Datasets:

Modalities:
Image
Text
Size:
< 1K
Libraries:
Datasets
License:
mike dupont commited on
Commit
bcf1a84
·
1 Parent(s): 8455f8d

paper step1

Browse files
#Unimath.txt# ADDED
@@ -0,0 +1,289 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ HLF 2016, Sep. 22, 2016, Heidelberg.
2
+
3
+ UniMath
4
+ by Vladimir Voevodsky
5
+ from the Institute for Advanced Study in Princeton, NJ.
6
+
7
+ Part 1. Univalent foundations
8
+
9
+ 2
10
+
11
+ Univalent Foundations
12
+
13
+ UniMath library
14
+
15
+ Today we face a problem that involves two difficult to satisfy conditions.
16
+ On the one hand we have to find a way for computer assisted verification of
17
+ mathematical proofs.
18
+ This is necessary, first of all, because we have to stop the dissolution of the
19
+ concept of proof in mathematics.
20
+ On the other hand we have to preserve the intimate connection between
21
+ mathematics and the world of human intuition.
22
+ This connection is what moves mathematics forward and what we often
23
+ experience as the beauty of mathematics.
24
+
25
+ 3
26
+
27
+ Univalent Foundations
28
+
29
+ UniMath library
30
+
31
+ The Univalent Foundations (UF) is, a yet imperfect, solution to this problem.
32
+ In their original form, the UF combined three components:
33
+ • the view of mathematics as the study of structures on sets and their higher
34
+ analogs,
35
+ • the idea that the higher analogs of sets are reflected in the set-based
36
+ mathematics as homotopy types,
37
+ • the idea that one can formalize our intuition about structures on these higher
38
+ analogs using the Martin-Lof Type Theory (MLTT) extended with the Law of
39
+ Excluded Middle for propositions (LEM) , the Axiom of Choice for sets (AC),
40
+ the Univalence Axiom (UA) and the Resizing Rules (RR).
41
+
42
+ 4
43
+
44
+ Univalent Foundations
45
+
46
+ UniMath library
47
+
48
+ The main new concepts that were since added to these are the following:
49
+ • the understanding that a lot of mathematics can be formalized in the MLTT
50
+ without the LEM and the AC and that excluding these two axioms one
51
+ obtains foundations for a new form of constructive mathematics,
52
+ • the understanding that classical mathematics appears as a subset of this new
53
+ constructive mathematics,
54
+ • the understanding that the MLTT extended with the UA is an imperfect
55
+ formalization system for this constructive mathematics and that it should be
56
+ possible to integrate the UA into the MLTT obtaining a new type theory
57
+ with better computational properties.
58
+
59
+ 5
60
+
61
+ Univalent Foundations
62
+
63
+ UniMath library
64
+
65
+ What does it mean for a formalization system to be constructive?
66
+ Some expressions in type theory are said to be in normal form. Any
67
+ expression can be automatically and deterministically “normalized”, that is, an
68
+ equivalent expression in normal form can be computed.
69
+ In type theory there are type expressions and element expressions. If “T” is a
70
+ type (expression) and “o” is an element (expression) one writes “o:T” if the
71
+ type of “o” is “T”.
72
+
73
+ 6
74
+
75
+ Univalent Foundations
76
+
77
+ UniMath library
78
+
79
+ In most type systems there is the type of natural numbers. In the UniMath it is
80
+ written as “nat”.
81
+ There is the zero element “O:nat” and the successor function “S” from “nat” to
82
+ “nat” that intuitively corresponds to the function that takes “n” to “1+n”.
83
+ A constructive system satisfies the canonicity property for “nat”, which asserts
84
+ that the normal form of any expression “o:nat” has the form “S(S(….(SO)..))”.
85
+ By counting how many “S” there is in the normal form one obtains an actual
86
+ natural number from any element expression of type “nat”.
87
+
88
+ 7
89
+
90
+ Univalent Foundations
91
+
92
+ UniMath library
93
+
94
+ This is a tremendously strong property.
95
+ Consider the example: a set “X:hSet” is defined to be finite if there exists an
96
+ isomorphism between it and the standard finite set “stn n”. Here “n” is an
97
+ expression of type “nat”. It is well defined and one obtains a function “fincard”
98
+ from finite sets to “nat” called the cardinality - the number of elements of the
99
+ set.
100
+ Now suppose that I have proved, constructively, that “X” is finite. Then
101
+ “(fincard X):nat”
102
+ is defined. By normalizing “fincard X” I obtain an actual natural number.
103
+ If I had a constructive proof of Faltings’s Theorem, stating that the number of
104
+ rational points on a curve of genus >1 is finite, I could find the actual number
105
+ of points on any curve of genus >1.
106
+ 8
107
+
108
+ Univalent Foundations
109
+
110
+ UniMath library
111
+
112
+ We don’t know whether such a proof exists. It is a very interesting and hard
113
+ problem.
114
+ The reason that the MLTT+UA is an imperfect system for constructive
115
+ formalization is that while MLTT itself has the canonicity property MLTT+UA
116
+ does not.
117
+ Therefore, formalizing the proof of Faltings’s Theorem in the UniMath, which is
118
+ based on MLTT+UA, would not immediately give us an algorithm to compute
119
+ the number of rational points on a curve of genus >1.
120
+ This is where a new type theory that integrates the UA into the MLTT in such
121
+ a way as to preserve the canonicity would help.
122
+
123
+ 9
124
+
125
+ Univalent Foundations
126
+
127
+ UniMath library
128
+
129
+ The search for such a type theory became one of the main driving forces in
130
+ the development of the UF.
131
+ Today several groups are working on the construction and implementation in
132
+ a proof assistant of candidate type theories.
133
+ The cubical type theory and the prototype proof assistant cubicaltt created by
134
+ the group of Thierry Coquand with the help of many researchers from
135
+ different parts of the world is at the most advanced stage of development
136
+ today.
137
+ A proof in the UniMath easily translates into a proof in the cubilatt.
138
+
139
+ 10
140
+
141
+ Univalent Foundations
142
+
143
+ UniMath library
144
+
145
+ The new form of the UF that emerges can be seen as combining the following
146
+ components:
147
+ • the view of mathematics as the study of structures on sets and their higher
148
+ analogs,
149
+ • the view of mathematics as constructive with the classical mathematics being
150
+ a subset consisting of the results that require LEM and/or AC among their
151
+ assumptions,
152
+ • the idea that the higher analogs of sets are reflected in the set-based
153
+ mathematics as constructive homotopy types - objects of the new
154
+ constructive homotopy theory that can so far be formulated only in terms of
155
+ cubical sets,
156
+ • the idea that one can formalize our intuition about structures on these higher
157
+ analogs using Cubical Type Theory (CTT).
158
+ 11
159
+
160
+ Univalent Foundations
161
+
162
+ UniMath library
163
+
164
+ In addition to the understanding that to obtain a formal system for the new
165
+ constructive mathematics the UA needs to be integrated into the MLTT
166
+ constructively, several more things are felt as lacking in the MLTT+UA:
167
+ • higher inductive types,
168
+ • resizing rules,
169
+ • a possible strict extensional equality combined with the “fibrancy discipline”,
170
+ • as yet unknown mechanism to construct the types of structures that involve
171
+ infinite hierarchies of coherence conditions.
172
+ Surprisingly, it might be easier to add these features to the CTT than to the
173
+ MLTT. The work in these directions is ongoing.
174
+
175
+ 12
176
+
177
+ Part 2. The UniMath library
178
+
179
+ 13
180
+
181
+ Univalent Foundations
182
+
183
+ UniMath library
184
+
185
+ In the development of the UniMath library we attempt to do something that
186
+ might be compared with the effort by the Bourbaki group to write a
187
+ systematic exposition of mathematics based on the set theory and the view of
188
+ mathematics as studying structures on sets.
189
+ The effort by Bourbaki stalled at some point around the middle of the 20th
190
+ century, in part, because it was very complicated to describe the emerging
191
+ category-theoretic constructions in set-theoretic terms.
192
+
193
+ 14
194
+
195
+ Univalent Foundations
196
+
197
+ UniMath library
198
+
199
+ One may however ask, is there any mathematical innovation in what we are
200
+ doing? Is there a discovery of the unknown in the work on the UniMath?
201
+ We have already seen how well-known problems in fields such as arithmetic
202
+ algebraic geometry can be related to the search for a new foundation of
203
+ constructive mathematics and for building proofs in the UniMath.
204
+ Here is a different example.
205
+
206
+ 15
207
+
208
+ Univalent Foundations
209
+
210
+ UniMath library
211
+
212
+ Some years ago, at the IAS, I had a conversation at lunch with Armand Borel. I
213
+ mentioned how I like Bourbaki “Algebra” and how it helped me to become a
214
+ mathematician.
215
+ I then mentioned that some places there were really dense. For example, said I,
216
+ the description of the tensor product was hard to follow.
217
+ Of course, said Borel, we have invented tensor product to get a systematic
218
+ exposition of multi-linear maps.
219
+ It was new research, this is why it was not very smoothly written.
220
+
221
+ 16
222
+
223
+ Univalent Foundations
224
+
225
+ UniMath library
226
+
227
+ I was amazed.
228
+ It is hard to imagine today’s mathematics without the concept of the tensor
229
+ product. It would never occurred to me that it was invented by Bourbaki with
230
+ the only purpose to obtain a more systematic exposition of multi-linear maps
231
+ of vector spaces!
232
+ This example shows how a major innovation can emerge from the work on
233
+ systematization of knowledge.
234
+
235
+ 17
236
+
237
+ Univalent Foundations
238
+
239
+ UniMath library
240
+
241
+ Finally, a few words to those mathematicians who will decide to understand
242
+ UniMath and maybe to contribute to it.
243
+ The UniMath library is being created using the proof assistant Coq. It is freely
244
+ available on GitHub.
245
+ The language of Coq is a very substantial extension of the MLTT and UniMath
246
+ uses a very small subset of the full Coq language that approximately
247
+ corresponds to the original MLTT.
248
+
249
+ 18
250
+
251
+ Univalent Foundations
252
+
253
+ UniMath library
254
+
255
+ The first file in the UniMath after the Basics/preamble.v is Basics/PartA.v.
256
+ The first line in Basics/PartA.v after the preamble section is as follows:
257
+
258
+ It should be understood as a declaration of intent to define a constant called
259
+ fromempty whose type is described by the expression that is written to the
260
+ right of the colon.
261
+ Following this line there is a paragraph that starts with Proof. and ends with
262
+ Defined. where the constant is actually defined using the little sub-programs of
263
+ Coq called tactics which help to build complex expressions of the underlying
264
+ type theory language in simple steps.
265
+
266
+ 19
267
+
268
+ Univalent Foundations
269
+
270
+ UniMath library
271
+
272
+ A mathematician who wants to understand UniMath should expect a very
273
+ non-linear learning curve:
274
+ • In the lectures that I gave in Oxford and in the similar lectures in the Hebrew
275
+ University it took me the whole first lecture to explain what that first line
276
+ and the following it paragraph really mean.
277
+ • In the next lecture I was able to explain the next few hundred lines of PartA.
278
+ • By the fourth lecture in Oxford, the video of which can be found on my
279
+ website, I was explaining the invariant formalization of fibration sequences.
280
+
281
+ 20
282
+
283
+ I hope that was able to show how important Univalent Foundations are and
284
+ how important is the work on libraries such as UniMath.
285
+ Thank you!
286
+
287
+ 21
288
+
289
+
Unimath-10_1.png ADDED
Unimath-10_2.png ADDED
Unimath-11_1.png ADDED
Unimath-11_2.png ADDED
Unimath-12_1.png ADDED
Unimath-12_2.png ADDED
Unimath-14_1.png ADDED
Unimath-14_2.png ADDED
Unimath-15_1.png ADDED
Unimath-15_2.png ADDED
Unimath-16_1.png ADDED
Unimath-16_2.png ADDED
Unimath-17_1.png ADDED
Unimath-17_2.png ADDED
Unimath-18_1.png ADDED
Unimath-18_2.png ADDED
Unimath-19_1.png ADDED
Unimath-19_2.png ADDED
Unimath-19_3.png ADDED
Unimath-20_1.png ADDED
Unimath-20_2.png ADDED
Unimath-3_1.png ADDED
Unimath-3_2.png ADDED
Unimath-4_1.png ADDED
Unimath-4_2.png ADDED
Unimath-5_1.png ADDED
Unimath-5_2.png ADDED
Unimath-6_1.png ADDED
Unimath-6_2.png ADDED
Unimath-7_1.png ADDED
Unimath-7_2.png ADDED
Unimath-8_1.png ADDED
Unimath-8_2.png ADDED
Unimath-9_1.png ADDED
Unimath-9_2.png ADDED
Unimath.html ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html>
3
+ <head>
4
+ <title>2016_09_22_HLF_Heidelberg.key</title>
5
+ <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
6
+ <meta name="generator" content="pdftohtml 0.36"/>
7
+ <meta name="date" content="2024-02-05T05:31:35+00:00"/>
8
+ </head>
9
+ <frameset cols="100,*">
10
+ <frame name="links" src="Unimath_ind.html"/>
11
+ <frame name="contents" src="Unimaths.html"/>
12
+ </frameset>
13
+ </html>
Unimath.org CHANGED
@@ -1,311 +1,240 @@
1
- <<1>>HLF 2016, Sep. 22, 2016, Heidelberg.\\
2
- UniMath\\
3
- by Vladimir Voevodsky \\
4
- from the Institute for Advanced Study in Princeton, NJ. \\
5
 
6
  --------------
7
 
8
- <<2>>Part 1. Univalent foundations\\
9
- 2\\
10
 
11
  --------------
12
 
13
- <<3>>[[file:Unimath-3_1.png]]\\
14
- [[file:Unimath-3_2.png]]\\
15
- Univalent Foundations\\
16
- UniMath library\\
17
- Today we face a problem that involves two difficult to satisfy conditions. \\
18
- On the one hand we have to find a way for computer assisted verification of \\
19
- mathematical proofs.\\
20
- This is necessary, first of all, because we have to stop the dissolution of the \\
21
- concept of proof in mathematics.\\
22
- On the other hand we have to preserve the intimate connection between \\
23
- mathematics and the world of human intuition.\\
24
- This connection is what moves mathematics forward and what we often \\
25
- experience as the beauty of mathematics. \\
26
- 3\\
27
 
28
- --------------
29
-
30
- <<4>>[[file:Unimath-4_1.png]]\\
31
- [[file:Unimath-4_2.png]]\\
32
- Univalent Foundations\\
33
- UniMath library\\
34
- The Univalent Foundations (UF) is, a yet imperfect, solution to this problem.\\
35
- In their original form, the UF combined three components:\\
36
- the view of mathematics as the study of structures on sets and their higher \\
37
- analogs, \\
38
- the idea that the higher analogs of sets are reflected in the set-based \\
39
- mathematics as homotopy types, \\
40
- • the idea that one can formalize our intuition about structures on these higher \\
41
- analogs using the Martin-Lof Type Theory (MLTT) extended with the Law of \\
42
- Excluded Middle for propositions (LEM) , the Axiom of Choice for sets (AC), \\
43
- the Univalence Axiom (UA) and the Resizing Rules (RR).\\
44
- 4\\
45
-
46
- --------------
47
-
48
- <<5>>[[file:Unimath-5_1.png]]\\
49
- [[file:Unimath-5_2.png]]\\
50
- Univalent Foundations\\
51
- UniMath library\\
52
- The main new concepts that were since added to these are the following: \\
53
- the understanding that a lot of mathematics can be formalized in the MLTT \\
54
- without the LEM and the AC and that excluding these two axioms one \\
55
- obtains foundations for a /new form of constructive mathematics/,\\
56
- • the understanding that classical mathematics appears as a subset of this new \\
57
- constructive mathematics,\\
58
- • the understanding that the MLTT extended with the UA is an imperfect \\
59
- formalization system for this constructive mathematics and that it should be \\
60
- possible to integrate the UA into the MLTT obtaining a new type theory \\
61
- with better computational properties.\\
62
- 5\\
63
-
64
- --------------
65
-
66
- <<6>>[[file:Unimath-6_1.png]]\\
67
- [[file:Unimath-6_2.png]]\\
68
- Univalent Foundations\\
69
- UniMath library\\
70
- What does it mean for a formalization system to be constructive?\\
71
- Some expressions in type theory are said to be in normal form. Any \\
72
- expression can be automatically and deterministically “normalized”, that is, an \\
73
- equivalent expression in normal form can be computed. \\
74
- In type theory there are type expressions and element expressions. If “T” is a \\
75
- type (expression) and “o” is an element (expression) one writes “o:T” if the \\
76
- type of “o” is “T”. \\
77
- 6\\
78
-
79
- --------------
80
-
81
- <<7>>[[file:Unimath-7_1.png]]\\
82
- [[file:Unimath-7_2.png]]\\
83
- Univalent Foundations\\
84
- UniMath library\\
85
- In most type systems there is the type of natural numbers. In the UniMath it is \\
86
- written as “nat”.\\
87
- There is the zero element “O:nat” and the successor function “S” from “nat” to \\
88
- “nat” that intuitively corresponds to the function that takes “n” to “1+n”. \\
89
- A constructive system satisfies the /canonicity property/ for “nat”, which asserts \\
90
- that the normal form of any expression “o:nat” has the form “S(S(....(SO)..))”.\\
91
- By counting how many “S” there is in the normal form one obtains an actual \\
92
- natural number from any element expression of type “nat”. \\
93
- 7\\
94
 
95
  --------------
96
 
97
- <<8>>[[file:Unimath-8_1.png]]\\
98
- [[file:Unimath-8_2.png]]\\
99
- Univalent Foundations\\
100
- UniMath library\\
101
- This is a tremendously strong property. \\
102
- Consider the example: a set “X:hSet” is defined to be finite if there exists an \\
103
- isomorphism between it and the standard finite setstn n”. Here “n” is an \\
104
- expression of typenat”. It is well defined and one obtains a function “fincard” \\
105
- from finite sets to “nat” called the cardinality - the number of elements of the \\
106
- set.\\
107
- Now suppose that I have proved, constructively, that “X” is finite. Then \\
108
- “(fincard X):nat” \\
109
- is defined. By normalizing “fincard X” I obtain an actual natural number.\\
110
- If I had a constructive proof of /Faltings's Theorem, /stating that the number of \\
111
- rational points on a curve of genus >1 is finite, I could find the actual number \\
112
- of points on any curve of genus >1. \\
113
- 8\\
114
 
115
  --------------
116
 
117
- <<9>>[[file:Unimath-9_1.png]]\\
118
- [[file:Unimath-9_2.png]]\\
119
- Univalent Foundations\\
120
- UniMath library\\
121
- We don't know whether such a proof exists. It is a very interesting and hard \\
122
- problem. \\
123
- The reason that the MLTT+UA is an imperfect system for constructive \\
124
- formalization is that while MLTT itself has the canonicity property MLTT+UA \\
125
- does not.\\
126
- Therefore, formalizing the proof of Faltings's Theorem in the UniMath, which is \\
127
- based on MLTT+UA, would not immediately give us an algorithm to compute \\
128
- the number of rational points on a curve of genus >1.\\
129
- This is where a new type theory that integrates the UA into the MLTT in such \\
130
- a way as to preserve the canonicity would help. \\
131
- 9\\
132
 
133
  --------------
134
 
135
- <<10>>[[file:Unimath-10_1.png]]\\
136
- [[file:Unimath-10_2.png]]\\
137
- Univalent Foundations\\
138
- UniMath library\\
139
- The search for such a type theory became one of the main driving forces in \\
140
- the development of the UF.\\
141
- Today several groups are working on the construction and implementation in \\
142
- a proof assistant of candidate type theories. \\
143
- The /cubical type theory/ and the prototype proof assistant /cubicaltt/ created by \\
144
- the group of Thierry Coquand with the help of many researchers from \\
145
- different parts of the world is at the most advanced stage of development \\
146
- today. \\
147
- A proof in the UniMath easily translates into a proof in the cubilatt.\\
148
- 10\\
149
 
150
  --------------
151
 
152
- <<11>>[[file:Unimath-11_1.png]]\\
153
- [[file:Unimath-11_2.png]]\\
154
- Univalent Foundations\\
155
- UniMath library\\
156
- The new form of the UF that emerges can be seen as combining the following \\
157
- components:\\
158
- the view of mathematics as the study of structures on sets and their higher \\
159
- analogs, \\
160
- the view of mathematics as constructive with the classical mathematics being \\
161
- a subset consisting of the results that require LEM and/or AC among their \\
162
- assumptions,\\
163
- • the idea that the higher analogs of sets are reflected in the set-based \\
164
- mathematics as constructive homotopy types - objects of the new \\
165
- constructive homotopy theory that can so far be formulated only in terms of \\
166
- cubical sets,\\
167
- • the idea that one can formalize our intuition about structures on these higher \\
168
- analogs using Cubical Type Theory (CTT).\\
169
- 11\\
170
 
171
  --------------
172
 
173
- <<12>>[[file:Unimath-12_1.png]]\\
174
- [[file:Unimath-12_2.png]]\\
175
- Univalent Foundations\\
176
- UniMath library\\
177
- In addition to the understanding that to obtain a formal system for the new \\
178
- constructive mathematics the UA needs to be integrated into the MLTT \\
179
- constructively, several more things are felt as lacking in the MLTT+UA:\\
180
- higher inductive types, \\
181
- resizing rules,\\
182
- • a possible strict extensional equality combined with the “fibrancy discipline”,\\
183
- • as yet unknown mechanism to construct the types of structures that involve \\
184
- infinite hierarchies of coherence conditions. \\
185
- Surprisingly, it might be easier to add these features to the CTT than to the \\
186
- MLTT. The work in these directions is ongoing. \\
187
- 12\\
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188
 
189
  --------------
190
 
191
- <<13>>Part 2. The UniMath library\\
192
- 13\\
193
 
194
  --------------
195
 
196
- <<14>>[[file:Unimath-14_1.png]]\\
197
- [[file:Unimath-14_2.png]]\\
198
- Univalent Foundations\\
199
- UniMath library\\
200
- In the development of the UniMath library we attempt to do something that \\
201
- might be compared with the effort by the Bourbaki group to write a \\
202
- systematic exposition of mathematics based on the set theory and the view of \\
203
- mathematics as studying structures on sets.\\
204
- The effort by Bourbaki stalled at some point around the middle of the 20th \\
205
- century, in part, because it was very complicated to describe the emerging \\
206
- category-theoretic constructions in set-theoretic terms.\\
207
- 14\\
208
 
209
  --------------
210
 
211
- <<15>>[[file:Unimath-15_1.png]]\\
212
- [[file:Unimath-15_2.png]]\\
213
- Univalent Foundations\\
214
- UniMath library\\
215
- One may however ask, is there any mathematical innovation in what we are \\
216
- doing? Is there a discovery of the unknown in the work on the UniMath?\\
217
- We have already seen how well-known problems in fields such as arithmetic \\
218
- algebraic geometry can be related to the search for a new foundation of \\
219
- constructive mathematics and for building proofs in the UniMath.\\
220
- Here is a different example.\\
221
- 15\\
222
 
223
  --------------
224
 
225
- <<16>>[[file:Unimath-16_1.png]]\\
226
- [[file:Unimath-16_2.png]]\\
227
- Univalent Foundations\\
228
- UniMath library\\
229
- Some years ago, at the IAS, I had a conversation at lunch with Armand Borel. I \\
230
- mentioned how I like Bourbaki “Algebra” and how it helped me to become a \\
231
- mathematician. \\
232
- I then mentioned that some places there were really dense. For example, said I, \\
233
- the description of the tensor product was hard to follow. \\
234
- Of course, said Borel, /we have invented tensor product to get a systematic \\
235
- exposition of multi-linear maps/. \\
236
- It was new research, this is why it was not very smoothly written. \\
237
- 16\\
238
 
239
  --------------
240
 
241
- <<17>>[[file:Unimath-17_1.png]]\\
242
- [[file:Unimath-17_2.png]]\\
243
- Univalent Foundations\\
244
- UniMath library\\
245
- I was amazed.\\
246
- It is hard to imagine today's mathematics without the concept of the tensor \\
247
- product. It would never occurred to me that it was invented by Bourbaki with \\
248
- the only purpose to obtain a more systematic exposition of multi-linear maps \\
249
- of vector spaces!\\
250
- This example shows how a major innovation can emerge from the work on \\
251
- systematization of knowledge. \\
252
- 17\\
253
 
254
  --------------
255
 
256
- <<18>>[[file:Unimath-18_1.png]]\\
257
- [[file:Unimath-18_2.png]]\\
258
- Univalent Foundations\\
259
- UniMath library\\
260
- Finally, a few words to those mathematicians who will decide to understand \\
261
- UniMath and maybe to contribute to it. \\
262
- The UniMath library is being created using the proof assistant Coq. It is freely \\
263
- available on GitHub.\\
264
- The language of Coq is a very substantial extension of the MLTT and UniMath \\
265
- uses a very small subset of the full Coq language that approximately \\
266
- corresponds to the original MLTT.\\
267
- 18\\
268
 
269
  --------------
270
 
271
- <<19>>[[file:Unimath-19_1.png]]\\
272
- [[file:Unimath-19_2.png]]\\
273
- [[file:Unimath-19_3.png]]\\
274
- Univalent Foundations\\
275
- UniMath library\\
276
- The first file in the UniMath after the /Basics/preamble.v/ is /Basics/PartA/.v.\\
277
- The first line in /Basics/PartA.v/ after the preamble section is as follows:\\
278
- \\
279
- It should be understood as a declaration of intent to define a constant called \\
280
- /fromempty /whose type is described by the expression that is written to the \\
281
- right of the colon. \\
282
- Following this line there is a paragraph that starts with /Proof./ and ends with \\
283
- /Defined. /where the constant is actually defined using the little sub-programs of \\
284
- Coq called tactics which help to build complex expressions of the underlying \\
285
- type theory language in simple steps. \\
286
- 19\\
287
 
288
  --------------
289
 
290
- <<20>>[[file:Unimath-20_1.png]]\\
291
- [[file:Unimath-20_2.png]]\\
292
- Univalent Foundations\\
293
- UniMath library\\
294
- A mathematician who wants to understand UniMath should expect a very \\
295
- non-linear learning curve:\\
296
- In the lectures that I gave in Oxford and in the similar lectures in the Hebrew \\
297
- University it took me the whole first lecture to explain what that first line \\
298
- and the following it paragraph really mean.\\
299
- In the next lecture I was able to explain the next few hundred lines of PartA.\\
300
- • By the fourth lecture in Oxford, the video of which can be found on my \\
301
- website, I was explaining the invariant formalization of fibration sequences.\\
302
- 20\\
303
 
304
  --------------
305
 
306
- <<21>>I hope that was able to show how important Univalent Foundations are and \\
307
- how important is the work on libraries such as UniMath.\\
308
- Thank you!\\
309
- 21\\
310
 
311
  --------------
 
1
+ <<1>>HLF 2016, Sep. 22, 2016, Heidelberg. UniMath by Vladimir
2
+ Voevodsky from the Institute for Advanced Study in Princeton, NJ.
 
 
3
 
4
  --------------
5
 
6
+ <<2>>Part 1. Univalent foundations 2
 
7
 
8
  --------------
9
 
10
+ <<3>>[[file:Unimath-3_1.png]] [[file:Unimath-3_2.png]] Univalent Foundations
11
+ UniMath library Today we face a problem that involves two difficult to
12
+ satisfy conditions. On the one hand we have to find a way for computer
13
+ assisted verification of mathematical proofs. This is necessary, first
14
+ of all, because we have to stop the dissolution of the concept of
15
+ proof in mathematics.
16
+ #+begin_src interesting
17
+ On the other hand we have to preserve the intimate connection between
18
+ mathematics and the world of human intuition. This connection is what
19
+ moves mathematics forward and what we often experience as the beauty
20
+ of mathematics.
21
+ #+end_src
22
+ 3
 
23
 
24
+ --------------
25
+
26
+ <<4>>[[file:Unimath-4_1.png]] [[file:Unimath-4_2.png]] Univalent Foundations
27
+ UniMath library The Univalent Foundations (UF) is, a yet imperfect,
28
+ solution to this problem. In their original form, the UF combined
29
+ three components: • the view of mathematics as the study of structures
30
+ on sets and their higher analogs, the idea that the higher analogs
31
+ of sets are reflected in the set-based mathematics as homotopy types, •
32
+ the idea that one can formalize our intuition about structures on
33
+ these higher analogs using the Martin-Lof Type Theory (MLTT) extended
34
+ with the Law of Excluded Middle for propositions (LEM) , the Axiom of
35
+ Choice for sets (AC), the Univalence Axiom (UA) and the Resizing Rules
36
+ (RR). 4
37
+
38
+ --------------
39
+
40
+ <<5>>[[file:Unimath-5_1.png]] [[file:Unimath-5_2.png]] Univalent Foundations
41
+ UniMath library The main new concepts that were since added to these
42
+ are the following: • the understanding that a lot of mathematics can
43
+ be formalized in the MLTT without the LEM and the AC and that
44
+ excluding these two axioms one obtains foundations for a /new form of
45
+ constructive mathematics/, • the understanding that classical
46
+ mathematics appears as a subset of this new constructive mathematics,
47
+ the understanding that the MLTT extended with the UA is an imperfect
48
+ formalization system for this constructive mathematics and that it
49
+ should be possible to integrate the UA into the MLTT obtaining a new
50
+ type theory with better computational properties. 5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  --------------
53
 
54
+ <<6>>[[file:Unimath-6_1.png]] [[file:Unimath-6_2.png]] Univalent Foundations
55
+ UniMath library What does it mean for a formalization system to be
56
+ constructive? Some expressions in type theory are said to be in
57
+ normal form. Any expression can be automatically and deterministically
58
+ “normalized”, that is, an equivalent expression in normal form can be
59
+ computed. In type theory there are type expressions and element
60
+ expressions. If “T” is a type (expression) ando” is an element
61
+ (expression) one writeso:T” if the type of “o” is “T”. 6
 
 
 
 
 
 
 
 
 
62
 
63
  --------------
64
 
65
+ <<7>>[[file:Unimath-7_1.png]] [[file:Unimath-7_2.png]] Univalent Foundations
66
+ UniMath library In most type systems there is the type of natural
67
+ numbers. In the UniMath it is written as “nat”. There is the zero
68
+ element “O:nat” and the successor function “S” from “nat” to “nat”
69
+ that intuitively corresponds to the function that takes “n” to “1+n”.
70
+ A constructive system satisfies the /canonicity property/ for “nat”,
71
+ which asserts that the normal form of any expression “o:nat” has the
72
+ form “S(S(....(SO)..))”. By counting how many “S” there is in the
73
+ normal form one obtains an actual natural number from any element
74
+ expression of type “nat”. 7
 
 
 
 
 
75
 
76
  --------------
77
 
78
+ <<8>>[[file:Unimath-8_1.png]] [[file:Unimath-8_2.png]] Univalent Foundations
79
+ UniMath library This is a tremendously strong property. Consider the
80
+ example: a set “X:hSet” is defined to be finite if there exists an
81
+ isomorphism between it and the standard finite set “stn n”. Here “n” is
82
+ an expression of type “nat”. It is well defined and one obtains a
83
+ function “fincard” from finite sets to “nat” called the cardinality -
84
+ the number of elements of the set. Now suppose that I have proved,
85
+ constructively, that “X” is finite. Then “(fincard X):nat” is defined. By
86
+ normalizing “fincard X” I obtain an actual natural number. If I had a
87
+ constructive proof of /Faltings's Theorem, /stating that the number of
88
+ rational points on a curve of genus >1 is finite, I could find the
89
+ actual number of points on any curve of genus >1. 8
 
 
90
 
91
  --------------
92
 
93
+ <<9>>[[file:Unimath-9_1.png]] [[file:Unimath-9_2.png]] Univalent Foundations
94
+ UniMath library We don't know whether such a proof exists. It is a
95
+ very interesting and hard problem. The reason that the MLTT+UA is an
96
+ imperfect system for constructive formalization is that while MLTT
97
+ itself has the canonicity property MLTT+UA does not. Therefore,
98
+ formalizing the proof of Faltings's Theorem in the UniMath, which is
99
+ based on MLTT+UA, would not immediately give us an algorithm to
100
+ compute the number of rational points on a curve of genus >1. This is
101
+ where a new type theory that integrates the UA into the MLTT in such a
102
+ way as to preserve the canonicity would help. 9
 
 
 
 
 
 
 
 
103
 
104
  --------------
105
 
106
+ <<10>>[[file:Unimath-10_1.png]] [[file:Unimath-10_2.png]] Univalent
107
+ Foundations UniMath library The search for such a type theory became
108
+ one of the main driving forces in the development of the UF. Today
109
+ several groups are working on the construction and implementation in a
110
+ proof assistant of candidate type theories. The /cubical type theory/
111
+ and the prototype proof assistant /cubicaltt/ created by the group of
112
+ Thierry Coquand with the help of many researchers from different parts
113
+ of the world is at the most advanced stage of development today. A
114
+ proof in the UniMath easily translates into a proof in the cubilatt.
115
+ 10
116
+
117
+ --------------
118
+
119
+ <<11>>[[file:Unimath-11_1.png]] [[file:Unimath-11_2.png]] Univalent
120
+ Foundations UniMath library The new form of the UF that emerges can be
121
+ seen as combining the following components: • the view of mathematics
122
+ as the study of structures on sets and their higher analogs, • the
123
+ view of mathematics as constructive with the classical mathematics
124
+ being a subset consisting of the results that require LEM and/or AC
125
+ among their assumptions, • the idea that the higher analogs of sets
126
+ are reflected in the set-based mathematics as constructive homotopy
127
+ types - objects of the new constructive homotopy theory that can so
128
+ far be formulated only in terms of cubical sets, • the idea that one
129
+ can formalize our intuition about structures on these higher analogs
130
+ using Cubical Type Theory (CTT). 11
131
+
132
+ --------------
133
+
134
+ <<12>>[[file:Unimath-12_1.png]] [[file:Unimath-12_2.png]] Univalent
135
+ Foundations UniMath library In addition to the understanding that to
136
+ obtain a formal system for the new constructive mathematics the UA
137
+ needs to be integrated into the MLTT constructively, several more
138
+ things are felt as lacking in the MLTT+UA: • higher inductive types, •
139
+ resizing rules, • a possible strict extensional equality combined with
140
+ the “fibrancy discipline”, • as yet unknown mechanism to construct the
141
+ types of structures that involve infinite hierarchies of coherence
142
+ conditions. Surprisingly, it might be easier to add these features to
143
+ the CTT than to the MLTT. The work in these directions is ongoing. 12
144
 
145
  --------------
146
 
147
+ <<13>>Part 2. The UniMath library 13
 
148
 
149
  --------------
150
 
151
+ <<14>>[[file:Unimath-14_1.png]] [[file:Unimath-14_2.png]] Univalent
152
+ Foundations UniMath library In the development of the UniMath library
153
+ we attempt to do something that might be compared with the effort by
154
+ the Bourbaki group to write a systematic exposition of mathematics
155
+ based on the set theory and the view of mathematics as studying
156
+ structures on sets. The effort by Bourbaki stalled at some point
157
+ around the middle of the 20th century, in part, because it was very
158
+ complicated to describe the emerging category-theoretic constructions
159
+ in set-theoretic terms. 14
 
 
 
160
 
161
  --------------
162
 
163
+ <<15>>[[file:Unimath-15_1.png]] [[file:Unimath-15_2.png]] Univalent
164
+ Foundations UniMath library One may however ask, is there any
165
+ mathematical innovation in what we are doing? Is there a discovery of
166
+ the unknown in the work on the UniMath? We have already seen how
167
+ well-known problems in fields such as arithmetic algebraic geometry can
168
+ be related to the search for a new foundation of constructive
169
+ mathematics and for building proofs in the UniMath. Here is a
170
+ different example. 15
 
 
 
171
 
172
  --------------
173
 
174
+ <<16>>[[file:Unimath-16_1.png]] [[file:Unimath-16_2.png]] Univalent
175
+ Foundations UniMath library Some years ago, at the IAS, I had a
176
+ conversation at lunch with Armand Borel. I mentioned how I like
177
+ Bourbaki “Algebra” and how it helped me to become a mathematician. I
178
+ then mentioned that some places there were really dense. For example,
179
+ said I, the description of the tensor product was hard to follow. Of
180
+ course, said Borel, /we have invented tensor product to get a
181
+ systematic exposition of multi-linear maps/. It was new research,
182
+ this is why it was not very smoothly written. 16
 
 
 
 
183
 
184
  --------------
185
 
186
+ <<17>>[[file:Unimath-17_1.png]] [[file:Unimath-17_2.png]] Univalent
187
+ Foundations UniMath library I was amazed. It is hard to imagine
188
+ today's mathematics without the concept of the tensor product. It
189
+ would never occurred to me that it was invented by Bourbaki with the
190
+ only purpose to obtain a more systematic exposition of multi-linear
191
+ maps of vector spaces! This example shows how a major innovation can
192
+ emerge from the work on systematization of knowledge. 17
 
 
 
 
 
193
 
194
  --------------
195
 
196
+ <<18>>[[file:Unimath-18_1.png]] [[file:Unimath-18_2.png]] Univalent
197
+ Foundations UniMath library Finally, a few words to those
198
+ mathematicians who will decide to understand UniMath and maybe to
199
+ contribute to it. The UniMath library is being created using the
200
+ proof assistant Coq. It is freely available on GitHub. The language
201
+ of Coq is a very substantial extension of the MLTT and UniMath uses a
202
+ very small subset of the full Coq language that approximately
203
+ corresponds to the original MLTT. 18
 
 
 
 
204
 
205
  --------------
206
 
207
+ <<19>>[[file:Unimath-19_1.png]] [[file:Unimath-19_2.png]]
208
+ [[file:Unimath-19_3.png]] Univalent Foundations UniMath library The
209
+ first file in the UniMath after the /Basics/preamble.v/ is
210
+ /Basics/PartA/.v. The first line in /Basics/PartA.v/ after the
211
+ preamble section is as follows:
212
+
213
+ It should be understood as a declaration of intent to define a constant
214
+ called /fromempty /whose type is described by the expression that is
215
+ written to the right of the colon. Following this line there is a
216
+ paragraph that starts with /Proof./ and ends with /Defined. /where the
217
+ constant is actually defined using the little sub-programs of Coq
218
+ called tactics which help to build complex expressions of the
219
+ underlying type theory language in simple steps. 19
 
 
 
220
 
221
  --------------
222
 
223
+ <<20>>[[file:Unimath-20_1.png]] [[file:Unimath-20_2.png]] Univalent
224
+ Foundations UniMath library A mathematician who wants to understand
225
+ UniMath should expect a very non-linear learning curve: • In the
226
+ lectures that I gave in Oxford and in the similar lectures in the
227
+ Hebrew University it took me the whole first lecture to explain what
228
+ that first line and the following it paragraph really mean. • In the
229
+ next lecture I was able to explain the next few hundred lines of
230
+ PartA. • By the fourth lecture in Oxford, the video of which can be
231
+ found on my website, I was explaining the invariant formalization of
232
+ fibration sequences. 20
 
 
 
233
 
234
  --------------
235
 
236
+ <<21>>I hope that was able to show how important Univalent Foundations
237
+ are and how important is the work on libraries such as UniMath. Thank
238
+ you! 21
 
239
 
240
  --------------
Unimath.org~ ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <<1>>HLF 2016, Sep. 22, 2016, Heidelberg.\\
2
+ UniMath\\
3
+ by Vladimir Voevodsky  \\
4
+ from the Institute for Advanced Study in Princeton, NJ. \\
5
+
6
+ --------------
7
+
8
+ <<2>>Part 1. Univalent foundations\\
9
+ 2\\
10
+
11
+ --------------
12
+
13
+ <<3>>[[file:Unimath-3_1.png]]\\
14
+ [[file:Unimath-3_2.png]]\\
15
+ Univalent Foundations\\
16
+ UniMath library\\
17
+ Today we face a problem that involves two difficult to satisfy conditions. \\
18
+ On the one hand we have to find a way for computer assisted verification of \\
19
+ mathematical proofs.\\
20
+ This is necessary, first of all, because we have to stop the dissolution of the \\
21
+ concept of proof in mathematics.\\
22
+ On the other hand  we have to preserve the intimate connection between \\
23
+ mathematics and the world of human intuition.\\
24
+ This connection is what moves mathematics forward and what we often \\
25
+ experience as the beauty of mathematics. \\
26
+ 3\\
27
+
28
+ --------------
29
+
30
+ <<4>>[[file:Unimath-4_1.png]]\\
31
+ [[file:Unimath-4_2.png]]\\
32
+ Univalent Foundations\\
33
+ UniMath library\\
34
+ The Univalent Foundations (UF) is, a yet imperfect, solution to this problem.\\
35
+ In their original form,  the UF combined three components:\\
36
+ • the view of mathematics as the study of structures on sets and their higher \\
37
+ analogs, \\
38
+ • the idea that the higher analogs of sets are reflected in the set-based \\
39
+ mathematics as homotopy types, \\
40
+ • the idea that one can formalize our intuition about structures on these higher \\
41
+ analogs using the Martin-Lof  Type Theory (MLTT) extended with the Law of \\
42
+ Excluded Middle for propositions (LEM) , the Axiom of Choice for sets (AC), \\
43
+ the Univalence Axiom (UA) and the Resizing Rules (RR).\\
44
+ 4\\
45
+
46
+ --------------
47
+
48
+ <<5>>[[file:Unimath-5_1.png]]\\
49
+ [[file:Unimath-5_2.png]]\\
50
+ Univalent Foundations\\
51
+ UniMath library\\
52
+ The main new concepts that were since added to these are the following: \\
53
+ • the understanding that a lot of mathematics can be formalized in the MLTT \\
54
+ without the LEM and the AC and that excluding these two axioms one \\
55
+ obtains foundations for a /new form of constructive mathematics/,\\
56
+ • the understanding that classical mathematics appears as a subset of this new \\
57
+ constructive mathematics,\\
58
+ • the understanding that the MLTT extended with the UA is an imperfect \\
59
+ formalization system for this constructive mathematics and that it should be \\
60
+ possible  to integrate the UA into the MLTT obtaining a new type theory \\
61
+ with better computational properties.\\
62
+ 5\\
63
+
64
+ --------------
65
+
66
+ <<6>>[[file:Unimath-6_1.png]]\\
67
+ [[file:Unimath-6_2.png]]\\
68
+ Univalent Foundations\\
69
+ UniMath library\\
70
+ What does it mean for a formalization system to be constructive?\\
71
+ Some expressions in type theory are said to be in normal form. Any \\
72
+ expression can be automatically and deterministically “normalized”, that is, an \\
73
+ equivalent expression in normal form can be computed. \\
74
+ In type theory there are type expressions and element expressions. If “T” is a \\
75
+ type (expression) and “o” is an element (expression) one writes “o:T” if the \\
76
+ type of “o” is “T”. \\
77
+ 6\\
78
+
79
+ --------------
80
+
81
+ <<7>>[[file:Unimath-7_1.png]]\\
82
+ [[file:Unimath-7_2.png]]\\
83
+ Univalent Foundations\\
84
+ UniMath library\\
85
+ In most type systems there is the type of natural numbers. In the UniMath it is \\
86
+ written as “nat”.\\
87
+ There is the zero element “O:nat” and the successor function “S” from “nat” to \\
88
+ “nat” that intuitively corresponds to the function that takes “n” to “1+n”. \\
89
+ A constructive system satisfies the /canonicity property/ for “nat”, which asserts \\
90
+ that the normal form of any expression “o:nat” has the form “S(S(....(SO)..))”.\\
91
+ By counting how many “S” there is in the normal form one obtains an actual \\
92
+ natural number from any element expression of type “nat”. \\
93
+ 7\\
94
+
95
+ --------------
96
+
97
+ <<8>>[[file:Unimath-8_1.png]]\\
98
+ [[file:Unimath-8_2.png]]\\
99
+ Univalent Foundations\\
100
+ UniMath library\\
101
+ This is a tremendously strong property. \\
102
+ Consider the example: a set “X:hSet” is defined to be finite if there exists an \\
103
+ isomorphism between it and the standard finite set “stn n”. Here “n” is an \\
104
+ expression of type “nat”. It is well defined and one obtains a function “fincard”  \\
105
+ from finite sets to “nat” called the cardinality - the number of elements of the \\
106
+ set.\\
107
+ Now suppose that I have proved, constructively, that “X” is finite. Then \\
108
+ “(fincard X):nat” \\
109
+ is defined. By normalizing “fincard X��� I obtain an actual natural number.\\
110
+ If I had a constructive proof of /Faltings's Theorem, /stating that the number of \\
111
+ rational points on a curve of genus >1 is finite, I could find the actual number \\
112
+ of points on any curve of genus >1.  \\
113
+ 8\\
114
+
115
+ --------------
116
+
117
+ <<9>>[[file:Unimath-9_1.png]]\\
118
+ [[file:Unimath-9_2.png]]\\
119
+ Univalent Foundations\\
120
+ UniMath library\\
121
+ We don't know whether such a proof exists. It is a very interesting and hard \\
122
+ problem. \\
123
+ The reason that the MLTT+UA is an imperfect system for constructive  \\
124
+ formalization is that while MLTT itself has the canonicity property MLTT+UA \\
125
+ does not.\\
126
+ Therefore, formalizing the proof of Faltings's Theorem in the UniMath, which is \\
127
+ based on MLTT+UA, would not immediately give us an algorithm to compute \\
128
+ the number of rational points on a curve of genus >1.\\
129
+ This is where a new type theory that integrates the UA into the MLTT in such \\
130
+ a way as to preserve the canonicity would help. \\
131
+ 9\\
132
+
133
+ --------------
134
+
135
+ <<10>>[[file:Unimath-10_1.png]]\\
136
+ [[file:Unimath-10_2.png]]\\
137
+ Univalent Foundations\\
138
+ UniMath library\\
139
+ The search for such a type theory became one of the main driving forces in \\
140
+ the development of the UF.\\
141
+ Today several groups are working on the construction and  implementation in \\
142
+ a proof assistant of candidate type theories.  \\
143
+ The /cubical type theory/ and the prototype proof assistant /cubicaltt/ created by \\
144
+ the group of Thierry Coquand with the help of many researchers from \\
145
+ different parts of the world is at the most advanced stage of development \\
146
+ today. \\
147
+ A proof in the UniMath easily translates into a proof in the cubilatt.\\
148
+ 10\\
149
+
150
+ --------------
151
+
152
+ <<11>>[[file:Unimath-11_1.png]]\\
153
+ [[file:Unimath-11_2.png]]\\
154
+ Univalent Foundations\\
155
+ UniMath library\\
156
+ The new form of the UF that emerges can be seen as combining the following \\
157
+ components:\\
158
+ • the view of mathematics as the study of structures on sets and their higher \\
159
+ analogs, \\
160
+ • the view of mathematics as constructive with the classical mathematics being \\
161
+ a subset consisting of the results that require LEM and/or AC among their \\
162
+ assumptions,\\
163
+ • the idea that the higher analogs of sets are reflected in the set-based \\
164
+ mathematics as constructive homotopy types - objects of the new \\
165
+ constructive homotopy theory that can so far be formulated only in terms of \\
166
+ cubical sets,\\
167
+ • the idea that one can formalize our intuition about structures on these higher \\
168
+ analogs using Cubical Type Theory (CTT).\\
169
+ 11\\
170
+
171
+ --------------
172
+
173
+ <<12>>[[file:Unimath-12_1.png]]\\
174
+ [[file:Unimath-12_2.png]]\\
175
+ Univalent Foundations\\
176
+ UniMath library\\
177
+ In addition to the understanding that to obtain a formal system for the new \\
178
+ constructive mathematics the UA needs to be integrated into the MLTT \\
179
+ constructively, several more things are felt as lacking in the MLTT+UA:\\
180
+ • higher inductive types, \\
181
+ • resizing rules,\\
182
+ • a possible strict extensional equality combined with the “fibrancy discipline”,\\
183
+ • as yet unknown mechanism to construct the types of structures that involve \\
184
+ infinite hierarchies of coherence conditions.  \\
185
+ Surprisingly,  it might be easier to add these features to the CTT than to the \\
186
+ MLTT. The work in these directions is ongoing. \\
187
+ 12\\
188
+
189
+ --------------
190
+
191
+ <<13>>Part 2. The UniMath library\\
192
+ 13\\
193
+
194
+ --------------
195
+
196
+ <<14>>[[file:Unimath-14_1.png]]\\
197
+ [[file:Unimath-14_2.png]]\\
198
+ Univalent Foundations\\
199
+ UniMath library\\
200
+ In the development of the UniMath library we attempt to do something that \\
201
+ might be compared with the effort by the Bourbaki group to write a \\
202
+ systematic exposition of mathematics based on the set theory and the view of \\
203
+ mathematics as studying structures on sets.\\
204
+ The effort by Bourbaki stalled at some point around the middle of the 20th \\
205
+ century, in part, because it was very complicated to describe the emerging \\
206
+ category-theoretic constructions in set-theoretic terms.\\
207
+ 14\\
208
+
209
+ --------------
210
+
211
+ <<15>>[[file:Unimath-15_1.png]]\\
212
+ [[file:Unimath-15_2.png]]\\
213
+ Univalent Foundations\\
214
+ UniMath library\\
215
+ One may however ask, is there any mathematical innovation in what we are \\
216
+ doing? Is there a discovery of the unknown in the work on the UniMath?\\
217
+ We have already seen how well-known problems in fields such as arithmetic \\
218
+ algebraic geometry can be related to the search for a new foundation of \\
219
+ constructive mathematics and for building proofs in the UniMath.\\
220
+ Here is a different example.\\
221
+ 15\\
222
+
223
+ --------------
224
+
225
+ <<16>>[[file:Unimath-16_1.png]]\\
226
+ [[file:Unimath-16_2.png]]\\
227
+ Univalent Foundations\\
228
+ UniMath library\\
229
+ Some years ago, at the IAS, I had a conversation at lunch with Armand Borel. I \\
230
+ mentioned how I like Bourbaki “Algebra” and how it helped me to become a \\
231
+ mathematician. \\
232
+ I then mentioned that some places there were really dense. For example, said I, \\
233
+ the description of the tensor product was hard to follow. \\
234
+ Of course, said Borel, /we have invented tensor product to get a systematic \\
235
+ exposition of multi-linear maps/. \\
236
+ It was new research, this is why it was not very smoothly written. \\
237
+ 16\\
238
+
239
+ --------------
240
+
241
+ <<17>>[[file:Unimath-17_1.png]]\\
242
+ [[file:Unimath-17_2.png]]\\
243
+ Univalent Foundations\\
244
+ UniMath library\\
245
+ I was amazed.\\
246
+ It is hard to imagine today's mathematics without the concept of the tensor \\
247
+ product. It would never occurred to me that it was invented by Bourbaki with \\
248
+ the only purpose to obtain a more systematic exposition of multi-linear maps \\
249
+ of vector spaces!\\
250
+ This example shows how a major innovation can emerge from the work on \\
251
+ systematization of knowledge. \\
252
+ 17\\
253
+
254
+ --------------
255
+
256
+ <<18>>[[file:Unimath-18_1.png]]\\
257
+ [[file:Unimath-18_2.png]]\\
258
+ Univalent Foundations\\
259
+ UniMath library\\
260
+ Finally, a few words to those mathematicians who will decide to understand \\
261
+ UniMath and maybe to contribute to it. \\
262
+ The UniMath library is being created using the proof assistant Coq. It is freely \\
263
+ available on GitHub.\\
264
+ The language of Coq is a very substantial extension of the MLTT and UniMath \\
265
+ uses a very small subset of the full Coq language that approximately \\
266
+ corresponds to the original MLTT.\\
267
+ 18\\
268
+
269
+ --------------
270
+
271
+ <<19>>[[file:Unimath-19_1.png]]\\
272
+ [[file:Unimath-19_2.png]]\\
273
+ [[file:Unimath-19_3.png]]\\
274
+ Univalent Foundations\\
275
+ UniMath library\\
276
+ The first file in the UniMath after the /Basics/preamble.v/ is /Basics/PartA/.v.\\
277
+ The first line in /Basics/PartA.v/ after the preamble section is as follows:\\
278
+     \\
279
+ It should be understood as a declaration of intent to define a constant called \\
280
+ /fromempty /whose type is described by the expression that is written to the \\
281
+ right of the colon. \\
282
+ Following this line there is a paragraph that starts with /Proof./ and ends with \\
283
+ /Defined. /where the constant is actually defined using the little sub-programs of \\
284
+ Coq called tactics which help to build complex expressions of the underlying \\
285
+ type theory language in simple steps.  \\
286
+ 19\\
287
+
288
+ --------------
289
+
290
+ <<20>>[[file:Unimath-20_1.png]]\\
291
+ [[file:Unimath-20_2.png]]\\
292
+ Univalent Foundations\\
293
+ UniMath library\\
294
+ A mathematician who wants to understand UniMath should expect a very \\
295
+ non-linear learning curve:\\
296
+ • In the lectures that I gave in Oxford and in the similar lectures in the Hebrew \\
297
+ University it took me the whole first lecture to explain what that first line \\
298
+ and the following it paragraph really mean.\\
299
+ • In the next lecture I was able to explain the next few hundred lines of PartA.\\
300
+ • By the fourth lecture in Oxford, the video of which can be found on my \\
301
+ website, I was explaining the invariant formalization of fibration sequences.\\
302
+ 20\\
303
+
304
+ --------------
305
+
306
+ <<21>>I hope that was able to show how important Univalent Foundations are and \\
307
+ how important is the work on libraries such as UniMath.\\
308
+ Thank you!\\
309
+ 21\\
310
+
311
+ --------------
Unimath_ind.html ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html><html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
2
+ <head>
3
+ <title></title>
4
+ </head>
5
+ <body>
6
+ <a href="Unimaths.html#1" target="contents" >Page 1</a><br/>
7
+ <a href="Unimaths.html#2" target="contents" >Page 2</a><br/>
8
+ <a href="Unimaths.html#3" target="contents" >Page 3</a><br/>
9
+ <a href="Unimaths.html#4" target="contents" >Page 4</a><br/>
10
+ <a href="Unimaths.html#5" target="contents" >Page 5</a><br/>
11
+ <a href="Unimaths.html#6" target="contents" >Page 6</a><br/>
12
+ <a href="Unimaths.html#7" target="contents" >Page 7</a><br/>
13
+ <a href="Unimaths.html#8" target="contents" >Page 8</a><br/>
14
+ <a href="Unimaths.html#9" target="contents" >Page 9</a><br/>
15
+ <a href="Unimaths.html#10" target="contents" >Page 10</a><br/>
16
+ <a href="Unimaths.html#11" target="contents" >Page 11</a><br/>
17
+ <a href="Unimaths.html#12" target="contents" >Page 12</a><br/>
18
+ <a href="Unimaths.html#13" target="contents" >Page 13</a><br/>
19
+ <a href="Unimaths.html#14" target="contents" >Page 14</a><br/>
20
+ <a href="Unimaths.html#15" target="contents" >Page 15</a><br/>
21
+ <a href="Unimaths.html#16" target="contents" >Page 16</a><br/>
22
+ <a href="Unimaths.html#17" target="contents" >Page 17</a><br/>
23
+ <a href="Unimaths.html#18" target="contents" >Page 18</a><br/>
24
+ <a href="Unimaths.html#19" target="contents" >Page 19</a><br/>
25
+ <a href="Unimaths.html#20" target="contents" >Page 20</a><br/>
26
+ <a href="Unimaths.html#21" target="contents" >Page 21</a><br/>
27
+ </body>
28
+ </html>
Unimaths.html ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html><html>
2
+ <head>
3
+ <title></title>
4
+ <style type="text/css">
5
+ <!--
6
+ .xflip {
7
+ -moz-transform: scaleX(-1);
8
+ -webkit-transform: scaleX(-1);
9
+ -o-transform: scaleX(-1);
10
+ transform: scaleX(-1);
11
+ filter: fliph;
12
+ }
13
+ .yflip {
14
+ -moz-transform: scaleY(-1);
15
+ -webkit-transform: scaleY(-1);
16
+ -o-transform: scaleY(-1);
17
+ transform: scaleY(-1);
18
+ filter: flipv;
19
+ }
20
+ .xyflip {
21
+ -moz-transform: scaleX(-1) scaleY(-1);
22
+ -webkit-transform: scaleX(-1) scaleY(-1);
23
+ -o-transform: scaleX(-1) scaleY(-1);
24
+ transform: scaleX(-1) scaleY(-1);
25
+ filter: fliph + flipv;
26
+ }
27
+ -->
28
+ </style>
29
+ </head>
30
+ <body>
31
+ <a name=1></a>HLF 2016, Sep. 22, 2016, Heidelberg.<br/>
32
+ UniMath<br/>
33
+ by Vladimir Voevodsky &#160;<br/>
34
+ from the Institute for Advanced Study in Princeton, NJ.&#160;<br/>
35
+ <hr/>
36
+ <a name=2></a>Part 1. Univalent foundations<br/>
37
+ 2<br/>
38
+ <hr/>
39
+ <a name=3></a><img src="Unimath-3_1.png"/><br/>
40
+ <img src="Unimath-3_2.png"/><br/>
41
+ Univalent Foundations<br/>
42
+ UniMath library<br/>
43
+ Today&#160;we&#160;face&#160;a&#160;problem&#160;that&#160;involves&#160;two&#160;difficult&#160;to&#160;satisfy&#160;conditions.&#160;<br/>
44
+ On&#160;the&#160;one&#160;hand&#160;we&#160;have&#160;to&#160;find&#160;a&#160;way&#160;for&#160;computer&#160;assisted&#160;verification&#160;of&#160;<br/>mathematical&#160;proofs.<br/>
45
+ This&#160;is&#160;necessary,&#160;first&#160;of&#160;all,&#160;because&#160;we&#160;have&#160;to&#160;stop&#160;the&#160;dissolution&#160;of&#160;the&#160;<br/>concept&#160;of&#160;proof&#160;in&#160;mathematics.<br/>
46
+ On&#160;the&#160;other&#160;hand&#160;&#160;we&#160;have&#160;to&#160;preserve&#160;the&#160;intimate&#160;connection&#160;between&#160;<br/>mathematics&#160;and&#160;the&#160;world&#160;of&#160;human&#160;intuition.<br/>
47
+ This&#160;connection&#160;is&#160;what&#160;moves&#160;mathematics&#160;forward&#160;and&#160;what&#160;we&#160;often&#160;<br/>experience&#160;as&#160;the&#160;beauty&#160;of&#160;mathematics.&#160;<br/>
48
+ 3<br/>
49
+ <hr/>
50
+ <a name=4></a><img src="Unimath-4_1.png"/><br/>
51
+ <img src="Unimath-4_2.png"/><br/>
52
+ Univalent Foundations<br/>
53
+ UniMath library<br/>
54
+ The&#160;Univalent&#160;Foundations&#160;(UF)&#160;is,&#160;a&#160;yet&#160;imperfect,&#160;solution&#160;to&#160;this&#160;problem.<br/>
55
+ In&#160;their&#160;original&#160;form,&#160;&#160;the&#160;UF&#160;combined&#160;three&#160;components:<br/>
56
+ •&#160;the&#160;view&#160;of&#160;mathematics&#160;as&#160;the&#160;study&#160;of&#160;structures&#160;on&#160;sets&#160;and&#160;their&#160;higher&#160;<br/>
57
+ analogs,&#160;<br/>
58
+ •&#160;the&#160;idea&#160;that&#160;the&#160;higher&#160;analogs&#160;of&#160;sets&#160;are&#160;reflected&#160;in&#160;the&#160;set-based&#160;<br/>
59
+ mathematics&#160;as&#160;homotopy&#160;types,&#160;<br/>
60
+ •&#160;the&#160;idea&#160;that&#160;one&#160;can&#160;formalize&#160;our&#160;intuition&#160;about&#160;structures&#160;on&#160;these&#160;higher&#160;<br/>
61
+ analogs&#160;using&#160;the&#160;Martin-Lof&#160;&#160;Type&#160;Theory&#160;(MLTT)&#160;extended&#160;with&#160;the&#160;Law&#160;of&#160;<br/>Excluded&#160;Middle&#160;for&#160;propositions&#160;(LEM)&#160;,&#160;the&#160;Axiom&#160;of&#160;Choice&#160;for&#160;sets&#160;(AC),&#160;<br/>the&#160;Univalence&#160;Axiom&#160;(UA)&#160;and&#160;the&#160;Resizing&#160;Rules&#160;(RR).<br/>
62
+ 4<br/>
63
+ <hr/>
64
+ <a name=5></a><img src="Unimath-5_1.png"/><br/>
65
+ <img src="Unimath-5_2.png"/><br/>
66
+ Univalent Foundations<br/>
67
+ UniMath library<br/>
68
+ The&#160;main&#160;new&#160;concepts&#160;that&#160;were&#160;since&#160;added&#160;to&#160;these&#160;are&#160;the&#160;following:&#160;<br/>
69
+ •&#160;the&#160;understanding&#160;that&#160;a&#160;lot&#160;of&#160;mathematics&#160;can&#160;be&#160;formalized&#160;in&#160;the&#160;MLTT&#160;<br/>
70
+ without&#160;the&#160;LEM&#160;and&#160;the&#160;AC&#160;and&#160;that&#160;excluding&#160;these&#160;two&#160;axioms&#160;one&#160;<br/>obtains&#160;foundations&#160;for&#160;a&#160;<i>new&#160;form&#160;of&#160;constructive&#160;mathematics</i>,<br/>
71
+ •&#160;the&#160;understanding&#160;that&#160;classical&#160;mathematics&#160;appears&#160;as&#160;a&#160;subset&#160;of&#160;this&#160;new&#160;<br/>
72
+ constructive&#160;mathematics,<br/>
73
+ •&#160;the&#160;understanding&#160;that&#160;the&#160;MLTT&#160;extended&#160;with&#160;the&#160;UA&#160;is&#160;an&#160;imperfect&#160;<br/>
74
+ formalization&#160;system&#160;for&#160;this&#160;constructive&#160;mathematics&#160;and&#160;that&#160;it&#160;should&#160;be&#160;<br/>possible&#160;&#160;to&#160;integrate&#160;the&#160;UA&#160;into&#160;the&#160;MLTT&#160;obtaining&#160;a&#160;new&#160;type&#160;theory&#160;<br/>with&#160;better&#160;computational&#160;properties.<br/>
75
+ 5<br/>
76
+ <hr/>
77
+ <a name=6></a><img src="Unimath-6_1.png"/><br/>
78
+ <img src="Unimath-6_2.png"/><br/>
79
+ Univalent Foundations<br/>
80
+ UniMath library<br/>
81
+ What&#160;does&#160;it&#160;mean&#160;for&#160;a&#160;formalization&#160;system&#160;to&#160;be&#160;constructive?<br/>
82
+ Some&#160;expressions&#160;in&#160;type&#160;theory&#160;are&#160;said&#160;to&#160;be&#160;in&#160;normal&#160;form.&#160;Any&#160;<br/>expression&#160;can&#160;be&#160;automatically&#160;and&#160;deterministically&#160;“normalized”,&#160;that&#160;is,&#160;an&#160;<br/>equivalent&#160;expression&#160;in&#160;normal&#160;form&#160;can&#160;be&#160;computed.&#160;<br/>
83
+ In&#160;type&#160;theory&#160;there&#160;are&#160;type&#160;expressions&#160;and&#160;element&#160;expressions.&#160;If&#160;“T”&#160;is&#160;a&#160;<br/>type&#160;(expression)&#160;and&#160;“o”&#160;is&#160;an&#160;element&#160;(expression)&#160;one&#160;writes&#160;“o:T”&#160;if&#160;the&#160;<br/>type&#160;of&#160;“o”&#160;is&#160;“T”.&#160;<br/>
84
+ 6<br/>
85
+ <hr/>
86
+ <a name=7></a><img src="Unimath-7_1.png"/><br/>
87
+ <img src="Unimath-7_2.png"/><br/>
88
+ Univalent Foundations<br/>
89
+ UniMath library<br/>
90
+ In&#160;most&#160;type&#160;systems&#160;there&#160;is&#160;the&#160;type&#160;of&#160;natural&#160;numbers.&#160;In&#160;the&#160;UniMath&#160;it&#160;is&#160;<br/>written&#160;as&#160;“nat”.<br/>
91
+ There&#160;is&#160;the&#160;zero&#160;element&#160;“O:nat”&#160;and&#160;the&#160;successor&#160;function&#160;“S”&#160;from&#160;“nat”&#160;to&#160;<br/>“nat”&#160;that&#160;intuitively&#160;corresponds&#160;to&#160;the&#160;function&#160;that&#160;takes&#160;“n”&#160;to&#160;“1+n”.&#160;<br/>
92
+ A&#160;constructive&#160;system&#160;satisfies&#160;the&#160;<i>canonicity&#160;property</i>&#160;for&#160;“nat”,&#160;which&#160;asserts&#160;<br/>that&#160;the&#160;normal&#160;form&#160;of&#160;any&#160;expression&#160;“o:nat”&#160;has&#160;the&#160;form&#160;“S(S(….(SO)..))”.<br/>
93
+ By&#160;counting&#160;how&#160;many&#160;“S”&#160;there&#160;is&#160;in&#160;the&#160;normal&#160;form&#160;one&#160;obtains&#160;an&#160;actual&#160;<br/>natural&#160;number&#160;from&#160;any&#160;element&#160;expression&#160;of&#160;type&#160;“nat”.&#160;<br/>
94
+ 7<br/>
95
+ <hr/>
96
+ <a name=8></a><img src="Unimath-8_1.png"/><br/>
97
+ <img src="Unimath-8_2.png"/><br/>
98
+ Univalent Foundations<br/>
99
+ UniMath library<br/>
100
+ This&#160;is&#160;a&#160;tremendously&#160;strong&#160;property.&#160;<br/>
101
+ Consider&#160;the&#160;example:&#160;a&#160;set&#160;“X:hSet”&#160;is&#160;defined&#160;to&#160;be&#160;finite&#160;if&#160;there&#160;exists&#160;an&#160;<br/>isomorphism&#160;between&#160;it&#160;and&#160;the&#160;standard&#160;finite&#160;set&#160;“stn&#160;n”.&#160;Here&#160;“n”&#160;is&#160;an&#160;<br/>expression&#160;of&#160;type&#160;“nat”.&#160;It&#160;is&#160;well&#160;defined&#160;and&#160;one&#160;obtains&#160;a&#160;function&#160;“fincard”&#160;&#160;<br/>from&#160;finite&#160;sets&#160;to&#160;“nat”&#160;called&#160;the&#160;cardinality&#160;-&#160;the&#160;number&#160;of&#160;elements&#160;of&#160;the&#160;<br/>set.<br/>
102
+ Now&#160;suppose&#160;that&#160;I&#160;have&#160;proved,&#160;constructively,&#160;that&#160;“X”&#160;is&#160;finite.&#160;Then&#160;<br/>
103
+ “(fincard&#160;X):nat”&#160;<br/>
104
+ is&#160;defined.&#160;By&#160;normalizing&#160;“fincard&#160;X”&#160;I&#160;obtain&#160;an&#160;actual&#160;natural&#160;number.<br/>
105
+ If&#160;I&#160;had&#160;a&#160;constructive&#160;proof&#160;of&#160;<i>Faltings’s&#160;Theorem,&#160;</i>stating&#160;that&#160;the&#160;number&#160;of&#160;<br/>rational&#160;points&#160;on&#160;a&#160;curve&#160;of&#160;genus&#160;&gt;1&#160;is&#160;finite,&#160;I&#160;could&#160;find&#160;the&#160;actual&#160;number&#160;<br/>of&#160;points&#160;on&#160;any&#160;curve&#160;of&#160;genus&#160;&gt;1.&#160;&#160;<br/>
106
+ 8<br/>
107
+ <hr/>
108
+ <a name=9></a><img src="Unimath-9_1.png"/><br/>
109
+ <img src="Unimath-9_2.png"/><br/>
110
+ Univalent Foundations<br/>
111
+ UniMath library<br/>
112
+ We&#160;don’t&#160;know&#160;whether&#160;such&#160;a&#160;proof&#160;exists.&#160;It&#160;is&#160;a&#160;very&#160;interesting&#160;and&#160;hard&#160;<br/>problem.&#160;<br/>
113
+ The&#160;reason&#160;that&#160;the&#160;MLTT+UA&#160;is&#160;an&#160;imperfect&#160;system&#160;for&#160;constructive&#160;&#160;<br/>formalization&#160;is&#160;that&#160;while&#160;MLTT&#160;itself&#160;has&#160;the&#160;canonicity&#160;property&#160;MLTT+UA&#160;<br/>does&#160;not.<br/>
114
+ Therefore,&#160;formalizing&#160;the&#160;proof&#160;of&#160;Faltings’s&#160;Theorem&#160;in&#160;the&#160;UniMath,&#160;which&#160;is&#160;<br/>based&#160;on&#160;MLTT+UA,&#160;would&#160;not&#160;immediately&#160;give&#160;us&#160;an&#160;algorithm&#160;to&#160;compute&#160;<br/>the&#160;number&#160;of&#160;rational&#160;points&#160;on&#160;a&#160;curve&#160;of&#160;genus&#160;&gt;1.<br/>
115
+ This&#160;is&#160;where&#160;a&#160;new&#160;type&#160;theory&#160;that&#160;integrates&#160;the&#160;UA&#160;into&#160;the&#160;MLTT&#160;in&#160;such&#160;<br/>a&#160;way&#160;as&#160;to&#160;preserve&#160;the&#160;canonicity&#160;would&#160;help.&#160;<br/>
116
+ 9<br/>
117
+ <hr/>
118
+ <a name=10></a><img src="Unimath-10_1.png"/><br/>
119
+ <img src="Unimath-10_2.png"/><br/>
120
+ Univalent Foundations<br/>
121
+ UniMath library<br/>
122
+ The&#160;search&#160;for&#160;such&#160;a&#160;type&#160;theory&#160;became&#160;one&#160;of&#160;the&#160;main&#160;driving&#160;forces&#160;in&#160;<br/>the&#160;development&#160;of&#160;the&#160;UF.<br/>
123
+ Today&#160;several&#160;groups&#160;are&#160;working&#160;on&#160;the&#160;construction&#160;and&#160;&#160;implementation&#160;in&#160;<br/>a&#160;proof&#160;assistant&#160;of&#160;candidate&#160;type&#160;theories.&#160;&#160;<br/>
124
+ The&#160;<i>cubical&#160;type&#160;theory</i>&#160;and&#160;the&#160;prototype&#160;proof&#160;assistant&#160;<i>cubicaltt</i>&#160;created&#160;by&#160;<br/>the&#160;group&#160;of&#160;Thierry&#160;Coquand&#160;with&#160;the&#160;help&#160;of&#160;many&#160;researchers&#160;from&#160;<br/>different&#160;parts&#160;of&#160;the&#160;world&#160;is&#160;at&#160;the&#160;most&#160;advanced&#160;stage&#160;of&#160;development&#160;<br/>today.&#160;<br/>
125
+ A&#160;proof&#160;in&#160;the&#160;UniMath&#160;easily&#160;translates&#160;into&#160;a&#160;proof&#160;in&#160;the&#160;cubilatt.<br/>
126
+ 10<br/>
127
+ <hr/>
128
+ <a name=11></a><img src="Unimath-11_1.png"/><br/>
129
+ <img src="Unimath-11_2.png"/><br/>
130
+ Univalent Foundations<br/>
131
+ UniMath library<br/>
132
+ The&#160;new&#160;form&#160;of&#160;the&#160;UF&#160;that&#160;emerges&#160;can&#160;be&#160;seen&#160;as&#160;combining&#160;the&#160;following&#160;<br/>components:<br/>
133
+ •&#160;the&#160;view&#160;of&#160;mathematics&#160;as&#160;the&#160;study&#160;of&#160;structures&#160;on&#160;sets&#160;and&#160;their&#160;higher&#160;<br/>
134
+ analogs,&#160;<br/>
135
+ •&#160;the&#160;view&#160;of&#160;mathematics&#160;as&#160;constructive&#160;with&#160;the&#160;classical&#160;mathematics&#160;being&#160;<br/>
136
+ a&#160;subset&#160;consisting&#160;of&#160;the&#160;results&#160;that&#160;require&#160;LEM&#160;and/or&#160;AC&#160;among&#160;their&#160;<br/>assumptions,<br/>
137
+ •&#160;the&#160;idea&#160;that&#160;the&#160;higher&#160;analogs&#160;of&#160;sets&#160;are&#160;reflected&#160;in&#160;the&#160;set-based&#160;<br/>
138
+ mathematics&#160;as&#160;constructive&#160;homotopy&#160;types&#160;-&#160;objects&#160;of&#160;the&#160;new&#160;<br/>constructive&#160;homotopy&#160;theory&#160;that&#160;can&#160;so&#160;far&#160;be&#160;formulated&#160;only&#160;in&#160;terms&#160;of&#160;<br/>cubical&#160;sets,<br/>
139
+ •&#160;the&#160;idea&#160;that&#160;one&#160;can&#160;formalize&#160;our&#160;intuition&#160;about&#160;structures&#160;on&#160;these&#160;higher&#160;<br/>
140
+ analogs&#160;using&#160;Cubical&#160;Type&#160;Theory&#160;(CTT).<br/>
141
+ 11<br/>
142
+ <hr/>
143
+ <a name=12></a><img src="Unimath-12_1.png"/><br/>
144
+ <img src="Unimath-12_2.png"/><br/>
145
+ Univalent Foundations<br/>
146
+ UniMath library<br/>
147
+ In&#160;addition&#160;to&#160;the&#160;understanding&#160;that&#160;to&#160;obtain&#160;a&#160;formal&#160;system&#160;for&#160;the&#160;new&#160;<br/>constructive&#160;mathematics&#160;the&#160;UA&#160;needs&#160;to&#160;be&#160;integrated&#160;into&#160;the&#160;MLTT&#160;<br/>constructively,&#160;several&#160;more&#160;things&#160;are&#160;felt&#160;as&#160;lacking&#160;in&#160;the&#160;MLTT+UA:<br/>
148
+ •&#160;higher&#160;inductive&#160;types,&#160;<br/>
149
+ •&#160;resizing&#160;rules,<br/>
150
+ •&#160;a&#160;possible&#160;strict&#160;extensional&#160;equality&#160;combined&#160;with&#160;the&#160;“fibrancy&#160;discipline”,<br/>
151
+ •&#160;as&#160;yet&#160;unknown&#160;mechanism&#160;to&#160;construct&#160;the&#160;types&#160;of&#160;structures&#160;that&#160;involve&#160;<br/>
152
+ infinite&#160;hierarchies&#160;of&#160;coherence&#160;conditions.&#160;&#160;<br/>
153
+ Surprisingly,&#160;&#160;it&#160;might&#160;be&#160;easier&#160;to&#160;add&#160;these&#160;features&#160;to&#160;the&#160;CTT&#160;than&#160;to&#160;the&#160;<br/>MLTT.&#160;The&#160;work&#160;in&#160;these&#160;directions&#160;is&#160;ongoing.&#160;<br/>
154
+ 12<br/>
155
+ <hr/>
156
+ <a name=13></a>Part 2. The UniMath library<br/>
157
+ 13<br/>
158
+ <hr/>
159
+ <a name=14></a><img src="Unimath-14_1.png"/><br/>
160
+ <img src="Unimath-14_2.png"/><br/>
161
+ Univalent Foundations<br/>
162
+ UniMath library<br/>
163
+ In&#160;the&#160;development&#160;of&#160;the&#160;UniMath&#160;library&#160;we&#160;attempt&#160;to&#160;do&#160;something&#160;that&#160;<br/>might&#160;be&#160;compared&#160;with&#160;the&#160;effort&#160;by&#160;the&#160;Bourbaki&#160;group&#160;to&#160;write&#160;a&#160;<br/>systematic&#160;exposition&#160;of&#160;mathematics&#160;based&#160;on&#160;the&#160;set&#160;theory&#160;and&#160;the&#160;view&#160;of&#160;<br/>mathematics&#160;as&#160;studying&#160;structures&#160;on&#160;sets.<br/>
164
+ The&#160;effort&#160;by&#160;Bourbaki&#160;stalled&#160;at&#160;some&#160;point&#160;around&#160;the&#160;middle&#160;of&#160;the&#160;20th&#160;<br/>century,&#160;in&#160;part,&#160;because&#160;it&#160;was&#160;very&#160;complicated&#160;to&#160;describe&#160;the&#160;emerging&#160;<br/>category-theoretic&#160;constructions&#160;in&#160;set-theoretic&#160;terms.<br/>
165
+ 14<br/>
166
+ <hr/>
167
+ <a name=15></a><img src="Unimath-15_1.png"/><br/>
168
+ <img src="Unimath-15_2.png"/><br/>
169
+ Univalent Foundations<br/>
170
+ UniMath library<br/>
171
+ One&#160;may&#160;however&#160;ask,&#160;is&#160;there&#160;any&#160;mathematical&#160;innovation&#160;in&#160;what&#160;we&#160;are&#160;<br/>doing?&#160;Is&#160;there&#160;a&#160;discovery&#160;of&#160;the&#160;unknown&#160;in&#160;the&#160;work&#160;on&#160;the&#160;UniMath?<br/>
172
+ We&#160;have&#160;already&#160;seen&#160;how&#160;well-known&#160;problems&#160;in&#160;fields&#160;such&#160;as&#160;arithmetic&#160;<br/>algebraic&#160;geometry&#160;can&#160;be&#160;related&#160;to&#160;the&#160;search&#160;for&#160;a&#160;new&#160;foundation&#160;of&#160;<br/>constructive&#160;mathematics&#160;and&#160;for&#160;building&#160;proofs&#160;in&#160;the&#160;UniMath.<br/>
173
+ Here&#160;is&#160;a&#160;different&#160;example.<br/>
174
+ 15<br/>
175
+ <hr/>
176
+ <a name=16></a><img src="Unimath-16_1.png"/><br/>
177
+ <img src="Unimath-16_2.png"/><br/>
178
+ Univalent Foundations<br/>
179
+ UniMath library<br/>
180
+ Some&#160;years&#160;ago,&#160;at&#160;the&#160;IAS,&#160;I&#160;had&#160;a&#160;conversation&#160;at&#160;lunch&#160;with&#160;Armand&#160;Borel.&#160;I&#160;<br/>mentioned&#160;how&#160;I&#160;like&#160;Bourbaki&#160;“Algebra”&#160;and&#160;how&#160;it&#160;helped&#160;me&#160;to&#160;become&#160;a&#160;<br/>mathematician.&#160;<br/>
181
+ I&#160;then&#160;mentioned&#160;that&#160;some&#160;places&#160;there&#160;were&#160;really&#160;dense.&#160;For&#160;example,&#160;said&#160;I,&#160;<br/>the&#160;description&#160;of&#160;the&#160;tensor&#160;product&#160;was&#160;hard&#160;to&#160;follow.&#160;<br/>
182
+ Of&#160;course,&#160;said&#160;Borel,&#160;<i>we&#160;have&#160;invented&#160;tensor&#160;product&#160;to&#160;get&#160;a&#160;systematic&#160;<br/>exposition&#160;of&#160;multi-linear&#160;maps</i>.&#160;<br/>
183
+ It&#160;was&#160;new&#160;research,&#160;this&#160;is&#160;why&#160;it&#160;was&#160;not&#160;very&#160;smoothly&#160;written.&#160;<br/>
184
+ 16<br/>
185
+ <hr/>
186
+ <a name=17></a><img src="Unimath-17_1.png"/><br/>
187
+ <img src="Unimath-17_2.png"/><br/>
188
+ Univalent Foundations<br/>
189
+ UniMath library<br/>
190
+ I&#160;was&#160;amazed.<br/>
191
+ It&#160;is&#160;hard&#160;to&#160;imagine&#160;today’s&#160;mathematics&#160;without&#160;the&#160;concept&#160;of&#160;the&#160;tensor&#160;<br/>product.&#160;It&#160;would&#160;never&#160;occurred&#160;to&#160;me&#160;that&#160;it&#160;was&#160;invented&#160;by&#160;Bourbaki&#160;with&#160;<br/>the&#160;only&#160;purpose&#160;to&#160;obtain&#160;a&#160;more&#160;systematic&#160;exposition&#160;of&#160;multi-linear&#160;maps&#160;<br/>of&#160;vector&#160;spaces!<br/>
192
+ This&#160;example&#160;shows&#160;how&#160;a&#160;major&#160;innovation&#160;can&#160;emerge&#160;from&#160;the&#160;work&#160;on&#160;<br/>systematization&#160;of&#160;knowledge.&#160;<br/>
193
+ 17<br/>
194
+ <hr/>
195
+ <a name=18></a><img src="Unimath-18_1.png"/><br/>
196
+ <img src="Unimath-18_2.png"/><br/>
197
+ Univalent Foundations<br/>
198
+ UniMath library<br/>
199
+ Finally,&#160;a&#160;few&#160;words&#160;to&#160;those&#160;mathematicians&#160;who&#160;will&#160;decide&#160;to&#160;understand&#160;<br/>UniMath&#160;and&#160;maybe&#160;to&#160;contribute&#160;to&#160;it.&#160;<br/>
200
+ The&#160;UniMath&#160;library&#160;is&#160;being&#160;created&#160;using&#160;the&#160;proof&#160;assistant&#160;Coq.&#160;It&#160;is&#160;freely&#160;<br/>available&#160;on&#160;GitHub.<br/>
201
+ The&#160;language&#160;of&#160;Coq&#160;is&#160;a&#160;very&#160;substantial&#160;extension&#160;of&#160;the&#160;MLTT&#160;and&#160;UniMath&#160;<br/>uses&#160;a&#160;very&#160;small&#160;subset&#160;of&#160;the&#160;full&#160;Coq&#160;language&#160;that&#160;approximately&#160;<br/>corresponds&#160;to&#160;the&#160;original&#160;MLTT.<br/>
202
+ 18<br/>
203
+ <hr/>
204
+ <a name=19></a><img src="Unimath-19_1.png"/><br/>
205
+ <img src="Unimath-19_2.png"/><br/>
206
+ <img src="Unimath-19_3.png"/><br/>
207
+ Univalent Foundations<br/>
208
+ UniMath library<br/>
209
+ The&#160;first&#160;file&#160;in&#160;the&#160;UniMath&#160;after&#160;the&#160;<i>Basics/preamble.v</i>&#160;is&#160;<i>Basics/PartA</i>.v.<br/>
210
+ The&#160;first&#160;line&#160;in&#160;<i>Basics/PartA.v</i>&#160;after&#160;the&#160;preamble&#160;section&#160;is&#160;as&#160;follows:<br/>
211
+ &#160; &#160;&#160;<br/>
212
+ It&#160;should&#160;be&#160;understood&#160;as&#160;a&#160;declaration&#160;of&#160;intent&#160;to&#160;define&#160;a&#160;constant&#160;called&#160;<br/><i>fromempty&#160;</i>whose&#160;type&#160;is&#160;described&#160;by&#160;the&#160;expression&#160;that&#160;is&#160;written&#160;to&#160;the&#160;<br/>right&#160;of&#160;the&#160;colon.&#160;<br/>
213
+ Following&#160;this&#160;line&#160;there&#160;is&#160;a&#160;paragraph&#160;that&#160;starts&#160;with&#160;<i>Proof.</i>&#160;and&#160;ends&#160;with&#160;<br/><i>Defined.&#160;</i>where&#160;the&#160;constant&#160;is&#160;actually&#160;defined&#160;using&#160;the&#160;little&#160;sub-programs&#160;of&#160;<br/>Coq&#160;called&#160;tactics&#160;which&#160;help&#160;to&#160;build&#160;complex&#160;expressions&#160;of&#160;the&#160;underlying&#160;<br/>type&#160;theory&#160;language&#160;in&#160;simple&#160;steps.&#160;&#160;<br/>
214
+ 19<br/>
215
+ <hr/>
216
+ <a name=20></a><img src="Unimath-20_1.png"/><br/>
217
+ <img src="Unimath-20_2.png"/><br/>
218
+ Univalent Foundations<br/>
219
+ UniMath library<br/>
220
+ A&#160;mathematician&#160;who&#160;wants&#160;to&#160;understand&#160;UniMath&#160;should&#160;expect&#160;a&#160;very&#160;<br/>non-linear&#160;learning&#160;curve:<br/>
221
+ •&#160;In&#160;the&#160;lectures&#160;that&#160;I&#160;gave&#160;in&#160;Oxford&#160;and&#160;in&#160;the&#160;similar&#160;lectures&#160;in&#160;the&#160;Hebrew&#160;<br/>
222
+ University&#160;it&#160;took&#160;me&#160;the&#160;whole&#160;first&#160;lecture&#160;to&#160;explain&#160;what&#160;that&#160;first&#160;line&#160;<br/>and&#160;the&#160;following&#160;it&#160;paragraph&#160;really&#160;mean.<br/>
223
+ •&#160;In&#160;the&#160;next&#160;lecture&#160;I&#160;was&#160;able&#160;to&#160;explain&#160;the&#160;next&#160;few&#160;hundred&#160;lines&#160;of&#160;PartA.<br/>
224
+ •&#160;By&#160;the&#160;fourth&#160;lecture&#160;in&#160;Oxford,&#160;the&#160;video&#160;of&#160;which&#160;can&#160;be&#160;found&#160;on&#160;my&#160;<br/>
225
+ website,&#160;I&#160;was&#160;explaining&#160;the&#160;invariant&#160;formalization&#160;of&#160;fibration&#160;sequences.<br/>
226
+ 20<br/>
227
+ <hr/>
228
+ <a name=21></a>I&#160;hope&#160;that&#160;was&#160;able&#160;to&#160;show&#160;how&#160;important&#160;Univalent&#160;Foundations&#160;are&#160;and&#160;<br/>
229
+ how&#160;important&#160;is&#160;the&#160;work&#160;on&#160;libraries&#160;such&#160;as&#160;UniMath.<br/>
230
+ Thank&#160;you!<br/>
231
+ 21<br/>
232
+ <hr/>
233
+ </body>
234
+ </html>