(truncate-quotient 16/3 -10/7) @result{} -3\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_truncate_quotient |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_truncate_quotient_ii (SCM_I_INUM (x), |
|
SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_truncate_quotient_iz (SCM_I_INUM (x), |
|
scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_truncate_quotient (SCM_I_INUM (x), |
|
SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_truncate_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2, |
|
s_scm_truncate_quotient); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_truncate_quotient_zi (scm_bignum (x), |
|
SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_truncate_quotient_zz (scm_bignum (x), |
|
scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_truncate_quotient |
|
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_truncate_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2, |
|
s_scm_truncate_quotient); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_inexact_truncate_quotient |
|
(SCM_REAL_VALUE (x), scm_to_double (y)); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2, |
|
s_scm_truncate_quotient); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_inexact_truncate_quotient |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y)); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_truncate_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG2, |
|
s_scm_truncate_quotient); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_truncate_quotient, x, y, SCM_ARG1, |
|
s_scm_truncate_quotient); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
scm_i_inexact_truncate_quotient (double x, double y) |
|
{ |
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_truncate_quotient); |
|
else |
|
return scm_i_from_double (trunc (x / y)); |
|
} |
|
|
|
static SCM |
|
scm_i_exact_rational_truncate_quotient (SCM x, SCM y) |
|
{ |
|
return scm_truncate_quotient |
|
(scm_product (scm_numerator (x), scm_denominator (y)), |
|
scm_product (scm_numerator (y), scm_denominator (x))); |
|
} |
|
|
|
static SCM scm_i_inexact_truncate_remainder (double x, double y); |
|
static SCM scm_i_exact_rational_truncate_remainder (SCM x, SCM y); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_truncate_remainder, "truncate-remainder", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the real number @var{r} such that\n" |
|
"@math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"where @math{@var{q} = truncate(@var{x} / @var{y})}.\n" |
|
"@lisp\n" |
|
"(truncate-remainder 123 10) @result{} 3\n" |
|
"(truncate-remainder 123 -10) @result{} 3\n" |
|
"(truncate-remainder -123 10) @result{} -3\n" |
|
"(truncate-remainder -123 -10) @result{} -3\n" |
|
"(truncate-remainder -123.2 -63.5) @result{} -59.7\n" |
|
"(truncate-remainder 16/3 -10/7) @result{} 22/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_truncate_remainder |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_truncate_remainder_ii (SCM_I_INUM (x), |
|
SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_truncate_remainder_iz (SCM_I_INUM (x), |
|
scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_truncate_remainder (SCM_I_INUM (x), |
|
SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_truncate_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2, |
|
s_scm_truncate_remainder); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_truncate_remainder_zi (scm_bignum (x), |
|
SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_truncate_remainder_zz (scm_bignum (x), |
|
scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_truncate_remainder |
|
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_truncate_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2, |
|
s_scm_truncate_remainder); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_inexact_truncate_remainder |
|
(SCM_REAL_VALUE (x), scm_to_double (y)); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2, |
|
s_scm_truncate_remainder); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_inexact_truncate_remainder |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y)); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_truncate_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG2, |
|
s_scm_truncate_remainder); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_truncate_remainder, x, y, SCM_ARG1, |
|
s_scm_truncate_remainder); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
scm_i_inexact_truncate_remainder (double x, double y) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_truncate_remainder); |
|
else |
|
return scm_i_from_double (x - y * trunc (x / y)); |
|
} |
|
|
|
static SCM |
|
scm_i_exact_rational_truncate_remainder (SCM x, SCM y) |
|
{ |
|
SCM xd = scm_denominator (x); |
|
SCM yd = scm_denominator (y); |
|
SCM r1 = scm_truncate_remainder (scm_product (scm_numerator (x), yd), |
|
scm_product (scm_numerator (y), xd)); |
|
return scm_divide (r1, scm_product (xd, yd)); |
|
} |
|
|
|
|
|
static void scm_i_inexact_truncate_divide (double x, double y, |
|
SCM *qp, SCM *rp); |
|
static void scm_i_exact_rational_truncate_divide (SCM x, SCM y, |
|
SCM *qp, SCM *rp); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_truncate_divide, "truncate/", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the integer @var{q} and the real number @var{r}\n" |
|
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"and @math{@var{q} = truncate(@var{x} / @var{y})}.\n" |
|
"@lisp\n" |
|
"(truncate/ 123 10) @result{} 12 and 3\n" |
|
"(truncate/ 123 -10) @result{} -12 and 3\n" |
|
"(truncate/ -123 10) @result{} -12 and -3\n" |
|
"(truncate/ -123 -10) @result{} 12 and -3\n" |
|
"(truncate/ -123.2 -63.5) @result{} 1.0 and -59.7\n" |
|
"(truncate/ 16/3 -10/7) @result{} -3 and 22/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_i_truncate_divide |
|
{ |
|
SCM q, r; |
|
|
|
scm_truncate_divide(x, y, &q, &r); |
|
return scm_values_2 (q, r); |
|
} |
|
#undef FUNC_NAME |
|
|
|
#define s_scm_truncate_divide s_scm_i_truncate_divide |
|
#define g_scm_truncate_divide g_scm_i_truncate_divide |
|
|
|
void |
|
scm_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
scm_integer_truncate_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), |
|
qp, rp); |
|
else if (SCM_BIGP (y)) |
|
scm_integer_truncate_divide_iz (SCM_I_INUM (x), scm_bignum (y), |
|
qp, rp); |
|
else if (SCM_REALP (y)) |
|
scm_i_inexact_truncate_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), |
|
qp, rp); |
|
else if (SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_truncate_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2, |
|
s_scm_truncate_divide, qp, rp); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
scm_integer_truncate_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp); |
|
else if (SCM_BIGP (y)) |
|
scm_integer_truncate_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp); |
|
else if (SCM_REALP (y)) |
|
scm_i_inexact_truncate_divide (scm_integer_to_double_z (scm_bignum (x)), |
|
SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_truncate_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2, |
|
s_scm_truncate_divide, qp, rp); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
scm_i_inexact_truncate_divide (SCM_REAL_VALUE (x), scm_to_double (y), |
|
qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2, |
|
s_scm_truncate_divide, qp, rp); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
scm_i_inexact_truncate_divide |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_truncate_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG2, |
|
s_scm_truncate_divide, qp, rp); |
|
} |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_truncate_divide, x, y, SCM_ARG1, |
|
s_scm_truncate_divide, qp, rp); |
|
} |
|
|
|
static void |
|
scm_i_inexact_truncate_divide (double x, double y, SCM *qp, SCM *rp) |
|
{ |
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_truncate_divide); |
|
else |
|
{ |
|
double q = trunc (x / y); |
|
double r = x - q * y; |
|
*qp = scm_i_from_double (q); |
|
*rp = scm_i_from_double (r); |
|
} |
|
} |
|
|
|
static void |
|
scm_i_exact_rational_truncate_divide (SCM x, SCM y, SCM *qp, SCM *rp) |
|
{ |
|
SCM r1; |
|
SCM xd = scm_denominator (x); |
|
SCM yd = scm_denominator (y); |
|
|
|
scm_truncate_divide (scm_product (scm_numerator (x), yd), |
|
scm_product (scm_numerator (y), xd), |
|
qp, &r1); |
|
*rp = scm_divide (r1, scm_product (xd, yd)); |
|
} |
|
|
|
static SCM scm_i_inexact_centered_quotient (double x, double y); |
|
static SCM scm_i_exact_rational_centered_quotient (SCM x, SCM y); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_centered_quotient, "centered-quotient", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the integer @var{q} such that\n" |
|
"@math{@var{x} = @var{q}*@var{y} + @var{r}} where\n" |
|
"@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n" |
|
"@lisp\n" |
|
"(centered-quotient 123 10) @result{} 12\n" |
|
"(centered-quotient 123 -10) @result{} -12\n" |
|
"(centered-quotient -123 10) @result{} -12\n" |
|
"(centered-quotient -123 -10) @result{} 12\n" |
|
"(centered-quotient -123.2 -63.5) @result{} 2.0\n" |
|
"(centered-quotient 16/3 -10/7) @result{} -4\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_centered_quotient |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_centered_quotient_ii (SCM_I_INUM (x), |
|
SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_centered_quotient_iz (SCM_I_INUM (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_centered_quotient (SCM_I_INUM (x), |
|
SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_centered_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2, |
|
s_scm_centered_quotient); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_centered_quotient_zi (scm_bignum (x), |
|
SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_centered_quotient_zz (scm_bignum (x), |
|
scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_centered_quotient |
|
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_centered_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2, |
|
s_scm_centered_quotient); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_inexact_centered_quotient |
|
(SCM_REAL_VALUE (x), scm_to_double (y)); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2, |
|
s_scm_centered_quotient); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_inexact_centered_quotient |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y)); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_centered_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG2, |
|
s_scm_centered_quotient); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_centered_quotient, x, y, SCM_ARG1, |
|
s_scm_centered_quotient); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
scm_i_inexact_centered_quotient (double x, double y) |
|
{ |
|
if (SCM_LIKELY (y > 0)) |
|
return scm_i_from_double (floor (x/y + 0.5)); |
|
else if (SCM_LIKELY (y < 0)) |
|
return scm_i_from_double (ceil (x/y - 0.5)); |
|
else if (y == 0) |
|
scm_num_overflow (s_scm_centered_quotient); |
|
else |
|
return scm_nan (); |
|
} |
|
|
|
static SCM |
|
scm_i_exact_rational_centered_quotient (SCM x, SCM y) |
|
{ |
|
return scm_centered_quotient |
|
(scm_product (scm_numerator (x), scm_denominator (y)), |
|
scm_product (scm_numerator (y), scm_denominator (x))); |
|
} |
|
|
|
static SCM scm_i_inexact_centered_remainder (double x, double y); |
|
static SCM scm_i_exact_rational_centered_remainder (SCM x, SCM y); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_centered_remainder, "centered-remainder", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the real number @var{r} such that\n" |
|
"@math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}\n" |
|
"and @math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"for some integer @var{q}.\n" |
|
"@lisp\n" |
|
"(centered-remainder 123 10) @result{} 3\n" |
|
"(centered-remainder 123 -10) @result{} 3\n" |
|
"(centered-remainder -123 10) @result{} -3\n" |
|
"(centered-remainder -123 -10) @result{} -3\n" |
|
"(centered-remainder -123.2 -63.5) @result{} 3.8\n" |
|
"(centered-remainder 16/3 -10/7) @result{} -8/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_centered_remainder |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_centered_remainder_ii (SCM_I_INUM (x), |
|
SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_centered_remainder_iz (SCM_I_INUM (x), |
|
scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_centered_remainder (SCM_I_INUM (x), |
|
SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_centered_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2, |
|
s_scm_centered_remainder); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_centered_remainder_zi (scm_bignum (x), |
|
SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_centered_remainder_zz (scm_bignum (x), |
|
scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_centered_remainder |
|
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_centered_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2, |
|
s_scm_centered_remainder); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_inexact_centered_remainder |
|
(SCM_REAL_VALUE (x), scm_to_double (y)); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2, |
|
s_scm_centered_remainder); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_inexact_centered_remainder |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y)); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_centered_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG2, |
|
s_scm_centered_remainder); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_centered_remainder, x, y, SCM_ARG1, |
|
s_scm_centered_remainder); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
scm_i_inexact_centered_remainder (double x, double y) |
|
{ |
|
double q; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (SCM_LIKELY (y > 0)) |
|
q = floor (x/y + 0.5); |
|
else if (SCM_LIKELY (y < 0)) |
|
q = ceil (x/y - 0.5); |
|
else if (y == 0) |
|
scm_num_overflow (s_scm_centered_remainder); |
|
else |
|
return scm_nan (); |
|
return scm_i_from_double (x - q * y); |
|
} |
|
|
|
static SCM |
|
scm_i_exact_rational_centered_remainder (SCM x, SCM y) |
|
{ |
|
SCM xd = scm_denominator (x); |
|
SCM yd = scm_denominator (y); |
|
SCM r1 = scm_centered_remainder (scm_product (scm_numerator (x), yd), |
|
scm_product (scm_numerator (y), xd)); |
|
return scm_divide (r1, scm_product (xd, yd)); |
|
} |
|
|
|
|
|
static void scm_i_inexact_centered_divide (double x, double y, |
|
SCM *qp, SCM *rp); |
|
static void scm_i_exact_rational_centered_divide (SCM x, SCM y, |
|
SCM *qp, SCM *rp); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_centered_divide, "centered/", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the integer @var{q} and the real number @var{r}\n" |
|
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"and @math{-abs(@var{y}/2) <= @var{r} < abs(@var{y}/2)}.\n" |
|
"@lisp\n" |
|
"(centered/ 123 10) @result{} 12 and 3\n" |
|
"(centered/ 123 -10) @result{} -12 and 3\n" |
|
"(centered/ -123 10) @result{} -12 and -3\n" |
|
"(centered/ -123 -10) @result{} 12 and -3\n" |
|
"(centered/ -123.2 -63.5) @result{} 2.0 and 3.8\n" |
|
"(centered/ 16/3 -10/7) @result{} -4 and -8/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_i_centered_divide |
|
{ |
|
SCM q, r; |
|
|
|
scm_centered_divide(x, y, &q, &r); |
|
return scm_values_2 (q, r); |
|
} |
|
#undef FUNC_NAME |
|
|
|
#define s_scm_centered_divide s_scm_i_centered_divide |
|
#define g_scm_centered_divide g_scm_i_centered_divide |
|
|
|
void |
|
scm_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
scm_integer_centered_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp); |
|
else if (SCM_BIGP (y)) |
|
scm_integer_centered_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp); |
|
else if (SCM_REALP (y)) |
|
scm_i_inexact_centered_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), |
|
qp, rp); |
|
else if (SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_centered_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2, |
|
s_scm_centered_divide, qp, rp); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
scm_integer_centered_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp); |
|
else if (SCM_BIGP (y)) |
|
scm_integer_centered_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp); |
|
else if (SCM_REALP (y)) |
|
scm_i_inexact_centered_divide (scm_integer_to_double_z (scm_bignum (x)), |
|
SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_centered_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2, |
|
s_scm_centered_divide, qp, rp); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
scm_i_inexact_centered_divide (SCM_REAL_VALUE (x), scm_to_double (y), |
|
qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2, |
|
s_scm_centered_divide, qp, rp); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
scm_i_inexact_centered_divide |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_centered_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG2, |
|
s_scm_centered_divide, qp, rp); |
|
} |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_centered_divide, x, y, SCM_ARG1, |
|
s_scm_centered_divide, qp, rp); |
|
} |
|
|
|
static void |
|
scm_i_inexact_centered_divide (double x, double y, SCM *qp, SCM *rp) |
|
{ |
|
double q, r; |
|
|
|
if (SCM_LIKELY (y > 0)) |
|
q = floor (x/y + 0.5); |
|
else if (SCM_LIKELY (y < 0)) |
|
q = ceil (x/y - 0.5); |
|
else if (y == 0) |
|
scm_num_overflow (s_scm_centered_divide); |
|
else |
|
q = guile_NaN; |
|
r = x - q * y; |
|
*qp = scm_i_from_double (q); |
|
*rp = scm_i_from_double (r); |
|
} |
|
|
|
static void |
|
scm_i_exact_rational_centered_divide (SCM x, SCM y, SCM *qp, SCM *rp) |
|
{ |
|
SCM r1; |
|
SCM xd = scm_denominator (x); |
|
SCM yd = scm_denominator (y); |
|
|
|
scm_centered_divide (scm_product (scm_numerator (x), yd), |
|
scm_product (scm_numerator (y), xd), |
|
qp, &r1); |
|
*rp = scm_divide (r1, scm_product (xd, yd)); |
|
} |
|
|
|
static SCM scm_i_inexact_round_quotient (double x, double y); |
|
static SCM scm_i_exact_rational_round_quotient (SCM x, SCM y); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_round_quotient, "round-quotient", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return @math{@var{x} / @var{y}} to the nearest integer,\n" |
|
"with ties going to the nearest even integer.\n" |
|
"@lisp\n" |
|
"(round-quotient 123 10) @result{} 12\n" |
|
"(round-quotient 123 -10) @result{} -12\n" |
|
"(round-quotient -123 10) @result{} -12\n" |
|
"(round-quotient -123 -10) @result{} 12\n" |
|
"(round-quotient 125 10) @result{} 12\n" |
|
"(round-quotient 127 10) @result{} 13\n" |
|
"(round-quotient 135 10) @result{} 14\n" |
|
"(round-quotient -123.2 -63.5) @result{} 2.0\n" |
|
"(round-quotient 16/3 -10/7) @result{} -4\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_round_quotient |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_round_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_round_quotient_iz (SCM_I_INUM (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_round_quotient (SCM_I_INUM (x), |
|
SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_round_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2, |
|
s_scm_round_quotient); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_round_quotient_zi (scm_bignum (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_round_quotient_zz (scm_bignum (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_round_quotient |
|
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_round_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2, |
|
s_scm_round_quotient); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_inexact_round_quotient |
|
(SCM_REAL_VALUE (x), scm_to_double (y)); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2, |
|
s_scm_round_quotient); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_inexact_round_quotient |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y)); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_round_quotient (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG2, |
|
s_scm_round_quotient); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_round_quotient, x, y, SCM_ARG1, |
|
s_scm_round_quotient); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
scm_i_inexact_round_quotient (double x, double y) |
|
{ |
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_round_quotient); |
|
else |
|
return scm_i_from_double (scm_c_round (x / y)); |
|
} |
|
|
|
static SCM |
|
scm_i_exact_rational_round_quotient (SCM x, SCM y) |
|
{ |
|
return scm_round_quotient |
|
(scm_product (scm_numerator (x), scm_denominator (y)), |
|
scm_product (scm_numerator (y), scm_denominator (x))); |
|
} |
|
|
|
static SCM scm_i_inexact_round_remainder (double x, double y); |
|
static SCM scm_i_exact_rational_round_remainder (SCM x, SCM y); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_round_remainder, "round-remainder", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the real number @var{r} such that\n" |
|
"@math{@var{x} = @var{q}*@var{y} + @var{r}}, where\n" |
|
"@var{q} is @math{@var{x} / @var{y}} rounded to the\n" |
|
"nearest integer, with ties going to the nearest\n" |
|
"even integer.\n" |
|
"@lisp\n" |
|
"(round-remainder 123 10) @result{} 3\n" |
|
"(round-remainder 123 -10) @result{} 3\n" |
|
"(round-remainder -123 10) @result{} -3\n" |
|
"(round-remainder -123 -10) @result{} -3\n" |
|
"(round-remainder 125 10) @result{} 5\n" |
|
"(round-remainder 127 10) @result{} -3\n" |
|
"(round-remainder 135 10) @result{} -5\n" |
|
"(round-remainder -123.2 -63.5) @result{} 3.8\n" |
|
"(round-remainder 16/3 -10/7) @result{} -8/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_round_remainder |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_round_remainder_ii (SCM_I_INUM (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_round_remainder_iz (SCM_I_INUM (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_round_remainder (SCM_I_INUM (x), |
|
SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_round_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2, |
|
s_scm_round_remainder); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_round_remainder_zi (scm_bignum (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_round_remainder_zz (scm_bignum (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_inexact_round_remainder |
|
(scm_integer_to_double_z (scm_bignum (x)), SCM_REAL_VALUE (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_round_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2, |
|
s_scm_round_remainder); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_inexact_round_remainder |
|
(SCM_REAL_VALUE (x), scm_to_double (y)); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2, |
|
s_scm_round_remainder); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_inexact_round_remainder |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y)); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
return scm_i_exact_rational_round_remainder (x, y); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG2, |
|
s_scm_round_remainder); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_round_remainder, x, y, SCM_ARG1, |
|
s_scm_round_remainder); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
scm_i_inexact_round_remainder (double x, double y) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_round_remainder); |
|
else |
|
{ |
|
double q = scm_c_round (x / y); |
|
return scm_i_from_double (x - q * y); |
|
} |
|
} |
|
|
|
static SCM |
|
scm_i_exact_rational_round_remainder (SCM x, SCM y) |
|
{ |
|
SCM xd = scm_denominator (x); |
|
SCM yd = scm_denominator (y); |
|
SCM r1 = scm_round_remainder (scm_product (scm_numerator (x), yd), |
|
scm_product (scm_numerator (y), xd)); |
|
return scm_divide (r1, scm_product (xd, yd)); |
|
} |
|
|
|
|
|
static void scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp); |
|
static void scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp); |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_round_divide, "round/", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return the integer @var{q} and the real number @var{r}\n" |
|
"such that @math{@var{x} = @var{q}*@var{y} + @var{r}}\n" |
|
"and @var{q} is @math{@var{x} / @var{y}} rounded to the\n" |
|
"nearest integer, with ties going to the nearest even integer.\n" |
|
"@lisp\n" |
|
"(round/ 123 10) @result{} 12 and 3\n" |
|
"(round/ 123 -10) @result{} -12 and 3\n" |
|
"(round/ -123 10) @result{} -12 and -3\n" |
|
"(round/ -123 -10) @result{} 12 and -3\n" |
|
"(round/ 125 10) @result{} 12 and 5\n" |
|
"(round/ 127 10) @result{} 13 and -3\n" |
|
"(round/ 135 10) @result{} 14 and -5\n" |
|
"(round/ -123.2 -63.5) @result{} 2.0 and 3.8\n" |
|
"(round/ 16/3 -10/7) @result{} -4 and -8/21\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_i_round_divide |
|
{ |
|
SCM q, r; |
|
|
|
scm_round_divide(x, y, &q, &r); |
|
return scm_values_2 (q, r); |
|
} |
|
#undef FUNC_NAME |
|
|
|
#define s_scm_round_divide s_scm_i_round_divide |
|
#define g_scm_round_divide g_scm_i_round_divide |
|
|
|
void |
|
scm_round_divide (SCM x, SCM y, SCM *qp, SCM *rp) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
scm_integer_round_divide_ii (SCM_I_INUM (x), SCM_I_INUM (y), qp, rp); |
|
else if (SCM_BIGP (y)) |
|
scm_integer_round_divide_iz (SCM_I_INUM (x), scm_bignum (y), qp, rp); |
|
else if (SCM_REALP (y)) |
|
scm_i_inexact_round_divide (SCM_I_INUM (x), SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_round_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2, |
|
s_scm_round_divide, qp, rp); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
scm_integer_round_divide_zi (scm_bignum (x), SCM_I_INUM (y), qp, rp); |
|
else if (SCM_BIGP (y)) |
|
scm_integer_round_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp); |
|
else if (SCM_REALP (y)) |
|
scm_i_inexact_round_divide (scm_integer_to_double_z (scm_bignum (x)), |
|
SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_round_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2, |
|
s_scm_round_divide, qp, rp); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y) || SCM_I_INUMP (y) || |
|
SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
scm_i_inexact_round_divide (SCM_REAL_VALUE (x), scm_to_double (y), |
|
qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2, |
|
s_scm_round_divide, qp, rp); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
scm_i_inexact_round_divide |
|
(scm_i_fraction2double (x), SCM_REAL_VALUE (y), qp, rp); |
|
else if (SCM_I_INUMP (y) || SCM_BIGP (y) || SCM_FRACTIONP (y)) |
|
scm_i_exact_rational_round_divide (x, y, qp, rp); |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG2, |
|
s_scm_round_divide, qp, rp); |
|
} |
|
else |
|
two_valued_wta_dispatch_2 (g_scm_round_divide, x, y, SCM_ARG1, |
|
s_scm_round_divide, qp, rp); |
|
} |
|
|
|
static void |
|
scm_i_inexact_round_divide (double x, double y, SCM *qp, SCM *rp) |
|
{ |
|
if (SCM_UNLIKELY (y == 0)) |
|
scm_num_overflow (s_scm_round_divide); |
|
else |
|
{ |
|
double q = scm_c_round (x / y); |
|
double r = x - q * y; |
|
*qp = scm_i_from_double (q); |
|
*rp = scm_i_from_double (r); |
|
} |
|
} |
|
|
|
static void |
|
scm_i_exact_rational_round_divide (SCM x, SCM y, SCM *qp, SCM *rp) |
|
{ |
|
SCM r1; |
|
SCM xd = scm_denominator (x); |
|
SCM yd = scm_denominator (y); |
|
|
|
scm_round_divide (scm_product (scm_numerator (x), yd), |
|
scm_product (scm_numerator (y), xd), |
|
qp, &r1); |
|
*rp = scm_divide (r1, scm_product (xd, yd)); |
|
} |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_gcd, "gcd", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return the greatest common divisor of all parameter values.\n" |
|
"If called without arguments, 0 is returned.") |
|
#define FUNC_NAME s_scm_i_gcd |
|
{ |
|
while (!scm_is_null (rest)) |
|
{ x = scm_gcd (x, y); |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_gcd (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
#define s_gcd s_scm_i_gcd |
|
#define g_gcd g_scm_i_gcd |
|
|
|
SCM |
|
scm_gcd (SCM x, SCM y) |
|
{ |
|
if (SCM_UNBNDP (y)) |
|
return SCM_UNBNDP (x) ? SCM_INUM0 : scm_abs (x); |
|
|
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_gcd_ii (SCM_I_INUM (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_gcd_zi (scm_bignum (y), SCM_I_INUM (x)); |
|
else if (SCM_REALP (y) && scm_is_integer (y)) |
|
goto handle_inexacts; |
|
else |
|
return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_gcd_zi (scm_bignum (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_gcd_zz (scm_bignum (x), scm_bignum (y)); |
|
else if (SCM_REALP (y) && scm_is_integer (y)) |
|
goto handle_inexacts; |
|
else |
|
return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd); |
|
} |
|
else if (SCM_REALP (x) && scm_is_integer (x)) |
|
{ |
|
if (SCM_I_INUMP (y) || SCM_BIGP (y) |
|
|| (SCM_REALP (y) && scm_is_integer (y))) |
|
{ |
|
handle_inexacts: |
|
return scm_exact_to_inexact (scm_gcd (scm_inexact_to_exact (x), |
|
scm_inexact_to_exact (y))); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG2, s_gcd); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_gcd, x, y, SCM_ARG1, s_gcd); |
|
} |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_lcm, "lcm", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return the least common multiple of the arguments.\n" |
|
"If called without arguments, 1 is returned.") |
|
#define FUNC_NAME s_scm_i_lcm |
|
{ |
|
while (!scm_is_null (rest)) |
|
{ x = scm_lcm (x, y); |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_lcm (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
#define s_lcm s_scm_i_lcm |
|
#define g_lcm g_scm_i_lcm |
|
|
|
SCM |
|
scm_lcm (SCM n1, SCM n2) |
|
{ |
|
if (SCM_UNBNDP (n2)) |
|
return SCM_UNBNDP (n1) ? SCM_INUM1 : scm_abs (n1); |
|
|
|
if (SCM_I_INUMP (n1)) |
|
{ |
|
if (SCM_I_INUMP (n2)) |
|
return scm_integer_lcm_ii (SCM_I_INUM (n1), SCM_I_INUM (n2)); |
|
else if (SCM_BIGP (n2)) |
|
return scm_integer_lcm_zi (scm_bignum (n2), SCM_I_INUM (n1)); |
|
else if (SCM_REALP (n2) && scm_is_integer (n2)) |
|
goto handle_inexacts; |
|
else |
|
return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm); |
|
} |
|
else if (SCM_LIKELY (SCM_BIGP (n1))) |
|
{ |
|
if (SCM_I_INUMP (n2)) |
|
return scm_integer_lcm_zi (scm_bignum (n1), SCM_I_INUM (n2)); |
|
else if (SCM_BIGP (n2)) |
|
return scm_integer_lcm_zz (scm_bignum (n1), scm_bignum (n2)); |
|
else if (SCM_REALP (n2) && scm_is_integer (n2)) |
|
goto handle_inexacts; |
|
else |
|
return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm); |
|
} |
|
else if (SCM_REALP (n1) && scm_is_integer (n1)) |
|
{ |
|
if (SCM_I_INUMP (n2) || SCM_BIGP (n2) |
|
|| (SCM_REALP (n2) && scm_is_integer (n2))) |
|
{ |
|
handle_inexacts: |
|
return scm_exact_to_inexact (scm_lcm (scm_inexact_to_exact (n1), |
|
scm_inexact_to_exact (n2))); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG2, s_lcm); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_lcm, n1, n2, SCM_ARG1, s_lcm); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SCM_DEFINE (scm_i_logand, "logand", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return the bitwise AND of the integer arguments.\n\n" |
|
"@lisp\n" |
|
"(logand) @result{} -1\n" |
|
"(logand 7) @result{} 7\n" |
|
"(logand #b111 #b011 #b001) @result{} 1\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_i_logand |
|
{ |
|
while (!scm_is_null (rest)) |
|
{ x = scm_logand (x, y); |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_logand (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
#define s_scm_logand s_scm_i_logand |
|
|
|
SCM scm_logand (SCM n1, SCM n2) |
|
#define FUNC_NAME s_scm_logand |
|
{ |
|
if (SCM_UNBNDP (n2)) |
|
{ |
|
if (SCM_UNBNDP (n1)) |
|
return SCM_I_MAKINUM (-1); |
|
else if (!SCM_NUMBERP (n1)) |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); |
|
else if (SCM_NUMBERP (n1)) |
|
return n1; |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); |
|
} |
|
|
|
if (SCM_I_INUMP (n1)) |
|
{ |
|
if (SCM_I_INUMP (n2)) |
|
return scm_integer_logand_ii (SCM_I_INUM (n1), SCM_I_INUM (n2)); |
|
else if (SCM_BIGP (n2)) |
|
return scm_integer_logand_zi (scm_bignum (n2), SCM_I_INUM (n1)); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); |
|
} |
|
else if (SCM_BIGP (n1)) |
|
{ |
|
if (SCM_I_INUMP (n2)) |
|
return scm_integer_logand_zi (scm_bignum (n1), SCM_I_INUM (n2)); |
|
else if (SCM_BIGP (n2)) |
|
return scm_integer_logand_zz (scm_bignum (n1), scm_bignum (n2)); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); |
|
} |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_DEFINE (scm_i_logior, "logior", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return the bitwise OR of the integer arguments.\n\n" |
|
"@lisp\n" |
|
"(logior) @result{} 0\n" |
|
"(logior 7) @result{} 7\n" |
|
"(logior #b000 #b001 #b011) @result{} 3\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_i_logior |
|
{ |
|
while (!scm_is_null (rest)) |
|
{ x = scm_logior (x, y); |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_logior (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
#define s_scm_logior s_scm_i_logior |
|
|
|
SCM scm_logior (SCM n1, SCM n2) |
|
#define FUNC_NAME s_scm_logior |
|
{ |
|
if (SCM_UNBNDP (n2)) |
|
{ |
|
if (SCM_UNBNDP (n1)) |
|
return SCM_INUM0; |
|
else if (SCM_NUMBERP (n1)) |
|
return n1; |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); |
|
} |
|
|
|
if (SCM_I_INUMP (n1)) |
|
{ |
|
if (SCM_I_INUMP (n2)) |
|
return scm_integer_logior_ii (SCM_I_INUM (n1), SCM_I_INUM (n2)); |
|
else if (SCM_BIGP (n2)) |
|
return scm_integer_logior_zi (scm_bignum (n2), SCM_I_INUM (n1)); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); |
|
} |
|
else if (SCM_BIGP (n1)) |
|
{ |
|
if (SCM_I_INUMP (n2)) |
|
return scm_integer_logior_zi (scm_bignum (n1), SCM_I_INUM (n2)); |
|
else if (SCM_BIGP (n2)) |
|
return scm_integer_logior_zz (scm_bignum (n1), scm_bignum (n2)); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); |
|
} |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_DEFINE (scm_i_logxor, "logxor", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return the bitwise XOR of the integer arguments. A bit is\n" |
|
"set in the result if it is set in an odd number of arguments.\n" |
|
"@lisp\n" |
|
"(logxor) @result{} 0\n" |
|
"(logxor 7) @result{} 7\n" |
|
"(logxor #b000 #b001 #b011) @result{} 2\n" |
|
"(logxor #b000 #b001 #b011 #b011) @result{} 1\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_i_logxor |
|
{ |
|
while (!scm_is_null (rest)) |
|
{ x = scm_logxor (x, y); |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_logxor (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
#define s_scm_logxor s_scm_i_logxor |
|
|
|
SCM scm_logxor (SCM n1, SCM n2) |
|
#define FUNC_NAME s_scm_logxor |
|
{ |
|
if (SCM_UNBNDP (n2)) |
|
{ |
|
if (SCM_UNBNDP (n1)) |
|
return SCM_INUM0; |
|
else if (SCM_NUMBERP (n1)) |
|
return n1; |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); |
|
} |
|
|
|
if (SCM_I_INUMP (n1)) |
|
{ |
|
if (SCM_I_INUMP (n2)) |
|
return scm_integer_logxor_ii (SCM_I_INUM (n1), SCM_I_INUM (n2)); |
|
else if (SCM_BIGP (n2)) |
|
return scm_integer_logxor_zi (scm_bignum (n2), SCM_I_INUM (n1)); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); |
|
} |
|
else if (SCM_BIGP (n1)) |
|
{ |
|
if (SCM_I_INUMP (n2)) |
|
return scm_integer_logxor_zi (scm_bignum (n1), SCM_I_INUM (n2)); |
|
else if (SCM_BIGP (n2)) |
|
return scm_integer_logxor_zz (scm_bignum (n1), scm_bignum (n2)); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); |
|
} |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0, |
|
(SCM j, SCM k), |
|
"Test whether @var{j} and @var{k} have any 1 bits in common.\n" |
|
"This is equivalent to @code{(not (zero? (logand j k)))}, but\n" |
|
"without actually calculating the @code{logand}, just testing\n" |
|
"for non-zero.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(logtest #b0100 #b1011) @result{} #f\n" |
|
"(logtest #b0100 #b0111) @result{} #t\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_logtest |
|
{ |
|
if (SCM_I_INUMP (j)) |
|
{ |
|
if (SCM_I_INUMP (k)) |
|
return scm_from_bool (scm_integer_logtest_ii (SCM_I_INUM (j), |
|
SCM_I_INUM (k))); |
|
else if (SCM_BIGP (k)) |
|
return scm_from_bool (scm_integer_logtest_zi (scm_bignum (k), |
|
SCM_I_INUM (j))); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, k); |
|
} |
|
else if (SCM_BIGP (j)) |
|
{ |
|
if (SCM_I_INUMP (k)) |
|
return scm_from_bool (scm_integer_logtest_zi (scm_bignum (j), |
|
SCM_I_INUM (k))); |
|
else if (SCM_BIGP (k)) |
|
return scm_from_bool (scm_integer_logtest_zz (scm_bignum (j), |
|
scm_bignum (k))); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, k); |
|
} |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, j); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0, |
|
(SCM index, SCM j), |
|
"Test whether bit number @var{index} in @var{j} is set.\n" |
|
"@var{index} starts from 0 for the least significant bit.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(logbit? 0 #b1101) @result{} #t\n" |
|
"(logbit? 1 #b1101) @result{} #f\n" |
|
"(logbit? 2 #b1101) @result{} #t\n" |
|
"(logbit? 3 #b1101) @result{} #t\n" |
|
"(logbit? 4 #b1101) @result{} #f\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_logbit_p |
|
{ |
|
unsigned long int iindex; |
|
iindex = scm_to_ulong (index); |
|
|
|
if (SCM_I_INUMP (j)) |
|
return scm_from_bool (scm_integer_logbit_ui (iindex, SCM_I_INUM (j))); |
|
else if (SCM_BIGP (j)) |
|
return scm_from_bool (scm_integer_logbit_uz (iindex, scm_bignum (j))); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, j); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0, |
|
(SCM n), |
|
"Return the integer which is the ones-complement of the integer\n" |
|
"argument.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(number->string (lognot #b10000000) 2)\n" |
|
" @result{} \"-10000001\"\n" |
|
"(number->string (lognot #b0) 2)\n" |
|
" @result{} \"-1\"\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_lognot |
|
{ |
|
if (SCM_I_INUMP (n)) |
|
return scm_integer_lognot_i (SCM_I_INUM (n)); |
|
else if (SCM_BIGP (n)) |
|
return scm_integer_lognot_z (scm_bignum (n)); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0, |
|
(SCM n, SCM k, SCM m), |
|
"Return @var{n} raised to the integer exponent\n" |
|
"@var{k}, modulo @var{m}.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(modulo-expt 2 3 5)\n" |
|
" @result{} 3\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_modulo_expt |
|
{ |
|
if (!scm_is_exact_integer (n)) |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n); |
|
if (!scm_is_exact_integer (k)) |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, k); |
|
if (!scm_is_exact_integer (m)) |
|
SCM_WRONG_TYPE_ARG (SCM_ARG3, m); |
|
|
|
return scm_integer_modulo_expt_nnn (n, k, m); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static void |
|
mpz_clear_on_unwind (void *mpz) |
|
{ |
|
mpz_clear (mpz); |
|
} |
|
|
|
SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0, |
|
(SCM n, SCM k), |
|
"Return @var{n} raised to the power @var{k}. @var{k} must be an\n" |
|
"exact integer, @var{n} can be any number.\n" |
|
"\n" |
|
"Negative @var{k} is supported, and results in\n" |
|
"@math{1/@var{n}^abs(@var{k})} in the usual way.\n" |
|
"@math{@var{n}^0} is 1, as usual, and that\n" |
|
"includes @math{0^0} is 1.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(integer-expt 2 5) @result{} 32\n" |
|
"(integer-expt -3 3) @result{} -27\n" |
|
"(integer-expt 5 -3) @result{} 1/125\n" |
|
"(integer-expt 0 0) @result{} 1\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_integer_expt |
|
{ |
|
|
|
if (SCM_I_INUMP (k)) |
|
{ |
|
if (SCM_I_INUM (k) < 0) |
|
{ |
|
if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n))) |
|
return scm_nan (); |
|
k = scm_integer_negate_i (SCM_I_INUM (k)); |
|
n = scm_divide (n, SCM_UNDEFINED); |
|
} |
|
if (SCM_I_INUMP (n)) |
|
return scm_integer_expt_ii (SCM_I_INUM (n), SCM_I_INUM (k)); |
|
else if (SCM_BIGP (n)) |
|
return scm_integer_expt_zi (scm_bignum (n), SCM_I_INUM (k)); |
|
} |
|
else if (SCM_BIGP (k)) |
|
{ |
|
if (scm_is_integer_negative_z (scm_bignum (k))) |
|
{ |
|
if (SCM_NUMBERP (n) && scm_is_true (scm_zero_p (n))) |
|
return scm_nan (); |
|
k = scm_integer_negate_z (scm_bignum (k)); |
|
n = scm_divide (n, SCM_UNDEFINED); |
|
} |
|
if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, SCM_INUM1)) |
|
return n; |
|
else if (scm_is_eq (n, SCM_I_MAKINUM (-1))) |
|
return scm_is_integer_odd_z (scm_bignum (k)) ? n : SCM_INUM1; |
|
else if (scm_is_exact_integer (n)) |
|
scm_num_overflow ("integer-expt"); |
|
} |
|
else |
|
SCM_WRONG_TYPE_ARG (2, k); |
|
|
|
|
|
if (scm_is_eq (k, SCM_INUM0)) |
|
return SCM_INUM1; |
|
|
|
if (SCM_FRACTIONP (n)) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
if (scm_is_true (scm_positive_p (k))) |
|
return scm_i_make_ratio_already_reduced |
|
(scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k), |
|
scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k)); |
|
else |
|
{ |
|
k = scm_difference (k, SCM_UNDEFINED); |
|
return scm_i_make_ratio_already_reduced |
|
(scm_integer_expt (SCM_FRACTION_DENOMINATOR (n), k), |
|
scm_integer_expt (SCM_FRACTION_NUMERATOR (n), k)); |
|
} |
|
} |
|
|
|
mpz_t zk; |
|
mpz_init (zk); |
|
scm_to_mpz (k, zk); |
|
|
|
scm_dynwind_begin (0); |
|
scm_dynwind_unwind_handler (mpz_clear_on_unwind, zk, SCM_F_WIND_EXPLICITLY); |
|
if (mpz_sgn (zk) == -1) |
|
{ |
|
mpz_neg (zk, zk); |
|
n = scm_divide (n, SCM_UNDEFINED); |
|
} |
|
SCM acc = SCM_INUM1; |
|
while (1) |
|
{ |
|
if (mpz_sgn (zk) == 0) |
|
break; |
|
if (mpz_cmp_ui(zk, 1) == 0) |
|
{ |
|
acc = scm_product (acc, n); |
|
break; |
|
} |
|
if (mpz_tstbit(zk, 0)) |
|
acc = scm_product (acc, n); |
|
n = scm_product (n, n); |
|
mpz_fdiv_q_2exp (zk, zk, 1); |
|
} |
|
scm_dynwind_end (); |
|
return acc; |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
lsh (SCM n, SCM count, const char *fn) |
|
{ |
|
if (scm_is_eq (n, SCM_INUM0)) |
|
return n; |
|
if (!scm_is_unsigned_integer (count, 0, ULONG_MAX)) |
|
scm_num_overflow (fn); |
|
|
|
unsigned long ucount = scm_to_ulong (count); |
|
if (ucount == 0) |
|
return n; |
|
if (ucount / (sizeof (int) * 8) >= (unsigned long) INT_MAX) |
|
scm_num_overflow (fn); |
|
if (SCM_I_INUMP (n)) |
|
return scm_integer_lsh_iu (SCM_I_INUM (n), ucount); |
|
return scm_integer_lsh_zu (scm_bignum (n), ucount); |
|
} |
|
|
|
static SCM |
|
floor_rsh (SCM n, SCM count) |
|
{ |
|
if (!scm_is_unsigned_integer (count, 0, ULONG_MAX)) |
|
return scm_is_false (scm_negative_p (n)) ? SCM_INUM0 : SCM_I_MAKINUM (-1); |
|
|
|
unsigned long ucount = scm_to_ulong (count); |
|
if (ucount == 0) |
|
return n; |
|
if (SCM_I_INUMP (n)) |
|
return scm_integer_floor_rsh_iu (SCM_I_INUM (n), ucount); |
|
return scm_integer_floor_rsh_zu (scm_bignum (n), ucount); |
|
} |
|
|
|
static SCM |
|
round_rsh (SCM n, SCM count) |
|
{ |
|
if (!scm_is_unsigned_integer (count, 0, ULONG_MAX)) |
|
return SCM_INUM0; |
|
|
|
unsigned long ucount = scm_to_ulong (count); |
|
if (ucount == 0) |
|
return n; |
|
if (SCM_I_INUMP (n)) |
|
return scm_integer_round_rsh_iu (SCM_I_INUM (n), ucount); |
|
return scm_integer_round_rsh_zu (scm_bignum (n), ucount); |
|
} |
|
|
|
SCM_DEFINE (scm_ash, "ash", 2, 0, 0, |
|
(SCM n, SCM count), |
|
"Return @math{floor(@var{n} * 2^@var{count})}.\n" |
|
"@var{n} and @var{count} must be exact integers.\n" |
|
"\n" |
|
"With @var{n} viewed as an infinite-precision twos-complement\n" |
|
"integer, @code{ash} means a left shift introducing zero bits\n" |
|
"when @var{count} is positive, or a right shift dropping bits\n" |
|
"when @var{count} is negative. This is an ``arithmetic'' shift.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(number->string (ash #b1 3) 2) @result{} \"1000\"\n" |
|
"(number->string (ash #b1010 -1) 2) @result{} \"101\"\n" |
|
"\n" |
|
";; -23 is bits ...11101001, -6 is bits ...111010\n" |
|
"(ash -23 -2) @result{} -6\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_ash |
|
{ |
|
if (!scm_is_exact_integer (n)) |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n); |
|
if (!scm_is_exact_integer (count)) |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, count); |
|
|
|
if (scm_is_false (scm_negative_p (count))) |
|
return lsh (n, count, "ash"); |
|
|
|
return floor_rsh (n, scm_difference (count, SCM_UNDEFINED)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_round_ash, "round-ash", 2, 0, 0, |
|
(SCM n, SCM count), |
|
"Return @math{round(@var{n} * 2^@var{count})}.\n" |
|
"@var{n} and @var{count} must be exact integers.\n" |
|
"\n" |
|
"With @var{n} viewed as an infinite-precision twos-complement\n" |
|
"integer, @code{round-ash} means a left shift introducing zero\n" |
|
"bits when @var{count} is positive, or a right shift rounding\n" |
|
"to the nearest integer (with ties going to the nearest even\n" |
|
"integer) when @var{count} is negative. This is a rounded\n" |
|
"``arithmetic'' shift.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(number->string (round-ash #b1 3) 2) @result{} \"1000\"\n" |
|
"(number->string (round-ash #b1010 -1) 2) @result{} \"101\"\n" |
|
"(number->string (round-ash #b1010 -2) 2) @result{} \"10\"\n" |
|
"(number->string (round-ash #b1011 -2) 2) @result{} \"11\"\n" |
|
"(number->string (round-ash #b1101 -2) 2) @result{} \"11\"\n" |
|
"(number->string (round-ash #b1110 -2) 2) @result{} \"100\"\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_round_ash |
|
{ |
|
if (!scm_is_exact_integer (n)) |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n); |
|
if (!scm_is_exact_integer (count)) |
|
SCM_WRONG_TYPE_ARG (SCM_ARG2, count); |
|
|
|
if (scm_is_false (scm_negative_p (count))) |
|
return lsh (n, count, "round-ash"); |
|
|
|
return round_rsh (n, scm_difference (count, SCM_UNDEFINED)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0, |
|
(SCM n, SCM start, SCM end), |
|
"Return the integer composed of the @var{start} (inclusive)\n" |
|
"through @var{end} (exclusive) bits of @var{n}. The\n" |
|
"@var{start}th bit becomes the 0-th bit in the result.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(number->string (bit-extract #b1101101010 0 4) 2)\n" |
|
" @result{} \"1010\"\n" |
|
"(number->string (bit-extract #b1101101010 4 9) 2)\n" |
|
" @result{} \"10110\"\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_bit_extract |
|
{ |
|
if (!scm_is_exact_integer (n)) |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n); |
|
|
|
unsigned long istart = scm_to_ulong (start); |
|
unsigned long iend = scm_to_ulong (end); |
|
SCM_ASSERT_RANGE (3, end, (iend >= istart)); |
|
unsigned long bits = iend - istart; |
|
|
|
if (SCM_I_INUMP (n)) |
|
return scm_integer_bit_extract_i (SCM_I_INUM (n), istart, bits); |
|
else |
|
return scm_integer_bit_extract_z (scm_bignum (n), istart, bits); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0, |
|
(SCM n), |
|
"Return the number of bits in integer @var{n}. If integer is\n" |
|
"positive, the 1-bits in its binary representation are counted.\n" |
|
"If negative, the 0-bits in its two's-complement binary\n" |
|
"representation are counted. If 0, 0 is returned.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(logcount #b10101010)\n" |
|
" @result{} 4\n" |
|
"(logcount 0)\n" |
|
" @result{} 0\n" |
|
"(logcount -2)\n" |
|
" @result{} 1\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_logcount |
|
{ |
|
if (SCM_I_INUMP (n)) |
|
return scm_integer_logcount_i (SCM_I_INUM (n)); |
|
else if (SCM_BIGP (n)) |
|
return scm_integer_logcount_z (scm_bignum (n)); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0, |
|
(SCM n), |
|
"Return the number of bits necessary to represent @var{n}.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(integer-length #b10101010)\n" |
|
" @result{} 8\n" |
|
"(integer-length 0)\n" |
|
" @result{} 0\n" |
|
"(integer-length #b1111)\n" |
|
" @result{} 4\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_integer_length |
|
{ |
|
if (SCM_I_INUMP (n)) |
|
return scm_integer_length_i (SCM_I_INUM (n)); |
|
else if (SCM_BIGP (n)) |
|
return scm_integer_length_z (scm_bignum (n)); |
|
else |
|
SCM_WRONG_TYPE_ARG (SCM_ARG1, n); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
#define SCM_MAX_DBL_RADIX 36 |
|
|
|
|
|
static const char number_chars[] = "0123456789abcdefghijklmnopqrstuvwxyz"; |
|
|
|
static mpz_t dbl_minimum_normal_mantissa; |
|
|
|
static size_t |
|
idbl2str (double dbl, char *a, int radix) |
|
{ |
|
int ch = 0; |
|
|
|
if (radix < 2 || radix > SCM_MAX_DBL_RADIX) |
|
|
|
radix = 10; |
|
|
|
if (isinf (dbl)) |
|
{ |
|
strcpy (a, (dbl > 0.0) ? "+inf.0" : "-inf.0"); |
|
return 6; |
|
} |
|
else if (dbl > 0.0) |
|
; |
|
else if (dbl < 0.0) |
|
{ |
|
dbl = -dbl; |
|
a[ch++] = '-'; |
|
} |
|
else if (dbl == 0.0) |
|
{ |
|
if (copysign (1.0, dbl) < 0.0) |
|
a[ch++] = '-'; |
|
strcpy (a + ch, "0.0"); |
|
return ch + 3; |
|
} |
|
else if (isnan (dbl)) |
|
{ |
|
strcpy (a, "+nan.0"); |
|
return 6; |
|
} |
|
|
|
|
|
|
|
{ |
|
int e, k; |
|
mpz_t f, r, s, mplus, mminus, hi, digit; |
|
int f_is_even, f_is_odd; |
|
int expon; |
|
int show_exp = 0; |
|
|
|
mpz_inits (f, r, s, mplus, mminus, hi, digit, NULL); |
|
mpz_set_d (f, ldexp (frexp (dbl, &e), DBL_MANT_DIG)); |
|
if (e < DBL_MIN_EXP) |
|
{ |
|
mpz_tdiv_q_2exp (f, f, DBL_MIN_EXP - e); |
|
e = DBL_MIN_EXP; |
|
} |
|
e -= DBL_MANT_DIG; |
|
|
|
f_is_even = !mpz_odd_p (f); |
|
f_is_odd = !f_is_even; |
|
|
|
|
|
|
|
if (e < 0) |
|
{ |
|
mpz_set_ui (mminus, 1); |
|
if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0 |
|
|| e == DBL_MIN_EXP - DBL_MANT_DIG) |
|
{ |
|
mpz_set_ui (mplus, 1); |
|
mpz_mul_2exp (r, f, 1); |
|
mpz_mul_2exp (s, mminus, 1 - e); |
|
} |
|
else |
|
{ |
|
mpz_set_ui (mplus, 2); |
|
mpz_mul_2exp (r, f, 2); |
|
mpz_mul_2exp (s, mminus, 2 - e); |
|
} |
|
} |
|
else |
|
{ |
|
mpz_set_ui (mminus, 1); |
|
mpz_mul_2exp (mminus, mminus, e); |
|
if (mpz_cmp (f, dbl_minimum_normal_mantissa) != 0) |
|
{ |
|
mpz_set (mplus, mminus); |
|
mpz_mul_2exp (r, f, 1 + e); |
|
mpz_set_ui (s, 2); |
|
} |
|
else |
|
{ |
|
mpz_mul_2exp (mplus, mminus, 1); |
|
mpz_mul_2exp (r, f, 2 + e); |
|
mpz_set_ui (s, 4); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
{ |
|
|
|
mpz_add (hi, r, mplus); |
|
k = 0; |
|
while (mpz_cmp (hi, s) >= f_is_odd) |
|
{ |
|
mpz_mul_ui (s, s, radix); |
|
k++; |
|
} |
|
if (k == 0) |
|
{ |
|
mpz_mul_ui (hi, hi, radix); |
|
while (mpz_cmp (hi, s) < f_is_odd) |
|
{ |
|
mpz_mul_ui (r, r, radix); |
|
mpz_mul_ui (mplus, mplus, radix); |
|
mpz_mul_ui (mminus, mminus, radix); |
|
mpz_mul_ui (hi, hi, radix); |
|
k--; |
|
} |
|
} |
|
} |
|
|
|
expon = k - 1; |
|
if (k <= 0) |
|
{ |
|
if (k <= -3) |
|
{ |
|
|
|
show_exp = 1; |
|
k = 1; |
|
} |
|
else |
|
{ |
|
int i; |
|
|
|
|
|
a[ch++] = '0'; |
|
a[ch++] = '.'; |
|
for (i = 0; i > k; i--) |
|
a[ch++] = '0'; |
|
} |
|
} |
|
|
|
for (;;) |
|
{ |
|
int end_1_p, end_2_p; |
|
int d; |
|
|
|
mpz_mul_ui (mplus, mplus, radix); |
|
mpz_mul_ui (mminus, mminus, radix); |
|
mpz_mul_ui (r, r, radix); |
|
mpz_fdiv_qr (digit, r, r, s); |
|
d = mpz_get_ui (digit); |
|
|
|
mpz_add (hi, r, mplus); |
|
end_1_p = (mpz_cmp (r, mminus) < f_is_even); |
|
end_2_p = (mpz_cmp (s, hi) < f_is_even); |
|
if (end_1_p || end_2_p) |
|
{ |
|
mpz_mul_2exp (r, r, 1); |
|
if (!end_2_p) |
|
; |
|
else if (!end_1_p) |
|
d++; |
|
else if (mpz_cmp (r, s) >= !(d & 1)) |
|
d++; |
|
a[ch++] = number_chars[d]; |
|
if (--k == 0) |
|
a[ch++] = '.'; |
|
break; |
|
} |
|
else |
|
{ |
|
a[ch++] = number_chars[d]; |
|
if (--k == 0) |
|
a[ch++] = '.'; |
|
} |
|
} |
|
|
|
if (k > 0) |
|
{ |
|
if (expon >= 7 && k >= 4 && expon >= k) |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
k -= expon; |
|
|
|
|
|
|
|
|
|
|
|
|
|
memmove (a + ch + k + 1, a + ch + k, -k); |
|
a[ch + k] = '.'; |
|
ch++; |
|
|
|
show_exp = 1; |
|
} |
|
else |
|
{ |
|
for (; k > 0; k--) |
|
a[ch++] = '0'; |
|
a[ch++] = '.'; |
|
} |
|
} |
|
|
|
if (k == 0) |
|
a[ch++] = '0'; |
|
|
|
if (show_exp) |
|
{ |
|
a[ch++] = 'e'; |
|
ch += scm_iint2str (expon, radix, a + ch); |
|
} |
|
|
|
mpz_clears (f, r, s, mplus, mminus, hi, digit, NULL); |
|
} |
|
return ch; |
|
} |
|
|
|
|
|
static size_t |
|
icmplx2str (double real, double imag, char *str, int radix) |
|
{ |
|
size_t i; |
|
double sgn; |
|
|
|
i = idbl2str (real, str, radix); |
|
sgn = copysign (1.0, imag); |
|
|
|
|
|
if (sgn >= 0 && isfinite (imag)) |
|
str[i++] = '+'; |
|
i += idbl2str (imag, &str[i], radix); |
|
str[i++] = 'i'; |
|
return i; |
|
} |
|
|
|
static size_t |
|
iflo2str (SCM flt, char *str, int radix) |
|
{ |
|
size_t i; |
|
if (SCM_REALP (flt)) |
|
i = idbl2str (SCM_REAL_VALUE (flt), str, radix); |
|
else |
|
i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt), |
|
str, radix); |
|
return i; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
size_t |
|
scm_iint2str (intmax_t num, int rad, char *p) |
|
{ |
|
if (num < 0) |
|
{ |
|
*p++ = '-'; |
|
return scm_iuint2str (-num, rad, p) + 1; |
|
} |
|
else |
|
return scm_iuint2str (num, rad, p); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
size_t |
|
scm_iuint2str (uintmax_t num, int rad, char *p) |
|
{ |
|
size_t j = 1; |
|
size_t i; |
|
uintmax_t n = num; |
|
|
|
if (rad < 2 || rad > 36) |
|
scm_out_of_range ("scm_iuint2str", scm_from_int (rad)); |
|
|
|
for (n /= rad; n > 0; n /= rad) |
|
j++; |
|
|
|
i = j; |
|
n = num; |
|
while (i--) |
|
{ |
|
int d = n % rad; |
|
|
|
n /= rad; |
|
p[i] = number_chars[d]; |
|
} |
|
return j; |
|
} |
|
|
|
SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0, |
|
(SCM n, SCM radix), |
|
"Return a string holding the external representation of the\n" |
|
"number @var{n} in the given @var{radix}. If @var{n} is\n" |
|
"inexact, a radix of 10 will be used.") |
|
#define FUNC_NAME s_scm_number_to_string |
|
{ |
|
int base; |
|
|
|
if (SCM_UNBNDP (radix)) |
|
base = 10; |
|
else |
|
base = scm_to_signed_integer (radix, 2, 36); |
|
|
|
if (SCM_I_INUMP (n)) |
|
return scm_integer_to_string_i (SCM_I_INUM (n), base); |
|
else if (SCM_BIGP (n)) |
|
return scm_integer_to_string_z (scm_bignum (n), base); |
|
else if (SCM_FRACTIONP (n)) |
|
return scm_string_append |
|
(scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix), |
|
scm_from_latin1_string ("/"), |
|
scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix))); |
|
else if (SCM_INEXACTP (n)) |
|
{ |
|
char num_buf [FLOBUFLEN]; |
|
return scm_from_latin1_stringn (num_buf, iflo2str (n, num_buf, base)); |
|
} |
|
else |
|
SCM_WRONG_TYPE_ARG (1, n); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
|
|
|
|
|
|
int |
|
scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED) |
|
{ |
|
char num_buf[FLOBUFLEN]; |
|
scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port); |
|
return !0; |
|
} |
|
|
|
void |
|
scm_i_print_double (double val, SCM port) |
|
{ |
|
char num_buf[FLOBUFLEN]; |
|
scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port); |
|
} |
|
|
|
int |
|
scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED) |
|
|
|
{ |
|
char num_buf[FLOBUFLEN]; |
|
scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port); |
|
return !0; |
|
} |
|
|
|
void |
|
scm_i_print_complex (double real, double imag, SCM port) |
|
{ |
|
char num_buf[FLOBUFLEN]; |
|
scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port); |
|
} |
|
|
|
int |
|
scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED) |
|
{ |
|
SCM str; |
|
str = scm_number_to_string (sexp, SCM_UNDEFINED); |
|
scm_display (str, port); |
|
scm_remember_upto_here_1 (str); |
|
return !0; |
|
} |
|
|
|
int |
|
scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED) |
|
{ |
|
SCM str = scm_integer_to_string_z (scm_bignum (exp), 10); |
|
scm_c_put_string (port, str, 0, scm_c_string_length (str)); |
|
return !0; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
enum t_exactness {NO_EXACTNESS, INEXACT, EXACT}; |
|
|
|
|
|
|
|
|
|
|
|
static unsigned int |
|
char_decimal_value (uint32_t c) |
|
{ |
|
if (c >= (uint32_t) '0' && c <= (uint32_t) '9') |
|
return c - (uint32_t) '0'; |
|
else |
|
{ |
|
|
|
|
|
|
|
unsigned int d = (unsigned int) uc_decimal_value (c); |
|
|
|
|
|
|
|
if (d >= 10U) |
|
{ |
|
c = uc_tolower (c); |
|
if (c >= (uint32_t) 'a') |
|
d = c - (uint32_t)'a' + 10U; |
|
} |
|
return d; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
static SCM |
|
mem2uinteger (SCM mem, unsigned int *p_idx, |
|
unsigned int radix, enum t_exactness *p_exactness) |
|
{ |
|
unsigned int idx = *p_idx; |
|
unsigned int hash_seen = 0; |
|
scm_t_bits shift = 1; |
|
scm_t_bits add = 0; |
|
unsigned int digit_value; |
|
SCM result; |
|
char c; |
|
size_t len = scm_i_string_length (mem); |
|
|
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
|
|
c = scm_i_string_ref (mem, idx); |
|
digit_value = char_decimal_value (c); |
|
if (digit_value >= radix) |
|
return SCM_BOOL_F; |
|
|
|
idx++; |
|
result = SCM_I_MAKINUM (digit_value); |
|
while (idx != len) |
|
{ |
|
scm_t_wchar c = scm_i_string_ref (mem, idx); |
|
if (c == '#') |
|
{ |
|
hash_seen = 1; |
|
digit_value = 0; |
|
} |
|
else if (hash_seen) |
|
break; |
|
else |
|
{ |
|
digit_value = char_decimal_value (c); |
|
|
|
|
|
if (digit_value >= radix) |
|
break; |
|
} |
|
|
|
idx++; |
|
if (SCM_MOST_POSITIVE_FIXNUM / radix < shift) |
|
{ |
|
result = scm_product (result, SCM_I_MAKINUM (shift)); |
|
if (add > 0) |
|
result = scm_sum (result, SCM_I_MAKINUM (add)); |
|
|
|
shift = radix; |
|
add = digit_value; |
|
} |
|
else |
|
{ |
|
shift = shift * radix; |
|
add = add * radix + digit_value; |
|
} |
|
}; |
|
|
|
if (shift > 1) |
|
result = scm_product (result, SCM_I_MAKINUM (shift)); |
|
if (add > 0) |
|
result = scm_sum (result, SCM_I_MAKINUM (add)); |
|
|
|
*p_idx = idx; |
|
if (hash_seen) |
|
*p_exactness = INEXACT; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#define DIGIT2UINT(d) (uc_numeric_value(d).numerator) |
|
|
|
static SCM |
|
mem2decimal_from_point (SCM result, SCM mem, |
|
unsigned int *p_idx, enum t_exactness *p_exactness) |
|
{ |
|
unsigned int idx = *p_idx; |
|
enum t_exactness x = *p_exactness; |
|
size_t len = scm_i_string_length (mem); |
|
|
|
if (idx == len) |
|
return result; |
|
|
|
if (scm_i_string_ref (mem, idx) == '.') |
|
{ |
|
scm_t_bits shift = 1; |
|
scm_t_bits add = 0; |
|
unsigned int digit_value; |
|
SCM big_shift = SCM_INUM1; |
|
|
|
idx++; |
|
while (idx != len) |
|
{ |
|
scm_t_wchar c = scm_i_string_ref (mem, idx); |
|
if (uc_is_property_decimal_digit ((uint32_t) c)) |
|
{ |
|
if (x == INEXACT) |
|
return SCM_BOOL_F; |
|
else |
|
digit_value = DIGIT2UINT (c); |
|
} |
|
else if (c == '#') |
|
{ |
|
x = INEXACT; |
|
digit_value = 0; |
|
} |
|
else |
|
break; |
|
|
|
idx++; |
|
if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift) |
|
{ |
|
big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift)); |
|
result = scm_product (result, SCM_I_MAKINUM (shift)); |
|
if (add > 0) |
|
result = scm_sum (result, SCM_I_MAKINUM (add)); |
|
|
|
shift = 10; |
|
add = digit_value; |
|
} |
|
else |
|
{ |
|
shift = shift * 10; |
|
add = add * 10 + digit_value; |
|
} |
|
}; |
|
|
|
if (add > 0) |
|
{ |
|
big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift)); |
|
result = scm_product (result, SCM_I_MAKINUM (shift)); |
|
result = scm_sum (result, SCM_I_MAKINUM (add)); |
|
} |
|
|
|
result = scm_divide (result, big_shift); |
|
|
|
|
|
x = INEXACT; |
|
} |
|
|
|
if (idx != len) |
|
{ |
|
int sign = 1; |
|
unsigned int start; |
|
scm_t_wchar c; |
|
int exponent; |
|
SCM e; |
|
|
|
|
|
|
|
switch (scm_i_string_ref (mem, idx)) |
|
{ |
|
case 'd': case 'D': |
|
case 'e': case 'E': |
|
case 'f': case 'F': |
|
case 'l': case 'L': |
|
case 's': case 'S': |
|
idx++; |
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
|
|
start = idx; |
|
c = scm_i_string_ref (mem, idx); |
|
if (c == '-') |
|
{ |
|
idx++; |
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
|
|
sign = -1; |
|
c = scm_i_string_ref (mem, idx); |
|
} |
|
else if (c == '+') |
|
{ |
|
idx++; |
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
|
|
sign = 1; |
|
c = scm_i_string_ref (mem, idx); |
|
} |
|
else |
|
sign = 1; |
|
|
|
if (!uc_is_property_decimal_digit ((uint32_t) c)) |
|
return SCM_BOOL_F; |
|
|
|
idx++; |
|
exponent = DIGIT2UINT (c); |
|
while (idx != len) |
|
{ |
|
scm_t_wchar c = scm_i_string_ref (mem, idx); |
|
if (uc_is_property_decimal_digit ((uint32_t) c)) |
|
{ |
|
idx++; |
|
if (exponent <= SCM_MAXEXP) |
|
exponent = exponent * 10 + DIGIT2UINT (c); |
|
} |
|
else |
|
break; |
|
} |
|
|
|
if (exponent > ((sign == 1) ? SCM_MAXEXP : SCM_MAXEXP + DBL_DIG + 1)) |
|
{ |
|
size_t exp_len = idx - start; |
|
SCM exp_string = scm_i_substring_copy (mem, start, start + exp_len); |
|
SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED); |
|
scm_out_of_range ("string->number", exp_num); |
|
} |
|
|
|
e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent)); |
|
if (sign == 1) |
|
result = scm_product (result, e); |
|
else |
|
result = scm_divide (result, e); |
|
|
|
|
|
x = INEXACT; |
|
|
|
break; |
|
|
|
default: |
|
break; |
|
} |
|
} |
|
|
|
*p_idx = idx; |
|
if (x == INEXACT) |
|
*p_exactness = x; |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
|
|
static SCM |
|
mem2ureal (SCM mem, unsigned int *p_idx, |
|
unsigned int radix, enum t_exactness forced_x, |
|
int allow_inf_or_nan) |
|
{ |
|
unsigned int idx = *p_idx; |
|
SCM result; |
|
size_t len = scm_i_string_length (mem); |
|
|
|
|
|
|
|
enum t_exactness implicit_x = EXACT; |
|
|
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
|
|
if (allow_inf_or_nan && forced_x != EXACT && idx+5 <= len) |
|
switch (scm_i_string_ref (mem, idx)) |
|
{ |
|
case 'i': case 'I': |
|
switch (scm_i_string_ref (mem, idx + 1)) |
|
{ |
|
case 'n': case 'N': |
|
switch (scm_i_string_ref (mem, idx + 2)) |
|
{ |
|
case 'f': case 'F': |
|
if (scm_i_string_ref (mem, idx + 3) == '.' |
|
&& scm_i_string_ref (mem, idx + 4) == '0') |
|
{ |
|
*p_idx = idx+5; |
|
return scm_inf (); |
|
} |
|
} |
|
} |
|
case 'n': case 'N': |
|
switch (scm_i_string_ref (mem, idx + 1)) |
|
{ |
|
case 'a': case 'A': |
|
switch (scm_i_string_ref (mem, idx + 2)) |
|
{ |
|
case 'n': case 'N': |
|
if (scm_i_string_ref (mem, idx + 3) == '.') |
|
{ |
|
|
|
|
|
idx += 4; |
|
if (!scm_is_eq (mem2uinteger (mem, &idx, 10, &implicit_x), |
|
SCM_INUM0)) |
|
return SCM_BOOL_F; |
|
|
|
*p_idx = idx; |
|
return scm_nan (); |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (scm_i_string_ref (mem, idx) == '.') |
|
{ |
|
if (radix != 10) |
|
return SCM_BOOL_F; |
|
else if (idx + 1 == len) |
|
return SCM_BOOL_F; |
|
else if (!uc_is_property_decimal_digit ((uint32_t) scm_i_string_ref (mem, idx+1))) |
|
return SCM_BOOL_F; |
|
else |
|
result = mem2decimal_from_point (SCM_INUM0, mem, |
|
p_idx, &implicit_x); |
|
} |
|
else |
|
{ |
|
SCM uinteger; |
|
|
|
uinteger = mem2uinteger (mem, &idx, radix, &implicit_x); |
|
if (scm_is_false (uinteger)) |
|
return SCM_BOOL_F; |
|
|
|
if (idx == len) |
|
result = uinteger; |
|
else if (scm_i_string_ref (mem, idx) == '/') |
|
{ |
|
SCM divisor; |
|
|
|
idx++; |
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
|
|
divisor = mem2uinteger (mem, &idx, radix, &implicit_x); |
|
if (scm_is_false (divisor) || scm_is_eq (divisor, SCM_INUM0)) |
|
return SCM_BOOL_F; |
|
|
|
|
|
result = scm_i_make_ratio (uinteger, divisor); |
|
} |
|
else if (radix == 10) |
|
{ |
|
result = mem2decimal_from_point (uinteger, mem, &idx, &implicit_x); |
|
if (scm_is_false (result)) |
|
return SCM_BOOL_F; |
|
} |
|
else |
|
result = uinteger; |
|
|
|
*p_idx = idx; |
|
} |
|
|
|
switch (forced_x) |
|
{ |
|
case EXACT: |
|
if (SCM_INEXACTP (result)) |
|
return scm_inexact_to_exact (result); |
|
else |
|
return result; |
|
case INEXACT: |
|
if (SCM_INEXACTP (result)) |
|
return result; |
|
else |
|
return scm_exact_to_inexact (result); |
|
case NO_EXACTNESS: |
|
if (implicit_x == INEXACT) |
|
{ |
|
if (SCM_INEXACTP (result)) |
|
return result; |
|
else |
|
return scm_exact_to_inexact (result); |
|
} |
|
else |
|
return result; |
|
} |
|
|
|
|
|
assert (0); |
|
} |
|
|
|
|
|
|
|
|
|
static SCM |
|
mem2complex (SCM mem, unsigned int idx, |
|
unsigned int radix, enum t_exactness forced_x) |
|
{ |
|
scm_t_wchar c; |
|
int sign = 0; |
|
SCM ureal; |
|
size_t len = scm_i_string_length (mem); |
|
|
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
|
|
c = scm_i_string_ref (mem, idx); |
|
if (c == '+') |
|
{ |
|
idx++; |
|
sign = 1; |
|
} |
|
else if (c == '-') |
|
{ |
|
idx++; |
|
sign = -1; |
|
} |
|
|
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
|
|
ureal = mem2ureal (mem, &idx, radix, forced_x, sign != 0); |
|
if (scm_is_false (ureal)) |
|
{ |
|
|
|
|
|
if (sign == 0) |
|
return SCM_BOOL_F; |
|
|
|
if (scm_i_string_ref (mem, idx) == 'i' |
|
|| scm_i_string_ref (mem, idx) == 'I') |
|
{ |
|
idx++; |
|
if (idx != len) |
|
return SCM_BOOL_F; |
|
|
|
return scm_make_rectangular (SCM_INUM0, SCM_I_MAKINUM (sign)); |
|
} |
|
else |
|
return SCM_BOOL_F; |
|
} |
|
else |
|
{ |
|
if (sign == -1 && scm_is_false (scm_nan_p (ureal))) |
|
ureal = scm_difference (ureal, SCM_UNDEFINED); |
|
|
|
if (idx == len) |
|
return ureal; |
|
|
|
c = scm_i_string_ref (mem, idx); |
|
switch (c) |
|
{ |
|
case 'i': case 'I': |
|
|
|
|
|
idx++; |
|
if (sign == 0) |
|
return SCM_BOOL_F; |
|
if (idx != len) |
|
return SCM_BOOL_F; |
|
return scm_make_rectangular (SCM_INUM0, ureal); |
|
|
|
case '@': |
|
|
|
|
|
idx++; |
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
else |
|
{ |
|
int sign; |
|
SCM angle; |
|
SCM result; |
|
|
|
c = scm_i_string_ref (mem, idx); |
|
if (c == '+') |
|
{ |
|
idx++; |
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
sign = 1; |
|
} |
|
else if (c == '-') |
|
{ |
|
idx++; |
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
sign = -1; |
|
} |
|
else |
|
sign = 0; |
|
|
|
angle = mem2ureal (mem, &idx, radix, forced_x, sign != 0); |
|
if (scm_is_false (angle)) |
|
return SCM_BOOL_F; |
|
if (idx != len) |
|
return SCM_BOOL_F; |
|
|
|
if (sign == -1 && scm_is_false (scm_nan_p (ureal))) |
|
angle = scm_difference (angle, SCM_UNDEFINED); |
|
|
|
result = scm_make_polar (ureal, angle); |
|
return result; |
|
} |
|
case '+': |
|
case '-': |
|
|
|
|
|
idx++; |
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
else |
|
{ |
|
int sign = (c == '+') ? 1 : -1; |
|
SCM imag = mem2ureal (mem, &idx, radix, forced_x, sign != 0); |
|
|
|
if (scm_is_false (imag)) |
|
imag = SCM_I_MAKINUM (sign); |
|
else if (sign == -1 && scm_is_false (scm_nan_p (imag))) |
|
imag = scm_difference (imag, SCM_UNDEFINED); |
|
|
|
if (idx == len) |
|
return SCM_BOOL_F; |
|
if (scm_i_string_ref (mem, idx) != 'i' |
|
&& scm_i_string_ref (mem, idx) != 'I') |
|
return SCM_BOOL_F; |
|
|
|
idx++; |
|
if (idx != len) |
|
return SCM_BOOL_F; |
|
|
|
return scm_make_rectangular (ureal, imag); |
|
} |
|
default: |
|
return SCM_BOOL_F; |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16}; |
|
|
|
SCM |
|
scm_i_string_to_number (SCM mem, unsigned int default_radix) |
|
{ |
|
unsigned int idx = 0; |
|
unsigned int radix = NO_RADIX; |
|
enum t_exactness forced_x = NO_EXACTNESS; |
|
size_t len = scm_i_string_length (mem); |
|
|
|
|
|
while (idx + 2 < len && scm_i_string_ref (mem, idx) == '#') |
|
{ |
|
switch (scm_i_string_ref (mem, idx + 1)) |
|
{ |
|
case 'b': case 'B': |
|
if (radix != NO_RADIX) |
|
return SCM_BOOL_F; |
|
radix = DUAL; |
|
break; |
|
case 'd': case 'D': |
|
if (radix != NO_RADIX) |
|
return SCM_BOOL_F; |
|
radix = DEC; |
|
break; |
|
case 'i': case 'I': |
|
if (forced_x != NO_EXACTNESS) |
|
return SCM_BOOL_F; |
|
forced_x = INEXACT; |
|
break; |
|
case 'e': case 'E': |
|
if (forced_x != NO_EXACTNESS) |
|
return SCM_BOOL_F; |
|
forced_x = EXACT; |
|
break; |
|
case 'o': case 'O': |
|
if (radix != NO_RADIX) |
|
return SCM_BOOL_F; |
|
radix = OCT; |
|
break; |
|
case 'x': case 'X': |
|
if (radix != NO_RADIX) |
|
return SCM_BOOL_F; |
|
radix = HEX; |
|
break; |
|
default: |
|
return SCM_BOOL_F; |
|
} |
|
idx += 2; |
|
} |
|
|
|
|
|
if (radix == NO_RADIX) |
|
radix = default_radix; |
|
|
|
return mem2complex (mem, idx, radix, forced_x); |
|
} |
|
|
|
SCM |
|
scm_c_locale_stringn_to_number (const char* mem, size_t len, |
|
unsigned int default_radix) |
|
{ |
|
SCM str = scm_from_locale_stringn (mem, len); |
|
|
|
return scm_i_string_to_number (str, default_radix); |
|
} |
|
|
|
|
|
SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0, |
|
(SCM string, SCM radix), |
|
"Return a number of the maximally precise representation\n" |
|
"expressed by the given @var{string}. @var{radix} must be an\n" |
|
"exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n" |
|
"is a default radix that may be overridden by an explicit radix\n" |
|
"prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n" |
|
"supplied, then the default radix is 10. If string is not a\n" |
|
"syntactically valid notation for a number, then\n" |
|
"@code{string->number} returns @code{#f}.") |
|
#define FUNC_NAME s_scm_string_to_number |
|
{ |
|
SCM answer; |
|
unsigned int base; |
|
SCM_VALIDATE_STRING (1, string); |
|
|
|
if (SCM_UNBNDP (radix)) |
|
base = 10; |
|
else |
|
base = scm_to_unsigned_integer (radix, 2, INT_MAX); |
|
|
|
answer = scm_i_string_to_number (string, base); |
|
scm_remember_upto_here_1 (string); |
|
return answer; |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
|
|
|
|
|
|
SCM_DEFINE (scm_number_p, "number?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if @var{x} is a number, @code{#f}\n" |
|
"otherwise.") |
|
#define FUNC_NAME s_scm_number_p |
|
{ |
|
return scm_from_bool (SCM_NUMBERP (x)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if @var{x} is a complex number, @code{#f}\n" |
|
"otherwise. Note that the sets of real, rational and integer\n" |
|
"values form subsets of the set of complex numbers, i. e. the\n" |
|
"predicate will also be fulfilled if @var{x} is a real,\n" |
|
"rational or integer number.") |
|
#define FUNC_NAME s_scm_complex_p |
|
{ |
|
|
|
return scm_number_p (x); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_real_p, "real?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if @var{x} is a real number, @code{#f}\n" |
|
"otherwise. Note that the set of integer values forms a subset of\n" |
|
"the set of real numbers, i. e. the predicate will also be\n" |
|
"fulfilled if @var{x} is an integer number.") |
|
#define FUNC_NAME s_scm_real_p |
|
{ |
|
return scm_from_bool |
|
(SCM_I_INUMP (x) || SCM_REALP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if @var{x} is a rational number, @code{#f}\n" |
|
"otherwise. Note that the set of integer values forms a subset of\n" |
|
"the set of rational numbers, i. e. the predicate will also be\n" |
|
"fulfilled if @var{x} is an integer number.") |
|
#define FUNC_NAME s_scm_rational_p |
|
{ |
|
if (SCM_I_INUMP (x) || SCM_BIGP (x) || SCM_FRACTIONP (x)) |
|
return SCM_BOOL_T; |
|
else if (SCM_REALP (x)) |
|
|
|
|
|
return scm_from_bool (isfinite (SCM_REAL_VALUE (x))); |
|
else |
|
return SCM_BOOL_F; |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if @var{x} is an integer number,\n" |
|
"else return @code{#f}.") |
|
#define FUNC_NAME s_scm_integer_p |
|
{ |
|
return scm_from_bool (scm_is_integer (x)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_exact_integer_p, "exact-integer?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if @var{x} is an exact integer number,\n" |
|
"else return @code{#f}.") |
|
#define FUNC_NAME s_scm_exact_integer_p |
|
{ |
|
return scm_from_bool (scm_is_exact_integer (x)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM |
|
scm_bigequal (SCM x, SCM y) |
|
{ |
|
return scm_from_bool |
|
(scm_is_integer_equal_zz (scm_bignum (x), scm_bignum (y))); |
|
} |
|
|
|
SCM scm_i_num_eq_p (SCM, SCM, SCM); |
|
SCM_PRIMITIVE_GENERIC (scm_i_num_eq_p, "=", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return @code{#t} if all parameters are numerically equal.") |
|
#define FUNC_NAME s_scm_i_num_eq_p |
|
{ |
|
if (SCM_UNBNDP (x) || SCM_UNBNDP (y)) |
|
return SCM_BOOL_T; |
|
while (!scm_is_null (rest)) |
|
{ |
|
if (scm_is_false (scm_num_eq_p (x, y))) |
|
return SCM_BOOL_F; |
|
x = y; |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_num_eq_p (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM |
|
scm_num_eq_p (SCM x, SCM y) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_eq_p (x, y); |
|
else if (SCM_BIGP (y)) |
|
return SCM_BOOL_F; |
|
else if (SCM_REALP (y)) |
|
return scm_from_bool |
|
(scm_is_integer_equal_ir (SCM_I_INUM (x), SCM_REAL_VALUE (y))); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_from_bool |
|
(scm_is_integer_equal_ic (SCM_I_INUM (x), SCM_COMPLEX_REAL (y), |
|
SCM_COMPLEX_IMAG (y))); |
|
else if (SCM_FRACTIONP (y)) |
|
return SCM_BOOL_F; |
|
else |
|
return scm_num_eq_p (y, x); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_BIGP (y)) |
|
return scm_from_bool |
|
(scm_is_integer_equal_zz (scm_bignum (x), scm_bignum (y))); |
|
else if (SCM_REALP (y)) |
|
return scm_from_bool |
|
(scm_is_integer_equal_zr (scm_bignum (x), SCM_REAL_VALUE (y))); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_from_bool |
|
(scm_is_integer_equal_zc (scm_bignum (x), SCM_COMPLEX_REAL (y), |
|
SCM_COMPLEX_IMAG (y))); |
|
else if (SCM_FRACTIONP (y)) |
|
return SCM_BOOL_F; |
|
else |
|
return scm_num_eq_p (y, x); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_from_bool (SCM_COMPLEX_IMAG (y) == 0.0 |
|
&& SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
{ |
|
if (isnan (SCM_REAL_VALUE (x)) || isinf (SCM_REAL_VALUE (x))) |
|
return SCM_BOOL_F; |
|
return scm_num_eq_p (scm_inexact_to_exact (x), y); |
|
} |
|
else |
|
return scm_num_eq_p (y, x); |
|
} |
|
else if (SCM_COMPLEXP (x)) |
|
{ |
|
if (SCM_COMPLEXP (y)) |
|
return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)) |
|
&& (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y))); |
|
else if (SCM_FRACTIONP (y)) |
|
{ |
|
if (SCM_COMPLEX_IMAG (x) != 0.0 |
|
|| isnan (SCM_COMPLEX_REAL (x)) |
|
|| isinf (SCM_COMPLEX_REAL (x))) |
|
return SCM_BOOL_F; |
|
return scm_num_eq_p (scm_inexact_to_exact (x), y); |
|
} |
|
else |
|
return scm_num_eq_p (y, x); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_FRACTIONP (y)) |
|
return scm_i_fraction_equalp (x, y); |
|
else |
|
return scm_num_eq_p (y, x); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_i_num_eq_p, x, y, SCM_ARG1, |
|
s_scm_i_num_eq_p); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static int scm_is_less_than (SCM x, SCM y); |
|
static int scm_is_greater_than (SCM x, SCM y); |
|
static int scm_is_less_than_or_equal (SCM x, SCM y); |
|
static int scm_is_greater_than_or_equal (SCM x, SCM y); |
|
|
|
static int |
|
scm_is_less_than (SCM x, SCM y) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return SCM_I_INUM (x) < SCM_I_INUM (y); |
|
else if (SCM_BIGP (y)) |
|
return scm_is_integer_positive_z (scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_is_integer_less_than_ir (SCM_I_INUM (x), SCM_REAL_VALUE (y)); |
|
if (!SCM_FRACTIONP (y)) |
|
abort (); |
|
|
|
return scm_is_less_than (scm_product (x, SCM_FRACTION_DENOMINATOR (y)), |
|
SCM_FRACTION_NUMERATOR (y)); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_is_integer_negative_z (scm_bignum (x)); |
|
else if (SCM_BIGP (y)) |
|
return scm_is_integer_less_than_zz (scm_bignum (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_is_integer_less_than_zr (scm_bignum (x), SCM_REAL_VALUE (y)); |
|
if (!SCM_FRACTIONP (y)) |
|
abort (); |
|
|
|
return scm_is_less_than (scm_product (x, SCM_FRACTION_DENOMINATOR (y)), |
|
SCM_FRACTION_NUMERATOR (y)); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_is_integer_less_than_ri (SCM_REAL_VALUE (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_is_integer_less_than_rz (SCM_REAL_VALUE (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y); |
|
if (!SCM_FRACTIONP (y)) |
|
abort (); |
|
|
|
if (isnan (SCM_REAL_VALUE (x))) |
|
return 0; |
|
if (isinf (SCM_REAL_VALUE (x))) |
|
return SCM_REAL_VALUE (x) < 0.0; |
|
return scm_is_less_than (scm_inexact_to_exact (x), y); |
|
} |
|
|
|
if (!SCM_FRACTIONP (x)) |
|
abort (); |
|
|
|
if (SCM_REALP (y)) |
|
{ |
|
|
|
if (isnan (SCM_REAL_VALUE (y))) |
|
return 0; |
|
if (isinf (SCM_REAL_VALUE (y))) |
|
return 0.0 < SCM_REAL_VALUE (y); |
|
return scm_is_less_than (x, scm_inexact_to_exact (y)); |
|
} |
|
else |
|
|
|
return scm_is_less_than (SCM_FRACTION_NUMERATOR (x), |
|
scm_product (y, SCM_FRACTION_DENOMINATOR (x))); |
|
} |
|
|
|
static int |
|
scm_is_greater_than (SCM x, SCM y) |
|
{ |
|
return scm_is_less_than (y, x); |
|
} |
|
|
|
static int |
|
scm_is_less_than_or_equal (SCM x, SCM y) |
|
{ |
|
if ((SCM_REALP (x) && isnan (SCM_REAL_VALUE (x))) |
|
|| (SCM_REALP (y) && isnan (SCM_REAL_VALUE (y)))) |
|
return 0; |
|
|
|
return !scm_is_less_than (y, x); |
|
} |
|
|
|
static int |
|
scm_is_greater_than_or_equal (SCM x, SCM y) |
|
{ |
|
return scm_is_less_than_or_equal (y, x); |
|
} |
|
|
|
SCM_INTERNAL SCM scm_i_num_less_p (SCM, SCM, SCM); |
|
SCM_PRIMITIVE_GENERIC (scm_i_num_less_p, "<", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return @code{#t} if the list of parameters is monotonically\n" |
|
"increasing.") |
|
#define FUNC_NAME s_scm_i_num_less_p |
|
{ |
|
if (SCM_UNBNDP (x) || SCM_UNBNDP (y)) |
|
return SCM_BOOL_T; |
|
while (!scm_is_null (rest)) |
|
{ |
|
if (scm_is_false (scm_less_p (x, y))) |
|
return SCM_BOOL_F; |
|
x = y; |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_less_p (x, y); |
|
} |
|
#undef FUNC_NAME |
|
#define FUNC_NAME s_scm_i_num_less_p |
|
SCM |
|
scm_less_p (SCM x, SCM y) |
|
{ |
|
if (!scm_is_real (x)) |
|
return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG1, FUNC_NAME); |
|
if (!scm_is_real (y)) |
|
return scm_wta_dispatch_2 (g_scm_i_num_less_p, x, y, SCM_ARG2, FUNC_NAME); |
|
return scm_from_bool (scm_is_less_than (x, y)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM scm_i_num_gr_p (SCM, SCM, SCM); |
|
SCM_PRIMITIVE_GENERIC (scm_i_num_gr_p, ">", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return @code{#t} if the list of parameters is monotonically\n" |
|
"decreasing.") |
|
#define FUNC_NAME s_scm_i_num_gr_p |
|
{ |
|
if (SCM_UNBNDP (x) || SCM_UNBNDP (y)) |
|
return SCM_BOOL_T; |
|
while (!scm_is_null (rest)) |
|
{ |
|
if (scm_is_false (scm_gr_p (x, y))) |
|
return SCM_BOOL_F; |
|
x = y; |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_gr_p (x, y); |
|
} |
|
#undef FUNC_NAME |
|
#define FUNC_NAME s_scm_i_num_gr_p |
|
SCM |
|
scm_gr_p (SCM x, SCM y) |
|
{ |
|
if (!scm_is_real (x)) |
|
return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG1, FUNC_NAME); |
|
if (!scm_is_real (y)) |
|
return scm_wta_dispatch_2 (g_scm_i_num_gr_p, x, y, SCM_ARG2, FUNC_NAME); |
|
return scm_from_bool (scm_is_greater_than (x, y)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM scm_i_num_leq_p (SCM, SCM, SCM); |
|
SCM_PRIMITIVE_GENERIC (scm_i_num_leq_p, "<=", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return @code{#t} if the list of parameters is monotonically\n" |
|
"non-decreasing.") |
|
#define FUNC_NAME s_scm_i_num_leq_p |
|
{ |
|
if (SCM_UNBNDP (x) || SCM_UNBNDP (y)) |
|
return SCM_BOOL_T; |
|
while (!scm_is_null (rest)) |
|
{ |
|
if (scm_is_false (scm_leq_p (x, y))) |
|
return SCM_BOOL_F; |
|
x = y; |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_leq_p (x, y); |
|
} |
|
#undef FUNC_NAME |
|
#define FUNC_NAME s_scm_i_num_leq_p |
|
SCM |
|
scm_leq_p (SCM x, SCM y) |
|
{ |
|
if (!scm_is_real (x)) |
|
return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG1, FUNC_NAME); |
|
if (!scm_is_real (y)) |
|
return scm_wta_dispatch_2 (g_scm_i_num_leq_p, x, y, SCM_ARG2, FUNC_NAME); |
|
return scm_from_bool (scm_is_less_than_or_equal (x, y)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM scm_i_num_geq_p (SCM, SCM, SCM); |
|
SCM_PRIMITIVE_GENERIC (scm_i_num_geq_p, ">=", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return @code{#t} if the list of parameters is monotonically\n" |
|
"non-increasing.") |
|
#define FUNC_NAME s_scm_i_num_geq_p |
|
{ |
|
if (SCM_UNBNDP (x) || SCM_UNBNDP (y)) |
|
return SCM_BOOL_T; |
|
while (!scm_is_null (rest)) |
|
{ |
|
if (scm_is_false (scm_geq_p (x, y))) |
|
return SCM_BOOL_F; |
|
x = y; |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_geq_p (x, y); |
|
} |
|
#undef FUNC_NAME |
|
#define FUNC_NAME s_scm_i_num_geq_p |
|
SCM |
|
scm_geq_p (SCM x, SCM y) |
|
{ |
|
if (!scm_is_real (x)) |
|
return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG1, FUNC_NAME); |
|
if (!scm_is_real (y)) |
|
return scm_wta_dispatch_2 (g_scm_i_num_geq_p, x, y, SCM_ARG2, FUNC_NAME); |
|
return scm_from_bool (scm_is_greater_than_or_equal (x, y)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_zero_p, "zero?", 1, 0, 0, |
|
(SCM z), |
|
"Return @code{#t} if @var{z} is an exact or inexact number equal to\n" |
|
"zero.") |
|
#define FUNC_NAME s_scm_zero_p |
|
{ |
|
if (SCM_I_INUMP (z)) |
|
return scm_from_bool (scm_is_eq (z, SCM_INUM0)); |
|
else if (SCM_BIGP (z)) |
|
return SCM_BOOL_F; |
|
else if (SCM_REALP (z)) |
|
return scm_from_bool (SCM_REAL_VALUE (z) == 0.0); |
|
else if (SCM_COMPLEXP (z)) |
|
return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0 |
|
&& SCM_COMPLEX_IMAG (z) == 0.0); |
|
else if (SCM_FRACTIONP (z)) |
|
return SCM_BOOL_F; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_zero_p, z, SCM_ARG1, s_scm_zero_p); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_positive_p, "positive?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if @var{x} is an exact or inexact number greater than\n" |
|
"zero.") |
|
#define FUNC_NAME s_scm_positive_p |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
return scm_from_bool (SCM_I_INUM (x) > 0); |
|
else if (SCM_BIGP (x)) |
|
return scm_from_bool (scm_is_integer_positive_z (scm_bignum (x))); |
|
else if (SCM_REALP (x)) |
|
return scm_from_bool(SCM_REAL_VALUE (x) > 0.0); |
|
else if (SCM_FRACTIONP (x)) |
|
return scm_positive_p (SCM_FRACTION_NUMERATOR (x)); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_positive_p, x, SCM_ARG1, s_scm_positive_p); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_negative_p, "negative?", 1, 0, 0, |
|
(SCM x), |
|
"Return @code{#t} if @var{x} is an exact or inexact number less than\n" |
|
"zero.") |
|
#define FUNC_NAME s_scm_negative_p |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
return scm_from_bool (SCM_I_INUM (x) < 0); |
|
else if (SCM_BIGP (x)) |
|
return scm_from_bool (scm_is_integer_negative_z (scm_bignum (x))); |
|
else if (SCM_REALP (x)) |
|
return scm_from_bool(SCM_REAL_VALUE (x) < 0.0); |
|
else if (SCM_FRACTIONP (x)) |
|
return scm_negative_p (SCM_FRACTION_NUMERATOR (x)); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_negative_p, x, SCM_ARG1, s_scm_negative_p); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_max, "max", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return the maximum of all parameter values.") |
|
#define FUNC_NAME s_scm_i_max |
|
{ |
|
while (!scm_is_null (rest)) |
|
{ x = scm_max (x, y); |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_max (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM |
|
scm_max (SCM x, SCM y) |
|
{ |
|
if (SCM_UNBNDP (y)) |
|
{ |
|
if (SCM_UNBNDP (x)) |
|
return scm_wta_dispatch_0 (g_scm_i_max, s_scm_i_max); |
|
else if (scm_is_real (x)) |
|
return x; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_i_max, x, SCM_ARG1, s_scm_i_max); |
|
} |
|
|
|
if (!scm_is_real (x)) |
|
return scm_wta_dispatch_2 (g_scm_i_max, x, y, SCM_ARG1, s_scm_i_max); |
|
if (!scm_is_real (y)) |
|
return scm_wta_dispatch_2 (g_scm_i_max, x, y, SCM_ARG2, s_scm_i_max); |
|
|
|
if (scm_is_exact (x) && scm_is_exact (y)) |
|
return scm_is_less_than (x, y) ? y : x; |
|
|
|
x = SCM_REALP (x) ? x : scm_exact_to_inexact (x); |
|
y = SCM_REALP (y) ? y : scm_exact_to_inexact (y); |
|
double xx = SCM_REAL_VALUE (x); |
|
double yy = SCM_REAL_VALUE (y); |
|
if (isnan (xx)) |
|
return x; |
|
if (isnan (yy)) |
|
return y; |
|
if (xx < yy) |
|
return y; |
|
if (xx > yy) |
|
return x; |
|
|
|
return (copysign (1.0, xx) < 0) ? y : x; |
|
} |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_min, "min", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return the minimum of all parameter values.") |
|
#define FUNC_NAME s_scm_i_min |
|
{ |
|
while (!scm_is_null (rest)) |
|
{ x = scm_min (x, y); |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_min (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM |
|
scm_min (SCM x, SCM y) |
|
{ |
|
if (SCM_UNBNDP (y)) |
|
{ |
|
if (SCM_UNBNDP (x)) |
|
return scm_wta_dispatch_0 (g_scm_i_min, s_scm_i_min); |
|
else if (scm_is_real (x)) |
|
return x; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_i_min, x, SCM_ARG1, s_scm_i_min); |
|
} |
|
|
|
if (!scm_is_real (x)) |
|
return scm_wta_dispatch_2 (g_scm_i_min, x, y, SCM_ARG1, s_scm_i_min); |
|
if (!scm_is_real (y)) |
|
return scm_wta_dispatch_2 (g_scm_i_min, x, y, SCM_ARG2, s_scm_i_min); |
|
|
|
if (scm_is_exact (x) && scm_is_exact (y)) |
|
return scm_is_less_than (x, y) ? x : y; |
|
|
|
x = SCM_REALP (x) ? x : scm_exact_to_inexact (x); |
|
y = SCM_REALP (y) ? y : scm_exact_to_inexact (y); |
|
double xx = SCM_REAL_VALUE (x); |
|
double yy = SCM_REAL_VALUE (y); |
|
if (isnan (xx)) |
|
return x; |
|
if (isnan (yy)) |
|
return y; |
|
if (xx < yy) |
|
return x; |
|
if (xx > yy) |
|
return y; |
|
|
|
return (copysign (1.0, xx) < 0) ? x : y; |
|
} |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_sum, "+", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return the sum of all parameter values. Return 0 if called without\n" |
|
"any parameters." ) |
|
#define FUNC_NAME s_scm_i_sum |
|
{ |
|
while (!scm_is_null (rest)) |
|
{ x = scm_sum (x, y); |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_sum (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
sum (SCM x, SCM y) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_add_ii (SCM_I_INUM (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_add_zi (scm_bignum (y), SCM_I_INUM (x)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_from_double (SCM_I_INUM (x) + SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_c_make_rectangular (SCM_I_INUM (x) + SCM_COMPLEX_REAL (y), |
|
SCM_COMPLEX_IMAG (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_make_ratio |
|
(scm_sum (SCM_FRACTION_NUMERATOR (y), |
|
scm_product (x, SCM_FRACTION_DENOMINATOR (y))), |
|
SCM_FRACTION_DENOMINATOR (y)); |
|
abort (); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_BIGP (y)) |
|
return scm_integer_add_zz (scm_bignum (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x)) |
|
+ SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_c_make_rectangular (scm_integer_to_double_z (scm_bignum (x)) |
|
+ SCM_COMPLEX_REAL (y), |
|
SCM_COMPLEX_IMAG (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y), |
|
scm_product (x, SCM_FRACTION_DENOMINATOR (y))), |
|
SCM_FRACTION_DENOMINATOR (y)); |
|
else |
|
return sum (y, x); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y), |
|
SCM_COMPLEX_IMAG (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y)); |
|
else |
|
return sum (y, x); |
|
} |
|
else if (SCM_COMPLEXP (x)) |
|
{ |
|
if (SCM_COMPLEXP (y)) |
|
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y), |
|
SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y), |
|
SCM_COMPLEX_IMAG (x)); |
|
else |
|
return sum (y, x); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_FRACTIONP (y)) |
|
{ |
|
SCM nx = SCM_FRACTION_NUMERATOR (x); |
|
SCM ny = SCM_FRACTION_NUMERATOR (y); |
|
SCM dx = SCM_FRACTION_DENOMINATOR (x); |
|
SCM dy = SCM_FRACTION_DENOMINATOR (y); |
|
return scm_i_make_ratio (scm_sum (scm_product (nx, dy), |
|
scm_product (ny, dx)), |
|
scm_product (dx, dy)); |
|
} |
|
else |
|
return sum (y, x); |
|
} |
|
else |
|
abort (); |
|
} |
|
|
|
SCM |
|
scm_sum (SCM x, SCM y) |
|
{ |
|
if (SCM_UNBNDP (y)) |
|
{ |
|
if (SCM_NUMBERP (x)) return x; |
|
if (SCM_UNBNDP (x)) return SCM_INUM0; |
|
return scm_wta_dispatch_1 (g_scm_i_sum, x, SCM_ARG1, s_scm_i_sum); |
|
} |
|
|
|
if (!SCM_NUMBERP (x)) |
|
return scm_wta_dispatch_2 (g_scm_i_sum, x, y, SCM_ARG1, s_scm_i_sum); |
|
if (!SCM_NUMBERP (y)) |
|
return scm_wta_dispatch_2 (g_scm_i_sum, x, y, SCM_ARG2, s_scm_i_sum); |
|
|
|
return sum (x, y); |
|
} |
|
|
|
SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0, |
|
(SCM x), |
|
"Return @math{@var{x}+1}.") |
|
#define FUNC_NAME s_scm_oneplus |
|
{ |
|
return scm_sum (x, SCM_INUM1); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
negate (SCM x) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
return scm_integer_negate_i (SCM_I_INUM (x)); |
|
else if (SCM_BIGP (x)) |
|
return scm_integer_negate_z (scm_bignum (x)); |
|
else if (SCM_REALP (x)) |
|
return scm_i_from_double (-SCM_REAL_VALUE (x)); |
|
else if (SCM_COMPLEXP (x)) |
|
return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x), |
|
-SCM_COMPLEX_IMAG (x)); |
|
else if (SCM_FRACTIONP (x)) |
|
return scm_i_make_ratio_already_reduced |
|
(negate (SCM_FRACTION_NUMERATOR (x)), SCM_FRACTION_DENOMINATOR (x)); |
|
else |
|
abort (); |
|
} |
|
|
|
static SCM |
|
difference (SCM x, SCM y) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (SCM_I_INUM (x) == 0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return negate (y); |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_sub_ii (SCM_I_INUM (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_sub_iz (SCM_I_INUM (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_from_double (SCM_I_INUM (x) - SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_c_make_rectangular (SCM_I_INUM (x) - SCM_COMPLEX_REAL (y), |
|
- SCM_COMPLEX_IMAG (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
|
|
return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)), |
|
SCM_FRACTION_NUMERATOR (y)), |
|
SCM_FRACTION_DENOMINATOR (y)); |
|
else |
|
abort (); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_integer_sub_zi (scm_bignum (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_sub_zz (scm_bignum (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x)) |
|
- SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_c_make_rectangular |
|
(scm_integer_to_double_z (scm_bignum (x)) - SCM_COMPLEX_REAL (y), |
|
-SCM_COMPLEX_IMAG (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_make_ratio |
|
(difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)), |
|
SCM_FRACTION_NUMERATOR (y)), |
|
SCM_FRACTION_DENOMINATOR (y)); |
|
else |
|
abort (); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
double r = SCM_REAL_VALUE (x); |
|
if (SCM_I_INUMP (y)) |
|
return scm_i_from_double (r - SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_i_from_double (r - scm_integer_to_double_z (scm_bignum (y))); |
|
else if (SCM_REALP (y)) |
|
return scm_i_from_double (r - SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_c_make_rectangular (r - SCM_COMPLEX_REAL (y), |
|
-SCM_COMPLEX_IMAG (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_from_double (r - scm_i_fraction2double (y)); |
|
else |
|
abort (); |
|
} |
|
else if (SCM_COMPLEXP (x)) |
|
{ |
|
double r = SCM_COMPLEX_REAL (x); |
|
double i = SCM_COMPLEX_IMAG (x); |
|
if (SCM_I_INUMP (y)) |
|
r -= SCM_I_INUM (y); |
|
else if (SCM_BIGP (y)) |
|
r -= scm_integer_to_double_z (scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
r -= SCM_REAL_VALUE (y); |
|
else if (SCM_COMPLEXP (y)) |
|
r -= SCM_COMPLEX_REAL (y), i -= SCM_COMPLEX_IMAG (y); |
|
else if (SCM_FRACTIONP (y)) |
|
r -= scm_i_fraction2double (y); |
|
else |
|
abort (); |
|
return scm_c_make_rectangular (r, i); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (scm_is_exact (y)) |
|
{ |
|
|
|
SCM n = scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), |
|
scm_denominator (y)), |
|
scm_product (scm_numerator (y), |
|
SCM_FRACTION_DENOMINATOR (x))); |
|
SCM d = scm_product (SCM_FRACTION_DENOMINATOR (x), |
|
scm_denominator (y)); |
|
return scm_i_make_ratio (n, d); |
|
} |
|
|
|
double xx = scm_i_fraction2double (x); |
|
if (SCM_REALP (y)) |
|
return scm_i_from_double (xx - SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y), |
|
-SCM_COMPLEX_IMAG (y)); |
|
else |
|
abort (); |
|
} |
|
else |
|
abort (); |
|
} |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_difference, "-", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"If called with one argument @var{z1}, -@var{z1} returned. Otherwise\n" |
|
"the sum of all but the first argument are subtracted from the first\n" |
|
"argument.") |
|
#define FUNC_NAME s_scm_i_difference |
|
{ |
|
while (!scm_is_null (rest)) |
|
{ x = scm_difference (x, y); |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_difference (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM |
|
scm_difference (SCM x, SCM y) |
|
{ |
|
if (SCM_UNBNDP (y)) |
|
{ |
|
if (SCM_NUMBERP (x)) return negate (x); |
|
if (SCM_UNBNDP (x)) |
|
return scm_wta_dispatch_0 (g_scm_i_difference, s_scm_i_difference); |
|
return scm_wta_dispatch_1 (g_scm_i_difference, x, SCM_ARG1, |
|
s_scm_i_difference); |
|
} |
|
if (!SCM_NUMBERP (x)) |
|
return scm_wta_dispatch_2 (g_scm_i_difference, x, y, SCM_ARG1, |
|
s_scm_i_difference); |
|
if (!SCM_NUMBERP (y)) |
|
return scm_wta_dispatch_2 (g_scm_i_difference, x, y, SCM_ARG2, |
|
s_scm_i_difference); |
|
return difference (x, y); |
|
} |
|
|
|
SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0, |
|
(SCM x), |
|
"Return @math{@var{x}-1}.") |
|
#define FUNC_NAME s_scm_oneminus |
|
{ |
|
return scm_difference (x, SCM_INUM1); |
|
} |
|
#undef FUNC_NAME |
|
|
|
static SCM |
|
product (SCM x, SCM y) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (scm_is_eq (x, SCM_I_MAKINUM (-1))) |
|
return negate (y); |
|
else if (SCM_I_INUMP (y)) |
|
return scm_integer_mul_ii (SCM_I_INUM (x), SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
return scm_integer_mul_zi (scm_bignum (y), SCM_I_INUM (x)); |
|
else if (SCM_REALP (y)) |
|
return scm_i_from_double (SCM_I_INUM (x) * SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_c_make_rectangular (SCM_I_INUM (x) * SCM_COMPLEX_REAL (y), |
|
SCM_I_INUM (x) * SCM_COMPLEX_IMAG (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)), |
|
SCM_FRACTION_DENOMINATOR (y)); |
|
abort (); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_BIGP (y)) |
|
return scm_integer_mul_zz (scm_bignum (x), scm_bignum (y)); |
|
else if (SCM_REALP (y)) |
|
return scm_from_double (scm_integer_to_double_z (scm_bignum (x)) |
|
* SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
{ |
|
double z = scm_integer_to_double_z (scm_bignum (x)); |
|
return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y), |
|
z * SCM_COMPLEX_IMAG (y)); |
|
} |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_make_ratio (product (x, SCM_FRACTION_NUMERATOR (y)), |
|
SCM_FRACTION_DENOMINATOR (y)); |
|
else |
|
return product (y, x); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
if (SCM_REALP (y)) |
|
return scm_i_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return scm_c_make_rectangular |
|
(SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y), |
|
SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y)); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_from_double |
|
(SCM_REAL_VALUE (x) * scm_i_fraction2double (y)); |
|
else |
|
return product (y, x); |
|
} |
|
else if (SCM_COMPLEXP (x)) |
|
{ |
|
if (SCM_COMPLEXP (y)) |
|
{ |
|
double rx = SCM_COMPLEX_REAL (x), ry = SCM_COMPLEX_REAL (y); |
|
double ix = SCM_COMPLEX_IMAG (x), iy = SCM_COMPLEX_IMAG (y); |
|
return scm_c_make_rectangular (rx * ry - ix * iy, rx * iy + ix * ry); |
|
} |
|
else if (SCM_FRACTIONP (y)) |
|
{ |
|
double yy = scm_i_fraction2double (y); |
|
return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x), |
|
yy * SCM_COMPLEX_IMAG (x)); |
|
} |
|
else |
|
return product (y, x); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (SCM_FRACTIONP (y)) |
|
|
|
return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), |
|
SCM_FRACTION_NUMERATOR (y)), |
|
scm_product (SCM_FRACTION_DENOMINATOR (x), |
|
SCM_FRACTION_DENOMINATOR (y))); |
|
else |
|
return product (y, x); |
|
} |
|
else |
|
abort (); |
|
} |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_product, "*", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Return the product of all arguments. If called without arguments,\n" |
|
"1 is returned.") |
|
#define FUNC_NAME s_scm_i_product |
|
{ |
|
while (!scm_is_null (rest)) |
|
{ x = scm_product (x, y); |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_product (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM |
|
scm_product (SCM x, SCM y) |
|
{ |
|
if (SCM_UNBNDP (y)) |
|
{ |
|
if (SCM_UNBNDP (x)) |
|
return SCM_I_MAKINUM (1L); |
|
else if (SCM_NUMBERP (x)) |
|
return x; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_i_product, x, SCM_ARG1, |
|
s_scm_i_product); |
|
} |
|
|
|
|
|
|
|
if (scm_is_eq (x, SCM_INUM1)) |
|
return y; |
|
if (scm_is_eq (y, SCM_INUM1)) |
|
return x; |
|
|
|
if (!SCM_NUMBERP (x)) |
|
return scm_wta_dispatch_2 (g_scm_i_product, x, y, SCM_ARG1, |
|
s_scm_i_product); |
|
if (!SCM_NUMBERP (y)) |
|
return scm_wta_dispatch_2 (g_scm_i_product, x, y, SCM_ARG2, |
|
s_scm_i_product); |
|
|
|
return product (x, y); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static SCM |
|
invert (SCM x) |
|
{ |
|
if (SCM_I_INUMP (x)) |
|
switch (SCM_I_INUM (x)) |
|
{ |
|
case -1: return x; |
|
case 0: scm_num_overflow ("divide"); |
|
case 1: return x; |
|
default: return scm_i_make_ratio_already_reduced (SCM_INUM1, x); |
|
} |
|
else if (SCM_BIGP (x)) |
|
return scm_i_make_ratio_already_reduced (SCM_INUM1, x); |
|
else if (SCM_REALP (x)) |
|
return scm_i_from_double (1.0 / SCM_REAL_VALUE (x)); |
|
else if (SCM_COMPLEXP (x)) |
|
{ |
|
double r = SCM_COMPLEX_REAL (x); |
|
double i = SCM_COMPLEX_IMAG (x); |
|
if (fabs(r) <= fabs(i)) |
|
{ |
|
double t = r / i; |
|
double d = i * (1.0 + t * t); |
|
return scm_c_make_rectangular (t / d, -1.0 / d); |
|
} |
|
else |
|
{ |
|
double t = i / r; |
|
double d = r * (1.0 + t * t); |
|
return scm_c_make_rectangular (1.0 / d, -t / d); |
|
} |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
return scm_i_make_ratio_already_reduced (SCM_FRACTION_DENOMINATOR (x), |
|
SCM_FRACTION_NUMERATOR (x)); |
|
else |
|
abort (); |
|
} |
|
|
|
static SCM |
|
complex_div (double a, SCM y) |
|
{ |
|
double r = SCM_COMPLEX_REAL (y); |
|
double i = SCM_COMPLEX_IMAG (y); |
|
if (fabs(r) <= fabs(i)) |
|
{ |
|
double t = r / i; |
|
double d = i * (1.0 + t * t); |
|
return scm_c_make_rectangular ((a * t) / d, -a / d); |
|
} |
|
else |
|
{ |
|
double t = i / r; |
|
double d = r * (1.0 + t * t); |
|
return scm_c_make_rectangular (a / d, -(a * t) / d); |
|
} |
|
} |
|
|
|
static SCM |
|
divide (SCM x, SCM y) |
|
{ |
|
if (scm_is_eq (y, SCM_INUM0)) |
|
scm_num_overflow ("divide"); |
|
|
|
if (SCM_I_INUMP (x)) |
|
{ |
|
if (scm_is_eq (x, SCM_INUM1)) |
|
return invert (y); |
|
if (SCM_I_INUMP (y)) |
|
return scm_is_integer_divisible_ii (SCM_I_INUM (x), SCM_I_INUM (y)) |
|
? scm_integer_exact_quotient_ii (SCM_I_INUM (x), SCM_I_INUM (y)) |
|
: scm_i_make_ratio (x, y); |
|
else if (SCM_BIGP (y)) |
|
return scm_i_make_ratio (x, y); |
|
else if (SCM_REALP (y)) |
|
|
|
|
|
|
|
return scm_i_from_double ((double) SCM_I_INUM (x) / SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return complex_div (SCM_I_INUM (x), y); |
|
else if (SCM_FRACTIONP (y)) |
|
|
|
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)), |
|
SCM_FRACTION_NUMERATOR (y)); |
|
else |
|
abort (); |
|
} |
|
else if (SCM_BIGP (x)) |
|
{ |
|
if (SCM_I_INUMP (y)) |
|
return scm_is_integer_divisible_zi (scm_bignum (x), SCM_I_INUM (y)) |
|
? scm_integer_exact_quotient_zi (scm_bignum (x), SCM_I_INUM (y)) |
|
: scm_i_make_ratio (x, y); |
|
else if (SCM_BIGP (y)) |
|
return scm_is_integer_divisible_zz (scm_bignum (x), scm_bignum (y)) |
|
? scm_integer_exact_quotient_zz (scm_bignum (x), scm_bignum (y)) |
|
: scm_i_make_ratio (x, y); |
|
else if (SCM_REALP (y)) |
|
|
|
|
|
return scm_i_from_double (scm_integer_to_double_z (scm_bignum (x)) |
|
/ SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return complex_div (scm_integer_to_double_z (scm_bignum (x)), y); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)), |
|
SCM_FRACTION_NUMERATOR (y)); |
|
else |
|
abort (); |
|
} |
|
else if (SCM_REALP (x)) |
|
{ |
|
double rx = SCM_REAL_VALUE (x); |
|
if (SCM_I_INUMP (y)) |
|
|
|
|
|
|
|
return scm_i_from_double (rx / (double) SCM_I_INUM (y)); |
|
else if (SCM_BIGP (y)) |
|
|
|
|
|
|
|
return scm_i_from_double (rx / scm_integer_to_double_z (scm_bignum (y))); |
|
else if (SCM_REALP (y)) |
|
return scm_i_from_double (rx / SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
return complex_div (rx, y); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_from_double (rx / scm_i_fraction2double (y)); |
|
else |
|
abort () ; |
|
} |
|
else if (SCM_COMPLEXP (x)) |
|
{ |
|
double rx = SCM_COMPLEX_REAL (x); |
|
double ix = SCM_COMPLEX_IMAG (x); |
|
if (SCM_I_INUMP (y)) |
|
{ |
|
|
|
|
|
|
|
double d = SCM_I_INUM (y); |
|
return scm_c_make_rectangular (rx / d, ix / d); |
|
} |
|
else if (SCM_BIGP (y)) |
|
{ |
|
|
|
|
|
|
|
double d = scm_integer_to_double_z (scm_bignum (y)); |
|
return scm_c_make_rectangular (rx / d, ix / d); |
|
} |
|
else if (SCM_REALP (y)) |
|
{ |
|
double d = SCM_REAL_VALUE (y); |
|
return scm_c_make_rectangular (rx / d, ix / d); |
|
} |
|
else if (SCM_COMPLEXP (y)) |
|
{ |
|
double ry = SCM_COMPLEX_REAL (y); |
|
double iy = SCM_COMPLEX_IMAG (y); |
|
if (fabs(ry) <= fabs(iy)) |
|
{ |
|
double t = ry / iy; |
|
double d = iy * (1.0 + t * t); |
|
return scm_c_make_rectangular ((rx * t + ix) / d, |
|
(ix * t - rx) / d); |
|
} |
|
else |
|
{ |
|
double t = iy / ry; |
|
double d = ry * (1.0 + t * t); |
|
return scm_c_make_rectangular ((rx + ix * t) / d, |
|
(ix - rx * t) / d); |
|
} |
|
} |
|
else if (SCM_FRACTIONP (y)) |
|
{ |
|
|
|
|
|
|
|
double d = scm_i_fraction2double (y); |
|
return scm_c_make_rectangular (rx / d, ix / d); |
|
} |
|
else |
|
abort (); |
|
} |
|
else if (SCM_FRACTIONP (x)) |
|
{ |
|
if (scm_is_exact_integer (y)) |
|
return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x), |
|
scm_product (SCM_FRACTION_DENOMINATOR (x), y)); |
|
else if (SCM_REALP (y)) |
|
|
|
|
|
|
|
return scm_i_from_double (scm_i_fraction2double (x) / |
|
SCM_REAL_VALUE (y)); |
|
else if (SCM_COMPLEXP (y)) |
|
|
|
|
|
|
|
return complex_div (scm_i_fraction2double (x), y); |
|
else if (SCM_FRACTIONP (y)) |
|
return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), |
|
SCM_FRACTION_DENOMINATOR (y)), |
|
scm_product (SCM_FRACTION_NUMERATOR (y), |
|
SCM_FRACTION_DENOMINATOR (x))); |
|
else |
|
abort (); |
|
} |
|
else |
|
abort (); |
|
} |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_i_divide, "/", 0, 2, 1, |
|
(SCM x, SCM y, SCM rest), |
|
"Divide the first argument by the product of the remaining\n" |
|
"arguments. If called with one argument @var{z1}, 1/@var{z1} is\n" |
|
"returned.") |
|
#define FUNC_NAME s_scm_i_divide |
|
{ |
|
while (!scm_is_null (rest)) |
|
{ x = scm_divide (x, y); |
|
y = scm_car (rest); |
|
rest = scm_cdr (rest); |
|
} |
|
return scm_divide (x, y); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM |
|
scm_divide (SCM x, SCM y) |
|
{ |
|
if (SCM_UNBNDP (y)) |
|
{ |
|
if (SCM_UNBNDP (x)) |
|
return scm_wta_dispatch_0 (g_scm_i_divide, s_scm_i_divide); |
|
if (SCM_NUMBERP (x)) |
|
return invert (x); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_i_divide, x, SCM_ARG1, |
|
s_scm_i_divide); |
|
} |
|
|
|
if (!SCM_NUMBERP (x)) |
|
return scm_wta_dispatch_2 (g_scm_i_divide, x, y, SCM_ARG1, |
|
s_scm_i_divide); |
|
if (!SCM_NUMBERP (y)) |
|
return scm_wta_dispatch_2 (g_scm_i_divide, x, y, SCM_ARG2, |
|
s_scm_i_divide); |
|
|
|
return divide (x, y); |
|
} |
|
|
|
double |
|
scm_c_truncate (double x) |
|
{ |
|
return trunc (x); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
double |
|
scm_c_round (double x) |
|
{ |
|
double plus_half, result; |
|
|
|
if (x == floor (x)) |
|
return x; |
|
|
|
plus_half = x + 0.5; |
|
result = floor (plus_half); |
|
|
|
return ((plus_half == result && plus_half / 2 != floor (plus_half / 2)) |
|
? result - 1 |
|
: result); |
|
} |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_truncate_number, "truncate", 1, 0, 0, |
|
(SCM x), |
|
"Round the number @var{x} towards zero.") |
|
#define FUNC_NAME s_scm_truncate_number |
|
{ |
|
if (SCM_I_INUMP (x) || SCM_BIGP (x)) |
|
return x; |
|
else if (SCM_REALP (x)) |
|
return scm_i_from_double (trunc (SCM_REAL_VALUE (x))); |
|
else if (SCM_FRACTIONP (x)) |
|
return scm_truncate_quotient (SCM_FRACTION_NUMERATOR (x), |
|
SCM_FRACTION_DENOMINATOR (x)); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_truncate_number, x, SCM_ARG1, |
|
s_scm_truncate_number); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_round_number, "round", 1, 0, 0, |
|
(SCM x), |
|
"Round the number @var{x} towards the nearest integer. " |
|
"When it is exactly halfway between two integers, " |
|
"round towards the even one.") |
|
#define FUNC_NAME s_scm_round_number |
|
{ |
|
if (SCM_I_INUMP (x) || SCM_BIGP (x)) |
|
return x; |
|
else if (SCM_REALP (x)) |
|
return scm_i_from_double (scm_c_round (SCM_REAL_VALUE (x))); |
|
else if (SCM_FRACTIONP (x)) |
|
return scm_round_quotient (SCM_FRACTION_NUMERATOR (x), |
|
SCM_FRACTION_DENOMINATOR (x)); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_round_number, x, SCM_ARG1, |
|
s_scm_round_number); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0, |
|
(SCM x), |
|
"Round the number @var{x} towards minus infinity.") |
|
#define FUNC_NAME s_scm_floor |
|
{ |
|
if (SCM_I_INUMP (x) || SCM_BIGP (x)) |
|
return x; |
|
else if (SCM_REALP (x)) |
|
return scm_i_from_double (floor (SCM_REAL_VALUE (x))); |
|
else if (SCM_FRACTIONP (x)) |
|
return scm_floor_quotient (SCM_FRACTION_NUMERATOR (x), |
|
SCM_FRACTION_DENOMINATOR (x)); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_floor, x, 1, s_scm_floor); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0, |
|
(SCM x), |
|
"Round the number @var{x} towards infinity.") |
|
#define FUNC_NAME s_scm_ceiling |
|
{ |
|
if (SCM_I_INUMP (x) || SCM_BIGP (x)) |
|
return x; |
|
else if (SCM_REALP (x)) |
|
return scm_i_from_double (ceil (SCM_REAL_VALUE (x))); |
|
else if (SCM_FRACTIONP (x)) |
|
return scm_ceiling_quotient (SCM_FRACTION_NUMERATOR (x), |
|
SCM_FRACTION_DENOMINATOR (x)); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_ceiling, x, 1, s_scm_ceiling); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_expt, "expt", 2, 0, 0, |
|
(SCM x, SCM y), |
|
"Return @var{x} raised to the power of @var{y}.") |
|
#define FUNC_NAME s_scm_expt |
|
{ |
|
if (scm_is_integer (y)) |
|
{ |
|
if (scm_is_true (scm_exact_p (y))) |
|
return scm_integer_expt (x, y); |
|
else |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return scm_exact_to_inexact |
|
(scm_integer_expt (scm_exact_to_inexact (x), |
|
scm_inexact_to_exact (y))); |
|
} |
|
} |
|
else if (scm_is_real (x) && scm_is_real (y) && scm_to_double (x) >= 0.0) |
|
{ |
|
return scm_i_from_double (pow (scm_to_double (x), scm_to_double (y))); |
|
} |
|
else if (scm_is_complex (x) && scm_is_complex (y)) |
|
return scm_exp (scm_product (scm_log (x), y)); |
|
else if (scm_is_complex (x)) |
|
return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG2, s_scm_expt); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_expt, x, y, SCM_ARG1, s_scm_expt); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_sin, "sin", 1, 0, 0, |
|
(SCM z), |
|
"Compute the sine of @var{z}.") |
|
#define FUNC_NAME s_scm_sin |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0))) |
|
return z; |
|
else if (scm_is_real (z)) |
|
return scm_i_from_double (sin (scm_to_double (z))); |
|
else if (SCM_COMPLEXP (z)) |
|
{ double x, y; |
|
x = SCM_COMPLEX_REAL (z); |
|
y = SCM_COMPLEX_IMAG (z); |
|
return scm_c_make_rectangular (sin (x) * cosh (y), |
|
cos (x) * sinh (y)); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_sin, z, 1, s_scm_sin); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_cos, "cos", 1, 0, 0, |
|
(SCM z), |
|
"Compute the cosine of @var{z}.") |
|
#define FUNC_NAME s_scm_cos |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0))) |
|
return SCM_INUM1; |
|
else if (scm_is_real (z)) |
|
return scm_i_from_double (cos (scm_to_double (z))); |
|
else if (SCM_COMPLEXP (z)) |
|
{ double x, y; |
|
x = SCM_COMPLEX_REAL (z); |
|
y = SCM_COMPLEX_IMAG (z); |
|
return scm_c_make_rectangular (cos (x) * cosh (y), |
|
-sin (x) * sinh (y)); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_cos, z, 1, s_scm_cos); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_tan, "tan", 1, 0, 0, |
|
(SCM z), |
|
"Compute the tangent of @var{z}.") |
|
#define FUNC_NAME s_scm_tan |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0))) |
|
return z; |
|
else if (scm_is_real (z)) |
|
return scm_i_from_double (tan (scm_to_double (z))); |
|
else if (SCM_COMPLEXP (z)) |
|
{ double x, y, w; |
|
x = 2.0 * SCM_COMPLEX_REAL (z); |
|
y = 2.0 * SCM_COMPLEX_IMAG (z); |
|
w = cos (x) + cosh (y); |
|
return scm_c_make_rectangular (sin (x) / w, sinh (y) / w); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_tan, z, 1, s_scm_tan); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_sinh, "sinh", 1, 0, 0, |
|
(SCM z), |
|
"Compute the hyperbolic sine of @var{z}.") |
|
#define FUNC_NAME s_scm_sinh |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0))) |
|
return z; |
|
else if (scm_is_real (z)) |
|
return scm_i_from_double (sinh (scm_to_double (z))); |
|
else if (SCM_COMPLEXP (z)) |
|
{ double x, y; |
|
x = SCM_COMPLEX_REAL (z); |
|
y = SCM_COMPLEX_IMAG (z); |
|
return scm_c_make_rectangular (sinh (x) * cos (y), |
|
cosh (x) * sin (y)); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_sinh, z, 1, s_scm_sinh); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_cosh, "cosh", 1, 0, 0, |
|
(SCM z), |
|
"Compute the hyperbolic cosine of @var{z}.") |
|
#define FUNC_NAME s_scm_cosh |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0))) |
|
return SCM_INUM1; |
|
else if (scm_is_real (z)) |
|
return scm_i_from_double (cosh (scm_to_double (z))); |
|
else if (SCM_COMPLEXP (z)) |
|
{ double x, y; |
|
x = SCM_COMPLEX_REAL (z); |
|
y = SCM_COMPLEX_IMAG (z); |
|
return scm_c_make_rectangular (cosh (x) * cos (y), |
|
sinh (x) * sin (y)); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_cosh, z, 1, s_scm_cosh); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_tanh, "tanh", 1, 0, 0, |
|
(SCM z), |
|
"Compute the hyperbolic tangent of @var{z}.") |
|
#define FUNC_NAME s_scm_tanh |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0))) |
|
return z; |
|
else if (scm_is_real (z)) |
|
return scm_i_from_double (tanh (scm_to_double (z))); |
|
else if (SCM_COMPLEXP (z)) |
|
{ double x, y, w; |
|
x = 2.0 * SCM_COMPLEX_REAL (z); |
|
y = 2.0 * SCM_COMPLEX_IMAG (z); |
|
w = cosh (x) + cos (y); |
|
return scm_c_make_rectangular (sinh (x) / w, sin (y) / w); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_tanh, z, 1, s_scm_tanh); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_asin, "asin", 1, 0, 0, |
|
(SCM z), |
|
"Compute the arc sine of @var{z}.") |
|
#define FUNC_NAME s_scm_asin |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0))) |
|
return z; |
|
else if (scm_is_real (z)) |
|
{ |
|
double w = scm_to_double (z); |
|
if (w >= -1.0 && w <= 1.0) |
|
return scm_i_from_double (asin (w)); |
|
else |
|
return scm_product (scm_c_make_rectangular (0, -1), |
|
scm_sys_asinh (scm_c_make_rectangular (0, w))); |
|
} |
|
else if (SCM_COMPLEXP (z)) |
|
{ double x, y; |
|
x = SCM_COMPLEX_REAL (z); |
|
y = SCM_COMPLEX_IMAG (z); |
|
return scm_product (scm_c_make_rectangular (0, -1), |
|
scm_sys_asinh (scm_c_make_rectangular (-y, x))); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_asin, z, 1, s_scm_asin); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_acos, "acos", 1, 0, 0, |
|
(SCM z), |
|
"Compute the arc cosine of @var{z}.") |
|
#define FUNC_NAME s_scm_acos |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1))) |
|
return SCM_INUM0; |
|
else if (scm_is_real (z)) |
|
{ |
|
double w = scm_to_double (z); |
|
if (w >= -1.0 && w <= 1.0) |
|
return scm_i_from_double (acos (w)); |
|
else |
|
return scm_sum (scm_i_from_double (acos (0.0)), |
|
scm_product (scm_c_make_rectangular (0, 1), |
|
scm_sys_asinh (scm_c_make_rectangular (0, w)))); |
|
} |
|
else if (SCM_COMPLEXP (z)) |
|
{ double x, y; |
|
x = SCM_COMPLEX_REAL (z); |
|
y = SCM_COMPLEX_IMAG (z); |
|
return scm_sum (scm_i_from_double (acos (0.0)), |
|
scm_product (scm_c_make_rectangular (0, 1), |
|
scm_sys_asinh (scm_c_make_rectangular (-y, x)))); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_acos, z, 1, s_scm_acos); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_atan, "atan", 1, 1, 0, |
|
(SCM z, SCM y), |
|
"With one argument, compute the arc tangent of @var{z}.\n" |
|
"If @var{y} is present, compute the arc tangent of @var{z}/@var{y},\n" |
|
"using the sign of @var{z} and @var{y} to determine the quadrant.") |
|
#define FUNC_NAME s_scm_atan |
|
{ |
|
if (SCM_UNBNDP (y)) |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0))) |
|
return z; |
|
else if (scm_is_real (z)) |
|
return scm_i_from_double (atan (scm_to_double (z))); |
|
else if (SCM_COMPLEXP (z)) |
|
{ |
|
double v, w; |
|
v = SCM_COMPLEX_REAL (z); |
|
w = SCM_COMPLEX_IMAG (z); |
|
return scm_divide (scm_log (scm_divide (scm_c_make_rectangular (-v, 1.0 - w), |
|
scm_c_make_rectangular ( v, 1.0 + w))), |
|
scm_c_make_rectangular (0, 2)); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_atan, z, SCM_ARG1, s_scm_atan); |
|
} |
|
else if (scm_is_real (z)) |
|
{ |
|
if (scm_is_real (y)) |
|
return scm_i_from_double (atan2 (scm_to_double (z), scm_to_double (y))); |
|
else |
|
return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG2, s_scm_atan); |
|
} |
|
else |
|
return scm_wta_dispatch_2 (g_scm_atan, z, y, SCM_ARG1, s_scm_atan); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_sys_asinh, "asinh", 1, 0, 0, |
|
(SCM z), |
|
"Compute the inverse hyperbolic sine of @var{z}.") |
|
#define FUNC_NAME s_scm_sys_asinh |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0))) |
|
return z; |
|
else if (scm_is_real (z)) |
|
return scm_i_from_double (asinh (scm_to_double (z))); |
|
else if (scm_is_number (z)) |
|
return scm_log (scm_sum (z, |
|
scm_sqrt (scm_sum (scm_product (z, z), |
|
SCM_INUM1)))); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_sys_asinh, z, 1, s_scm_sys_asinh); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_sys_acosh, "acosh", 1, 0, 0, |
|
(SCM z), |
|
"Compute the inverse hyperbolic cosine of @var{z}.") |
|
#define FUNC_NAME s_scm_sys_acosh |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM1))) |
|
return SCM_INUM0; |
|
else if (scm_is_real (z) && scm_to_double (z) >= 1.0) |
|
return scm_i_from_double (acosh (scm_to_double (z))); |
|
else if (scm_is_number (z)) |
|
return scm_log (scm_sum (z, |
|
scm_sqrt (scm_difference (scm_product (z, z), |
|
SCM_INUM1)))); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_sys_acosh, z, 1, s_scm_sys_acosh); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_sys_atanh, "atanh", 1, 0, 0, |
|
(SCM z), |
|
"Compute the inverse hyperbolic tangent of @var{z}.") |
|
#define FUNC_NAME s_scm_sys_atanh |
|
{ |
|
if (SCM_UNLIKELY (scm_is_eq (z, SCM_INUM0))) |
|
return z; |
|
else if (scm_is_real (z) && scm_to_double (z) >= -1.0 && scm_to_double (z) <= 1.0) |
|
return scm_i_from_double (atanh (scm_to_double (z))); |
|
else if (scm_is_number (z)) |
|
return scm_divide (scm_log (scm_divide (scm_sum (SCM_INUM1, z), |
|
scm_difference (SCM_INUM1, z))), |
|
SCM_I_MAKINUM (2)); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_sys_atanh, z, 1, s_scm_sys_atanh); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM |
|
scm_c_make_rectangular (double re, double im) |
|
{ |
|
SCM z; |
|
|
|
z = SCM_PACK_POINTER (scm_gc_malloc_pointerless (sizeof (scm_t_complex), |
|
"complex")); |
|
SCM_SET_CELL_TYPE (z, scm_tc16_complex); |
|
SCM_COMPLEX_REAL (z) = re; |
|
SCM_COMPLEX_IMAG (z) = im; |
|
return z; |
|
} |
|
|
|
SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0, |
|
(SCM real_part, SCM imaginary_part), |
|
"Return a complex number constructed of the given @var{real_part} " |
|
"and @var{imaginary_part} parts.") |
|
#define FUNC_NAME s_scm_make_rectangular |
|
{ |
|
SCM_ASSERT_TYPE (scm_is_real (real_part), real_part, |
|
SCM_ARG1, FUNC_NAME, "real"); |
|
SCM_ASSERT_TYPE (scm_is_real (imaginary_part), imaginary_part, |
|
SCM_ARG2, FUNC_NAME, "real"); |
|
|
|
|
|
if (scm_is_eq (imaginary_part, SCM_INUM0)) |
|
return real_part; |
|
else |
|
return scm_c_make_rectangular (scm_to_double (real_part), |
|
scm_to_double (imaginary_part)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM |
|
scm_c_make_polar (double mag, double ang) |
|
{ |
|
double s, c; |
|
|
|
|
|
|
|
|
|
|
|
#if (defined HAVE_SINCOS) && (defined __GLIBC__) && (defined _GNU_SOURCE) |
|
sincos (ang, &s, &c); |
|
#elif (defined HAVE___SINCOS) |
|
__sincos (ang, &s, &c); |
|
#else |
|
s = sin (ang); |
|
c = cos (ang); |
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if (SCM_UNLIKELY (isnan(s)) && isnan(c) && (mag == 0.0)) |
|
return scm_c_make_rectangular (0.0, 0.0); |
|
else |
|
return scm_c_make_rectangular (mag * c, mag * s); |
|
} |
|
|
|
SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0, |
|
(SCM mag, SCM ang), |
|
"Return the complex number @var{mag} * e^(i * @var{ang}).") |
|
#define FUNC_NAME s_scm_make_polar |
|
{ |
|
SCM_ASSERT_TYPE (scm_is_real (mag), mag, SCM_ARG1, FUNC_NAME, "real"); |
|
SCM_ASSERT_TYPE (scm_is_real (ang), ang, SCM_ARG2, FUNC_NAME, "real"); |
|
|
|
|
|
if (scm_is_eq (mag, SCM_INUM0)) |
|
return SCM_INUM0; |
|
|
|
else if (scm_is_eq (ang, SCM_INUM0)) |
|
return mag; |
|
else |
|
return scm_c_make_polar (scm_to_double (mag), scm_to_double (ang)); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_real_part, "real-part", 1, 0, 0, |
|
(SCM z), |
|
"Return the real part of the number @var{z}.") |
|
#define FUNC_NAME s_scm_real_part |
|
{ |
|
if (SCM_COMPLEXP (z)) |
|
return scm_i_from_double (SCM_COMPLEX_REAL (z)); |
|
else if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_REALP (z) || SCM_FRACTIONP (z)) |
|
return z; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_real_part, z, SCM_ARG1, s_scm_real_part); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_imag_part, "imag-part", 1, 0, 0, |
|
(SCM z), |
|
"Return the imaginary part of the number @var{z}.") |
|
#define FUNC_NAME s_scm_imag_part |
|
{ |
|
if (SCM_COMPLEXP (z)) |
|
return scm_i_from_double (SCM_COMPLEX_IMAG (z)); |
|
else if (SCM_I_INUMP (z) || SCM_REALP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z)) |
|
return SCM_INUM0; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_imag_part, z, SCM_ARG1, s_scm_imag_part); |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_numerator, "numerator", 1, 0, 0, |
|
(SCM z), |
|
"Return the numerator of the number @var{z}.") |
|
#define FUNC_NAME s_scm_numerator |
|
{ |
|
if (SCM_I_INUMP (z) || SCM_BIGP (z)) |
|
return z; |
|
else if (SCM_FRACTIONP (z)) |
|
return SCM_FRACTION_NUMERATOR (z); |
|
else if (SCM_REALP (z)) |
|
{ |
|
double zz = SCM_REAL_VALUE (z); |
|
if (zz == floor (zz)) |
|
|
|
|
|
return z; |
|
else |
|
return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z))); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_numerator, z, SCM_ARG1, s_scm_numerator); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_denominator, "denominator", 1, 0, 0, |
|
(SCM z), |
|
"Return the denominator of the number @var{z}.") |
|
#define FUNC_NAME s_scm_denominator |
|
{ |
|
if (SCM_I_INUMP (z) || SCM_BIGP (z)) |
|
return SCM_INUM1; |
|
else if (SCM_FRACTIONP (z)) |
|
return SCM_FRACTION_DENOMINATOR (z); |
|
else if (SCM_REALP (z)) |
|
{ |
|
double zz = SCM_REAL_VALUE (z); |
|
if (zz == floor (zz)) |
|
|
|
|
|
return scm_i_from_double (1.0); |
|
else |
|
return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z))); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_denominator, z, SCM_ARG1, |
|
s_scm_denominator); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_magnitude, "magnitude", 1, 0, 0, |
|
(SCM z), |
|
"Return the magnitude of the number @var{z}. This is the same as\n" |
|
"@code{abs} for real arguments, but also allows complex numbers.") |
|
#define FUNC_NAME s_scm_magnitude |
|
{ |
|
if (SCM_COMPLEXP (z)) |
|
return scm_i_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z))); |
|
else if (SCM_NUMBERP (z)) |
|
return scm_abs (z); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_magnitude, z, SCM_ARG1, |
|
s_scm_magnitude); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_angle, "angle", 1, 0, 0, |
|
(SCM z), |
|
"Return the angle of the complex number @var{z}.") |
|
#define FUNC_NAME s_scm_angle |
|
{ |
|
|
|
|
|
|
|
|
|
if (SCM_COMPLEXP (z)) |
|
return scm_i_from_double (atan2 (SCM_COMPLEX_IMAG (z), |
|
SCM_COMPLEX_REAL (z))); |
|
else if (SCM_NUMBERP (z)) |
|
return (SCM_REALP (z) |
|
? copysign (1.0, SCM_REAL_VALUE (z)) < 0.0 |
|
: scm_is_true (scm_negative_p (z))) |
|
? scm_i_from_double (atan2 (0.0, -1.0)) |
|
: flo0; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_angle, z, SCM_ARG1, s_scm_angle); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_exact_to_inexact, "exact->inexact", 1, 0, 0, |
|
(SCM z), |
|
"Convert the number @var{z} to its inexact representation.\n") |
|
#define FUNC_NAME s_scm_exact_to_inexact |
|
{ |
|
if (SCM_I_INUMP (z)) |
|
return scm_i_from_double ((double) SCM_I_INUM (z)); |
|
else if (SCM_BIGP (z)) |
|
return scm_i_from_double (scm_integer_to_double_z (scm_bignum (z))); |
|
else if (SCM_FRACTIONP (z)) |
|
return scm_i_from_double (scm_i_fraction2double (z)); |
|
else if (SCM_INEXACTP (z)) |
|
return z; |
|
else |
|
return scm_wta_dispatch_1 (g_scm_exact_to_inexact, z, 1, |
|
s_scm_exact_to_inexact); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_inexact_to_exact, "inexact->exact", 1, 0, 0, |
|
(SCM z), |
|
"Return an exact number that is numerically closest to @var{z}.") |
|
#define FUNC_NAME s_scm_inexact_to_exact |
|
{ |
|
if (SCM_I_INUMP (z) || SCM_BIGP (z) || SCM_FRACTIONP (z)) |
|
return z; |
|
|
|
double val; |
|
|
|
if (SCM_REALP (z)) |
|
val = SCM_REAL_VALUE (z); |
|
else if (SCM_COMPLEXP (z) && SCM_COMPLEX_IMAG (z) == 0.0) |
|
val = SCM_COMPLEX_REAL (z); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_inexact_to_exact, z, 1, |
|
s_scm_inexact_to_exact); |
|
|
|
if (!SCM_LIKELY (isfinite (val))) |
|
SCM_OUT_OF_RANGE (1, z); |
|
if (val == 0) |
|
return SCM_INUM0; |
|
|
|
int expon; |
|
mpz_t zn; |
|
|
|
mpz_init_set_d (zn, ldexp (frexp (val, &expon), DBL_MANT_DIG)); |
|
expon -= DBL_MANT_DIG; |
|
if (expon < 0) |
|
{ |
|
int shift = mpz_scan1 (zn, 0); |
|
|
|
if (shift > -expon) |
|
shift = -expon; |
|
mpz_fdiv_q_2exp (zn, zn, shift); |
|
expon += shift; |
|
} |
|
SCM numerator = scm_integer_from_mpz (zn); |
|
mpz_clear (zn); |
|
if (expon < 0) |
|
return scm_i_make_ratio_already_reduced |
|
(numerator, scm_integer_lsh_iu (1, -expon)); |
|
else if (expon > 0) |
|
return lsh (numerator, scm_from_int (expon), FUNC_NAME); |
|
else |
|
return numerator; |
|
} |
|
#undef FUNC_NAME |
|
|
|
SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0, |
|
(SCM x, SCM eps), |
|
"Returns the @emph{simplest} rational number differing\n" |
|
"from @var{x} by no more than @var{eps}.\n" |
|
"\n" |
|
"As required by @acronym{R5RS}, @code{rationalize} only returns an\n" |
|
"exact result when both its arguments are exact. Thus, you might need\n" |
|
"to use @code{inexact->exact} on the arguments.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(rationalize (inexact->exact 1.2) 1/100)\n" |
|
"@result{} 6/5\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_rationalize |
|
{ |
|
SCM_ASSERT_TYPE (scm_is_real (x), x, SCM_ARG1, FUNC_NAME, "real"); |
|
SCM_ASSERT_TYPE (scm_is_real (eps), eps, SCM_ARG2, FUNC_NAME, "real"); |
|
|
|
if (SCM_UNLIKELY (!scm_is_exact (eps) || !scm_is_exact (x))) |
|
{ |
|
if (SCM_UNLIKELY (scm_is_false (scm_finite_p (eps)))) |
|
{ |
|
if (scm_is_false (scm_nan_p (eps)) && scm_is_true (scm_finite_p (x))) |
|
return flo0; |
|
else |
|
return scm_nan (); |
|
} |
|
else if (SCM_UNLIKELY (scm_is_false (scm_finite_p (x)))) |
|
return x; |
|
else |
|
return scm_exact_to_inexact |
|
(scm_rationalize (scm_inexact_to_exact (x), |
|
scm_inexact_to_exact (eps))); |
|
} |
|
else |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int n1_init = 1; |
|
SCM lo, hi; |
|
|
|
eps = scm_abs (eps); |
|
if (scm_is_true (scm_negative_p (x))) |
|
{ |
|
n1_init = -1; |
|
x = scm_difference (x, SCM_UNDEFINED); |
|
} |
|
|
|
|
|
|
|
lo = scm_difference (x, eps); |
|
hi = scm_sum (x, eps); |
|
|
|
if (scm_is_false (scm_positive_p (lo))) |
|
|
|
|
|
return SCM_INUM0; |
|
else |
|
{ |
|
SCM result; |
|
mpz_t n0, d0, n1, d1, n2, d2; |
|
mpz_t nlo, dlo, nhi, dhi; |
|
mpz_t qlo, rlo, qhi, rhi; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mpz_inits (n0, d0, n1, d1, n2, d2, |
|
nlo, dlo, nhi, dhi, |
|
qlo, rlo, qhi, rhi, |
|
NULL); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mpz_set_si (n1, n1_init); |
|
mpz_set_ui (d1, 0); |
|
mpz_set_ui (n2, 0); |
|
mpz_set_ui (d2, 1); |
|
|
|
|
|
|
|
|
|
|
|
scm_to_mpz (scm_numerator (lo), nlo); |
|
scm_to_mpz (scm_denominator (lo), dlo); |
|
scm_to_mpz (scm_numerator (hi), nhi); |
|
scm_to_mpz (scm_denominator (hi), dhi); |
|
|
|
|
|
|
|
for (;;) |
|
{ |
|
|
|
|
|
mpz_fdiv_qr (qlo, rlo, nlo, dlo); |
|
mpz_fdiv_qr (qhi, rhi, nhi, dhi); |
|
|
|
|
|
|
|
|
|
|
|
|
|
mpz_set (n0, n2); mpz_addmul (n0, n1, qlo); |
|
mpz_set (d0, d2); mpz_addmul (d0, d1, qlo); |
|
|
|
|
|
|
|
|
|
|
|
if (mpz_sgn (rlo) == 0 || mpz_cmp (qlo, qhi) != 0) |
|
break; |
|
|
|
|
|
|
|
mpz_swap (n2, n1); mpz_swap (n1, n0); |
|
mpz_swap (d2, d1); mpz_swap (d1, d0); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mpz_swap (nlo, dhi); mpz_swap (dhi, rlo); |
|
mpz_swap (nhi, dlo); mpz_swap (dlo, rhi); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
if (mpz_sgn (rlo) != 0) |
|
{ |
|
|
|
|
|
|
|
|
|
mpz_add (n0, n0, n1); |
|
mpz_add (d0, d0, d1); |
|
} |
|
|
|
|
|
result = scm_i_make_ratio_already_reduced (scm_from_mpz (n0), |
|
scm_from_mpz (d0)); |
|
mpz_clears (n0, d0, n1, d1, n2, d2, |
|
nlo, dlo, nhi, dhi, |
|
qlo, rlo, qhi, rhi, |
|
NULL); |
|
return result; |
|
} |
|
} |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
|
|
int |
|
scm_is_integer (SCM val) |
|
{ |
|
if (scm_is_exact_integer (val)) |
|
return 1; |
|
if (SCM_REALP (val)) |
|
{ |
|
double x = SCM_REAL_VALUE (val); |
|
return !isinf (x) && (x == floor (x)); |
|
} |
|
return 0; |
|
} |
|
|
|
int |
|
scm_is_exact_integer (SCM val) |
|
{ |
|
return SCM_I_INUMP (val) || SCM_BIGP (val); |
|
} |
|
|
|
|
|
|
|
|
|
verify(SCM_SIZEOF_INTMAX == 8); |
|
|
|
int |
|
scm_is_signed_integer (SCM val, intmax_t min, intmax_t max) |
|
{ |
|
if (SCM_I_INUMP (val)) |
|
{ |
|
scm_t_signed_bits n = SCM_I_INUM (val); |
|
return min <= n && n <= max; |
|
} |
|
else if (SCM_BIGP (val)) |
|
{ |
|
int64_t n; |
|
return scm_integer_to_int64_z (scm_bignum (val), &n) |
|
&& min <= n && n <= max; |
|
} |
|
else |
|
return 0; |
|
} |
|
|
|
int |
|
scm_is_unsigned_integer (SCM val, uintmax_t min, uintmax_t max) |
|
{ |
|
if (SCM_I_INUMP (val)) |
|
{ |
|
scm_t_signed_bits n = SCM_I_INUM (val); |
|
return n >= 0 && ((uintmax_t)n) >= min && ((uintmax_t)n) <= max; |
|
} |
|
else if (SCM_BIGP (val)) |
|
{ |
|
uint64_t n; |
|
return scm_integer_to_uint64_z (scm_bignum (val), &n) |
|
&& min <= n && n <= max; |
|
} |
|
else |
|
return 0; |
|
} |
|
|
|
static void range_error (SCM bad_val, SCM min, SCM max) SCM_NORETURN; |
|
static void |
|
range_error (SCM bad_val, SCM min, SCM max) |
|
{ |
|
scm_error (scm_out_of_range_key, |
|
NULL, |
|
"Value out of range ~S to< ~S: ~S", |
|
scm_list_3 (min, max, bad_val), |
|
scm_list_1 (bad_val)); |
|
} |
|
#define scm_i_range_error range_error |
|
|
|
static scm_t_inum |
|
inum_in_range (SCM x, scm_t_inum min, scm_t_inum max) |
|
{ |
|
if (SCM_LIKELY (SCM_I_INUMP (x))) |
|
{ |
|
scm_t_inum val = SCM_I_INUM (x); |
|
if (min <= val && val <= max) |
|
return val; |
|
} |
|
else if (!SCM_BIGP (x)) |
|
scm_wrong_type_arg_msg (NULL, 0, x, "exact integer"); |
|
range_error (x, scm_from_long (min), scm_from_long (max)); |
|
} |
|
|
|
SCM |
|
scm_from_signed_integer (intmax_t arg) |
|
{ |
|
return scm_integer_from_int64 (arg); |
|
} |
|
|
|
intmax_t |
|
scm_to_signed_integer (SCM arg, intmax_t min, intmax_t max) |
|
{ |
|
int64_t ret; |
|
if (SCM_I_INUMP (arg)) |
|
ret = SCM_I_INUM (arg); |
|
else if (SCM_BIGP (arg)) |
|
{ |
|
if (!scm_integer_to_int64_z (scm_bignum (arg), &ret)) |
|
goto out_of_range; |
|
} |
|
else |
|
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer"); |
|
if (min <= ret && ret <= max) |
|
return ret; |
|
out_of_range: |
|
range_error (arg, scm_from_intmax (min), scm_from_intmax (max)); |
|
} |
|
|
|
SCM |
|
scm_from_unsigned_integer (uintmax_t arg) |
|
{ |
|
return scm_integer_from_uint64 (arg); |
|
} |
|
|
|
uintmax_t |
|
scm_to_unsigned_integer (SCM arg, uintmax_t min, uintmax_t max) |
|
{ |
|
uint64_t ret; |
|
if (SCM_I_INUMP (arg)) |
|
{ |
|
scm_t_inum n = SCM_I_INUM (arg); |
|
if (n < 0) |
|
goto out_of_range; |
|
ret = n; |
|
} |
|
else if (SCM_BIGP (arg)) |
|
{ |
|
if (!scm_integer_to_uint64_z (scm_bignum (arg), &ret)) |
|
goto out_of_range; |
|
} |
|
else |
|
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer"); |
|
if (min <= ret && ret <= max) |
|
return ret; |
|
out_of_range: |
|
range_error (arg, scm_from_uintmax (min), scm_from_uintmax (max)); |
|
} |
|
|
|
int8_t |
|
scm_to_int8 (SCM arg) |
|
{ |
|
return inum_in_range (arg, INT8_MIN, INT8_MAX); |
|
} |
|
|
|
SCM |
|
scm_from_int8 (int8_t arg) |
|
{ |
|
return SCM_I_MAKINUM (arg); |
|
} |
|
|
|
uint8_t |
|
scm_to_uint8 (SCM arg) |
|
{ |
|
return inum_in_range (arg, 0, UINT8_MAX); |
|
} |
|
|
|
SCM |
|
scm_from_uint8 (uint8_t arg) |
|
{ |
|
return SCM_I_MAKINUM (arg); |
|
} |
|
|
|
int16_t |
|
scm_to_int16 (SCM arg) |
|
{ |
|
return inum_in_range (arg, INT16_MIN, INT16_MAX); |
|
} |
|
|
|
SCM |
|
scm_from_int16 (int16_t arg) |
|
{ |
|
return SCM_I_MAKINUM (arg); |
|
} |
|
|
|
uint16_t |
|
scm_to_uint16 (SCM arg) |
|
{ |
|
return inum_in_range (arg, 0, UINT16_MAX); |
|
} |
|
|
|
SCM |
|
scm_from_uint16 (uint16_t arg) |
|
{ |
|
return SCM_I_MAKINUM (arg); |
|
} |
|
|
|
int32_t |
|
scm_to_int32 (SCM arg) |
|
{ |
|
#if SCM_SIZEOF_LONG == 4 |
|
if (SCM_I_INUMP (arg)) |
|
return SCM_I_INUM (arg); |
|
else if (!SCM_BIGP (arg)) |
|
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer"); |
|
int32_t ret; |
|
if (scm_integer_to_int32_z (scm_bignum (arg), &ret)) |
|
return ret; |
|
range_error (arg, scm_integer_from_int32 (INT32_MIN), |
|
scm_integer_from_int32 (INT32_MAX)); |
|
#elif SCM_SIZEOF_LONG == 8 |
|
return inum_in_range (arg, INT32_MIN, INT32_MAX); |
|
#else |
|
#error bad inum size |
|
#endif |
|
} |
|
|
|
SCM |
|
scm_from_int32 (int32_t arg) |
|
{ |
|
#if SCM_SIZEOF_LONG == 4 |
|
return scm_integer_from_int32 (arg); |
|
#elif SCM_SIZEOF_LONG == 8 |
|
return SCM_I_MAKINUM (arg); |
|
#else |
|
#error bad inum size |
|
#endif |
|
} |
|
|
|
uint32_t |
|
scm_to_uint32 (SCM arg) |
|
{ |
|
#if SCM_SIZEOF_LONG == 4 |
|
if (SCM_I_INUMP (arg)) |
|
{ |
|
if (SCM_I_INUM (arg) >= 0) |
|
return SCM_I_INUM (arg); |
|
} |
|
else if (SCM_BIGP (arg)) |
|
{ |
|
uint32_t ret; |
|
if (scm_integer_to_uint32_z (scm_bignum (arg), &ret)) |
|
return ret; |
|
} |
|
else |
|
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer"); |
|
range_error (arg, scm_integer_from_uint32 (0), scm_integer_from_uint32 (UINT32_MAX)); |
|
#elif SCM_SIZEOF_LONG == 8 |
|
return inum_in_range (arg, 0, UINT32_MAX); |
|
#else |
|
#error bad inum size |
|
#endif |
|
} |
|
|
|
SCM |
|
scm_from_uint32 (uint32_t arg) |
|
{ |
|
#if SCM_SIZEOF_LONG == 4 |
|
return scm_integer_from_uint32 (arg); |
|
#elif SCM_SIZEOF_LONG == 8 |
|
return SCM_I_MAKINUM (arg); |
|
#else |
|
#error bad inum size |
|
#endif |
|
} |
|
|
|
int64_t |
|
scm_to_int64 (SCM arg) |
|
{ |
|
if (SCM_I_INUMP (arg)) |
|
return SCM_I_INUM (arg); |
|
else if (!SCM_BIGP (arg)) |
|
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer"); |
|
int64_t ret; |
|
if (scm_integer_to_int64_z (scm_bignum (arg), &ret)) |
|
return ret; |
|
range_error (arg, scm_integer_from_int64 (INT64_MIN), |
|
scm_integer_from_int64 (INT64_MAX)); |
|
} |
|
|
|
SCM |
|
scm_from_int64 (int64_t arg) |
|
{ |
|
return scm_integer_from_int64 (arg); |
|
} |
|
|
|
uint64_t |
|
scm_to_uint64 (SCM arg) |
|
{ |
|
if (SCM_I_INUMP (arg)) |
|
{ |
|
if (SCM_I_INUM (arg) >= 0) |
|
return SCM_I_INUM (arg); |
|
} |
|
else if (SCM_BIGP (arg)) |
|
{ |
|
uint64_t ret; |
|
if (scm_integer_to_uint64_z (scm_bignum (arg), &ret)) |
|
return ret; |
|
} |
|
else |
|
scm_wrong_type_arg_msg (NULL, 0, arg, "exact integer"); |
|
range_error (arg, scm_integer_from_uint64(0), scm_integer_from_uint64 (UINT64_MAX)); |
|
} |
|
|
|
SCM |
|
scm_from_uint64 (uint64_t arg) |
|
{ |
|
return scm_integer_from_uint64 (arg); |
|
} |
|
|
|
scm_t_wchar |
|
scm_to_wchar (SCM arg) |
|
{ |
|
return inum_in_range (arg, -1, 0x10ffff); |
|
} |
|
|
|
SCM |
|
scm_from_wchar (scm_t_wchar arg) |
|
{ |
|
return SCM_I_MAKINUM (arg); |
|
} |
|
|
|
void |
|
scm_to_mpz (SCM val, mpz_t rop) |
|
{ |
|
if (SCM_I_INUMP (val)) |
|
mpz_set_si (rop, SCM_I_INUM (val)); |
|
else if (SCM_BIGP (val)) |
|
scm_integer_set_mpz_z (scm_bignum (val), rop); |
|
else |
|
scm_wrong_type_arg_msg (NULL, 0, val, "exact integer"); |
|
} |
|
|
|
SCM |
|
scm_from_mpz (mpz_t val) |
|
{ |
|
return scm_integer_from_mpz (val); |
|
} |
|
|
|
int |
|
scm_is_real (SCM val) |
|
{ |
|
return scm_is_true (scm_real_p (val)); |
|
} |
|
|
|
int |
|
scm_is_rational (SCM val) |
|
{ |
|
return scm_is_true (scm_rational_p (val)); |
|
} |
|
|
|
double |
|
scm_to_double (SCM val) |
|
{ |
|
if (SCM_I_INUMP (val)) |
|
return SCM_I_INUM (val); |
|
else if (SCM_BIGP (val)) |
|
return scm_integer_to_double_z (scm_bignum (val)); |
|
else if (SCM_FRACTIONP (val)) |
|
return scm_i_fraction2double (val); |
|
else if (SCM_REALP (val)) |
|
return SCM_REAL_VALUE (val); |
|
else |
|
scm_wrong_type_arg_msg (NULL, 0, val, "real number"); |
|
} |
|
|
|
SCM |
|
scm_from_double (double val) |
|
{ |
|
return scm_i_from_double (val); |
|
} |
|
|
|
int |
|
scm_is_complex (SCM val) |
|
{ |
|
return scm_is_true (scm_complex_p (val)); |
|
} |
|
|
|
double |
|
scm_c_real_part (SCM z) |
|
{ |
|
if (SCM_COMPLEXP (z)) |
|
return SCM_COMPLEX_REAL (z); |
|
else |
|
{ |
|
|
|
|
|
|
|
return scm_to_double (scm_real_part (z)); |
|
} |
|
} |
|
|
|
double |
|
scm_c_imag_part (SCM z) |
|
{ |
|
if (SCM_COMPLEXP (z)) |
|
return SCM_COMPLEX_IMAG (z); |
|
else |
|
{ |
|
|
|
|
|
|
|
|
|
return scm_to_double (scm_imag_part (z)); |
|
} |
|
} |
|
|
|
double |
|
scm_c_magnitude (SCM z) |
|
{ |
|
return scm_to_double (scm_magnitude (z)); |
|
} |
|
|
|
double |
|
scm_c_angle (SCM z) |
|
{ |
|
return scm_to_double (scm_angle (z)); |
|
} |
|
|
|
int |
|
scm_is_number (SCM z) |
|
{ |
|
return scm_is_true (scm_number_p (z)); |
|
} |
|
|
|
|
|
|
|
static SCM |
|
log_of_shifted_double (double x, long shift) |
|
{ |
|
|
|
double ans = log (fabs (x)) + shift * M_LN2; |
|
if (signbit (x) && SCM_LIKELY (!isnan (x))) |
|
return scm_c_make_rectangular (ans, M_PI); |
|
else |
|
return scm_i_from_double (ans); |
|
} |
|
|
|
|
|
static SCM |
|
log_of_exact_integer (SCM n) |
|
{ |
|
if (SCM_I_INUMP (n)) |
|
return log_of_shifted_double (SCM_I_INUM (n), 0); |
|
else if (SCM_BIGP (n)) |
|
{ |
|
long expon; |
|
double signif = scm_integer_frexp_z (scm_bignum (n), &expon); |
|
return log_of_shifted_double (signif, expon); |
|
} |
|
else |
|
abort (); |
|
} |
|
|
|
|
|
static SCM |
|
log_of_fraction (SCM n, SCM d) |
|
{ |
|
long n_size = scm_to_long (scm_integer_length (n)); |
|
long d_size = scm_to_long (scm_integer_length (d)); |
|
|
|
if (labs (n_size - d_size) > 1) |
|
return (scm_difference (log_of_exact_integer (n), |
|
log_of_exact_integer (d))); |
|
else if (scm_is_false (scm_negative_p (n))) |
|
return scm_i_from_double |
|
(log1p (scm_i_divide2double (scm_difference (n, d), d))); |
|
else |
|
return scm_c_make_rectangular |
|
(log1p (scm_i_divide2double (scm_difference (scm_abs (n), d), |
|
d)), |
|
M_PI); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_log, "log", 1, 0, 0, |
|
(SCM z), |
|
"Return the natural logarithm of @var{z}.") |
|
#define FUNC_NAME s_scm_log |
|
{ |
|
if (SCM_COMPLEXP (z)) |
|
{ |
|
#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG \ |
|
&& defined (SCM_COMPLEX_VALUE) |
|
return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z))); |
|
#else |
|
double re = SCM_COMPLEX_REAL (z); |
|
double im = SCM_COMPLEX_IMAG (z); |
|
return scm_c_make_rectangular (log (hypot (re, im)), |
|
atan2 (im, re)); |
|
#endif |
|
} |
|
else if (SCM_REALP (z)) |
|
return log_of_shifted_double (SCM_REAL_VALUE (z), 0); |
|
else if (SCM_I_INUMP (z)) |
|
{ |
|
if (scm_is_eq (z, SCM_INUM0)) |
|
scm_num_overflow (s_scm_log); |
|
return log_of_shifted_double (SCM_I_INUM (z), 0); |
|
} |
|
else if (SCM_BIGP (z)) |
|
return log_of_exact_integer (z); |
|
else if (SCM_FRACTIONP (z)) |
|
return log_of_fraction (SCM_FRACTION_NUMERATOR (z), |
|
SCM_FRACTION_DENOMINATOR (z)); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_log, z, 1, s_scm_log); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_log10, "log10", 1, 0, 0, |
|
(SCM z), |
|
"Return the base 10 logarithm of @var{z}.") |
|
#define FUNC_NAME s_scm_log10 |
|
{ |
|
if (SCM_COMPLEXP (z)) |
|
{ |
|
|
|
|
|
|
|
#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CLOG10 \ |
|
&& defined SCM_COMPLEX_VALUE |
|
return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z))); |
|
#else |
|
double re = SCM_COMPLEX_REAL (z); |
|
double im = SCM_COMPLEX_IMAG (z); |
|
return scm_c_make_rectangular (log10 (hypot (re, im)), |
|
M_LOG10E * atan2 (im, re)); |
|
#endif |
|
} |
|
else if (SCM_REALP (z) || SCM_I_INUMP (z)) |
|
{ |
|
if (scm_is_eq (z, SCM_INUM0)) |
|
scm_num_overflow (s_scm_log10); |
|
{ |
|
double re = scm_to_double (z); |
|
double l = log10 (fabs (re)); |
|
|
|
if (signbit (re) && SCM_LIKELY (!isnan (re))) |
|
return scm_c_make_rectangular (l, M_LOG10E * M_PI); |
|
else |
|
return scm_i_from_double (l); |
|
} |
|
} |
|
else if (SCM_BIGP (z)) |
|
return scm_product (flo_log10e, log_of_exact_integer (z)); |
|
else if (SCM_FRACTIONP (z)) |
|
return scm_product (flo_log10e, |
|
log_of_fraction (SCM_FRACTION_NUMERATOR (z), |
|
SCM_FRACTION_DENOMINATOR (z))); |
|
else |
|
return scm_wta_dispatch_1 (g_scm_log10, z, 1, s_scm_log10); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_PRIMITIVE_GENERIC (scm_exp, "exp", 1, 0, 0, |
|
(SCM z), |
|
"Return @math{e} to the power of @var{z}, where @math{e} is the\n" |
|
"base of natural logarithms (2.71828@dots{}).") |
|
#define FUNC_NAME s_scm_exp |
|
{ |
|
if (SCM_COMPLEXP (z)) |
|
{ |
|
#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_CEXP \ |
|
&& defined (SCM_COMPLEX_VALUE) |
|
return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z))); |
|
#else |
|
return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)), |
|
SCM_COMPLEX_IMAG (z)); |
|
#endif |
|
} |
|
else if (SCM_NUMBERP (z)) |
|
{ |
|
|
|
|
|
return scm_i_from_double (exp (scm_to_double (z))); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_exp, z, 1, s_scm_exp); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
SCM_DEFINE (scm_i_exact_integer_sqrt, "exact-integer-sqrt", 1, 0, 0, |
|
(SCM k), |
|
"Return two exact non-negative integers @var{s} and @var{r}\n" |
|
"such that @math{@var{k} = @var{s}^2 + @var{r}} and\n" |
|
"@math{@var{s}^2 <= @var{k} < (@var{s} + 1)^2}.\n" |
|
"An error is raised if @var{k} is not an exact non-negative integer.\n" |
|
"\n" |
|
"@lisp\n" |
|
"(exact-integer-sqrt 10) @result{} 3 and 1\n" |
|
"@end lisp") |
|
#define FUNC_NAME s_scm_i_exact_integer_sqrt |
|
{ |
|
SCM s, r; |
|
|
|
scm_exact_integer_sqrt (k, &s, &r); |
|
return scm_values_2 (s, r); |
|
} |
|
#undef FUNC_NAME |
|
|
|
void |
|
scm_exact_integer_sqrt (SCM k, SCM *sp, SCM *rp) |
|
{ |
|
if (SCM_I_INUMP (k)) |
|
{ |
|
scm_t_inum kk = SCM_I_INUM (k); |
|
if (kk >= 0) |
|
return scm_integer_exact_sqrt_i (kk, sp, rp); |
|
} |
|
else if (SCM_BIGP (k)) |
|
{ |
|
struct scm_bignum *zk = scm_bignum (k); |
|
if (!scm_is_integer_negative_z (zk)) |
|
return scm_integer_exact_sqrt_z (zk, sp, rp); |
|
} |
|
scm_wrong_type_arg_msg ("exact-integer-sqrt", SCM_ARG1, k, |
|
"exact non-negative integer"); |
|
} |
|
|
|
SCM_PRIMITIVE_GENERIC (scm_sqrt, "sqrt", 1, 0, 0, |
|
(SCM z), |
|
"Return the square root of @var{z}. Of the two possible roots\n" |
|
"(positive and negative), the one with positive real part\n" |
|
"is returned, or if that's zero then a positive imaginary part.\n" |
|
"Thus,\n" |
|
"\n" |
|
"@example\n" |
|
"(sqrt 9.0) @result{} 3.0\n" |
|
"(sqrt -9.0) @result{} 0.0+3.0i\n" |
|
"(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n" |
|
"(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n" |
|
"@end example") |
|
#define FUNC_NAME s_scm_sqrt |
|
{ |
|
if (SCM_I_INUMP (z)) |
|
{ |
|
scm_t_inum i = SCM_I_INUM (z); |
|
if (scm_is_integer_perfect_square_i (i)) |
|
return scm_integer_floor_sqrt_i (i); |
|
double root = scm_integer_inexact_sqrt_i (i); |
|
return (root < 0) |
|
? scm_c_make_rectangular (0.0, -root) |
|
: scm_i_from_double (root); |
|
} |
|
else if (SCM_BIGP (z)) |
|
{ |
|
struct scm_bignum *k = scm_bignum (z); |
|
if (scm_is_integer_perfect_square_z (k)) |
|
return scm_integer_floor_sqrt_z (k); |
|
double root = scm_integer_inexact_sqrt_z (k); |
|
return (root < 0) |
|
? scm_c_make_rectangular (0.0, -root) |
|
: scm_i_from_double (root); |
|
} |
|
else if (SCM_REALP (z)) |
|
{ |
|
double xx = SCM_REAL_VALUE (z); |
|
if (xx < 0) |
|
return scm_c_make_rectangular (0.0, sqrt (-xx)); |
|
else |
|
return scm_i_from_double (sqrt (xx)); |
|
} |
|
else if (SCM_COMPLEXP (z)) |
|
{ |
|
#if defined HAVE_COMPLEX_DOUBLE && defined HAVE_USABLE_CSQRT \ |
|
&& defined SCM_COMPLEX_VALUE |
|
return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (z))); |
|
#else |
|
double re = SCM_COMPLEX_REAL (z); |
|
double im = SCM_COMPLEX_IMAG (z); |
|
return scm_c_make_polar (sqrt (hypot (re, im)), |
|
0.5 * atan2 (im, re)); |
|
#endif |
|
} |
|
else if (SCM_FRACTIONP (z)) |
|
{ |
|
SCM n = SCM_FRACTION_NUMERATOR (z); |
|
SCM d = SCM_FRACTION_DENOMINATOR (z); |
|
SCM nr = scm_sqrt (n); |
|
SCM dr = scm_sqrt (d); |
|
if (scm_is_exact_integer (nr) && scm_is_exact_integer (dr)) |
|
return scm_i_make_ratio_already_reduced (nr, dr); |
|
|
|
double xx = scm_i_divide2double (n, d); |
|
double abs_xx = fabs (xx); |
|
long shift = 0; |
|
|
|
if (abs_xx > DBL_MAX || abs_xx < DBL_MIN) |
|
{ |
|
shift = (scm_to_long (scm_integer_length (n)) |
|
- scm_to_long (scm_integer_length (d))) / 2; |
|
if (shift > 0) |
|
d = lsh (d, scm_from_long (2 * shift), FUNC_NAME); |
|
else |
|
n = lsh (n, scm_from_long (-2 * shift), FUNC_NAME); |
|
xx = scm_i_divide2double (n, d); |
|
} |
|
|
|
if (xx < 0) |
|
return scm_c_make_rectangular (0.0, ldexp (sqrt (-xx), shift)); |
|
else |
|
return scm_i_from_double (ldexp (sqrt (xx), shift)); |
|
} |
|
else |
|
return scm_wta_dispatch_1 (g_scm_sqrt, z, 1, s_scm_sqrt); |
|
} |
|
#undef FUNC_NAME |
|
|
|
|
|
|
|
void |
|
scm_init_numbers () |
|
{ |
|
|
|
|
|
|
|
|
|
scm_c_define ("most-positive-fixnum", |
|
SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM)); |
|
scm_c_define ("most-negative-fixnum", |
|
SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM)); |
|
|
|
scm_add_feature ("complex"); |
|
scm_add_feature ("inexact"); |
|
flo0 = scm_i_from_double (0.0); |
|
flo_log10e = scm_i_from_double (M_LOG10E); |
|
|
|
exactly_one_half = scm_divide (SCM_INUM1, SCM_I_MAKINUM (2)); |
|
|
|
{ |
|
|
|
mpz_init_set_ui (scm_i_divide2double_lo2b, 1); |
|
mpz_mul_2exp (scm_i_divide2double_lo2b, |
|
scm_i_divide2double_lo2b, |
|
DBL_MANT_DIG + 1); |
|
mpz_sub_ui (scm_i_divide2double_lo2b, scm_i_divide2double_lo2b, 1); |
|
} |
|
|
|
{ |
|
|
|
mpz_init_set_ui (dbl_minimum_normal_mantissa, 1); |
|
mpz_mul_2exp (dbl_minimum_normal_mantissa, |
|
dbl_minimum_normal_mantissa, |
|
DBL_MANT_DIG - 1); |
|
} |
|
|
|
#include "numbers.x" |
|
} |
|
|