File size: 128,000 Bytes
12d2e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "c4e08d2c-f53e-4366-888d-ab72819b4c2f",
   "metadata": {},
   "source": [
    "# Inference API: Tutorial using ONNX\n",
    "\n",
    "[![View on GitHub](https://img.shields.io/badge/View-on%20GitHub-lightgrey?logo=github)](https://github.com/Dana-Farber-AIOS/pathml/blob/master/examples/)\n",
    "\n",
    "## Introduction\n",
    "\n",
    "This notebook is a tutorial on how to use the future ONNX `inference` feature in PathML. The use case for this API is to create an ONNX model in HaloAI or similar software, export it, and run it at scale using PathML. \n",
    "\n",
    "Some notes:\n",
    "\n",
    "- The ONNX inference pipeline uses the existing PathML Pipeline and Transforms infrastructure.\n",
    "    - ONNX labels are saved to a `pathml.core.slide_data.SlideData` object as `tiles`.\n",
    "    - Users can iterate over the tiles as they would when using this feature for preprocessing. \n",
    "\n",
    "- Preprocessing images before inference\n",
    "    - Users will need to create their own bespoke `pathml.preprocessing.transforms.transform` method to preprocess images before inference if necessary.\n",
    "    - A guide on how to create preprocessing pipelines is [here](https://pathml.readthedocs.io/en/latest/creating_pipelines.html). \n",
    "    - A guide on how to run preprocessing pipelines is [here](https://pathml.readthedocs.io/en/latest/running_pipelines.html). \n",
    "\n",
    "- ONNX Model Initializers \n",
    "    - ONNX models often have neural network initializers stored in the input graph. This means that the user is expected to specify initializer values when running inference. To solve this issue, we have a function that removes the network initializers from the input graph. This functions is adopted from the `onnxruntime` [github](https://github.com/microsoft/onnxruntime/blob/main/tools/python/remove_initializer_from_input.py).  \n",
    "    - We also have a function that checks if the initializers have been removed from the input graph before running inference. Both of these functions are described more below. \n",
    "\n",
    "- When using a model stored remotely on HuggingFace, the model is *downloaded locally* before being used. The user will need to delete the model after running `Pipeline` with a method that comes with the model class. An example of how to do this is below. \n",
    "\n",
    "## Quick Sample Code\n",
    "- Below is an example of how users would use the ONNX inference feature in PathML with a locally stored model.\n",
    "```python\n",
    "# load packages\n",
    "from pathml.core import SlideData\n",
    "\n",
    "from pathml.preprocessing import Pipeline\n",
    "import pathml.preprocessing.transforms as Transforms\n",
    "\n",
    "from pathml.inference import Inference, remove_initializer_from_input\n",
    "\n",
    "# Define slide path\n",
    "slide_path = 'PATH TO SLIDE'\n",
    "\n",
    "# Set path to model \n",
    "model_path = 'PATH TO ONNX MODEL'\n",
    "# Define path to export fixed model\n",
    "new_path = 'PATH TO SAVE NEW ONNX MODEL'\n",
    "\n",
    "# Fix the ONNX model by removing initializers. Save new model to `new_path`. \n",
    "remove_initializer_from_input(model_path, new_path) \n",
    "\n",
    "inference = Inference(model_path = new_path, input_name = 'data', num_classes = 8, model_type = 'segmentation')\n",
    "\n",
    "# Create a transformation list\n",
    "transformation_list = [\n",
    "    inference\n",
    "] \n",
    "\n",
    "# Initialize pathml.core.slide_data.SlideData object\n",
    "wsi = SlideData(slide_path, stain = 'Fluor')\n",
    "\n",
    "# Set up PathML pipeline\n",
    "pipeline = Pipeline(transformation_list)\n",
    "\n",
    "# Run Inference\n",
    "wsi.run(pipeline, tile_size = 1280, level = 0)\n",
    "```\n",
    "\n",
    "- Below is an example of how users would use the ONNX inference feature in PathML with a model stored in the public HuggingFace repository.\n",
    "```python\n",
    "# load packages\n",
    "from pathml.core import SlideData\n",
    "\n",
    "from pathml.preprocessing import Pipeline\n",
    "import pathml.preprocessing.transforms as Transforms\n",
    "\n",
    "from pathml.inference import RemoteTestHoverNet\n",
    "\n",
    "# Define slide path\n",
    "slide_path = 'PATH TO SLIDE'\n",
    "\n",
    "inference = RemoteTestHoverNet()\n",
    "\n",
    "# Create a transformation list\n",
    "transformation_list = [\n",
    "    inference\n",
    "] \n",
    "\n",
    "# Initialize pathml.core.slide_data.SlideData object\n",
    "wsi = SlideData(slide_path)\n",
    "\n",
    "# Set up PathML pipeline\n",
    "pipeline = Pipeline(transformation_list)\n",
    "\n",
    "# Run Inference\n",
    "wsi.run(pipeline, tile_size = 256)\n",
    "\n",
    "# DELETE ONNX MODEL DOWNLOADED FROM HUGGINGFACE\n",
    "inference.remove() \n",
    "```"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "886a74a3-b905-40dd-9b3e-4e1b90918f9b",
   "metadata": {},
   "source": [
    "## Load Packages\n",
    "\n",
    "**NOTE**\n",
    "- Please put in your environment name in the following line if you are using a jupyter notebook. If not, you may remove this line. \n",
    "    `os.environ[\"JAVA_HOME\"] = \"/opt/conda/envs/YOUR ENVIRONMENET NAME\"` "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "436b91f3-6338-4043-8742-496b354544aa",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "\n",
    "os.environ[\"JAVA_HOME\"] = (\n",
    "    \"/opt/conda/envs/YOUR ENVIRONMENET NAME\"  # TO DO: CHANGE THIS TO YOUR ENVIRONMENT NAME\n",
    ")\n",
    "import numpy as np\n",
    "import onnx\n",
    "import onnxruntime\n",
    "import requests\n",
    "import torch\n",
    "\n",
    "from pathml.core import SlideData, Tile\n",
    "from dask.distributed import Client\n",
    "from pathml.preprocessing import Pipeline\n",
    "import pathml.preprocessing.transforms as Transforms\n",
    "\n",
    "import matplotlib.pyplot as plt\n",
    "import matplotlib\n",
    "\n",
    "from PIL import Image"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "34e9fb8c-0148-4184-ba6b-cf5dae63a869",
   "metadata": {},
   "source": [
    "## ONNX Inference Class and ONNX Model Fixer\n",
    "\n",
    "- Here is the raw code for the functions that handle the initializers in the ONNX model and the classes that run the inference.\n",
    "\n",
    "### Functions to remove initializers and check that initializers have been removed.\n",
    "\n",
    "- `remove_initializer_from_input`\n",
    "    - This function removes any initializers from the input graph of the ONNX model.\n",
    "    - Without removing the initializers from the input graph, users will not be able to run inference.\n",
    "    - Adapted from the `onnxruntime` [github](https://github.com/microsoft/onnxruntime/blob/main/tools/python/remove_initializer_from_input.py).  \n",
    "    - Users specify:\n",
    "        - `model_path` (str): path to ONNX model,\n",
    "        - `new_path` (str): path to save adjusted model w/o initializers\n",
    "    - We will run this function on all models placed in our model zoo, so users will not have to run it unless they are working with their own local models.\n",
    "    \n",
    " <br> \n",
    " \n",
    "- `check_onnx_clean`\n",
    "    - Checks if the initializers are in the input graph\n",
    "    - Returns `True` and a `ValueError` if there are initializers in the input graph\n",
    "    - Adapted from the `onnxruntime` [github](https://github.com/microsoft/onnxruntime/blob/main/tools/python/remove_initializer_from_input.py). \n",
    "    - Users specify:\n",
    "        - `model_path` (str): path to ONNX model\n",
    "\n",
    " <br> \n",
    "\n",
    " - `convert_pytorch_onnx` \n",
    "    - Converts a PyTorch `.pt` file to `.onnx`\n",
    "    - Wrapper function of the [PyTorch](https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html) function to handle the conversion.\n",
    "    - Users specify:\n",
    "        - model_path (torch.nn.Module Model): Pytorch model to be converted,\n",
    "        - dummy_tensor (torch.tensor): dummy input tensor that is an example of what will be passed into the model,\n",
    "        - model_name (str): name of ONNX model created with .onnx at the end,\n",
    "        - opset_version (int): which opset version you want to use to export\n",
    "        - input_name (str): name assigned to dummy_tensor\n",
    "    - Note that the model class must be defined before loading the `.pt` file and set to eval before calling this function. \n",
    "\n",
    "### Inference Classes\n",
    "\n",
    "<br> \n",
    "\n",
    "- `InferenceBase`\n",
    "    - This class inherits from `pathml.preprocessing.transforms.transform`, similar to all of the preprocessing transformations. Inheriting from `transforms.transform` allows us to use the existing `Pipeline` function in PathML which users should be familar with.  \n",
    "    - This is the base class for all Inference classes for ONNX modeling\n",
    "    - Each instance of a class also comes with a `model_card` which specifies certain details of the model in dictionary form. The default parameters are:\n",
    "        -   ```python \n",
    "                self.model_card = {'name' : None, 'num_classes' : None,'model_type' : None, 'notes' : None, 'model_input_notes': None, 'model_output_notes' : None,'citation': None } \n",
    "            ``` \n",
    "       - Model cards are where important information about the model should be kept. Since they are in dictionary form, the user can add keys and values as they see fit. \n",
    "       - This class also has getter and setter functions to adjust the `model_card`. Certain functions include `get_model_card`, `set_name`, `set_num_classes`, etc. \n",
    " \n",
    "  <br> \n",
    "  \n",
    "- `Inference` \n",
    "    - This class is for when the user wants to use an ONNX model stored locally. \n",
    "    - Calls the `check_onnx_clean` function to check if the model is clean.\n",
    "    - Users specify:\n",
    "        - `model_path` (str): path to ONNX model,\n",
    "        - `input_name` (str): name of input for ONNX model, *defaults to `data`* \n",
    "        - `num_classes` (int): number of outcome classes, \n",
    "        - `model_type` (str): type of model (classification, segmentation) \n",
    "        - `local` (bool): if you are using a local model or a remote model, *defaults to `True`* \n",
    " \n",
    "  <br> \n",
    "  \n",
    "- `HaloAIInference`\n",
    "    - This class inherits from `Inference`\n",
    "    - HaloAI ONNX models always return 20 prediction maps: this class will subset and return the necessary ones. \n",
    "\n",
    "<br> \n",
    "\n",
    "- `RemoteTestHoverNet` \n",
    "    - This class inherits from `Inference` and is the test class for public models hosted on `HuggingFace`. \n",
    "    - `local` is automatically set to `False` \n",
    "    - Our current test model is a HoverNet from [TIAToolbox](https://github.com/TissueImageAnalytics/tiatoolbox)\n",
    "    - Pocock J, Graham S, Vu QD, Jahanifar M, Deshpande S, Hadjigeorghiou G, Shephard A, Bashir RM, Bilal M, Lu W, Epstein D. TIAToolbox as an end-to-end library for advanced tissue image analytics. Communications medicine. 2022 Sep 24;2(1):120.\n",
    "    - Its `model_card` is:\n",
    "        -   ```python \n",
    "                {'name': 'Tiabox HoverNet Test','num_classes': 5,'model_type': 'Segmentation','notes': None, 'model_input_notes': 'Accepts tiles of 256 x 256', 'model_output_notes': None, 'citation': 'Pocock J, Graham S, Vu QD, Jahanifar M, Deshpande S, Hadjigeorghiou G, Shephard A, Bashir RM, Bilal M, Lu W, Epstein D. TIAToolbox as an end-to-end library for advanced tissue image analytics. Communications medicine. 2022 Sep 24;2(1):120.'}\n",
    "             ```\n",
    "\n",
    "<br> \n",
    "\n",
    "- `RemoteMesmer` \n",
    "    - This class inherits from `Inference` and is hosted on `HuggingFace`. \n",
    "    - `local` is automatically set to `False` \n",
    "    - This model is from [Deepcell](https://github.com/vanvalenlab/deepcell-tf/blob/master/deepcell/applications/mesmer.py)\n",
    "    - Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65.\n",
    "    - Its `model_card` is:\n",
    "        -   ```python \n",
    "                {'name': \"Deepcell's Mesmer\", 'num_classes': 3, 'model_type': 'Segmentation','notes': None, 'model_input_notes': 'Accepts tiles of 256 x 256', 'model_output_notes': None, 'citation': 'Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65.'}\n",
    "            ```"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "8b28c79e-2453-42e5-9280-6c0d3ee082c0",
   "metadata": {},
   "source": [
    "## Try it Yourself!\n",
    "\n",
    "- What you need:\n",
    "    - An ONNX model stored locally\n",
    "    - An image with which you want to run inference stored locally\n",
    "    - PathML already downloaded \n",
    "\n",
    "- Make sure to define the `Inference` class and `remove_initializer_from_input` above in the previous seciton if you have not downloaded the latest version of PathML.\n",
    "\n",
    "- You will need to define the following variables: \n",
    "    - `slide_path`: 'PATH TO SLIDE'\n",
    "    - `model_path`: 'PATH TO ONNX MODEL'\n",
    "    - `new_path`: 'PATH TO SAVE FIXED ONNX MODEL'\n",
    "    - `num_classes`: 'NUMBER OF CLASSES IN YOUR DATASET'\n",
    "    - `tile_size`: 'TILE SIZE THAT YOUR ONNX MODEL ACCEPTS'\n",
    "    \n",
    "- The code in the cell below assumes you want the images passed in as is. If you need to select channels, you will need to add another `transform` method to do so before the inference transform. The following code provides an example if you want to subset into the first channel of an image. *Remember that PathML reads images in as XYZCT.* \n",
    "\n",
    "```python \n",
    "class convert_format(Transforms.Transform):\n",
    "    def F(self, image):\n",
    "        # orig = (1280, 1280, 1, 6, 1) = (XYZCT)\n",
    "        image = image[:, :, :, 0, ...] # this will make the tile (1280, 1280, 1, 1)\n",
    "        return image\n",
    "\n",
    "    def apply(self, tile):\n",
    "        tile.image = self.F(tile.image)\n",
    "        \n",
    "convert = convert_format()\n",
    "inference = Inference(\n",
    "    model_path = 'PATH TO LOCAL MODEL', \n",
    "    input_name = 'data', \n",
    "    num_classes = 'NUMBER OF CLASSES' , \n",
    "    model_type = 'CLASSIFICATION OR SEGMENTATION', \n",
    "    local = True)\n",
    "\n",
    "transformation_list = [convert, inference] \n",
    "\n",
    "```"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "afe45989",
   "metadata": {},
   "source": [
    "### Converting a Pytorch Model to ONNX Using the `convert_pytorch_onnx` Function\n",
    "\n",
    "Note the following:\n",
    "- Similar to PyTorch, you will need to define and create an instance of you model class before loading the `.pt` file. Then you will need to set it to eval mode before calling the conversion function. The code to do these steps is below."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "aa8f41f7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define your model class\n",
    "num_input, num_output, batch_size = 10, 1, 1\n",
    "\n",
    "\n",
    "class SimpleModel(torch.nn.Module):\n",
    "    def __init__(self):\n",
    "        super(SimpleModel, self).__init__()\n",
    "        self.linear = torch.nn.Linear(num_input, num_output)\n",
    "        torch.nn.init.xavier_uniform_(self.linear.weight)\n",
    "\n",
    "    def forward(self, x):\n",
    "        y = self.linear(x)\n",
    "        return y\n",
    "\n",
    "\n",
    "# Define your model var\n",
    "model = SimpleModel()\n",
    "\n",
    "# Export model as .pt if you haven't already done so\n",
    "# If you have already exported a .pt file, you will still need to define a model class, initialize it, and set it to eval mode.\n",
    "# If you saved your model using `torch.jit.script`, you will not need to define your model class and instead load it using `torch.jit.load` then set it to eval mode.\n",
    "torch.save(model, \"test.pt\")\n",
    "\n",
    "# Load .pt file\n",
    "model_test = torch.load(\"test.pt\")\n",
    "# Set model to eval mode\n",
    "model_test.eval()\n",
    "\n",
    "# Define a dummy tensor (this is an example of what the ONNX should expect during inference)\n",
    "x = torch.randn(batch_size, num_input)\n",
    "\n",
    "# Run conversion function\n",
    "convert_pytorch_onnx(\n",
    "    model=model_test, dummy_tensor=x, model_name=\"NAME_OF_OUTPUT_MODEL_HERE.onnx\"\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "bcdeaac3-80ae-4e67-8aa9-8f4c637a92eb",
   "metadata": {},
   "source": [
    "### Local ONNX Model Using the `Inference` Class"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0bc2f84e-e554-4770-aad9-c51fa1890ea6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define slide path\n",
    "slide_path = \"PATH TO SLIDE\"\n",
    "\n",
    "# Set path to model\n",
    "model_path = \"PATH TO ONNX MODEL\"\n",
    "# Define path to export fixed model\n",
    "new_path = \"PATH TO SAVE NEW ONNX MODEL\"\n",
    "\n",
    "\n",
    "# Fix the ONNX model\n",
    "remove_initializer_from_input(model_path, new_path)\n",
    "\n",
    "inference = Inference(\n",
    "    model_path=new_path,\n",
    "    input_name=\"data\",\n",
    "    num_classes=\"NUMBER OF CLASSES\",\n",
    "    model_type=\"CLASSIFICATION OR SEGMENTATION\",\n",
    "    local=True,\n",
    ")\n",
    "\n",
    "transformation_list = [inference]\n",
    "\n",
    "# Initialize pathml.core.slide_data.SlideData object\n",
    "wsi = SlideData(slide_path)\n",
    "\n",
    "# Set up PathML pipeline\n",
    "pipeline = Pipeline(transformation_list)\n",
    "\n",
    "# Run Inference\n",
    "# Level is equal to 0 for highest resolution (Note that this is the default setting)\n",
    "wsi.run(pipeline, tile_size=\"TILE SIZE THAT YOUR ONNX MODEL ACCEPTS\", level=0)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "bc7902dc-0113-4604-abe4-6f3a8588c0b5",
   "metadata": {},
   "source": [
    "### Local ONNX Model Using the `HaloAIInference` Class"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d2eedbf1-be61-440e-a044-6dce4c8de04e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define slide path\n",
    "slide_path = \"PATH TO SLIDE\"\n",
    "\n",
    "# Set path to model\n",
    "model_path = \"PATH TO ONNX MODEL\"\n",
    "# Define path to export fixed model\n",
    "new_path = \"PATH TO SAVE NEW ONNX MODEL\"\n",
    "\n",
    "\n",
    "# Fix the ONNX model\n",
    "remove_initializer_from_input(model_path, new_path)\n",
    "\n",
    "inference = HaloAIInference(\n",
    "    model_path=new_path,\n",
    "    input_name=\"data\",\n",
    "    num_classes=\"NUMBER OF CLASSES\",\n",
    "    model_type=\"CLASSIFICATION OR SEGMENTATION\",\n",
    "    local=True,\n",
    ")\n",
    "\n",
    "transformation_list = [inference]\n",
    "\n",
    "# Initialize pathml.core.slide_data.SlideData object\n",
    "wsi = SlideData(slide_path)\n",
    "\n",
    "# Set up PathML pipeline\n",
    "pipeline = Pipeline(transformation_list)\n",
    "\n",
    "# Run Inference\n",
    "# Level is equal to 0 for highest resolution (Note that this is the default setting)\n",
    "wsi.run(pipeline, tile_size=\"TILE SIZE THAT YOUR ONNX MODEL ACCEPTS\", level=0)"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "431abad0-10ff-44fe-ba56-eb6402ce8e4c",
   "metadata": {},
   "source": [
    "### Remote ONNX Using our `RemoteTestHoverNet` Class\n",
    "- Uses a Hovernet from [TIAToolbox](https://github.com/TissueImageAnalytics/tiatoolbox) \n",
    "- This version of Hovernet was trained on the [MoNuSAC](https://monusac-2020.grand-challenge.org/) dataset.\n",
    "- Note that the purpose of this model is to illustrate how PathML will handle future remote models. We plan on release more public models to our model zoo on HuggingFace in the future.\n",
    "- Citation for model:\n",
    "    - Pocock J, Graham S, Vu QD, Jahanifar M, Deshpande S, Hadjigeorghiou G, Shephard A, Bashir RM, Bilal M, Lu W, Epstein D. TIAToolbox as an end-to-end library for advanced tissue image analytics. Communications medicine. 2022 Sep 24;2(1):120.\n",
    "- Make sure your image has 3 channels! \n",
    "- When the `RemoteTestHoverNet` is first initialized, it downloads the HoverNet from HuggingFace and saves it locally on your own system as `temp.onnx`. \n",
    "    - **You will need to remove it manually by calling the `remove()` method** An example of how to call this method is in the last line in the code below. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8976d60b-6e78-42ca-a52d-489911e580f4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define slide path\n",
    "slide_path = \"PATH TO SLIDE\"\n",
    "\n",
    "inference = RemoteTestHoverNet()\n",
    "\n",
    "# Create a transformation list\n",
    "transformation_list = [inference]\n",
    "\n",
    "# Initialize pathml.core.slide_data.SlideData object\n",
    "wsi = SlideData(slide_path)\n",
    "\n",
    "# Set up PathML pipeline\n",
    "pipeline = Pipeline(transformation_list)\n",
    "\n",
    "# Run Inference\n",
    "wsi.run(pipeline, tile_size=256)\n",
    "\n",
    "# DELETE ONNX MODEL DOWNLOADED FROM HUGGINGFACE\n",
    "inference.remove()"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "318ae957-73d8-4c7f-b87c-b012750eda10",
   "metadata": {},
   "source": [
    "## Iterate over the tiles\n",
    "\n",
    "Now that you have your tiles saved to your SlideData object, you can now iterate over them.\n",
    "\n",
    "For example, if you wanted to check the shape of the tiles you could run the following code: \n",
    "\n",
    "```python\n",
    "for tile in wsi.tiles: \n",
    "    print(tile.image.shape) \n",
    "```\n",
    "\n",
    "To see how to use these tiles to make visualizations, see below."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "251a9099-8e6f-4e4c-b685-7087191fe9fe",
   "metadata": {},
   "source": [
    "## Full Example With Vizualization of Output\n",
    "\n",
    "The `RemoteTestHoverNet()` uses a pretrained HoverNet from TIAToolBox trained on the [MoNuSAC](https://monusac-2020.grand-challenge.org/) dataset. **The model was trained to accept tiles of 256x256 to create a prediction matrix of size 164x164 with 9 channels.** The first 5 channels correspond to the Nuclei Types (TP), the next two channels correspond to the Nuclei Pixels (NP), and the last two channels correspond to the Hover (HV). The documention for these channels can be found here on TIAToolBox's [website](https://tia-toolbox.readthedocs.io/en/v1.0.1/_modules/tiatoolbox/models/architecture/hovernet.html#HoVerNet.infer_batch).  \n",
    "\n",
    "In this example we use an taken from the [MoNuSAC](https://monusac-2020.grand-challenge.org/) dataset. See citation in the `References` section."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "925d4ebd-3803-409a-82be-780115ffb152",
   "metadata": {},
   "source": [
    "### Run Code as Demonstrated Above\n",
    "\n",
    "Note that to run the following code, you will need to download and save the image titled `TCGA-5P-A9K0-01Z-00-DX1_1.svs` in the same directory as the notebook."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "23951050-b47f-4b38-b0b6-786081fc69f0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define slide path\n",
    "slide_path = \"TCGA-5P-A9K0-01Z-00-DX1_1.svs\"\n",
    "\n",
    "inference = RemoteTestHoverNet()\n",
    "\n",
    "# Create a transformation list\n",
    "transformation_list = [inference]\n",
    "\n",
    "# Initialize pathml.core.slide_data.SlideData object\n",
    "wsi = SlideData(slide_path)\n",
    "\n",
    "# Set up PathML pipeline\n",
    "pipeline = Pipeline(transformation_list)\n",
    "\n",
    "# Run Inference\n",
    "wsi.run(pipeline, tile_size=256, tile_stride=164, tile_pad=True)\n",
    "\n",
    "# DELETE ONNX MODEL DOWNLOADED FROM HUGGINGFACE\n",
    "inference.remove()"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "2921a180-20bc-4ce1-960d-7005892f4585",
   "metadata": {},
   "source": [
    "Let's look at the first tile which comes from the top left corner (0,0) and Nucleus Pixel predictions."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a607bb7d-de3e-4444-8829-75d7da9505fb",
   "metadata": {},
   "outputs": [],
   "source": [
    "for tile in wsi.tiles:\n",
    "    # Create empty numpy array\n",
    "    a = np.empty((2, 164, 164), dtype=object)\n",
    "    # Get Nucleus Predictions\n",
    "    classes = tile.image[0, 5:7, :, :]\n",
    "    a = classes\n",
    "    # Take the argmax to make the predictions binary\n",
    "    image = np.argmax(a, axis=0)\n",
    "    # Multiple values by 255 to make the array image friendly\n",
    "    image = image * (255 / 1)\n",
    "    # Make a grey scale image\n",
    "    img = Image.fromarray(image.astype(\"uint8\"), \"L\")\n",
    "    # Save Image\n",
    "    img.save(\"test_array_1.png\")\n",
    "    # Can break after one iteration since we are using at the tile at (0, 0).\n",
    "    break"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "aa6fbb49-7173-4a65-9b1f-e7b90a5228c5",
   "metadata": {},
   "source": [
    "Lets visualize the tile vs the tile predictions. Since the model uses a 256x256 tile to create a prediction map of size 164x164, we need to take our tile located at (0,0) and crop it down to the center 164x164 pixes. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "e29e98f3-c04c-4d77-8681-c837181bf415",
   "metadata": {},
   "outputs": [],
   "source": [
    "prediction_dim = 164\n",
    "tile_dim = 256\n",
    "crop_amount = int((256 - 164) / 2)\n",
    "wsi = SlideData(slide_path)\n",
    "\n",
    "generator = wsi.generate_tiles(shape=(tile_dim, tile_dim), level=0)\n",
    "\n",
    "for tile in generator:\n",
    "    # Extract array from tile\n",
    "    image = tile.image\n",
    "    # Crop tile\n",
    "    image = image[\n",
    "        crop_amount : crop_amount + prediction_dim,\n",
    "        crop_amount : crop_amount + prediction_dim,\n",
    "    ]\n",
    "    # Convert array to image\n",
    "    img = Image.fromarray(image)\n",
    "    # Save Image\n",
    "    img.save(\"raw_tile.png\")\n",
    "    break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "98ab9eb0-455d-4353-b760-3d65820e81de",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABB0AAAIlCAYAAACZ/IBkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9ebQlWVmm/0XEOfdm1ggFBcjQVYCAYJcgICIICrqapQyCAjJIMwmorUg3sH4oAqKgKE2DogjYTMqwkEEEEWccWKg4Y8tCAasQCqgpK+d77zkRsX9/ZObZz7fP/m7em5WnJt7HxXKfODHs2LEjzs2o9/3eJqWUTAghhBBCCCGEEOI0017XHRBCCCGEEEIIIcSNE710EEIIIYQQQgghxErQSwchhBBCCCGEEEKsBL10EEIIIYQQQgghxErQSwchhBBCCCGEEEKsBL10EEIIIYQQQgghxErQSwchhBBCCCGEEEKsBL10EEIIIYQQQgghxErQSwchhBBCCCGEEEKsBL10EOI64qd/+qetaZpT2vatb32rNU1jl1xyyentFLjkkkusaRp761vfurJjCCGEEGJnNE1jP/3TP73r7W5Iv+ff/u3fbt/+7d+++LyKvl944YX2lKc85bTtTwhxcvTSQYhd8q//+q/2Az/wA3ab29zG1tfX7da3vrU98YlPtH/913+9rrt2nfBnf/Zn1jSNvfe9772uuyKEEEKslBMv/ZumsY997GNL36eU7Ha3u501TWMPe9jDroMenjonfs9P/G86ndod7nAH++///b/bf/zHf1zX3dsVH//4x+2nf/qnbf/+/dd1V4QQppcOQuyK97///XbPe97T/uRP/sSe+tSn2ute9zp7+tOfbh/96Eftnve8p/32b//2jvf1Uz/1U7axsXFK/XjSk55kGxsbdsEFF5zS9kIIIYQ4dfbs2WPvfOc7l5b/+Z//uX3xi1+09fX166BXp4dnP/vZ9pu/+Zv2xje+0R760Ifau9/9bvumb/om+9KXvnSt9+WCCy6wjY0Ne9KTnrSr7T7+8Y/bS1/60upLh3/7t3+zX//1Xz9NPRRC7ITJdd0BIW4ofO5zn7MnPelJdoc73MH+4i/+ws4///zFdz/+4z9uD3jAA+xJT3qSffKTn7Q73OEO4X6OHDliZ555pk0mE5tMTu0W7LrOuq47pW2FEEIIcc347u/+bnvPe95jv/zLv+x+y9/5znfave51L7vyyiuvw95dMx7wgAfYox/9aDMze+pTn2p3vvOd7dnPfra97W1vs5/4iZ+obnPib5vTTdM0tmfPntO6zxvyCyEhbqhI6SDEDnnlK19pR48etTe+8Y3uhYOZ2c1vfnN7wxveYEeOHLFf/MVfXCw/UbfhU5/6lD3hCU+wm970pvat3/qt7juysbFhz372s+3mN7+5nX322faIRzzCLr300iUfZ62mw4UXXmgPe9jD7GMf+5jd5z73sT179tgd7nAH+43f+A13jH379tnznvc8u+iii+yss86yc845x77ru77L/vmf//k0jVQ+t3//93+3H/iBH7Bzzz3Xzj//fHvRi15kKSX7whe+YN/zPd9j55xzjt3qVreyV73qVW772WxmL37xi+1e97qXnXvuuXbmmWfaAx7wAPvoRz+6dKyrrrrKnvSkJ9k555xjN7nJTezJT36y/fM//3PVA/rpT3/aHv3oR9t5551ne/bssXvf+972wQ9+8LSdtxBCiK8OHv/4x9tVV11lf/RHf7RYNpvN7L3vfa894QlPqG5z5MgRe+5zn2u3u93tbH193e5yl7vY//7f/9tSSm69ra0t+5//83/a+eefv/hb4Itf/GJ1n5deeqk97WlPs1ve8pa2vr5uX//1X29vfvObT9+JmtmDH/xgMzO7+OKLzWz7v23MzN7+9rfbve51L9u7d6+dd9559rjHPc6+8IUvLO33jW98o93xjne0vXv32n3ucx/7y7/8y6V1opoOn/70p+2xj32snX/++bZ37167y13uYi984QsX/Xv+859vZma3v/3tF3aRE38z1Wo6/Md//Ic95jGPsfPOO8/OOOMMu+9972sf/vCH3Ton7Ce/9Vu/ZS9/+cvttre9re3Zs8e+4zu+wz772c+6dT/zmc/Y933f99mtbnUr27Nnj932tre1xz3ucXbgwIGTjLYQN06kdBBih3zoQx+yCy+80B7wgAdUv3/gAx9oF1544dKPlJnZYx7zGLvTne5kP/dzP7f0xwV5ylOeYr/1W79lT3rSk+y+972v/fmf/7k99KEP3XEfP/vZz9qjH/1oe/rTn25PfvKT7c1vfrM95SlPsXvd61729V//9WZ27If1Ax/4gD3mMY+x29/+9nbZZZfZG97wBvu2b/s2+9SnPmW3vvWtd3y8k/H93//9dte73tVe8YpX2Ic//GF72cteZuedd5694Q1vsAc/+MH2C7/wC/aOd7zDnve859k3fdM32QMf+EAzMzt48KD93//7f+3xj3+8PeMZz7BDhw7Zm970JnvIQx5in/jEJ+we97iHmZmN42gPf/jD7ROf+IT98A//sH3d132d/c7v/I49+clPXurLv/7rv9r9739/u81tbmMveMEL7Mwzz7Tf+q3fskc+8pH2vve9zx71qEedtvMWQghx4+bCCy+0b/mWb7F3vetd9l3f9V1mZvaRj3zEDhw4YI973OPsl3/5l936KSV7xCMeYR/96Eft6U9/ut3jHvewP/iDP7DnP//5dumll9qrX/3qxbo/+IM/aG9/+9vtCU94gt3vfvezP/3TP63+LXDZZZfZfe97X2uaxn70R3/Uzj//fPvIRz5iT3/60+3gwYP2nOc857Sc6+c+9zkzM7vZzW7mltf+tnn5y19uL3rRi+yxj32s/eAP/qBdccUV9trXvtYe+MAH2j/+4z/aTW5yEzMze9Ob3mTPetaz7H73u5895znPsf/4j/+wRzziEXbeeefZ7W53u23788lPftIe8IAH2HQ6tWc+85l24YUX2uc+9zn70Ic+ZC9/+cvte7/3e+3f//3f7V3vepe9+tWvtpvf/OZmZkv/wegEl112md3vfvezo0eP2rOf/Wy72c1uZm9729vsEY94hL33ve9d+vvgFa94hbVta8973vPswIED9ou/+Iv2xCc+0f7mb/7GzI69fHrIQx5iW1tb9mM/9mN2q1vdyi699FL73d/9Xdu/f7+de+65u7sAQtwYSEKIk7J///5kZul7vud7tl3vEY94RDKzdPDgwZRSSi95yUuSmaXHP/7xS+ue+O4Ef//3f5/MLD3nOc9x6z3lKU9JZpZe8pKXLJa95S1vSWaWLr744sWyCy64IJlZ+ou/+IvFsssvvzytr6+n5z73uYtlm5ubaRgGd4yLL744ra+vp5/5mZ9xy8wsveUtb9n2nD/60Y8mM0vvec97ls7tmc985mJZ3/fptre9bWqaJr3iFa9YLL/66qvT3r1705Of/GS37tbWljvO1VdfnW55y1umpz3taYtl73vf+5KZpde85jWLZcMwpAc/+MFLff+O7/iOdNFFF6XNzc3FsnEc0/3ud790pzvdadtzFEIIIVLKv79/+7d/m37lV34lnX322eno0aMppZQe85jHpAc96EEppWO/yQ996EMX233gAx9IZpZe9rKXuf09+tGPTk3TpM9+9rMppZT+6Z/+KZlZ+pEf+RG33hOe8ISlvwWe/vSnp6/5mq9JV155pVv3cY97XDr33HMX/drt7/mb3/zmdMUVV6QvfelL6cMf/nC68MILU9M06W//9m9TSvHfNpdccknqui69/OUvd8v/5V/+JU0mk8Xy2WyWbnGLW6R73OMe7rf+jW98YzKz9G3f9m2LZbW+P/CBD0xnn312+vznP++OM47jov3KV75y6e+kE1xwwQXub47nPOc5yczSX/7lXy6WHTp0KN3+9rdPF1544eJvphPjc9e73tX1+5d+6ZeSmaV/+Zd/SSml9I//+I9LfxcJ8dWO7BVC7IBDhw6ZmdnZZ5+97Xonvj948KBb/kM/9EMnPcbv//7vm5nZj/zIj7jlP/ZjP7bjft7tbndzSozzzz/f7nKXu7iq0+vr69a2x279YRjsqquusrPOOsvucpe72D/8wz/s+Fg74Qd/8AcX7a7r7N73vrellOzpT3/6YvlNbnKTpT52XWdra2tmdkzNsG/fPuv73u5973u7Pv7+7/++TadTe8YznrFY1rat/Y//8T9cP/bt22d/+qd/ao997GPt0KFDduWVV9qVV15pV111lT3kIQ+xz3zmM3bppZee1nMXQghx4+axj32sbWxs2O/+7u/aoUOH7Hd/93dDa8Xv/d7vWdd19uxnP9stf+5zn2spJfvIRz6yWM/MltYrVQspJXvf+95nD3/4wy2ltPhdu/LKK+0hD3mIHThw4JR/05/2tKfZ+eefb7e+9a3toQ99qB05csTe9ra32b3vfW+3Xvm3zfvf/34bx9Ee+9jHuv7c6la3sjvd6U4Li+Tf/d3f2eWXX24/9EM/tPitNzum9jyZCuCKK66wv/iLv7CnPe1p9l/+y39x351qDPnv/d7v2X3ucx9nETnrrLPsmc98pl1yySX2qU99yq3/1Kc+1fX7xN9dJ/6OOXEOf/AHf2BHjx49pT4JcWND9gohdsCJlwknXj5ERC8nbn/725/0GJ///Oetbduldb/2a792x/0sf4DNzG5605va1Vdfvfg8jqP90i/9kr3uda+ziy++2IZhWHxXSievKWV/zj33XNuzZ89C6sjlV111lVv2tre9zV71qlfZpz/9aZvP54vlHJ/Pf/7z9jVf8zV2xhlnuG3LMfvsZz9rKSV70YteZC960Yuqfb388svtNre5zc5PTgghxFc1559/vn3nd36nvfOd77SjR4/aMAyLAowln//85+3Wt7710t8Hd73rXRffn/j/bdvaHe94R7feXe5yF/f5iiuusP3799sb3/hGe+Mb31g95uWXX35K5/XiF7/YHvCAB1jXdXbzm9/c7nrXu1YLX5d/r3zmM5+xlJLd6U53qu53Op2aWT7Xcr0TEZ3bceIf9v/1v/7XnZ3MDvj85z9v3/zN37y0nNeGxyv/trnpTW9qZrb4W+v2t7+9/a//9b/s//yf/2PveMc77AEPeIA94hGPWNS4EuKrEb10EGIHnHvuufY1X/M19slPfnLb9T75yU/abW5zGzvnnHPc8r17966yewuiRIuEOhI/93M/Zy960YvsaU97mv3sz/6snXfeeda2rT3nOc+xcRxX3p+d9PHtb3+7PeUpT7FHPvKR9vznP99ucYtbWNd19vM///MLb+luOHFez3ve8+whD3lIdZ3dvNwRQgghzMye8IQn2DOe8Qz7yle+Yt/1Xd+1qFmwak78rv3AD/xAtY6Rmdk3fMM3nNK+L7roIvvO7/zOk65X/m0zjqM1TWMf+chHqr/1Z5111in15/rGTv6OedWrXmVPecpT7Hd+53fsD//wD+3Zz362/fzP/7z99V//td32tre9troqxPUGvXQQYoc87GEPs1//9V+3j33sY06Cd4K//Mu/tEsuucSe9axnndL+L7jgAhvH0S6++GL39r+siHxNee9732sPetCD7E1vepNbvn///iUFwnXFe9/7XrvDHe5g73//+51c8iUveYlb74ILLrCPfvSjdvToUad2KMfsxH85mU6nO/pDSgghhNgJj3rUo+xZz3qW/fVf/7W9+93vDte74IIL7I//+I/t0KFDTu3w6U9/evH9if8/jqN97nOfc+qGf/u3f3P7O5FsMQzD9eZ37Y53vKOllOz2t7+93fnOdw7XO3Gun/nMZxbJGGZm8/ncLr74Yrv73e8ebnvi9/z//b//t21fdmO1uOCCC5bG12z52uyWiy66yC666CL7qZ/6Kfv4xz9u97///e31r3+9vexlLzul/QlxQ0Y1HYTYIc9//vNt79699qxnPWvJCrBv3z77oR/6ITvjjDMWMU275cR/gX/d617nlr/2ta89tQ4HdF23lKDxnve853pV0+DEf0VgP//mb/7G/uqv/sqt95CHPMTm87n9+q//+mLZOI72q7/6q269W9ziFvbt3/7t9oY3vMG+/OUvLx3viiuuOJ3dF0II8VXCWWedZb/2a79mP/3TP20Pf/jDw/W++7u/24ZhsF/5lV9xy1/96ldb0zSLBIwT/79Mv3jNa17jPnddZ9/3fd9n73vf+6r/AL8ufte+93u/17qus5e+9KVLf2eklBZ/O9373ve2888/317/+tfbbDZbrPPWt77V9u/fv+0xzj//fHvgAx9ob37zm+0///M/l45xgjPPPNPM7KT7Mzt2bT7xiU+4vzGOHDlib3zjG+3CCy+0u93tbifdBzl48KD1fe+WXXTRRda2rW1tbe1qX0LcWJDSQYgdcqc73cne9ra32ROf+ES76KKL7OlPf7rd/va3t0suucTe9KY32ZVXXmnvete7lnyYO+Ve97qXfd/3fZ+95jWvsauuumoRmfnv//7vZnbqBZJKHvawh9nP/MzP2FOf+lS73/3uZ//yL/9i73jHO07qo7w2edjDHmbvf//77VGPepQ99KEPtYsvvthe//rX293udjc7fPjwYr1HPvKRdp/73Mee+9zn2mc/+1n7uq/7OvvgBz9o+/btMzM/Zr/6q79q3/qt32oXXXSRPeMZz7A73OEOdtlll9lf/dVf2Re/+EX753/+52v9PIUQQtzwiewN5OEPf7g96EEPshe+8IV2ySWX2N3vfnf7wz/8Q/ud3/kde85znrP42+Ee97iHPf7xj7fXve51duDAAbvf/e5nf/Inf1JVPb7iFa+wj370o/bN3/zN9oxnPMPudre72b59++wf/uEf7I//+I8Xv4XXFne84x3tZS97mf3ET/yEXXLJJfbIRz7Szj77bLv44ovtt3/7t+2Zz3ymPe95z7PpdGove9nL7FnPepY9+MEPtu///u+3iy++2N7ylrfs6G+RX/7lX7Zv/dZvtXve8572zGc+c/G32Ic//GH7p3/6JzM79jeVmdkLX/hCe9zjHmfT6dQe/vCHL15GkBe84AWL6NNnP/vZdt5559nb3vY2u/jii+1973vfovj2TvnTP/1T+9Ef/VF7zGMeY3e+852t73v7zd/8zcWLIiG+GtFLByF2wWMe8xj7uq/7Ovv5n//5xYuGm93sZvagBz3IfvInf/IaFzb6jd/4DbvVrW5l73rXu+y3f/u37Tu/8zvt3e9+t93lLnexPXv2nJZz+Mmf/Ek7cuSIvfOd77R3v/vdds973tM+/OEP2wte8ILTsv/TwVOe8hT7yle+Ym94wxvsD/7gD+xud7ubvf3tb7f3vOc99md/9meL9bqusw9/+MP24z/+4/a2t73N2ra1Rz3qUfaSl7zE7n//+7sxu9vd7mZ/93d/Zy996UvtrW99q1111VV2i1vcwr7xG7/RXvziF18HZymEEOKrhbZt7YMf/KC9+MUvtne/+932lre8xS688EJ75Stfac997nPdum9+85vt/PPPt3e84x32gQ98wB784Afbhz/8Ybvd7W7n1rvlLW9pn/jEJ+xnfuZn7P3vf7+97nWvs5vd7Gb29V//9fYLv/AL1+bpLXjBC15gd77zne3Vr361vfSlLzUzs9vd7nb23/7bf7NHPOIRi/We+cxn2jAM9spXvtKe//zn20UXXWQf/OAHw2LP5O53v7v99V//tb3oRS+yX/u1X7PNzU274IIL7LGPfexinW/6pm+yn/3Zn7XXv/719vu///sL+2rtpcMtb3lL+/jHP27/3//3/9lrX/ta29zctG/4hm+wD33oQ/bQhz5012Nw97vf3R7ykIfYhz70Ibv00kvtjDPOsLvf/e72kY98xO573/vuen9C3BhoUql/EkJcr/inf/on+8Zv/EZ7+9vfbk984hOv6+7cIPjABz5gj3rUo+xjH/uY3f/+97+uuyOEEEIIIcRXLarpIMT1iI2NjaVlr3nNa6xtW3vgAx94HfTo+k85ZsMw2Gtf+1o755xz7J73vOd11CshhBBCCCGEmewVQlyv+MVf/EX7+7//e3vQgx5kk8nEPvKRj9hHPvIRe+Yzn7kkqxTH+LEf+zHb2Niwb/mWb7GtrS17//vfbx//+Mft537u5661qFIhhBBCCCFEHdkrhLge8Ud/9Ef20pe+1D71qU/Z4cOH7b/8l/9iT3rSk+yFL3yhTSZ6R1jjne98p73qVa+yz372s7a5uWlf+7Vfaz/8wz9sP/qjP3pdd00IIYQQQoivevTSQQghhBBCCCGEECtBNR2EEEIIIYQQQgixEvTSQQghhBBCCCGEECthRybxcRztS1/6kp199tnWNM2q+ySEEEKIa5mUkh06dMhufetbW9te8/8mob8dhBBCiBs3O/3bYUcvHb70pS+pcr4QQgjxVcAXvvAFu+1tb3uN96O/HYQQQoivDk72t8OOXjqcffbZZmb2n/95iZ1zzjnbrFn/Lxmn9b9vnMb/WhJV0Nz9EVLQri8el77KR2ya/IaoGbDOgbzV7PKji/bl//6lRfvKz+R2OjJftCd93k+HfRqWm5kdObKxaB88nNtHN2eL9sYstw8fyv3Y2tjMx2jztFqfri/aa9NpXqfrFu3NrS3Xj83NfOxxzOfNcePyfsjt+ZBPqu/zGGyh37M+rzPywhQXfsTn1KRgOTbA3Gza3O6wygRvAM+Yri3aZ+45Y9G+ybnnuX6cdda5i/a8z+d6GNfryquvXrQv23dlXmcrr7PR5zHocfF5brMxj1mf/ARxY4UXmfwvmO6/ZrrbAutg4w6rt10+t67lRDVLaQtt9H3kG1XcOynPtbbJ47zW5XHe0525aK9PcrTmmeu4Fufk+WtmdlN8PmNvPsGz9uQTOe+cm+T22flanrv37OrxZpjvG5tHcr8xcbqJf3PcuIHL3/UJ9wVqBPO6TDA319byOE1xfybsc8Chh9Y/38YJ5vl67vDa2WvYJl+vm9/65nmdW+fxmN4yj3lax72GedokDMicd5WZbeZ+zPfnObx5WX5GXfKPn12091+Me+TS/fkcZvnY0yYfo2W95SHPzTT4p3nC82fo83o9njmzrU20cU/ieTUOfv6foIl+K4r1WB96THlffG4OWN4fX745zuzFl79l8Zt/TTld+xFCrJ4DBw5c11240XDuueeefCUhbmSc7Dd/Ry8dTvzBes455+ilw0n3tKKXDvjHxOxovmwbZxxctDf35H9EJfwBO+E/Xvi3bFf0dZ77MUyxfMAOxtweJrlP+PvcJnzpMMFLh0n+hwhfOjRDMeId/4EfvHTA8h7fdJbPe85/kLZ8IYB/UF3LLx2m+JfkepfHY0+Xx2kv/kFqZnbGFP9Axbn2uHvXu/wP17U272uKSdSjr/yHvxtjNwZ+QKIXNOFLB8cOXjqgH13j/5GdcN7+XQbXw5wyvnTAP6zxAmLa4mUExozt9W6P68eeCa9T7sneaT6RM9by9TprLf9j+qz1fH/uwTXeShiPMe/TvXSYli8dOLejlw64P91Lh7w+XzqwHb106Ld76bAHc3tvHie+dDjnzPyDtHYWXjqcg2fXqbx0wPjP8exbO5zXOwvPx/lafhkxTvMLrQ7/WF/jS4eRcx8vHRr/NB8bvHQw3HsWvATGDdDjecUXBeQav3Sw4KVD8at0uqwQslQIccNh+7/vhRBie072m7+jlw47h3+QruiPDf4Xp9P6B02qtIqzCMNF2adgpW3+Mef/5RocgS8txvzH4oA/sPthjpXyOh0uc4M/pMvJ0eEfBy3/oOVq+EO1wR/cLc478Y9Z/Nd19pt/MM/m6LeZbeHzgP/i17t2X10+cGxSvc1/ZPNSjMVl6LGvOY+R+CIE7cQ5lNv4d5lNcd7zWf5H3nye/+vnWKTYbm7mfxT1eHOwuZnHaQOqh36Of/jgHPw/PvIx+M+blPgPn+If/pzb7iZpqov5qeE/alJ9zLhxKv5xy5cIlibumwz+IcqXEU1en/929Nc3z9PNed726IafFGs4dMILOBvyF90A5c5m/i9HW3vydTl7T37pcMbe/GLjJufk/zrSo09bc68GYt/5D98RLwsavLXgf+GejfhXb/QCDfsZ8QItdX5O8Nq32NnAZ1HHl1pY3vB5UH/+JnSKCqq2KX66cL0PHjy0aF/1pSsW7au/ktUNWwfyOlOohzoej/9w7/nMze22eJa3eNYmTDa8i7AWD5oJ+t1NsC2VLSOfrVHbdcO9pCN8GWp4iXPixXdnXbmJEGLFpECVdm0fW5w+ynHVC1ghlF4hhBBCCCGEEEKIFaGXDkIIIYQQQgghhFgJp9leQa7/VosmsFREhyi+2cERdlg1oql/41wNlPrSQgCpNCXNjZPk8jLTNlG+cwrk6UHNig5S3Qk85wPkynNnr8h7GdC/fvRS4Dnky/Rnz2G74HIWaRtpAXBycZxB0C4FyezXHOPcu/Gve6R5vTqMGcpmWN/Di097Re97srmRx9BGWDJQ9G5rlrdPY11aTfm8czUEbUvl/KiPbXyn85ux2na2IRabHL3Mu8HcpLTeSRZZWyLwvrMGBK/dHJ57nvXRTXOwBoUN2RbRoi5JM0NBwI1cGLI5O6+zDpvTGoquoNSJs+iU0kwWGpzjPFoUg2y73OYzg9Yk3i+s3cC6J7RasD6GmVkbPOJms2wHWVunjN/5DHDAatOakfYN2lmKuYlb5NBVuc7N5V/4yqJ94PJ9i3Z3OF+jvbAZ0F7BR0mPe7Kf57GctH6eTmhfw/3Ddsd1YKloXHVWWFJQrJJ2M86BoShoSfuUe5I39V+YE6dd1lIRQlwzdmtfiNaXPF8IcUNHf2EIIYQQQgghhBBiJeilgxBCCCGEEEIIIVbCCu0VpJSLrUAmlgJZ/aqOQcLjXbOO+IAASK2pwg38GJRHt3i3lCBLHorTGcdUbfuhjeIRc5vb9rBKUPU/Yv15IQ3m5xk6ORvr7Tn6x3PydoJlKXHZqTH5fgwuIQM2FqYvcMx8liM/5KZLgHCZqHmVxmv6R1gN2pRjHgdcS2cxcVGJdTvM6GwNQeRrqts0ytWi+6Jx6RWB9cEdj3MujvBLzNtwsYEnvzFGFymZx4xJA2wvpxPU0xooS0dYg62hT1uwXWxuZT/AmWflJIvpnnx9nXehiJXtt/DdjOPBa8+YUc5zWC3cRMChW9g0YCFoJ0W6AewBGzMmgORIynPPQhwm0xOYs0v7DG0UuF5pA/f8fn+PbFyWbSz7P59TKg588aq8zUFYkDZhK4GFo6P9jNfaWX/ie4QJOKNLjqlbSVpnd6vfLy5hxwKWHHv17f2tWvnNlIJbiB1xbac+yHZxw+a6TCgR4vqClA5CCCGEEEIIIYRYCXrpIIQQQgghhBBCiJVwWu0VOxcM7TDV4VQ5heCMQAy/s2O4HVE6vtN9MkWjHgvgZPIdrBMTyHNdm/vJy8cesuIiJWE2sMI9LQRYqQnk0UwFgIyMSRQ8tyhFwMxsHlTmn2OdGfrBdk9FurNzsF2X8afEI5gZ5PdO5u0cAZT91+X9CXL2ET3p2SsmEPRFP1Caf+LmRx5/JmfwbKlmn+AD1d7jQFn3WG0fOw+eeG42VI4z9ABj0Lr7op6Mwv2n8tjOqsG7iftCKkB099FNEKR88Hy2igdIh/OYwsK0DpvBHkRQ8Ai8p2iH4f3S4N7u1hmzUtgrWtpEkFrjbklcyxb3IZYPLu0lH2+K50e7nq0W3TrsH2bWrOXz3tzcWLQ30KezeO07/OSgs7R9NUx3yCEYNjuQPxz5Uk6oMDO7+pJsozjw+Svyepfl9cYNpD1gv7wPO1haWtwvzlbj3BW878wGo3WFlidaYGjf4bwGO4qXAaVcl4/pYJNrWx4uxA2R6/t9Itm+EOKGgpQOQgghhBBCCCGEWAl66SCEEEIIIYQQQoiVcEr2itUJuOoy6Pjgq+mJF2ZHfap7OHyPIqtFeXKRrJxS37y0g41iMs1S5A7thOr2wxxSbFTQnx3Nsn0zs6NHszx6C9X1KQunnYBV7btJlmA3DaXj+XjuzCAJnBXpFVuwZMxGWi0oXYZUGtLlOSvzu6SCekoFK8yXlegpfW6jmBBnd6i/wxsjCwHbrGg/eMk2xzO1+ZbtnF2lnlQQ2SWaFLTd+n6etju4PynldukOLe+FuvVhbHiN/AEaF6FSn4+NG2esHly7KOGlxfLC1WA9LBlMfqBTydmIsF+GHtBCtAFbwnQzX98z13OqxeSMfH+Zma116/nYmB9jcGGS99nk9bl8mpev7c02iukZuR/dxNsr3B3T0Q6Snw2TtdzXtfUz8uqWzylt4NoPePYcyj6Iw7BK7P/PbKcwM9v/+fx567JD+YvDeWxo1RjxTNyCjYp2tQmTOphogpMeCntFP57cXuHvK0ijMbcS2oOzuvE+j2XfLu2F8z+wFAkhMtd3S8XpxD0rvorO+7pElhjx1YqUDkIIIYQQQgghhFgJeukghBBCCCGEEEKIlaCXDkIIIYQQQgghhFgJu6rp0NgKqijs1kLmSimk6mK/PjzcO+183XLrP0SxnDuI6ywXl/GAtZ0xirCD93qCyLpumj3SfZtrKfRD9hZvbmZj88aRTXe0jY38eWuOWgwuyhDRdqgv0HY088Mzjv1zP4Pzt5c1HXJ/nUc6sY5DX22P8FEzSnCe6jUgRtarKC7DBOc3YdQf5xRN/+nkdQtYe2FkHQHGXBa+yhZj0GL7puV+o0mLORTVcUCbdRu64q4ag+w9VzEh1es4dJjAYZxlFB27tF792L6GSj3usEE/WrTdtUatknapTkfe15jYRk85J5xfNi/uUbfk6Eau6dCgHMH0zNyn9bVcV8HMbA33W98y6rZ+vzQj7tUU1KxAXZY9Nzl70b7JuTfDOfgRn6FGzLiW+7Te5v6eccY5i3bX5poQaRPRulv5uTRuoO7MVUcX7QNfvHLR3odYTDOzw186sGj3+/J4TlC2JvWI1kW27hzPxynGZrB6TQdeyLGov9KjHgVr0IyI0uyi3wWsn7DfgW3WdHCPnjIyM6g742o91PshhLhhUtZkUL0AIcT1CSkdhBBCCCGEEEIIsRL00kEIIYQQQgghhBAr4ZQiM68xpymVZ0fpPpSgFuvH0rPAI9FE61AWDjl7EK1Y2ikSZdANpeBYCfFt7RSWikluT9Gej1nmy/jLzRnkv4U0eHARjnVJbtHx6vrRZaG9gm1Gyx37DFvESBsFZcaMo4PEG9smLDdYMDjeTJBLhZSeFhAbaQ8AzlKRaQNvjZsT9MzAijAU7wLndK4wasnlQuZtug7RqSPj9rC6i7bk/nO7vI6NBXPTzdm6paJr+KjBPHARfhzjUiZat2fQIsGoy86183g0kMw3DSJf0b8W65TXkfaRBMn9OMfcRJvRjAOyFoeOMba5Pd/CtrgtuuJR3azBwoSoyhnnP+T6axjPScO5hn3CQrTnjDMX7emebJUYe39dxjHvaw+6uD7Zk5ev5X01Q7ZwHL0627kOHjy8aG/sy+3NK7Lf5MgV2UJxFMvNzOZXZ0tFgj1jihMckGvaMoYSN/qI+NGe8533UWDVMvNWtj54do38TeK9k+oWjsG1GZm5nXSa91X92eyi8o5/s10MpxA3VBQFKYQQ1z1SOgghhBBCCCGEEGIl6KWDEEIIIYQQQgghVsK1Y684jcq2aFdxekVulnaKFHzn98WV6uuPjD1gm9JZJ4X1ktzkPter67uS59Ms/56sZbnyFNXnKVvfQmX4OZIhljIzIElvIbV2tgucH5ezav7g1qkv70faK2CDKD73A1M0huo6Pr2C69NqAa06JdG+fL/rx8gq/5CqN4GFpgnSF2IrQltdXtorWvSRQR8D9uuSGDAPEiTlPTagbaBjIkNgCTKLpdlNcE7OsgArwxhJXWkdKb7iONM60QYWCSZQRPYKS7RUMN2B9gqPS8Jw0n1I6edozyCrZ6oL2sME98gWrtcm5vuWv1vbvbBVIc1mxHnwHqH1pGl5Ldxe83LMlSOHcoLE5lGfeLOJxJu9ZyOx4twzFu0Bm+y/7OCifehQtlEc2JetE1tXH6m2N/dlS8XsQO6TmVm7CesELCATzhvvpVo0+fxOsEfMjQkv3BTXqLRXuGdUPVXHWdEa3pMZPkuGoO0l42WOy8n/e4L7PWyK/y/EDRDZKDwcj50kWbi/gzWWQojTjJQOQgghhBBCCCGEWAl66SCEEEIIIYQQQoiVsDp7xbWhzNplesVyOf4m/m6xOJB8u/3W7QesdG9OtlakV0D22yDFIEq/YNLBTW52s0V7frNso9i8Mmua98+ydNlQWX9SpDUkvINykl5IhjchI6dtY3MjV48/ijbXcfYKjNm8z+uYmfVDTtigRNlLl9F2+8V+cH49JPO0L3iBsh8Pn/CwO3uFu95Wn2du2zFY3/xUm+ADZxHtBA1l/JCLcz7SsuHsFU0w58xCa0hsr4BNoaXsn5YbjmWU/GLWulQMWirqdiSeUxuMuUseGXkduU/fj473JyeP871Qro82kizGBnO2xf3V5XvhAOwEqejHXtgXJmeu5UM3dUm/T0qB/aDNVhyOXw/bxMYs94N2CjOz2RaSZg7n+34GS8YEdjAO2hasGvNDSJ84mvvdHcV5H8Uz6Yi3ZDW48TG0tjbJYzPDc6LlNOjqz+ahh3XC2enqz0azMpmonmo0BraIOPWHtrTIvlfA3yFaONr6fbv4DZOkWtyAkAVACCFuOEjpIIQQQgghhBBCiJWglw5CCCGEEEIIIYRYCddOesWK2EmShas6XqrFd7vjiKZur7DIHlHkRnhLBt8DOX1/XgptcDvNl3COpIeBaQvYP6u5TyBTN/PWDsp4R5S4n83zMY5uQYK9keXUG5u5PcM6tGyMaM9hpzAz6xPtFbkfcyczHqrL57RXWN1SQUE0FcZtceE5OsnJqClxbqvLR1o4UlNtm7Mo8NhFP7CJTxKBpBzXbtLhvJni4OZg/dhpmwQJDpZLVnHnUU+vYGoEZ3/rPtVl+Mf2VbdtdK76f90+4q4r5bi0XQTD33Z+FFzCAMeKsnckuRgk+ompEYi+6J0MH2kXmNebW96CdM7WOYv2mTc5K2/T4l5AeoVLSsE4bcDyMZ/BmjHAQuCScPy9Osfz4Ajm3XQtX/tuWk8S4TWyWT7GDFaLDdg0aPlovbvC2rF+jSdNfR7QZkDrA9N9mMgz0omA4w7Fs3y0+kTybry61cL/PiGxJli/vvbxz9vZChfrVOx/O6hwL8R1iSwVp4aSLIQQ1zVSOgghhBBCCCGEEGIl6KWDEEIIIYQQQgghVsLq7BU7kHfulGhzf4htZOHBnnwRcVbgT7XF5oThTqbNSuHVXRYMxeesFU7GivOQm3c4Bq7abDySP7RZ+tx0eT+TXKDeurX8nmlt8Je/xXmPGMU5Ei82MQQdi7sn2jHysWewToyU8cMOwEr+Zl5mPKLS/giZ94BtmIoxOqm6Vdve9LKTeWPueru0Bre8rS6PkiycFYe2msJawPFgSMIc0v0pNp9gglBevt7lSv49Ug4GHtslPZRQqo60DKtbLVqra9JdWgb203IeFAenHL5z92qQ9uLuz0DyzvsW9zb70RTPDCZhuFQM2itg/THcC6nnefNeo9Qf912f753NrWw5MDMbZtluMTuSLQi8v/lM7GEboI2C93YPq8Uw1BNGlp/FTHVAUgfm8HQtP4DWpnkOTjiHMGTzDdir0ObknxTvy90nWKFoB+MccvDS0c7V522de4PPpyK9Yhzr9pgUtLnfNkiOScH4u/Sbxp9blHwUhF/YpDt2jSbFs1gIIYQQ4nQgpYMQQgghhBBCCCFWgl46CCGEEEIIIYQQYiXs0l7R2ElE6PFmEan+YUeOjCaQxjtp+8726ZMAoncxlMgiHYKSbdeR+n6apuwJLBUW6HgpxUeVeGuzzPqMc7N0+YxzcvvomVnezMr/68O668VkxnHLfacceyPl7SdObs+uQrI90l5RT24YiiszYHxc29iGFJwV/wN/gBcbU5KPivbmaeq7Cts+iaFuLWiCmyG5zvrxcDYijO0wYAzZ+W7Pojmh3WGa50GPDZhy4KpULymteb3riRUuFYOpHewez4gpAim4YFbYKJylgpvsoCK30QpFS0UeV6aWtGU/2E7sB88b9/NAu1RupiDphPvsZ7jWG0VKwmZOcpgdzharPeu41yd5vxtIfjh6hFYNzI82/xzwevHIZQIQ7zdaGXqc99p6fhbt2ZOfObQBtbD4DDzved7PlBab8hlNaxg6vzWH5czNtfqzhGk5tKTEFpPiJtmBpSKNXI5+O2tSYHliKgvXL5OInD2D/at21abHPXj98k0vxHWO0hOuW5RkIYQ4HUjpIIQQQgghhBBCiJWglw5CCCGEEEIIIYRYCatLr9gpTnJcj7zwDowdWCoCI0WcJmGFpB2SaMpqWfqble+pwS5krjXa5NeZWpYfN0gk8PELbbU92Zul9Gfe7NxF+5xbZdtFj8iJ9nDu62TLX/4ZJdxH8vYb6FN7NFfKT9AxOykyK7hTukxJ85D7sdXTXmK2yUr72Nc80bbB6vqsms891e0cnAd861a6XtrAeuEtGfX0BHYjMF248XO9bv1yl9YQhjJMsE4+4hSS+abJ82yO9IqG0711pfyLjtHiUE+vcLLuoGo+oUQ8bWeFcs6LwF4RJFm4/mEdd31hteiwvLybnYsFfWdKSMtEA1hX/ETAhz7vxz1iOK8L2fvAlAUkTbRbtFfk3o+wPjQz3JMD7zVYEaIYnuIh6lKDsK8GfRp79BXWCcbqTGjt6HH1sS2m+NL8GHE8nhOlwG3w+zLyuYQxH3B/jtEELq1QzvKH+RylV4ycg7h3wvSnus2oXUqvYKJM3eplle1Lm4YQ4sZHCtK4doKsFkKIU0VKByGEEEIIIYQQQqwEvXQQQgghhBBCCCHESlihvWKnkq26PCuyWuxk21IAHBJ0caQUdqDdIUo68OL76qEppR+9hLUdsc08Hy/1lPTSXgFZ7NreRXvPTbNc+ZyjkDfPsP+DSN3IRe/NzKw7nGXJfZePN93MVot2kqcM0yTmsET0Y26zun3vrBJ5+Sak32ZmG/hMS4WTPrvq/xjblpLhPM5dU5cxB1du2+/ccif7r1t/3PJUl1yTphD1U/of9anBOLXY7wTj0bV5v05q7irrQ+beBpJyK5Mi6lYGytapQuexXUDLNgke0V3sUy0iG0WQfMH72aVX0Crhj+zsFbhOHVMgmJDBJAve57SVcBDwuGmczaMcgXpawxxWqKGrzxamzgwDrAWzfN+1SHqYMC2n6AbltZNUn6dpVrdapDXsjL9EnHZMesDYLCXe0JJV2LVOEKWepGAsk7tXq7us/IQEz/9oebTfyCYGWjfnCnsF74XAalG3KZ1COpUQK0DS/es/sloIIXaDlA5CCCGEEEIIIYRYCXrpIIQQQgghhBBCiJWwS3tFY6dfflm3UfilTsNeW91VDfe7p5R7O8k2pLQu3gDV/93q2C80uWkYq8up2x2HQho8RzX5TaRAQJbcdXmbaZf7tEZh7ASWiL05qWDPOWfkfaY52oUMGX23Lew3B2RYu4eSaPS7oSWibrVglX3aK5hQcaxfqd4OKs5Tnc63aK6Na8rUAf/WrahEnyg6jpIV6nOTc5a2ECrHk5NAU6boDuAk3/6ceB71vjKhYVJX91uCDD+NlP0XoxPKJ52PCP3A8YLx4y53oDpf2nETnjctFVjfHbBu/wg7WH7X8RiwLdGShbmdWl5jJEvw+eESK+q2ITOz1HN+wc6E5UzVYdqIeybCjtHAyuAsSO45Gz//R1pr3PXmmKNPA9fBOHH5yDQJWi18P/oBz7Uhsle01bZfB+fdMfkljI1x26dg5jaJxw5sX7A/dS3vw/o+2yCRx6xMdYlsX+j3iXkXWL6EuDaQRF8IIW68SOkghBBCCCGEEEKIlaCXDkIIIYQQQgghhFgJK0yv2D07yatodmC1sGDxcv33SDIP2WpLHXq94jwrp/eoAM/lLoliLN71QCo830B7k72aLVqTNh9jz6RutaAcm1YLQ1AEbR3HOo/tc2CFNXtptYA0ewrrAxIWekjs55COz8f68qGQVDoLQtRu6vNgJwkGnUsw4JG30SgH+BGs94lumpH2g0DunYp3gT120CIxgekcTi5OOXxgtXDqclqFYBmwwl4x0DqUonsnw60pt3ftwF6xUxtXY7QE0K4SJM0EiQSYvs5OUKZXuBQOytZHrsN7HW1aJ3jesGCMaPPR0xTXgrsdo2cf5z+TS5BGwa629ceH70eh43f2FtpVok7x3uPQJNorYEfiieLQYzE9aONy9gpakEJ7Bec8nhMcp8jaVZ6nu7D1+UhLBV0vXcfrxfuZ8yZKvCk/0+bERJ+6JSPf27JXCCF2j5Isds52NkUhbsxI6SCEEEIIIYQQQoiVoJcOQgghhBBCCCGEWAl66SCEEEIIIYQQQoiVsMLITGcs32a1kxdj2MkRffReUPchPkThJ6eXl3GCeWewEFs7TBftyZjb3Rxe7Y1cTGHz0KY72sbhXECh3+qr7XHINR0M8XxnnbmOds62nODE956VazqsI1Zzc63wZ+/J3w3wGh/Y2Mgf1vKUGeAT7zFm/ZjXmQ9oo67FDB7uvvBF+4jJoHYAveHRNa4nOXpftPNdl9R3zPnlHND0NGIxA0FH1pZoWTsEc66IVGVNhwn84Ky/4KzeGE/WF2gb+rzR7aiOQ/Ln37M2BWMe3dnWx4Ae/MEVcqBnn/GXyy71Kq4uA+IfXe0Mrs8oSPj9uRz3/KSYXBMUO9iDSMU903zfT1k/gYdm7QbMCtaG6FBQonWRl95r349Dte3qOHSMyczNdkfPR/TVjU0ZERlEvUaWXs6bpn5vj6xhwJhMPgtSOR54VrIOBO/VsKYDa/XkpazXwLjOwUV6ljUdeM3y/GBMLw/trr2r6YBdst4FxyPxyVLUHnH1ObjfVF1+onW9KvIkhLhBsl3Ngq/Weg+q4yCElA5CCCGEEEIIIYRYEXrpIIQQQgghhBBCiJVw/VJTRqqrdPKVkpOCUyNLKbF/x0Lp+Zjq21BaPN+CxHYzt6ewEHRwThy98uiifegrVy/aB67Y7/pxaN+hRZuWijRAPpvy8g5RlWeemy0V55531qJ9k5vk9llnnZH7uofjAfm1mbWTvK8x5e/W9+fzsEm2aqQ2S8qHJi8fEtpOBo7xY9s8ofgusFQ0gSy/YRSkk3VjW6fPL+ZHU587oXKcUvOGsm5K0Cn7z/OGkYYJUatmZkMPqXvrtNl5X4wr5DGwvLO6dL+jJLzD/oto17bFNePYRvdkYDfp2Y8dJvQ5ZSI/BBGYNL5wHjB6krGQlL9P2nxdpoUkcg3XiZaKM6aIroVMnnYJWkk4/1uuj/Fv3fAXtgbEQvY9cnBpqcAJ0lqTLLK0WHUd2kKGppDxu7hJNMdgubPB1b/wtgtEVfJZMvinBr8bU91eYYGlwrfr/R5gDetxP6bCgtTQmsP7E9HGHe893s7OWlOf186G4qwWUehzMc/rj49FlOZE/x1CCLFCbszRmrJQCLE9+gtDCCGEEEIIIYQQK0EvHYQQQgghhBBCCLESdmevOBFesVtF1NL69Wr3fAVCFa93TtTlS/HbE6xfSrmZXIDvmEwxzlDB/HD+4uiBbDk4ekW2Rxy57MCiffDSqxbtA1/el5dfvt914+jBvK9xK0t3zz4zWyRGc3EZi+b6WVnifda5exftm97s7EX7vJufu2jvOSOvf5Ob3sT1Y63NNoyz9uT1ztxzZt5+LVswptOcnDGdILWDUmK0WwxsY6zw7y9MLBQGgYotkns72wXbsJi0bWknYPX/uiyfIm92ydl1sEEK+mFjoEE3sxafecMyfIQ2AN/GOtwn2snZVtBuvf2Gyv2hiaTdTrOd18HyAev3Y91fkeJYhULCePKHEddmMkWLOdg5WXxePi3mhLdX1NtrOG+mjTSc/xwzDgHtGLQoFLJNZxNB3ynv73gtXdoIkzOYqlBPcqG9omnK8Y6SH3J7GGBjG+rXK0WnijbnSt+X6RU4RjCnOFd8GgjvbSZc1OdZ627b4ljl5wq8RhxzWp7YpoXDtWkXKZ8Z6DtTcibueLx2x7aXvUKIGz/XFxvAbvtxOu0Y15cxEOKrCf2FIYQQQgghhBBCiJWglw5CCCGEEEIIIYRYCaeWXhGqkoIy29f4GNTeBrJkV9He6uuUyldq41EAftjMX8wOzRbto/sOL9r7L8tpFF/+7BcW7cs+98VFe/PKbLsYD27l/W/4yuvNkPu+eXhj0V4/m/J0bIOS/1tX5D4dmmYLx37YLq6+GZIszskWjO5r7+D6cfa5rNqfLRVrEOavIbFiDUkWtFdMaK+AJp/tlraGVNor6rJm2hEos3Pi/rqrwVpsS+kxLRRdYSdoWeqdUmZu7+TfnJtIJ7B6p5zEHtX420Iezpt0iu3XII9e5/Km3qbtwtkr3NhQ+u3HY4L1xqC6vrt0HDP0lfaKgbJ/LB+3kVH6R0M9fcEFj/D8gnPtnC0ht5fsFZjD65gftFRMkUYxcQkekLPjejNdg5aKyPZy7JwwbzHp3XzGPeasD7AmNBPI8KP7i/O6fPazX1iPNgqmrzAFwl1h3hcc8+D+6gubBj+7+9Adgs8SHIJWIZfuEFj53Mbls2sMvsPzG9elwd3dNHWbDEeKZ+bXKKxh7hnF525bXedEqk67ja1JCCGuS2SJEOKGjZQOQgghhBBCCCGEWAl66SCEEEIIIYQQQoiVcGr2Ckcgg95pgfm0E5k2V6+vT1moE2BB4Zrm5phvwKZwONsftg7l9pGrjizal3/+K4v2V/7j0rz8ki8v2ge+fGXuB2waayMkroN/19NRKp2yTWG+kavdj6ggbym3x8TK8pAJH8on2xzK68zP2ly0L93MVhAzs5vePG+zftZNF+2NfdkmMmxlu4lLVWgp4d2BDYLS8VS++2KleH6X26MF86AenlDI6tEPSsqLXgyUcGNsm7YugTdU6Xf2Cid1hsSe1xTrd4W1gAkUtEvQUuHsFc5qUd9PZFXx4+TtFaljtXss5zou/aJu1XCic1oqtkkgYB+bnVgq3JjXLQTOXsF1sHxSyM3hnDA4E6zjfchbFdvSZtO0dcm7SzZIHG/fD16nro3OtW5TsOC+cM9ilzjBuV9YkNytSzsIljb15W7e0JnEY2Mdn3riumEDxmdkKpGzRXE+8noH/eYBUvAsaLxVjjYKnwSTlyf0bxjyM3ccabuoJ4lEiTz+OVladtgc68uPP4uGoTwfIa49muBvByGEEDd8pHQQQgghhBBCCCHEStBLByGEEEIIIYQQQqyE02Cv2AFlwVlIPxNl1ImVzZva6q6qPTd10mXKkmGp6IvUiI0D2WpwCEkT+7+ckyn2ffGKRfvLn8l2hCsu/tKiPTuYEyfSFmS0W9keMZ+zGrx5ULHeKe6H3KdJUFF/DUkRaxNIn2f5eBtH83luXnF00T7wxQOuG7e4TbaS3PRWX7NoH5rlQdw6nLcf53k5rRaNq3w/VpczZaIpVJSFUBhfUHqeF3M4KX/3kvlo/6Coej+meqX91tkGWm6Ql6NN+Tvb7DeVpF1xwzB1gokVPpmira7P9IRJYEHyYS91qf7SRkGVe2evQNIDZflRuAyl3dvJvL2loi6NdzaDwN7SheugXUh8/Ryuz+0EWw5tQExvmXZ49FIaz2ejk9iX6RVR363a9uNU9xAwpWKAxWFwSRtWwP3ieruEGNii8IhqgrQSJpr4pBPD+n48aKlw92qQxtLBKsR70j2c+TAOPIJtMSAJ1osWCS/+XsrtAclFtF00gUWka5AMRItOGz413XV1P7e4+4bx2G9VP+TfLCHEjQclPwghrmukdBBCCCGEEEIIIcRK0EsHIYQQQgghhBBCrITTYK84BckWJamUsG9muX46ABn/oU2sz2rkOelhK+VT6anh7SFnP+qlo4evPLho77s02yi+9Ln/XLS/jJSKowez/WC+kfs6P5LTLuabOd1hnOXjUeLaFe96KJll1XJfaDyQPmMoXdgCd8NS76i2vrXpJexfuDjbR774pZzC0UM2jcAPO7yVr0u/mcegwfE6XN8WcmW2O/N+E6/ir88VyquhYvbSeOwmSq+wIAWj3D5RJo/lnZO5Y/0gDaHDWA44N+5/Wki2J9hm0lJejTbWaV0CAlNC8j6jivitW6e0FgQpBIFssw2sGrzaTKlwUvpyX4Fc3zsFuE792E1gMeG1bgKrkJkV6QFcTpl8vU8NpfHdGnZZT+1wyQjFELdhKow7k2rbpUa4Nu0OuR+9s7EVuIQG90Xer/e95LazM/EgqbqOG6fiukTJOG6CBBaJ3f6CeadEOSL5GjvrhbMF0n4WX40TdJjv3hbC50qcAOTmbBARdeKZ0eq/Q4jrCUqyEEKIGxf6C0MIIYQQQgghhBArQS8dhBBCCCGEEEIIsRKunfSKApdMAatA2sqWBUpQB0hKZ7O87dY8bztnOyv9bX442x02rj7s+rHv0ssX7Su+8CW0v5LX+cpVuR+HYfNASsXYo+o+5NE90h16rDNtKdA3W5vkbSb4jrL6hlXHqT5m8gXbLq2B0t5s+RhGbzfZZH8Pwd7SZRtLDxnvFtafbyLBY57HvENnabXgsUsZPyXYlFUm2iuwerK6fJ5SYSf1jwTVxeIUSJRpo5g4nwH3hWOzjT4NuL4jXv9Ni8r8TKbo2nwtWtiLmBwQGQdSYA2IrBYlLiGGCna3Y9hKsL6bg7RRuASIui3HzFfqZ9pAmeqwOF6QWOHsNGP9+jq2VfUGoxikfLS8dminBBsWLRUtxqb1HUnOzkHLGfsRJIYE58T5PmD/bPMZY1a43UZeF+6XVgvMx8Zf47wt5lnrPGZ526UIINxjbn4EqUFNfc66W562I27q7u0iVcS9xq9bw5ylkPPfnQOTNvCb0NG+wedKSWQaqdtNTvzEdsn/NgkhbrgosUIIcX1CSgchhBBCCCGEEEKsBL10EEIIIYQQQgghxEq4VuwVpZqXVcgbWCea9VzRvYHMs2lQ6R0yYyY6pCHLyOawMhy6av+iffnnv+z6cfklOZniSlgqDl6Zt9k8mG0GaROWABaWZ7V7HgBxEt1IqXmR1tBjv229en3nrAJIKhjQEQ40oyxarDPO6m3zUt/EBATLUvAOVot2zPaKZsjWk6afoZ3PbeJSJiD9LmXWLsCjLst3CQiBsj0qmh8pDpcLZNeryU+w4tTJptkpXm/2g/YD2ivyWtNCGj116RX5XmjbIPWEpLp0PMJZXQodvhvPHVg1OE6tq96POR60y2rlU7bb6FxxPGevoBWBFqT6gER5Asuf62fOVIGJSx7AWdBmkNiGfB57L2X8yZ0T+9dU2+5+CWxDI9Yf0Kd+rFsXzMxSYKnYSSQEp9fgUioCKw6TTkb/zGjheWIfk0uKgA2OXXVzrW6D4PDT3jOZ+J9QWiEs6LvBTkNLUcP9BpYKLk/BPXVsv2hzeWBFO2HFaZdSMIS47lGSxc6QnUIIcX1Gf2EIIYQQQgghhBBiJeilgxBCCCGEEEIIIVbCyuwVlMimQpRMeVwDuWizF3LxKeSy69h+AxLsFmkXAyWrOb5itnFk0T68/2rXj4P79qGdvzt6MG/Tb+AYM0hhoc+dUBaLtpegQ35dVF5vYYVgsXZXJR1SencM7opJIPyiRUrFCBtEYa+YQBncTfA+CukaPfY1afLYtAmWigHLIWmmbYDXvSj57uwWAyXKlF0HEmzqoCOrRSxBLGWb9fV409Ay0oxOq76AinTOiZHnDXn4pHgXuObsFaxej/slsJiEqQXQXzt7kJuz25gJdmCvYGJFl+rHM9ornE/AH3sNJ+jsFak+D1xaCaW52KdrB+uUSQ9j0EVu30FyP50wbaT+jtelTxgtM7BRmU8VcH1saIuqp71E5+QcWWj3Lr2ivq1Z8fwxHg/3YVOfISPTaDAPRtdvWiqQGJTYW58Kw0norBrO4sBBgJWM8xTj2nbcP9Nk/E/odAIrIPfV1y2FA0adto0OD+MJ2i3m/gjr2jj68SC0XvnnBJcf+0L2CnF9R1YLjywVQogbCvoLQwghhBBCCCGEECtBLx2EEEIIIYQQQgixEnZlr0jH/8+sLmFPoXi5SCfgd5CIex26VZdTctxA95u2sm2gP5LtEfPDBxft2aEDrhdb+Lx1+FDeZmMj93wLfWcVd/bDnWq9+rlRDlxIAqORagLJt7nllJrn5gDp7WDZ+pBgqUipSK/gqaIqfd/n8ZjhGFtwbTA9hErkKaTBTnLt1OLFeDR1SXQfSLDdmLm5yeuFtpMQO8+BeahFhlUA++oC6bJTe+N47F/icrQnhcR56r6DbQB9p+ya/XBj6aT3TFxh6gP6XaREhPOUqSRcP5DxOwsMbQk8B/Pwu84lNNTlte7x4a4j+uQSJGjTqO5yccQTDIEdxE0D9+xikkL9Wvhdon/Fo9rb17hN3eIwBjYUb50IkiICO4yZWYskhsiM03hvE/rKfuTnY3LHRuIE7/ligozBPB9pz3DJFHWLjrsXovlrwXPZ/PhbZNVwThDMf1qs0EbTJR/xWE1p2XMWkCCxgvdt4/+/EDcEtrMW3NisF7JRCCFu6EjpIIQQQgghhBBCiJWglw5CCCGEEEIIIYRYCXrpIIQQQgghhBBCiJVwSjUdoki+bQLp3FpNENdniGlzpnHWDkAZgnEDqxzKNR22DuxftOeo2zBuHva9nR3N7XnePvU5cnOE6bnDcDkPPc8vrOMAz3IxHs6NG8Q/0pfrrkCq+9ITYivTuIX1MZjmY9a4fQ/P+Rb2tTnkbfomxwFas46+5oINa6zpwBoGfN1VWBV9zB0i5RAJyloP9MfT98ioxA5FJNrIG9kUHtBUfyfn4hijmg4p8LG7MUBdkKBmgZmv6cB6GS3vI7a7ul/d1yCAHxzH6joey58/Pf9NUMOAhwjrKnA5xwDLS/8q55SrdQJzfwoeOW5Pro5GEL3Gegvls8t95L3OY3Ns63UffI0F1irJq8c1Bco6DvVnw4jlo6uTYGgzkrLedhGWRUcG9wyp185owjjLzOj6gWhMtnngYn74uhPcnufBSVGfLO3SSJ9Yg/dwvd/H+o7oZtdj1k3hvYrfF0YvN+xTfZ5x/2W/3b5a/kZwV5Xnpmzj4kbCbmsgnM4aEKq/IIQQy0jpIIQQQgghhBBCiJWglw5CCCGEEEIIIYRYCbuyVxzTdkYhdYWUeBt7hSOwUSDl0YZNyP6P5Pb8UJb9b+zP0ZhH9l2Rlx+8Mq+/4SMzh1mO1kwj7BWwI4zUO7uIMizGPjucUMeYRUpqlyTb9fg8L8Fu0a7bUNJAWTekt+xH58T0rh/zATGbc9hBcGzaFIz2ijZPpQH9652EF6tDLt8WOW0NrSQY/7GlpaLeDlIrrQtsF9vOzUAh2boIzHoUJ5ePkcUBsmfadUr7B2/SLpBdcxu6IlwMKucZrwsPxv10fn44ewDnWhQ56Gwo9fGnLcSdQxEb6uM765GFUURnio5N2TktFYw3tAJ3T+fFYyTv7/Mzys8PwuvCWEhK9aMtiueEsybldXhPRjaKnhaHVLcllHYCJ0l2loq6vaiYbNV+97Ao9LBz+ahVf2UwHW0ePBv4rBzd5lE0MdYPnH+jlfaK+nO35ZyKkqG5Iyf1rkdeuijNib9XJ7h32R56XONh+b4tf5uE+GpBlgghhFgtUjoIIYQQQgghhBBiJeilgxBCCCGEEEIIIVbCNU6v8N9nmqBtZr5EO+SetgW57VGkJBzKctvZwbz+xtU5feLwVfsX7UNXXb5oHz14Vd52I1swzMyGHvEXkPQmJDzQXhFVxw+Uuq6CONXA7VKVZCeWxvF4bPaPsnAmOuQxm+DYVMlPJ0xx8JLcYQvHw3XpYJ3oJmuLds+Tgnx77qqq1yu4UxrcFTJ+JhVwcFPrvALoeL2KO2X/PEITWAvSNvLKJpB2NxhDn7CQ1+kpZ4dc3AVc4HqVbwKdjNrZVdhuq8vHJpDeB5W6Kf0ei/QKZwMaA1m9S1/AHOR+AhtFs43FpLRboJfcc30Vp/Rvqm0OukvaGItxYvpCE5w4kmqGgcegpYjXC+eAdoLfzIv4fWIF0yjcbcHl+MJZKlwb9iqXGkHbhU+8YToEcWMbpsXUEyFo82D/mrY+x83MxuHkz+w2sHy0hc1ssQr376wgmWHpPkJ/2Udnr6vbJRqXfFT/BeV97udQYcnq8Mzm85SP0CFIHhFCCCGEOM1I6SCEEEIIIYQQQoiVoJcOQgghhBBCCCGEWAm7slc0x/+vXHpSfKlwS3NaKrAclorhcK763h/MK23uyykTR67MdonDV+7L7X378zoHDuVtj2Q7hpnZfDMfY4SdIFESTdW0q44fmUm4PuXoQYV088psjq+rtM+NguSADttOsC2TG/o5xhWV9c3MesiSW7yPGtD3AddupBafdgl8mFKiT0kzzqcrJOwtU0K8nh1t7paWEfaD3eO5uS/qx1r6sm4J8CkcdXvFAOn3PJhDTkxdSMe9HaR+Ho0xbQRzLQV2HaszBm2zwkHg7A719BC/ryCZoq2P8ZIk340/+tEF/aC1yQ1u3SPlk1U4fkU33LUIbD3R+v5GR7tu+aB9o7wWPhEFy7Ei72daJ+ZsD/PqOiNsFO5YY2mvCGYSzyMw27lEErSZtDG6xI/6/X+sX+hjYBvoeN9ijejNu5/LtCZZtV320c354Fni7BXO8mHV5RYsX057CRJD8OB1QUTH52YT2K6EEEIIIa4JUjoIIYQQQgghhBBiJeilgxBCCCGEEEIIIVbCNbZXOJMB5e8sxN2bI80gvd2AXP8IqpYfmi3a8/05ZeLoVdlScfCKK3P7qpxScejqvM7RA0cW7Y3D2ZphZjbfQrV29DHRDuIk/Sevjs8PLEbuq5z7/XSBrNalFiCxwhW7D+wYlPPSyjCdrC/ae9b2uH70WI8OmDnOe0ZnDJMYXIJEZq2p2yso420HLx5vg/H0roOm0vIS6s6lIXDLIPVhW6sQZdonT6zgnnqXaJLbo7NEBNEoS/2ty/g52dJQ3HC7IDmpftmP+pgnXHFaRigvT4G83Nr6e88lkbfbpK2uSZuNc2rwBmhOnrbgLA7F6pTZN8E1a11fA5uH9wdxA6yT22Px7Bmc5aHe7nF/eksFnq0j7BWwWgzoX3JWDn9l+N0YJC5wfng7U8ZfUcynNphDxQxhv/pUv0eawK4S5Z/QpOEsFW5bf10a9j3V++7Pr55A0QTPyiKOAwcufpedEwU9pr2i8mhulm48IYQQQohrjpQOQgghhBBCCCGEWAl66SCEEEIIIYQQQoiVsCt7xTHxaSEnpRwTKQfUlDfzQpKLxIphI8t+Z0cg+z2cV9o4lFMnDl199aJ99ZWXL9r7r8z2isP7DizaRw5me8XmEW+vmG0hLQOJFSlxWIJkCsqPg+rsrPpOVfeyopw2gHrqRFtXcrv1J5TqutgNbst1fEdoR6BsuGd5/BQlZ5C6NNvJqXme5nGf3WlEqQJM7cjnMOnydWzrCm9X9b0pKsA7TTX0yt62gd46FXQeJ84mnvfo5NeBhNrMUhOMvyuvn6rrR3PTUx/X0l7RugPSUlG3LPDYzmrBedpSjk6pfrFPZ5eoJxI0wU3CbvsED1iCAmvGuDRkQRoFu0q3ROAqcWarQFY/Bs8Ss8JGgciKfmB7wDqwkiGZgu0R4+Hbhrbvh7fQGNqRLQLjTPtI9P57O8cTj+c8Z3XrCq0ao7sPq6u73YRWi8L2wufJiHPl+bnkl6Z+LzgLEa5RQnpImNBSdN7dS7RnMb1i+WshhBBCiNOGlA5CCCGEEEIIIYRYCXrpIIQQQgghhBBCiJVwiukVlM/je+pwoUdN86KydnZRWL+ZV6S9YvNwTqw4cihbJA7sz/aK/fuuWLQPXr0vr3/g8KK9cSjvZ3MjV2c3M5ujH8OYtabJCfzrMvIRkldXeZ3yWspamdZQarYDuTmluhbsi5YAJxFHXxPk13MkGyxJtqFlHrAvtr0VJC9l0gb7yjFgogYnXlcMRxdKtk/epr1i2tXHNbJXtKVGOSiW77Zx1epx3tBgN2jXcxe8bL1UOAdOEi+h5vpOTl23j8RJHZGFxcvkmx3ZNoLkEicpx9wa+dAorwW2p6wcx/DScMx/c3r4vNw9vHioeqJA0Q03Hi6xwu0rGBuXQlIfV3ZvKKwuA67xQHvFyMQK2CjQ7lNgo2jqc9C1SwtSlNCQ+Dxtq21n7+L1jtJrovQP85Yd/6OE5bTyYGe0Tvhna17MZyXv1TK9YgzOlZY9n+bB/uH5zdSOsT65nO1qyRnGswpsQLWH0Q7tLEIIIYQQu0FKByGEEEIIIYQQQqwEvXQQQgghhBBCCCHESthlesVxIu1tYK8Y507AasNWtjmMW9njMM5yYsXm4UOL9sF9Vy7ah/fnlIqjh7PVYmsjWzBms7z/OY7d974ifo/EChR9t9E5GepSbkJJ7YD120CCXkpyByf1rUv3vfQf8l5uSwl6Ct4nOXm4l92y2v0c7QTZb0IiBLs0ad2OM7QZUPJOufJQph8woYGSY1Z3ry+fwFLRBdaJJlByN4WfoA1k9m5fvBZu4mDOO99R3RLhFeWFHQljQHl7ef3yckqw61JuP58C60MhpfdTsB7L4MYWc4LV+LuuQxuPICYNWLYBlX33tg3K4YNzwjgNkdUiSBfg3D+2s7oEPuzrDuTq4XV0dh1/j9Bu4awWro2ECxyCj8HBPZc4t0CUqmD+/mTIzQhLQM++umcrP3Cf0Q1qIe55wq67zes2lsi1wefBiGQUF2pTJs0EaTvROoN7PjKlgv0+eSrLWE6hIIWmMAsttRReIYQQQohVIKWDEEIIIYQQQgghVoJeOgghhBBCCCGEEGIlnJq9AjjpZ2C1SH1hr4D9YUCExDDbXLS3jhxctA8fyMkURw/n9tZGtmDMZjmlou+zNLuH5rfohpP6UgJMqaqXo9atD1zH1wyvS9CHptwr7RV1O0fHdANWLS+ryVf6VMrk2UPSTXBOmBnzgdXxIXunfJ62Bic/5uFor6hbW8x8RX2quSdOrp/blOt7e0W1q4Wcui7xLrfpKDF3a/FaQB7dFPaA2sE5HpRAFxJ2doRDxXnq3S20V9TnYDQ3XRpKW4qx65J0t9yNOa5FW7dUTCa5zak1LunF66kAXm5eT3Xxe6nbD2hhcTaDprBXdNPcpm2G15IpCaHE3un4sZy7ZPqEv0nGwLLAYWPiAq0PtIANsGE52xcTQprADmNmLa4f7QjOygaL25jq6TkurISXPkz/KD6XUSsnIXZtcFxpb2ESRZw0E3kPk2vXn4P8raINqMMY4PHmUi1GH91SzKOm+kXNMpYiW54QQgghxDVAf2EIIYQQQgghhBBiJeilgxBCCCGEEEIIIVbCLu0VyZYEpU5NCgmp1/n6bSBbHbZyYsXWkcOL9gxpFOM8WycGtOf90bw+rBmbSMTYmvVY3/djPlJmTOl5HZdeEaRJWCi9pVw5tlf0gfCXMvm6uNxLaplOQGuGS2RY6iGkt7hGndf0LpojkxgS7QSQBkOd7pwM2H8qpNJe+o/1ArlyNP6Ue3OMabtgKsA4eP+NS34wnEiQXtFgDBqmLwQS8ZRYrZ7n6aG8fcRgse38FYENhfMuRUkPtJGU/Y5Sa9yhaXtpq+2JS69AGgTTJJrCcxMK4utj2wSJGskCS0RTv77l7r1ro74vnxBDAum9c6hhPtKKMBYWNWepqD/HuEVkqXDPPWfzwPg5eX5hLnLPzaa6Gq+lDzji8QIrQhDxUj5D+WW7zfWr9cPbrerPEmcF2Ta9gtevbqOIElDYD5fV4tJD6n0t7Uj8/R0HHgPH9l6o4/u5xo5LIYQQQoglpHQQQgghhBBCCCHEStBLByGEEEIIIYQQQqyEU9RSBokVgbS9KSSoDdMQZrBXbGZLxTDPdok05rSLEe2hz9vOkIKxiXSMLVROn/Vea8s0i2EHku02FMCO1bY7a1bWD40XHg7bSNk67QHuyHmDSWDncHLeUjoOOTC/64LK8GnI8m9W2nfHaOvy61I87/brJN9YHsmxIxkz7SbOXlE3qIxFQoC1vADYwr2q49hQ0B6cIS0OiVX9eYAiNSJlSbQbG0rgE20zlJpjuYvwiNIrKMVeigjANljcsslK+2y3J207y0c559w1C6whXEo7EtM/Uv1cmYjBFIdU3iR0WFn9WkSpBeV9n+H8ZWIC5sfo01BGJhcwgcK1eb+xzTGv9aJwxDkXSWENG8s5snxsd0u6S0z7QpAqkupzrkwn4Ty3wDrk+sdtnU1sB/aK4Dm0tJ6zkNVvmMj+xLnSBpYnPn9LewXdOGlwZg200J40yxsKIYQQQpwmpHQQQgghhBBCCCHEStBLByGEEEIIIYQQQqwEvXQQQgghhBBCCCHESthdTYeUjv3PeXxZuyGIBhy8v71HzQV+1zqDMfy0KL4wn7NeQ27P5vAEj9kDz0i4IjHT+sQoQvicU90nngKffnKebMQgNjTWRnmDxVGCLDfGN3KYEPTnljeB97wJbPnlksZ53Fm7AXUfnH9/gvUzLJPg6xHUj2tWxuEFsZVRVCLPj75+VxODNSdyv5tJ3I+2rdeBcB58xh26CxDkSyJG0tfd4HkWnwODfFRHw9vb6z7xZgf1Eo4dD/e6q1FSH1vWzuD4u3ovuM/XJvlarHV+DEY8J/jMcJGlTTDPg9oerAPg7uxt7tWmPvw7qAhTPEui8g5BuZwydZh1D3q2sdUQRaSyxgV27GopBPGUqTi7VDwha/st+75Yu14+Iaz1wE61jd9pqt+eRUhpvUbDEDwneN4sXcFxaosL6epDhG2rtltGxro4TMaxsiO5mYoft5RyjSNrttBGbRDWrJlMl9cVQgghhDhNSOkghBBCCCGEEEKIlaCXDkIIIYQQQgghhFgJ19heUeRCVtvb2Suove0oI4eedT5D7OWsRxu2C6w/2BTtvM5Q2isYHUd7hbMZMCqtLoxtcIwR7ZZWCxel6aXjpQi42k71SDiuzShNxqE1lNIH9g0zp7r2x8A2LpqN8nkcg+ukgbLiwDbRlO++6raDcH4F7gUnpQ9k9d0kX4uuK2+H+jhT7jymPB8HZ0mpa8q97SVDNwEtH2ZmTZO/pAVpDPX9QWRjYK1hbKWFFhi/kbuSuEYTF5PJ8Q+iIzG5+nmPNp4RZtZhDCa4Zjy2M4m4vNlUXYf3C8dm8FfbPFEEZr0dxWRGobnJzet6/OWxz+hv1Ob6YXQt5vIQPBycTaO8V2nVoMWN0ZG83oEFL4hetuDe3o7IuuLOLop35n5oQ8HyHnO2Ld7b88nuI0iDuF9nQ+HFw+9WZH9iJGcxTRmza7aOdv5tdHap9tjyJohAFUIIIYS4JkjpIIQQQgghhBBCiJWglw5CCCGEEEIIIYRYCbu0Vxz/n7MfNP77E0CqO/Ze++nkts6qkfc1gwXj6JHNRXtjI1fl3kJiRdOu5W37LNOeM8nCPKPxu3r58yaUWtftFQ2THrDcSWpLyTZltYFMnu+HWIneGTUiqblr16vYm5k1HdMGaHGo+2m8TNjFVFQP7o7WBBroErcRj83DBYkOQZLCBDaeFm1X4d8KCbur8g9LhUuvwHxy6nQmLOTlLca7c4kTpf2mbgPiZaGNIgX2BbdHl2TB8cOxyhvGzfkMLRWTrq0u99YH+nXQJ/S7K+am3x5tq0vjm8BWYkGKiUteSDzPcp4ySSCyQtlJ8dM6sA25tn8/7NIXIksFD+HGE9eYlgg3lvVxWhoN9oP3CNNGxvrYuLSjHTjMthX+c72mvmaUBkJ7Be063laSF/sx9iOyo8SKKLVjrF9IPj+cnQj3aluOTmBLY7oSD35i8fI9L4QQQghxzZHSQQghhBBCCCGEECtBLx2EEEIIIYQQQgixEnZnrzjhr3Al+FlNG/LQHtaC0UtQvSoZFcKhE55tZQn70aNbi/Ymls977Ij2ClT+7iFBLZWjtFQMTurLavfU4TKNApYKyO2bFCVZQG6cinc9TaC3hX6e8uqxqVstaDOIMh+K3AH3DWX23l7RoU3ZdD5vStJdYkKUPhEkZZSfvQsjSFYI5OyUiEdtJqY0nbc1DM6+QFl9cF2cxYEdYZV4LEZ8QtfF18VdV2cfyetE1fHddXFV+vOt30WS/iWVOuXcdSvEBEkYnbP70FJVt+tQ5r5kMHGuoHoahXcm1SdIGzy7UnDPp6XJdfKJ1zT1eZCi5AbXbk/aNitSJ9zyjLf41K+rdzg4z0F1eSqiIXgpB1o1hrqMf7dEloqmfKrt4HkQbRDN+cYlfnD38fzw15vjxodJ/Z50DxwmUwSWD2cfa8v/flC3TNECxj4tfqNH/XcIIYQQQpx+9BeGEEIIIYQQQgghVoJeOgghhBBCCCGEEGIl7NJecRKcnDQvbkoZf5MPO8Aisclkis0s3e/nqIreQyo65v1szQLJOx0fhcx3oAydp2HcFxMo6skUTcpJGyz/zSSL1qVXlO96Tl4R30utKQuv2y6i0A1nzSiCDWgNcRJz2EqalueHKv9BkoU7RmTLaQv7TWDPoA2ghRVigv2yunsaYbPBPGtcifa8fNKsGWlhK2Eqw8BElAFzIkUyaO4Tq3D+RSXtrbyXaHWhHQbrBwkl3kKAVQK5eGkH4CdnqWjYxjq0YPCaBvPDG0z8PdIFY1jEmPCLvF/n6qlbBSI7UinvbziH3XPCrWWnipO8Y/6l4h4ZnRKfVot6eoKLJUicE/V7ITn7xnbnA3ucs5ZxbOrJNpEl61TMGJGtwaU9tLSM1ZNV+Jzmj4e7h60+983M1mgv4n0Lu2ETPa+C3xqfooHx3saiFn2Kx/bU56wQQgghxMmQ0kEIIYQQQgghhBArQS8dhBBCCCGEEEIIsRJO0V4RiDQDuTjTD8zMum66aLPI+eZGtinMaZdwFbVzl5sm72drlrdNkK8OkPAORYrG4JS0lCJTWkzLAdMomFiBttWXO7lxU9bmL3wOeU2s0e6gzcrktb2YTbi8UNRSwU2ZcdNA6uvsFZDPO3tFXaLMfjSu2nohTm8pj87LWaGddocJEihoFaB8u+9hgxjqUuKmqAA/gVdgAjvHCF3z4OwL2Jhj6VJBrLoSLSljMU/TWN++4XkHMQ5NMA84Tm1giyqhFJx2h51YKtrIXuHmGaXw/tHE1Akem7J82gx8wf9IOl5PznBD2fg5wV3RGjI6n0jdoOHut/rjxicVeA+Mh+kLDed8PTFhDB4xLlWhcV4orJOXDttMkMHqyT3xszVKgeC51XpUIbTWMOGB91E96YcpQ22qP4f4vFkr5scefGd85qDtngdYnVaX1MCyF4zH2NSXm5WWRv7etNV1FuPURL9FQgghhBCnjpQOQgghhBBCCCGEWAl66SCEEEIIIYQQQoiVsDt7RdMsVckmlNGWVga3G1okEvWlkIvDOtF1exbtSbee12lz2gArpA9ILRigKx6KuIbBSc/rVcSZdODTK+qWCgusFq2zUJQSVhdPgKWUqkPeH1gqnLSa+6HbYZtetJTxY6POJTFQGsykCBwP9ogUzYMgpePYV3XZOw/SJMqErd5uKLO2aptyYqZdmPlkEFpPGkqwje36OVGOPZlivlMejXk2730/evaLFf/H4CLznJCuMWI/LkEFaTJMjWiLe53zYILN24bzNEiscJMQ/RiZjEK7SJxeQZn84MIX6haHxiUEBH4TwHSC0prRBOkBfrV62kBoEGDoTOQnKF8Pt7zGUQpE3XqSnAWDCR51K5RL8ymTVdCO0itcm/cwd0T/Aga2Cew3O6V1c7Y+t90xaAvEmNHOtYa+5l+pY3TOc8OHYm53WN4F12JInIPYjZsf2yV+1O0jjQXPieM2kdQEN4UQQgghxDVASgchhBBCCCGEEEKsBL10EEIIIYQQQgghxEo4RXtFXQKcUl3O26RSokxpd73Kdttm4epkkm0UXZfbTK8wmy1a/Zgrfw+U/Bb2ijFQWtNGYSmwWhh13fV1mkBinAoxrJNgp7o0mz2n9YESb1aDH7kf43643DPBNhNKnCEn7jBlXJJCx8Gst50yO7CRlCvGVovAdkH7h0tDYPJCXbrMa31st3luOln5yIQSVruvS8enlGZPmb6CXTqbESvXm6WeY0jZdFCx3/W1LvF2y3EjdPCRdEVlftoanL3CeN51u0nj5ib7xPslOjc/1wIlvnmbUvCMCaaQZxt7hetjkFIR+SKiVIvAFmXBOR/b1VBdz99vtOKM1eV+n9hNU79vl4xh7jueR/TsO7kFhs8bS/XxbkurSt2hVliCYK8wrl+fCLQHTbGfNdiAluwV7nevfn+6VJfQ4hf99wA8y8vICkc9jcUi+8SJ66X0CiGEEEKsACkdhBBCCCGEEEIIsRL00kEIIYQQQgghhBArYXf2CmvwvxNQ1xrIZberAA9pd9/31TbTKHqUq+8hcx9giRjZhvWhrMw9OgkxK4EH1gmrr+8rhXeVpWZtE8msfUqCs0JA6cqEAMrWx6BNGXPTwC6C5UzEMDMboFUfBkiRR8qSkRqBSAGGDUxbWDA6XhdUZ2ePSncF2pRatx3621KKXI8R4LaNq/TOdA2km5i3V1hPqwuuEbahEpwV7nkOXVQ1391GeZ1J469Lcncpt2eCB2XrkLPTB4F1JrAvdbhebv4W18UHjgTWjkDx7e6Fti4jb1q2/RjQIpH4nRtodxC08xfuPsfEc8kvPG45BjiRwaX1LCcBlDuIkmN8ogbvW9zzxbi6NA/aMAJLS7ODVAJ/3vXxGIsBcRa1wErlgz2C99xYn7aeFveUs+ktzc0gYcetUx8DLue9uoZjTzGHnD2r3BfanOctEmK6jilNeX1a39q2/kyLbBeptFo0/qphB9itkiqEEEIIce0gpYMQQgghhBBCCCFWgl46CCGEEEIIIYQQYiWcmr3CVVgP5OyUxcZKaUuoXt/3uWp/P8A6gXY/5HXm/VZejsSK0fL6qYVkfkleiwrrA+XRQcV/J12OLBU4b554rAz28mXIZCn2ZziEk+RS3uyuC1MEsG1gxzi2r7zmMEBOTN26O6e8PiXH5qTIud3DJuOq6ZdpHhxbWhO6+jg7Owal2U6Tzur9TDTBNR195XbadFIgCw/tEi5FA8vrrgQ3nyaFtcDdS03djuAF+/n8WlpdArl3g8fAyMSOwm3ikxFC/Tz6alVanh/HqUOfSnsFLRK8Fh2PR/tNXmekPN3ZBoL7n6kPRd9pWaClwtsr6mPDNBrXdjcx01Dy4q4YS0wJm2BfcATZEDy7UlsfDzf7XapC3ZJSbh+J9d2cdbckE1fyYtoPphP8RAWOgfK7yOLgbk+XoIKUCgzsOubj1FlY6gk5ZsXzB/tyzh9ePK7vfnfqlrsoAWXJ6OGSdOo2rCa8h4UQQgghTi9SOgghhBBCCCGEEGIl6KWDEEIIIYQQQgghVsLu7BUngivqwQ2uanjn7BVFWkM31L+DxtZV1qYdA9JxJlYMKdsrBtoraFJoS2lw3VIRSsed5Jiy3bp8uEztiKDNgZJXtkcn70U/mrpev6FVwmiDoGzXS9hp7Uiuin6PNpMbYHdwEmpIrlmBvx50YqW210uUUekdcmdKs53k28n1cX5OaU7p8TYSZfdNkFbirC5BGgIvHmT8jatiH9kmfH+dh2bk9aqnc7B/rMzftTx2HteUYGMo71skx9hYT0Rx66NNi4mfN7R/YHnnH03e3lJPMXG2LXcjoqcusQI2G5ciUL8Hj33O7T5MrwgsJi3vPXa2budylpsiaYBy/zndJiPvN84DzBWMmb/n68kXrlmMxxj0N3z20UZBGxbaE1x7Wo14nzsLXHE8Wh4mnPOBNYGWs85ti98zYxvnUMxT2kE4/j7OI0jbMdrSovSQenvJ3OJ+wnhdScXzp0ALIYQQQqwAKR2EEEIIIYQQQgixEvTSQQghhBBCCCGEECtBLx2EEEIIIYQQQgixEnYZmbk99KLTTm8T7yTtJvCTB55s9zrE+VsRc+eiD/tq29VqKPrLeg+jlfmAi4OfvB12vB7b52M4y8+MNBsrS70HOQVt4iLe6BsuLv+Uvm8XsYeaDi7tjd58trFTVwqhXmugLZzGiTGZge97jMbMRdAxmpHjVK/B4SM2fb+CNEwfUxpEH7L+B+dj484tiBU0f06sN+DqE9DvzmNzv1av6dC1UxyLEYX+neSASNthXvf8R/UdzNWsCGq/uOsVR2a6e8nNwSCSMtVrAaTgueKqpCzdUqzjUG/7R0Pg6w+yU+m/5wiUc4LlNhiZOcHBezdP3UTP/XYFA+pztq2f2rHPuAFcXQVfeaa6zpSRlF2eg25uYv3Rxd76frCOQ+tql7DNLuE54aJJsdw9N+s1I6ZlTYfpWv6A8RwR+xzXdADuA2uMsIZG/XmzdIggmtfXs1ExByGEEEKsDikdhBBCCCGEEEIIsRL00kEIIYQQQgghhBArYVf2imTbizCdy2CCD1O/Hu0VlFqPkKPOIeWez3O7R2wfLQBRXKFTvJdxbzheP4clA0pVStIpGW5d9CSJJNRcWm4RyWRptUCfIGkesG2PlRjn12OdOfY5NN5S0kzzdKDEeUp5PzXKWMf5aTjOjPDDsSgDb8uIyIYWEMijmaIaRExOuW0T9NXqfepKDXugs4+sIc5G4a4Xth3rY8ML3DZ+PFqMuducVg1aBbDOBNdl0iLOj1GVVrdglO8kRwj+Ge8X2Xo8LjMzLw0sOqkYAz+20f1Sl/RbtH7imLOruLeTv0fGIbh+O7BhOTl7YOvp3Liiq8UYc450kZ1grEeL8v5yi12EIscyipg1GwJbiks8bvlcyfudBDYKHxuc97PG9SfFj0p4vev33hT3BS0SXf2WtA4DxUjPrvU2IBdJHMypKE401aeHeXtKXtoGkc/lHkJLRcWClPTfIYQQQgixAvQXhhBCCCGEEEIIIVaCXjoIIYQQQgghhBBiJZxSekUkpnaqUadbL1Zk6XVWg4d1Yg67w2yGqvlDvTo+5dcjFdRjfR0zs6GnvWLgigsoW2/auv6VVcRTYK9I0M6mosK/r5xf73wkXe5dhfW8fgd59Bz7mePC9EVCAF0O0ynkx9hmgos5pWya+2K/IU+nLWTiYjDipIIW27S0atBGMalLtt0xOIK0GWCNJdGzOw9KvuuV7N3RApk225TnUx7ddcV1gR1pxLFpI2oHLmeKTD3No011G4WzVxTpFdxmpFzc3eC0vTg/DJZT9u/iUHKzkKB7VwQl8/jCJUVgt1Zfn0kAbjTQp34s7lXn1wrSGqJ0Arec14UHD2xiRT9atz2ud0M7DedX3Y7E6ej26WxRtGT5foxNvY/cr0upmOS2k/0HlixeO+5nfertFUxsGfE7wrazauAe27OGxIkeKRP4TaDNK3zuWXH/uLQe3i9ug3wObnn9V9YtDu0Y5Ub8UL/f0njsXFNg/RBCCCGEuCZI6SCEEEIIIYQQQoiVoJcOQgghhBBCCCGEWAmnZK+omyMK+MVQfAUJa98zmSIvp9XCSYubQKZNe4VTWQeVu83MvXNJdVmpS69g5XVI3n2x9LpVIjmrRSFRxg7CbbC+V9hSokwbBKXt9fXLtIY5dN4zJjwMTPYoLuaJ/U5ZNb9+PC8J76ptMy//dtcF+53SUtHVq+O7N2qBdN/nDBTpJqk+u50U39kr6nPQJVbQAuDmNfo38deFdgvK+Acnucd+eYlw7KGnVYj7x5yg9aT1jwfaSjjph5H9ZaIGxgY2D6bXTCi3j6TmZk72Tsm8S7KoO6/83ijdp4XApWjARlLuyT9cqtvEiRWB1aKtz6HeWUF8PxracZjq0OblExfswflfT1jgXdhx/xiFvrj/B87nhmPItIeu2nbwugTWgs5dR98PH5yEZ0DHseE8R5/c4WhDwbGb+j24lDTjEiE4znXLSOSL4KVzz3g+Q4N+m5W/Fy4qBTtmSsvx9IrifIQQQgghTgf6C0MIIYQQQgghhBArQS8dhBBCCCGEEEIIsRJOyV4RKIY9lCH3XqQ8n8/QpqUCMn5X/j+Ql1ISbZSK5k2TU7D7ztKO0ATvX1xleMqYO9orUN19qNsomOJQyvZHVl4PkjB8+kV90F24Bsaso1w8aJuZ9c5ekUl97nvPiv+UUEN+vIb+TVjhn/aUtj6ux/aLPrrxzG1OXFai9/ORkub6pHVjtmSnwHUtjBi1/bo16tN3m/QK9tXD8UlBMoITVNOug2NQkc470llSmrr1ocQnFTBxAeMRWCo6JA9wOU9nLGX8TK1JeE5YYEGIqv8HhjBnjmjq1/fYAetzqqFFyE2EKL2CNrF68oVzR2ybXpH71DX5mk3aYK64JAs8V7DKgH228Ou0xXgMTFBx93TdltY6D03dUlG/0wpb2uDnB4/HhIw1zDUuT7To9NxXYMEIzqG8V0M7jVupHjvhk4uCmArXxnUsp3WwCZ8fqTZPlV4hhBBCiBUgpYMQQgghhBBCCCFWgl46CCGEEEIIIYQQYiWcmr0CRGrMRPk1bBNmZv08J1Z4GXVdckyZK5fTckDLAqXfUYH/ckGZ5HACp1C2ul3Cl7Gv2yt4nmOZkuD2y71Sfl+X1Yblz+uhD+7IZWX+OSTHW0EsSYcdU/HeQ8bPKvNtqst5nf2jsL046Th6SauFuxYj5lckaQ4SPJqaxLjS39FZNaJK9JA7d/VK/ubkzUFfl8Y+sHbQJsKkCSR78D7kXroOFocp+optrSvGg3aQlpaKsr8n+oR7GMeLbVG8hwsZP+fawDFg2gaO19SfGWPD+xA2jUDmnoqLET1/XHqFizfBtpFKPqAJ7hez8h7hcyyvk5xVgw8W2ouQygA7DFMpnMWssGQNvO+ZFDFhOk2UDFS3BDlrUrROsS/aH5iQsYa5NmVaAwNyXAgS7GO0czHlo9suaQO2DT5hm/JpW6OeapHc5Dx5Mkq5fWThcEksi5VkrxBCCCHE6UdKByGEEEIIIYQQQqwEvXQQQgghhBBCCCHEStiVvSId/597UxGoMV0iQ1FpfKD1wlUwD6qfd4EcGxJsV+zbVe9nMoSXuFK623X19y9R9XS6Qpp2B+sHbTOfXOBOo9oj/81Owgz4wdlQiiMwIWCOLk6YnoBxGp3VIu+LV9vnUtTlw2WqCO0Wo7Mg1M0h45DtOm1Usd8llXDeBFYL89dlDK6MG3J3HkwzqCcHcOsUtI/1kZ/qlow4WYV2H6yPSv4tq/qj20NT3LeQiLPtkjdo+eiYhEG5fd1SESVtHPuMOTHSOoH9WrZwNLSPdHjMjbB22WZuIxFj5Drl863lPOKNj+WRjaKJ7m4+D+vXty1sDUys8PYHHMHN//ozl3aJ6SSP2RCs0zf+juazjOM8CVJJbCkh5vg6zqF28iSL8mndObsWrBYcm8C+5/o31sfM7x/9a/1ETTs2sy3TBJ/CWePmnL8uUYpPCmyIi2diKie8EEIIIcQ1R0oHIYQQQgghhBBCrAS9dBBCCCGEEEIIIcRKOCV7hat5HehfKfmlBNosloKz+ryTl0ISOgz1NtdnFfaRFboLaW/b1Ldx9gy3BWWqkNW6WIb6+tulV7gtlqqhnzgex6Yu1eWpOsWwk+pS2l5s76qc1/fLNBAmCrhxDq5pGy0vXn1RST6BZSFxRdd3jkfdcpOGobq2s+4UFhtKzEev/87rBNYCJ9+OhOHhjeRJqS6wTm7O11MIUjCXea4JmnxnmyhsQHOkPYxYr+nq0vbp2hTttbwjWnEK69XiHAo7AdMQIk+R2wSrp66eRsFbis8S98gorgtTSXgtvdWC8vsg2YY7jSwHxnH1/RjbuqWCdiQmjKTg/CaQ5a/BXkEbVu/sG35O0F4xgU1nMuVPSyTpz7S0PoRWC8x383B7jgfHrXPTJkjCqF9Gtz7TQpqmtFewXb/2sYWhbvlwc9btkz+4xa4CCxMTgIYe53R8PpWpMUIIIYQQpwMpHYQQQgghhBBCCLES9NJBCCGEEEIIIYQQK2F39oqUjkk1t5GCn8DJy0t7BaXgDauc19+BULrPNtMrGuipJ6iiTjnpOHhpsA86qEc/RNW+2Y82qFxPKewYSWS3wa9FiTgk1DilSK6cLJCXl1aOpm4DoPrbpVRQqkspN5Xwbh6wHVlSvCS99Z6d3A5SD5Kr0p9Xd9eOlfmN17GozO+uXwCOweSMNkipaAJ7hVu+TXpFE8xZ2hqYTOFtMjgLZ1vJiwfYhoYx2ynK7ygXdykVTDCAvYLS+2Ge98t0Gfa1LewEU6ZUTJigwvsK+2qZQIH1m7pFxF1rp4QvUiOcdcVFRSyaTVNPMIitWlbFJYEUz9wwscJ1t36PMF/GJT3g2qXI1lDYK7jedFq3V7gEIdgRvF0isFfgWFy+nb2C3/mUD7a5zsnfvTfOalRPAjErrRDRzuof3JR3qT31eepPNO5HZFXkczCPn+wVQgghhDj9SOkghBBCCCGEEEKIlaCXDkIIIYQQQgghhFgJu7JXNMf/54SbdSWx0yiXtoZhDrkoKmizwjrlypS/UgLPBISunWD5FOtTq1tWyqe8FEtdxf96ckDTRPJVrk3JNe0OBUFqRL2nsUy7CS0cgQS9kAY7uT7TAnBdelzLuWUJ+wzHWMN+elyjHjLrltaYbRS9E6ZcNPXxdI6Fke38wSVROIsOrBajHw8mdbhpzrnN6v3NyaXShDYj2ivaIkXD2TagpaddZTJFIgyu3eg8JkzjyItpSRmRJlEmS3A83bxz/aP9IK8/6/Nc6WezRXs+y8t5DtNp8WjifUULDVJhyrSNvLxunaJs3SveKfUvo1Uoe+c9ndtjmEYB2qa+HHBujeWp4ZyY0EArW1d/RLnHYOv6Ufc1cP/tUm/zZ96rE6YnMO3F6uMXua2cpWKbfnhzUj2Zgu3OHTt4rgQ2Nvf8KC61t0IFaTY7OJ7/TUFfOfe3+00Jfkl4f075u3q8f11hMRNCCCGEOB1I6SCEEEIIIYQQQoiVoJcOQgghhBBCCCGEWAm7slcsoNSZ6QmQ7dIqMc69Nrif5RXnaPdYj9tThttFVgu2cVqstp6WpMGRN6RuWfABF/WEi6hquDnZalEBnu0yUWL5cGFfI0uFO+1tgjO8XQXSf0jYRyQYzGGNmaGDM1yjdch5506aju6VIRpdIPluOQ+wfmBfSIH8PXABLUVUOLcPJM5ePo9q/C5NgtYJyqlpo+iq63eFvYJTh/LoCWwU3TSwZ9Au4aYHLQr1to2xdjwShfPDgHkz9Dk1YjafVZe3k7W8m9Y/mlraYwYmICBhIzEVA11ydom6RN8FUTC5pUg28FYNZ8qqtLwVx6ey1PvncGk5fnIyradD6kTnxq3lBrmJ+9alhOBGbJhs0NTvwWK3NsGHSZD8UoxmXu4uQP3529GCVLwu96EdqdrmOTVB0ow/vbycthD/AFnyveRjNPXnKZ+z5XhWul2cD5JYgiSKyg5yn/BsoA3rxBTsyoEVQgghhDgN6C8MIYQQQgghhBBCrAS9dBBCCCGEEEIIIcRK0EsHIYQQQgghhBBCrIRTisx09Qzo+6Yvl9bwwftN+1n+st/KPuw52v08t8ceNQXg53Z1I1hPwuUB0ltfFjSgn3kn9R3qxRF8DCVrSDAmjTUdSh9vVKMBS9m/oL5DE9SooGWcnt2leDRc137I478Gb/J0kuNIG/jx57hec/iX5wP85jgH1uYYi1dfUS2GaJ0ondLF1EXBhOxHsY63VefvhqDuAeuHjMgrhOXe+ahZC2R9z3pwZG/Pblv6s3EaruvoR2IEJu4p1nGIPPC2DUGE5cgbMahPwjIJLQoBsJZHKscgaLtL0QcxrK4uA+aEq++A+w79LudEE9V7YDIpnlc92k2L+Y9x7oLaHj4VtugHoy7h02dkprnYSkxC1paYoEYIxz+qdVLG7KLtqkmwJoSrPVDf1j2bU/05xjouXVFrI7pz/fOYfWINoHp9B+Ijc1kDpZyn9fjStsvPTdZs8VHKiBZFv1s3ZnxG83fR94P1VHivc36hLMjisvZjGSsthBBCCHHNkdJBCCGEEEIIIYQQK0EvHYQQQgghhBBCCLESTslekYK4SOcAcLLnQvqJaEzGZw6zOdbJUnDG6g0DpNxo02qRnNUCB06xYDyU30d5k5SOU1rt5LzUR1PW7Y8QRl06yTGlz4Edg4spw3f2iqypnXaFvQLjNlAWPsU20zxl2I8BUt8ecl7KdQf4KAZKrq2AEYdeJ19pFZGIgdeCSXCJkmaXhFeKtOvXkpJ+jkHnpgRl1pCwY/xoIVpbz3GRtEGYeauLj1Rl/2A7guR7HGGpoL3CTRbKy9n284NWAxetyfnP5eir22/Hdh4P2ivKCMAUxAbSm8NnAL0njbMs1OdQctGnI9Yp5wS3x7FdX9E9N0516TojFH3sKs6z8+PBuFW2Y3sFPTqptoqPz3QxwKC4WV20Jr5suR5jQ0P7zsntFc4GUdhvvL2Iz5b6b1Vkm2sseN5wzqGdyqhK168g0pnzseWcx7xzka/cO39v69G9ZsXzmPd9h2cG3ZDH5+l8yHG2QgghhBCnCykdhBBCCCGEEEIIsRL00kEIIYQQQgghhBArYVf2ihMGiyaSrDI1Yjt7xYwJFJSF1iXOLWXa3JHXxqNPrMyPY1kpb65X1w+XMxkhtGrUK8B7wfA2KQls10MFPIFk2NXrZ2IFKqd3rb/8E6ZUpLrMnikOk0m2BEwgk3dV8F0SBeBYem10YZdgP/I6lIJTuh9JqL2kObfh0HEV3828jWJw0n2OIdqTSbU9meZx6thGEghPLhWV6CnR50gNTg1PyXxd/k0p96SpJyZEUv9j67XV9Zi+wGu0ubm5aG+hTXvFlPYK2hXGcsJzRrvJk5sd+4dr0dUTIWjhaNyY19NJzAprGa6LXw3zjmPD8cetN0WiSTepy/gnk/Ie4XzOO3N2lYbjkbdtg3STRFsPx8Y9yEpvGG1ctCzU7WfeBeF8SvwC+6wfy1swwkCf4reAlhEMSMPl9QctH/cuOaR4lo+pvq/R+Q1pE6mnV/jfgfrv7RgsL/fll6MbtMEd/x3uB6VXCCGEEOL0I6WDEEIIIYQQQgghVoJeOgghhBBCCCGEEGIlnFp6BZeluoyWVeXHuTmGeV3S28L+0DZsU15eT3TwelTGV/T15cd2Vt1XKVTNqzP1ILB2VLcsJLJLzoy6VSOSyHrJcX0vLrHCpThQcu3TCaZNng5TvI+i9Jw2gzVoxNfWYCdgFXa2KUuOEieKz06yHVktQlk3Ze6U4SOBA1LzYfSS7TGQMrdBGsVkmu0SHdqTtWl1nemkfvst2W+YEsI+cmoztCCw4tBGMaH9AzYP2m/axr+TbIKJR5sBU09GSLX5nOisbk/ho2QoZPy0CtAe07pq/LQj1K0uPmoDySou/YNrx7L1kekhDIeg9afjmLPd1Ndv6haWMknE2biC8WxcYg79FXnbeY9rN+BBHTxXUmFrcHYLzhfaP7iHIIXH2YDCkCGmsvhvovQKb6lg2kvdBsF13KVHHAcek9b4oBnzm/PZQpsfnyv19/5+nbpNY3T2nvKmd36QvF93j8leIYQQQohrBykdhBBCCCGEEEIIsRL00kEIIYQQQgghhBArYZfpFceI5NtMdEio0J3K9Io5JdhZn5pSlvemcZbXH7by+pBvc7+JMQROAky5aOHzoLSV8u3ALkGa6MMOKo0v2SmYXBD5MwILhrMiBBJlypubcP/FRngfNVIaPM9jO4ftZQKp7pRV+llNv42k1UUlelbUxzxy4SjuGnHe1S+eW95GE7hMCKhX/+8CS0XbcT5RYg/bylpOr5hiP+zfWIwHx9+nBdCiUpflj67sPppRYoXVr5GZTwnhNgPuPVoq+EaTVhL2m/ct5d6lvaKb5m1oAXE+G6YCcH20R+y3cc6rwP7U+jnhLA+wkPmN6tJ2WkHatn4jUlbvbDwTb69gIhAl8bQdcE7QStIFEv0USOt5ZmNpQRrr9pbUcp7SalFPVvHP7LoNK7JjHFuv3nZ2hGD72GpRT36hBWY0Px6cU+47F4iC/TKZpphrtfV5j3AuL7sr6vY1b8/Iy/vj81/uCiGEEEKsAikdhBBCCCGEEEIIsRL00kEIIYQQQgghhBAr4ZTsFY5Irk856eC1n5G9gkkT45DtFX3PdrZIsFI+K+i7xARnryhKngNXYT1Ih7BgcROsFMqBSxl/eMCmuk7UdokOUSKGC3dI8XdcTuk55PCzeb5eVLzvWWcaQpZWd9EQl/1wVdm5DWTGwb5GNzb52LRwcM6NUQKKFbYDXDNaBZhe0QZl95kiwCQF2i6abju7CW8mzm0cg6kTbZl0cHw/nCvtyeXXqZDSczwpkx8wnkOPNBraMXDeruo+9NwDbQLFxWhhhWowp2gpajGGXXaxWMunHE7JKcn5GHLuCP9elikSrh+BNcnvjEekJYIpGPVnSVdc0xEdHnvOZySGuHfKwRyC7aKhtt7ZFZrq+mZmNtBeETxAfNSM1VbaSXqFt54Vz4zQTsBN6skjY5BYwTnYWt3Ss2Q15KXn8ZzvBePvbH11u5S7X9xc2Wbe1EN8nCVjqDxnl1MwhBBCCCGuOVI6CCGEEEIIIYQQYiXopYMQQgghhBBCCCFWwjW2VzROu1lvOwuFmQ2wS6SR6RWoXg+pbz+fow0pN6W9zr2AyvWQhJeS7SaQ6POLSNE7pLrM1Vdhr69Tqodpkegg506hThiydbw3at35BBLvQHZ7rOus4F+X2TbB2AxBRXz2m6kPaxNU5i8GxMuGsavIy4NmN0U6BCT9cyQbzJ0cnakRga7bCqsF5xrTEBhegX0xcaXvaUnBtXOWDXgDrKzgX5dU0xYxQLrfIfWgcxYMzgnsp6fs30vpG5x40+DRQeU5rmtpIqoczl3TEf0eCotJQ3U67VqUp9PGAjvCZJLtPj5pg4kYSN2g1aVwZDnzEyX9vG9dEolVl5uzsQSJKym+WUPpPiX6gd+N19VL7Os2A2dfKgckuCe93B/zxlkWQJQAVO/S0kM0mmvuIZ/q7TBZCIt7q1v5luwIYboMr0v1EP4+DH5fous+FLETUcrFGNn3jvevibwtQgghhBDXACkdhBBCCCGEEEIIsRL00kEIIYQQQgghhBAr4ZqnVxAni2XiwdytxmSKRAm3s2RkeegclgraK8be6bQX0FJhkIGXb1go9XWqUsrZ0e5HSmzR7x1YKlwHSxk/ZOutk4tDAozeM0GC1fQ7bssxCGTFZVqDk7qj7xw3n+gQSavrdpMJzmd9miXvbZGSYAMtN9ivBTJhNCcYA9o5+hlTEpCAMgbSajNrINFnGkhLq4xLk6B9Ad2DZWG+lec+LQBMtWD7WD9QyZ42Cs5H3FNcBwEZNlnnlcQc531E+0GR9uJcDS6dIDe7KRJD+Axg1X1OQVftP7ATWWG9YMgCoin8/Me14GMOPo2hxX3H/XS0qhT9oM3D3Vb5w4A527Oz7plRt0446f3A52HRD16nyF4R2HKcvSIF5xpE2SxZwwLbQLi996csmry/xjD1oZ7as3Rwuit8FEmtS+7x7d0FtEjlZxLtWWU/WliYOp4f00eCVCPfxv3ijlC/p5jkZFbaZrAHPr/b5fSVJtWTb4QQQgghrglSOgghhBBCCCGEEGIl6KWDEEIIIYQQQgghVsIp2isCLStJrIIf2ysodaeklFX+Z7O8/ryHNJ4ya0hInUUB9oq0VOMc0njIrmlr4DZjYKmI7ASNk6fXK8kf6zuk4FC38jxsoMS+LqHucK5OJlsPvlhKr6CUuceXHaTuLZW6HRICIKtfQ1rA2oT2FowrLl5ZMZ22gyZI/ZhtbS3a6+vr+RzQb9pyBmeDqKcIjIWkn0JjyqZbVuDH8aa4XhN3Dnk/A/s0ZRIL7CadfxdI6f4csvoZUl04OLRnJMzlOW0XvEc6yMBxHbd7OIy8X1gFnwkeODbnuDselndDPvYw5vE4tlF9zvO9aUJCST/nvZrHyUn3B97/uI8wfsNYJO/QJgLLB68YLRVMy+A84L3gEycytFQsyefxfCy/W+yLiRopktvjWuD5MQ6BlWzpGVpPJXEEX3gnA302OHa002abfjh/RdAlBuzgeTzh8wrPNzdX0D/azcz8fcXnt3v20SLBPkWJJoENJTy5Ynte785d72UrhfvNEUIIIYQ4TegvDCGEEEIIIYQQQqwEvXQQQgghhBBCCCHESrjm6RVBxfnkkh52ll7BQuV9j/SKWT29gnJq6lQ7yEYpTafE28ysaVCFnIpcfBiZXuH2hYrzUUoF0zGCdrkee9i1TquOtSnbRcICkzqcvYLSZZ5D0YtAet45pS8sBLABMI1iHakRax0TILB/SMKbiZf58rybMunjOEyd6LppdfkIabxLXqDsf6hbLcz8dcImPs2D/cb8YIoGbRucv5zX3SS3W/PjwTm8BUsF29O1POYT2FsSLnI/uJskb+tSNFhx348954RPo+Dcrg8Ul7f4onM2g9zvMtCEKnt+RwuCG2emlfTZilPPWzFvT3FV/b11YXR2nLyctiPaKzhmnP/eelKX3kfzxsxbKoYhsFcwDSFImnH9wLxLUYLEUmpE/Rkcpc64pA4X8VLtXmivKJ8KLhQjtHmwyfPjfnEPYx6MvEeYalPcI+F3LpaEY1a3VNDKx+QLjplLxyhsES0GYXTpKEyvqIy/7BVCCCGEWAH6C0MIIYQQQgghhBArQS8dhBBCCCGEEEIIsRJ2Z68Yj/9vDunsHPJQWCIGlzLh7RX8PGnX8vJZfgfSz3LX5ltYZw5p6lC3CjirhEuo8BJlSlDbhhrbvAMcwiaQy9Ja0LN6/Og0vOgHZK2FfJ5VxNtAxgvnhJNj+2rp9aSIdmyr60+KlITO7TcvX8PydYzBOmwR69jXGtZhexLYSNrCbrJsPzkO+rE23YMNkNpB6bgbfy6v2yas85r+SZf36yX3eR3K7fsB8wvr9NBvD94HhFPAHBiLqvLoJCX3rZNyZ2tC0+T7pcM5sNJ+2wZ6dneP+PuWEm5vd8D5wdLi78lgzrJPrpp+keCBa88wBd57fZBWwudSZKlgUgH7uiyfZ1pD3U7m0xeYcpNXoeS9tfozw9kmCr+J+y4FDz9zFwlL0W93j3DTumWmLYwNjYsrsTq0j/i4hurq/vnN1YPxPrYgt11qR93m4c6JSS6BzyO0WpXzg8kstIm5ny3ODyznXGF6CPuKe57PJyt/U1rYemDxoV2QQzgc78gwBM9eIYQQQohrgJQOQgghhBBCCCGEWAl66SCEEEIIIYQQQoiVoJcOQgghhBBCCCGEWAm7rOmQzMbkYuoG1HSwnlFxfbVtZjb0iAdscxd61GvoZ1O0s0c99fWoOVrUvZcfsYRFlloHb62LDwtsylOs08MDPqf/FkZZ1nHonPe5iDdz9R7qbXrJW/r/6fdNdQ8xPcsTnAPPx8xsiuNN4U1ewzHWsWNfxyHvZ411MOCFnrBPOG5Zw4FxjBwDepvX1vdiC8aG1i+ei3iE557xnF3Rj8kENR26IE4wqOlAfzbrC9CZ36JuSTvJMbLNULwLZKwh+uv6h5oOreV2161j/bzcjHMWEbboYSrmRxtEY46Ip+w5/zFObv52nKccY9Z68F75hLk9dvTpo/6KK6uA69LX6xk0Qf0D9q98K8u6LoOrZcGDY/66OgSYN0HdEp62K+lQrMdaEZznDa9RUD8hpXJvx5e7GhAYj1SvU2BWxLs2vC51XHwj6980TWVtH+nJPo1FTGjj4oxxfkHRiob1UNyhGWHZV5c3rhaQP1Nf74EdxHIOc1O/LiOeUQ2joVHvhVHBXVmfB0Mww70ww2/0jDWYjo/tUJ8aQgghhBDXCCkdhBBCCCGEEEIIsRL00kEIIYQQQgghhBArYXf2iqYxaxoXbUf5a7Is06b4tSmi0ahmnW1B2g35LC0YfZ/XGRMi+dCPjrYERvLRolBkuk1chCBk/E1dHDxCktt3lNiiT1G8HGwkZVJcYnQZZe+wsbTOQkDfAN4bJcpwc9PZTSh5991w0vEprQw43ppbnvc1hTS4dcpvypKbenu7GL5gOWX5PJPk7Cn1fnSMZmwpt/fH8/F39ahE2itcFCGO104wB2HT4HLGTo5FPCLny2SNcZiMm8R5Y/jGlGMv54ixNUbEsq90GXX+8eCtAnnOc9p56X49LtISnh/GOcHrW+i8nT2AbVi60KbdgbaXNNbl9gl96tAufQKU0/PaN85WQntQMFcCawGvHe0bFlgiis39xXB2mEzrT5x7qu+0qV+jY1sE27hYzvq94+9Pq37ivB6M17EYDz7kUnEjL7pXv5+dZSS4RlEkKiNszbw9YeTcxjqcB6OL/qzbQlwkrbOV4P7v/NOctrEpnpUDfj9b3MMnfifbtLs/CYQQQgghdoKUDkIIIYQQQgghhFgJeukghBBCCCGEEEKIlbBLe8Xx/7FgeUtZd102XUqUqRTe3NhYtCkd7QdYNYatvC2kra2zLLB6P1Mj8rEmhTSY6Q20jIy+7HteTvsBVqFcn9LlhIFqnMTVD8g41OWzIyTmVM82qFrO6v2UMQen4N4yLVXmR3uKcXP2iqa+zsTZKwLJdlu3wJTiauLWoy3CpVpweX1fPtUCEu9o9767vuQ8JeKu4H/dajFF2sh0LadJ8N7htkPvpeOcL5zzDcIoWqYyGJNjmCyR7RVeag4p9hT3UWGvoKWCsnKXzpECm4GzYXFg69X7nZzdvGx9YHoO7xe0ByaJcB0nyw+SA0Y+Ywo7gbMqBf1184MThMeop2gwqID7LMeD9gBay6zucPBWhiY2NuSl0TpFqkh1a49/FNXvHWf/YFoLrR1jcHLmbRsR/rTrx+B+h6E+r30Ch78uCfduEyRyuN8UWjiC5wrnJu0RPmbJPzNot6Clq2MqCc7vRLLQZMl0J4QQQghxzZHSQQghhBBCCCGEECtBLx2EEEIIIYQQQgixEk6tVHW9QH2po82rFJXGeyRTbCG9YraVbRQDKu1Tohy9JYnkubRUTAv9/ASSeWxiA7StPCXKyNmPjskSVk9V8AkLpRS4Lu91amBW/E+BSYL2Cq5Bh4Oznnj5b+vkzki5wCGmkOqu4Ysp1mEKhjNROC9DbK/wdon6epFkm7jxc4euV7EvQzOYYuISE9yxIY1n5XpKpZ3kGnJstp0jpUxZwbWHnHuY437pKNeH7Yiya2chQJtpAVi9KwICetyT89kW2kiXgZWB1iYmdXD+NrwvIJ/vC7k8pe7zOeTm88A6EbSZepAi68MQJBsc73Fej9vQCsHUA25LzfxYW+qSbFL4cC125daLUid2lhxT3Q8PW95qLsmFfcJy39mgT1xOyx6+2Fb5H6VwcDGeH7inRvcMre9xDCwsS8Mx8DkxxitWumcj7WfcKZuYf86O4W0ePtWIv595vUm7/AzodmSYEUIIIYTYHVI6CCGEEEIIIYQQYiXopYMQQgghhBBCCCFWwu7sFen4/6gaHShRrkszx6IaP+XYs80s03ZJFvNswaDStAtkp5TqTtiGjHZaKIah+LaW1fydrB79hhyeaQG0VEwwOL3TyNJe4ccjqnLuEgasbq9ojLJ1ngOr26ON8egKu0njqrLj/DDoUyQa0F6xxmr6Tt1M+wK/2M5eUbdhUHadosrwQUn81lkq6t0or8NAO0JYHb+eQNH3lPFTM58tCh6mXUzdN52zVyBBYgarRUPrzxq6Rwk7KvP3dVsC7RVt7895Psd9C3tFP8/n5M6VVfN57TpaKiBzx+FopzAz69FftkfK2QfaKIK0EZcWQHk5D45mMSdc0gT25VIIgkQCl05g9eVOMs+UFSsJtqFVxur3C++F7ZJjcv941CJ5h30Pz6m+X9dXZ32o2yAsSFw51i+utoNzwjH6IE2FJ+6eNzh2Kk8uBXNwrF/L5D7wub4DiwgWD97HYwnPGaZ+NPjt6ZiOdHy/09KmIYQQQghxGpDSQQghhBBCCCGEECtBLx2EEEIIIYQQQgixEk4tvcIpUFGZ3+twF5RS6fkM6RWbm2jDXoFK+bQ7+OraqboOkxSmQZLFsc+57awM9cLfNoNMtU2UpuZh7FpWpacUdhs7QaCkbZ1MGNuPdXtF6ywmSJnACa1PsvR+rZDxT1CBvx1Y5TxvPwkk825kMWhOrDvW5dRNcV0aSKrbNo9ti/5ynableNBewQSOILEikCubmY3zIOkgStTAhRwZUoE90wbhKvZznZRtDMcW5PtlOsX4T3H79nlnA8+E0wa7HMe6DByX3WZtb2QLtqitrXzf8hngbEq4EZkIM6OtAeeWnF3BPzMi+wJXcwpzJ23HmGOVjjJ5Zw2wEPeIC6wTUZszjBarFJyEm7NdYScIbRu0JuT1aW1yp+ceRfUxoG1iHL38fgitJNxtlKhh9eV8ALvzpsXMXyRvqQijHxYUZoTccukm9T3yU2nkaPDc7dpgB34SoU/1ueIsYy7Ng5YPPx6JT143P/Bcx7PohH2ka4pnjxBCCCHEaUBKByGEEEIIIYQQQqwEvXQQQgghhBBCCCHESjg1ewUJJbW5uWyvyNaJ2RYq4m/liviUXTMpwqVXNPXlk6A9LaqaU15NWTgr1rPntHY0CRYAyH4nTbYAcDhGSnIbL4UlbVTRnfpcV/Ic1ge0mTKxPmE72yvWO59eQYVuO3JscYy23nZvryBRHlIgDXapFL4fnbNU5P5O16ZYntehdLwpRj3vE92gfQZrD0NxXahQXjJfnDgeJPq4LpHVYnSWD+wHQzP03tYwOitPHo+G8StItUj9smz62H7y6v5eZaoFEx0iUbnZWpuvxRz9HYYg4YWJMLi350jgcPL8IhWgdRYa3gtYybkU4n0t9uPmIK4ddl+mllB+78MJIpsBOxVYLVLdatE2wUQtjuGsKLS3cA4GyRlO3h/0m9aWobBXuPQQ9w3vyXoCjXse0OrS1NvOdlUmVLgYmtyM5pSzUfCaup3yE1NBsLRMNwme360bco4t7YnOH1Q7tDtN2mdKe4X3GvGeZDzN8rXrGqVXCCGEEOL0I6WDEEIIIYQQQgghVoJeOgghhBBCCCGEEGIl7M5ekY7/jzYDfu0kv7ndz71odTbLn+f4zil3IQ3unMQ2r0LZLu0VU0i5eYKTQgDc1Yv8O8nsEBQIZ/V0ypidpJYHiyIxrChOzv4FEmUOQuusD1l+vBf2ijOQ+rAH/SjtJuw7K+dPo4LpbnmkAeZiyKPRv7aweXT4brKOtI0963lfXV0a7yXRuEZBZXgns/ZZG8UWdUk/Uwh88gjWgdSZ9oWOSRQYg1Kyzb4zPcTNNc6JQKrOucX7c4QlYo6Eir6weUwwj9bW8nWZ7NljNWi16JFYY1FyyTaxER1u1q7tquu4pIgdpUzUJez8MKRCcD8uS9LL9shkisA6ESUYmLN55LEprS4jtPXJonnQVdfph7q8f4BFZwzsFWnpGtWvJY9tLmmG9z0sUpz/fB7QwtWxXcyBpv7+fHTWiTwfnTWGv2dMDEEqUXi9lqw79d9AF8aS6vPD/RC4e4Rzbmf9aNyzHJYs95uybN+bnAbHpRBCCCFEiZQOQgghhBBCCCGEWAl66SCEEEIIIYQQQoiVsEt7xVhUxfaqVspUKSMv7RXzGeXm3D0k85APN0iH6OBx6LgcUlGmTExSqi438yfv3AE8D0qXqX4NlNlR9XIvmd9GPs/zoEQWCQ+uDenyFJLjPZDC753k5WvY51ohlXZ2iY62DY4t1qG8n/aRwH5DC0GH9AmmVZTfre2BvWJvtlc4GXogdG9c5fqgWj2TG/w0dZJ0SsfdqEHWHI3fCJuC60eqS7m7JbsJxh+JFU1bt1Rw/FwqADpO6wRtTWtICFmHtcWsSHtwJfVz08nWca59P2B1jGvL8ajuconG6veSs064dAhYvQZK7OupD2yX9ophjDqJpIhorg2MQ+G8wbXD/ewsFKN/P+xtQZyntCbkeTCmfGymCQ1DThKivYIpFd79UTy7WlqEMD9ol0DSSWSx6vCMiq4FLVVuffP3grnfoSjFxEWd4ByQRIR2dB1TMVHHHSRkNIGNKAj3KZ5v6PcY/AiZWdvlMXeJN5gT/F0dx2M7aAKbihBCCCHENUF/YQghhBBCCCGEEGIl6KWDEEIIIYQQQgghVsIp2itcZsWiRTtBT3tF7yXKPSSvI2XDTk4M2TQkq7Q1uKQHpldwOeSoXWknYN+hk22YnBHYNiiRdUkWrk84B0rhzTPB8ZgoseaSKZDoAFnylPYKtNchsd/DxAPIrNvBpxNwDJkYMnWJHLROoB1IzflF6+wV9faxz0yvQBvSf0qOB0qXuaMoFcD1jxJlf2VajPl0CrsEJdQDUxUok8f8t7rNwKVG9FnmnlI5QwIJO9MCnJy9bsHg7G8Qy0JlOucW22aFXSJIQPDy8jiNotqpbRZzX0NTv95jkJ7jLTQ8B9gdoG1ngsG8SPCYU1rvRzQvD1I0vPUnrz/peH/l69hzN8Uz1Fk4mI5C9X3inMe8g43CpWvwAM4alhcvJ81Axj/JMv4Olgqj5YP3mEu1YNJG3cLSuGdJea/W7RUJNhH/jBqr7SawiwxB4oRLJLEiwSlcr27JcvalwO7nD1Y/7rEd02qEOcv7wjgPjh17SPk5JIQQQghxupDSQQghhBBCCCGEECtBLx2EEEIIIYQQQgixEnZnr7B07H9e+5mbkIdSRj6fQ8ZsZj3TK+aQe7K4O9vQGTNBgnYAnkgH+TXTK9qiEn3XBPYKvIuZYB0Kiyeu3VTblAM72W5RanyKz+uQCa9DlrzGRAdImplY4e0VXA6Z9ZzSY9cNZweZsM30Ckqt2W79OS0IJNHtdvYKWBkmU9or8nqUyQ9FOgp6VV3qkg3cOn79zp0gKr0PlKTXEwlY1Z7JAyNsDSMm/AznMAx+LIcxjwHHcGpZzk7LSAqyH1IYD4G0hqEuxV7eWW5yPFwqBi1IPFqU6sLxK+TiTqrOIWeXnM0gr9RjrsydpSX3lckITM7ZKuwVW7MZ+sR5lHF2BFpgmGxDC0xwWQZYd4biGequE857glthcPvlnM1tuhJcGgptEHzOTmheM+umsFd0eT7SmkS7EBNbGn9w7LVuRWiCZ8+x41U3sYaDGyRWsO0tY6m6zjgw+aW0V+BoKRhzrk/bl7N61S2MTWjdKXDJGUguMaSVuHvsWK/6cXObnQohhBBCnBpSOgghhBBCCCGEEGIl6KWDEEIIIYQQQgghVoJeOgghhBBCCCGEEGIl7DIy88T/4DdltCUsovNZ9r1ubfgYriOHji7ahw8ezsvRnm9m7zQd/2vw1rPd0j8ODyu9v5PWm2BZq4Ce4MTCBfAar6N+wh4ce+B+GVMHX3OLCLnOZ7e5iE9X04FteKkZhzllG+tP4VHnRR5G1hTw/XA1HVg7gHUjgthLF9nY1MdvMs3rTCZttX3sM44XtFtY3F2dBNZbYKwjl6PeCNdpyti5yDPtohl5DNZDoJ8btUMm9Ldzl/nDvIgy7RFx2ExQXwPjOTD2r6/78Z3fHH0dMR5NUJOk/Mz1higysxzPvFZex+2nPq5mvs4CC7uEcZioxcDx3JrnZxFjStuxPpdZA+LYZ9SNcDGKrF+B50rD+gmomeDGKfdv4PODc7wYS/rxXXkCzvMGz0EOX1u/P1nDxMVTsv5EEZnZuGdcbjNKk6VBRle2oD5PGSfq4i953xXXhXULuN4wR/0FzAkXYcn9Yp2e9+TWDO2tSu9OnIarXpJbHM+m/rvjy5vU++dJQdtvEz2LWLPlRM2JskaFEEIIIcTpQEoHIYQQQgghhBBCrAS9dBBCCCGEEEIIIcRK2JW9IjWtpaZ1ElJGoFEROp9luevmRpajmpkdPbKxaNNSsXHoyKLdQvK91iEuEnrUNdogKCuGLpmS1a7IWesCyXHTURabV9qDDWaQ+lNS3kIG3tBSMclxcsuRmZk19GPdnSvjM9mGDaKtS6VbowSdcvY4ItJZKnC8SVePb2T8XWSv6FwkX11uXPaD14h2GNpY4DiweSCxH/u61cICmfWxz1b/bqxbOAbM2QGWCCcd5wm5eD1u6yXO3G87h71lhmtBuXkxnrVTcHGYrl3d9NjxeP3a+vtKb6moy8Ip8WZzYPTm6OXzRntF6qrrzRnTC0sFl8/mWSbPWF/aHTrK8wu5+dxZa6L4wnrsIi1gLZaPmMudS4usz5Xyo3MjWH2e0jrFCEvGA/NepY3C2SuWrju376rr+STIYH4E4+eWYo73Zd6vi1utPwNotXD2ClzHAVaXEevPEZXaw6JTWpDatj5ujCDtuvpzkL9b3l5Uj57dLjMzpeD+5h4qQ1DedkIIIYQQpwMpHYQQQgghhBBCCLES9NJBCCGEEEIIIYQQK2GX6RXNcS1vYK+gVBpy9q2NLE0189XJp6h4vg4Lgo1ZwjphNfggpaJh9f4OUmlK25tYjkqpaot9TfFaZh2y2L2QH4+opt9Cjt3h3Kbd+qI9KdTvHY5Ne8WaszvU7QQTSHI7yIo7SratblcYJ6W9AokSTKlwUmsmGAAmDzSUA0O6TD2vL7nv+sHrNA5rWA1yeCdVx8bY7+jsFZAu83DcTyledpJtFzWBzrqOV9sj0xpwcFoqRkP1/c7PU6YpDBibTaQvTGkjggXGVdN3VfO5PDcH9I+2DjOz1CKJgSEGHCfehxaNU31cZ7RBFMfmAVNbT5eY0VJBKT7uyRkk8z3W570zcRX+fTdohUjOWoCVgiQLC9qU+tOWQ2sX5fnHv0QT++K8c5e4vv6Icxhgu2iNVgnMpyXrDscjQ+sJLSou7WXkc4n94965n7x82CatYeQ9NkTzuX6NUmSjcr81mSWzSZhSUU8D4W3I84vsFW05/Cf6VCxP7lkbJGq4lJXlPgshhBBCnC6kdBBCCCGEEEIIIcRK0EsHIYQQQgghhBBCrITd2SuaplIZnxXWWck/t+ezOTewDtusTXJ2w7CWLQisrt9Bd9oUlf1z17A+Uym4zrbVvuuycFZ9Z5rEgESH1GN9SIYnXT63dbS7Yghpr6CdYwoJe+uq4EPmjnFqaBWgVDqQ81pHjbxfL0qaiKTIY5BaMFLO6xwVsBOMvh/sYo+0gWGax5Ay7yZMlkDl+p5SacqVmbphniC9wsuSOc559cFJ9HO7ZzICZeCQQ3cTPx6cRzzVGfXYLeXweXHnUkUon6fPBokmTV2mvoSzSNSTY9wABqkFI7bdQirA1ry0dpzcXrHV19MNeswJplowvWICCTptQNvZCZa/O7G8uriwPtTtFZTx854vblU/bysyeTMfROLdLVypboHpIhtJgUtBYUKMs0gxlQHnx8629fuwCWxNaYfpFaN7ztSvK+8Lb6nAcxbd2C7Now1sL87egvX9HKrfF417nnJbbuonHbdxY+X6tPy7IHuFEEIIIVaBlA5CCCGEEEIIIYRYCXrpIIQQQgghhBBCiJWwK3tF0x6XblP2j/Yc0mpXBR+SZjOz2Xxr0e5Rgd9LZiMrBCWo6JvVpf6U8KaiAjyP0CTKlZHc0OT2GtMeRlgRsP7eCY49QXrFlBJoL2FtXXVyWjvqY+BsIk7ajjYOwYSRSOZ7rB8WrBdsg/22rqv1xAQupjycY3ysH5ChBzYdV4HfVcSHnDqyMriEEdgSYGM43pEMLSC0FlAm77wrGLMW1hr2ifYP3iOFVNowNy2wMgxbeWxmc6SvwL40QaoF7RWcZhybJZ8AzxXbjy45gNclVdvuutAugiHYGrx8PnHMu3zecyZTMAUiOAbbfB7Q7jBwopa3IGX2Td2CFG0eCdcHJj1gvrfwI3XJdyRKSaCdpnPXz03m3D83t2BPoZCfyQ1LFqS6bcZdY6bIYJ57S1tmDTaqtTVYqoL9m3lbiXteOVtUPamG27p72I1xPcGnvKqJzy43BzGGbsjq60fzJkr2KCfqTtJ2mto8LW0rQgghhBCnASkdhBBCCCGEEEIIsRL00kEIIYQQQgghhBArYXfpFW069j/GL0B1PiZWKYekNhX2ilm2V8x7pBNAettA5kmbQSQoHUsZ9GI5JLLmZfzJaU1ZPR1y+DYPEeWszTT3bwJJ8wiFPiubs8j5kmrddSqSK9etJymwocQ5HfFKwaFdyXRfkZ2r13W7UZX4FhEj3VIF+HydKMufzfJc4RhyHdooXJF+SNV7Sp2dV6isAO8NJ9hbbrLKP84v0W+C8+E+aY8YYTMai4SW0V0MytNhX4CE3XDvrU/zOutreRU34i7NA/dLcV04iZ2tBGMzwF4xR5d6JLyMgfJ7hsCKeaHyTi0tNFEaCNrYlgkqLomBzgJcI3cdiwcLJfDOvkCbTnSPuLQXpmvkdQYmJtBCZOXc5DXLyyf8wBgfN+9gx3A3Ei03mGcDrAXbJLzw+U0bRWT/mCClhc9Q3hfzTdzzOGxpUWsQ79Gyza66sAxa8LgS94q+Yp8d2uXvjrfK0G7Ih2hudrT4RE/tyM0RWSiWvsLvlo8xsaUvtkusEUIIIYQ4RaR0EEIIIYQQQgghxErQSwchhBBCCCGEEEKshN3ZK2w8/r96xfMxZYn4MOZ2P+S2mVmP72jJSE3dQjAGVce9faEuGWYl81SkAjSwTnRILphO9yzaa9OsSZ9D3j/HOTVDPgcaOCZN3v+kCzW8TmrtUj8odQ1k705W7Kqt0y5Sl4uXFeA5/PyOVgGmCDRR9X4mIxjXYRty5ULGz2s2zFFRv+d4WLVNaXsH+XaX8rWgVL1Dwshkbd33A5X9qY4e5vUECS+fhwXA2QHy+jPYIOYNzq24Ltyeem7nuIGtwaV/UFaPNuXeCe1pxzSPWEvv5ixTNGD/6PE8mONcfdAJ0z8wlsU9MgSpNUN9aMwNjTse5yafJXV7xWCF1SVVJOlWWFF4v2HbNNYtIgNtFM6CxGtRvB92zwnY0gIrVGSp8M9QPifqaS20mx37DDsN5zn612EeTbH+BJ1lgo9Leojk/qVFDc+ommvg2CZNfZ3AiuAsCm39+Vb2I7l5Wr9GtPLw4C69gskS7iTYKTaLtBfuy1k7GL+COZ9OrCt7hRBCCCFOP1I6CCGEEEIIIYQQYiXopYMQQgghhBBCCCFWwqnZK4KUisG159XlZl6anVwSQ51Ijs2y46wozkrjCfrrVCpHG9orso1iMsky+0mX1+lTtlckpA0kpm5Q3g8V7dRJrgv5vKtkD+sJbBu0UTTBebuq7ZSROzk67TBektuwyjnlymNd9tvQZUPpcpgKwgr/dQtGua9hqEuUeVIcj8k0X692J/aK6bTaPnYI9Kundn+oNZ0Uv8c13hryvJmhTcvBaHWbxvEv83eBn4CWiolLluC8K+0SS7txUu6msL0wQcXZK9D3PtFekc+1N1is2voxONxW3KsJ9pEB4+EtFbAp0OrCHUXn1wT2iMZfCx6DY56C7b1NDOfAfUapJ7znJ0XyDuaBs2rwnuZB3C1Zt9z4lBWeJ+6vIr6CdhxafHgeU1hD1iZMsghSbjAEvI98gk/pa8jfNeF6qbo4BQkotKK5y8vzLPoxBgklzpYDu8Pg+lG3Fy6d64nduLEp5qmz8mBPzm7CYx/7//0ge4UQQgghTj9SOgghhBBCCCGEEGIl6KWDEEIIIYQQQgghVsLu7BXp+P8o54V2cz6fV5c3TSxB9arQQIrvVLGU8UMmDN3/GEjQG+8m8JXDodkecB6U9zq7A5ZTJuxSNLgcxyptJFAc20j5cuJ+KXFGG/LmruPlhASYSQUu2cBDuW5d0Ou/iOwwXpqN9XGxW8qYi1dfXrZelzI78TGTInDtW5zhgOvrqtJz3hQSZY5b79q0E9Tbc6xDS8VWP6uuX6Yk+I7U++TsFZRT0+KDseXUolifySPlvUqY9NGmvIc5jj3red54TrgUE6Yy5PYYPFfMzHqMz9xJ2PM6PrGiPlecvjy4Fxo3D/x4uOQYlw7BZ1pdou5tZYZ2PamHc6IpkndSYFEzdw/XrR2lvSuvX29baHEwG2g1GOv7dakufB7jmdi6e7Le9r8P5TwNrnfwJHP7dfOO1sEoBgP9KJN3nL2OKRX1uUJbiHtOc5zdKdT3MxRjTwuS/47HW97XhtIrhBBCCLECpHQQQgghhBBCCCHEStBLByGEEEIIIYQQQqyEXdormuP/y4tYJZuVr52MtvWV1702PrBU0EZBZaurck5fAu0LkCVTpVpIlFnWmwkUUMCbMZFjyLYL7ql1aRI8Hx6KdhP/rodJE5OWthLK5GGj4Ppod01dLu6k48FYHl9S3WYb3XUVyvhHrs90DOh/J4VE2RXq5/xw9hFGOkBmPHA+BlXpsZe+4XXx0mLadOawDcx5DFoqkNwww3xiesUm2kwa8HXrC5m6U8/X7RUNUz6wPi0mHXa0PkFqR5GMUNn9sfUaJqXA2rSFdA4EjMxHzidYM5p6m9dibj7xBtkX1iOWIbJRjIEk3Zw9C0s5N9ku7hGXCoPlibJ0Z/k4eSZPZK/ox8hCYT42JbBXOBtbZJtxgxDd3EyTKVMS6s98Z+PClI3SERKeAT5NheMdROeYT+EYE5/B9ffq3sIRPDOGYJ5hn+VPW/RbQNudS+RBO7mxxHKXNlK3g/WFO6t3Y57bg0t14fnJXiGEEEKI1SGlgxBCCCGEEEIIIVaCXjoIIYQQQgghhBBiJeilgxBCCCGEEEIIIVbC7mo6NO1xL20c/5jXRbPwCrPGA+s40LdMLy4jFFsXB8hoxmxibeGzZ2RgVxQkYA2ElueE2g30xtJz6yLrgjg0+pddDYPOG4EZrTbF2LBeA/3WjJezoI6Gc3kHF6mMe3PbsD5EVKMh8JK3ro1tixjExZZdWy5YNDk2LmqREaQuthV1FdD2sXG8Xvlaj0XND47nfGA05lhtzxNqG4yIyRy2Fu3NHrGyznNvIe7+CeLvWs5H+NJZx4E3+wT7nKKmg4vhK/z3/sh5+zmOlzB/2dXe9Y87jWJJ3aFtYLQp/fvBuNVn5jYlSYKbpC2eXXzmuJhM3odBJHDTuoci+sc6DKjzMXK571eTeO2DmExGAlt9rkXPCRdPiw2Gcpxc5CO/yNdosPq9ytoInJuszxBFVVrx7BqDaN3W6nUVfD0Ozi3UW+D496x/kOkGP1FbV8ehXt9nYP0gxDO73xS0eU0HhN2yvMa8rOnA73D9XK0HnN+JGOBN1XQQQgghxAqQ0kEIIYQQQgghhBArQS8dhBBCCCGEEEIIsRJ2aa/ojv+PMYOQslJaCll8N/GHmeBzixjERN9AQ8lwXSLLdgfNNuWotFBMSqm0i8+jJJoSZ0peI9F2xsmYh2hbD+MwnSSXIuBAsp16RiXC/kG5cVOXdTu59/EjnmB08ZtOjFxd3yLJNtpOdk4rTWG76FL9+jHakadE2wstFT3HhtfCxc5BOr4k6a/bKygXn2PMt5C1utlnS8XGfDMvh5zaCZkD6b1ZGe3INiT2Y13mzuDJnrGEY47M5Nwcg+hZMy8xH1xcH+NxcT9Tvs2Y0ZFjmZe7CNHifvGfOLetyja3W7B+3aLQFZGLvGd4f4+RvcJZxjh/gyhHd8tzznoa52Vg3zP1Nfz97Nv1ddw8LXwetEv49E3EPKb6vHHzy0Vjcmzq9oqxfF/uusXnehyzmZfXn2njDuwzQ1vYKwY8r2gNw7zp+77a5vX2z9PAvof2rHh2Ma6W1ouZs4zlL2bH7+2tJHuFEEIIIU4/UjoIIYQQQgghhBBiJeilgxBCCCGEEEIIIVbC7uwV7fH/TVB1fC3vYjLN7TPO2LNo7z1j3e1mz978eXN6dNEemyxPp62BsvcxrGzObsKOsU2KhsNVbq8bBLi5s3YE9ggKVSm/LrXfLtWBUnVaIZw0u1753iUPYD+uejxlz+Urp0jS27jBQT/qNgg35uiTd3Ng/Erx/MjUj3o/nDUkRRJvq+Jk0zhW3/v1KD/ewpfOUoFK9BtzWCpmSKyApWLG6vBtXW6fypQPlxCAscF6U6elZ2RLvied3JsJKi59JS8uLQ5uTrnkDcxTWKzSHFJuSspdGkog79+pvSKyUTR1ib2zO3BaO3tFxufMxFYll6bgUgjc1lb9Arvp2vp74KW5zM2dJaaeYDOGaTSwUQT3sDts2RFni6g/K+PrxclWT2vgtq17NpZxHvVkCs6jxllD6na6FNhWLLIgpcKClKLfJ6Y08Vrg9yI4Bs+BiSQ9E2QKn9GcNgq0txBfsQUr2nw81pa9QgghhBCrQEoHIYQQQgghhBBCrAS9dBBCCCGEEEIIIcRK2GV6xfH/QXPcTfOHyTS/wzjjrL2L9plom5mdcWa2XhyFPWPeUmpNKTcqh0PNmrq6BjgqUm5LEuV6WkYU0NBSfkx7BSTlXVuXGw+BfNvMy+mHoPI6kxuY+GFOhgurQKI9BfJhJoQUktzIfuLSMnBOk2hsQntFfZ3ycrWwonj7CGTaTBFwLpt8rrgsNvCAgU2AaRdm3lKxAYvEJpZv9nn5UWepyFahmUtryHS4XzqcxDj6foxDPkaCnaNxySpIaWlzMgVtKJ1LjQnsOs5e4brhZd7u3qlf1xHXosc50F7Bi8TjFQYTJ0l3y1N9HdqcvNY/sib5o51gKMaAc5VWg5Hz0UVQVJve5sH9Yz8uGch3w0v8Gz4UsU6QTMFz6oMUHtpN2sCSUvbdt+uWD3aQtjJe+zZ4BnrrlJ8PPtWIFjeOzcnTiizh/sK20VwZy2con/Ocg0yOYQoHLFa9S5moPzNojeHyvpghPtkir7nZs53P9cS9Ok/lnSeEEEIIcc2R0kEIIYQQQgghhBArQS8dhBBCCCGEEEIIsRJ2Z684AfS5lH7T1rAG28SevWtuc6ZZrO/JUvAtWDWaCWTytBlAFu7agaR/m7wKrwUPLBUpqgzvoh+ChAvK1p0EvZQG05KBdkPrSh7DdpLHrEcFctoDKKGmnJfWjG6a97PUeZxTDxnugGOs4dq5avcDLQ6wEGD/k47nXECJL4434qScvYLBAUNdys1q90zBoA1lXiiLN2Hz2EA/NuaQKM+5nGkXqB7vrkVudzjexNlkfD9SMDdpH3HWE87fKIUgtCXE89SnftSr/Puu1u1LtI8MziZAS4R/H+pSE3iurheQzyfeRye3VLj94MO8SBJJlKTzPGh7wfqNG1sL1kE7sHmUaR5Mw2E/nCXA3ZPYlvYKfOha3Ld49rRsF++pG/+wRJtpPX11eYdrPGnr7a6pPyfKad3henfBu3QOobOA+ZyPvNzZVjj3sXZ5rza0sjEpKI+hTwzJy2c49iaGj1YJ2kVGt0/fjwEXf271Nvd7ws7YF/NMCCGEEOJ0IKWDEEIIIYQQQgghVoJeOgghhBBCCCGEEGIl7M5eMZ74H+XRkM5CG8zK/Ovrhb1ib7ZX7NmT25trsA1gE0phKb1tKdF3loq69LukcRLbujydOl7ulceLFKlRVfoOslgzbxOhpaJpkTYAS0XT5XZCyfMeHae8lrpu7oeWjeMHXzQp2U60OEBu3tK2gbPlnGgie0UTyLLLYydaRrAeX5exMnxkqHFOGo4TbBCFVno20C4B6TMrwGOdGbo3Rwdxh7hUFifv57G3kTj7BBXI3l1lfg5OZDCqHy+6XmZmQ2BT4PULExpor2DKCpM6KKXvykdTW23HFom65YPUjTi+3RdJIkNgqeCcbZ2NCPc6rhHvF2/5wCQaguXFsZO73+pWGd47TD1x6RAuLYP2Cs4J/+xydgtcV/bJ2yvysSfo3xRzeR0pK1M+G90zvrCbMFKJ1pworIfPfj4b3LxJ1eW0uvRj2Q8mmgzVdsLcZlrRHB3cwn75XBkiy03xnw9cWgmfd1xesf+VaRxCCCGEEKcDKR2EEEIIIYQQQgixEvTSQQghhBBCCCGEECvh1NIrKMN11oC6fnW65mX8Z5xx5qK9d+8Zi/bG+kbe76yepECpP1MVnKAUUm4nNC/k4q64vkudgFy/oaS3vi+/X1bNx1Ine/YS5cZ9xrFdUXV+CKr/O4sIbRqQo9s2VgTsa6C0G6XRG8iYqfhukDwyDLO8DmZYH9gmlgTwqW7noCzfpRNg08GdX/1cqSAeMW/KpIIZ5toMc20OaTvPyVWWpww6kESnob5+Y17S31AaH0rEUf0f9+QUUvVuwns1b5ucLL6+/xO9zF8xjYLV9TmH8vpunrrLXbdNLL0PTYEe3hGlWtQNFk0wfokJEMWc4PVmggTtD03HeVePHhmxvkvB6AP7xuDnBOX+PI8JrRDO+lC3CkTRKO5KBM/TY585Pkx7qCc/cHs3VzifOG+wPu0+pfWHNhHe901gkeBph3OZbazPdpn2wM/tQMsN7DDcF/o9w5j1TLhombaTt90upWZIwT3J1B9af078RiQ/z4QQQgghTgdSOgghhBBCCCGEEGIl6KWDEEIIIYQQQgghVsLu7BXN8f9BPuwk2229avikqES/Z8/eRXt9fc+iPUWawjipWypGVEKf9/XkjNYVjHcRFcXpuEgDLEcqA20Urhp/3VLhNe+sAI+1i/FokVJBFwWV3ZRdJ5xrTxsEK9HjgJSOO4l3oaSltHgc6jrejn11Uvx8jFCKPNTtMG1xXVon/YfUPZBpe2k1K/bzaJDPU7rMSvSDl9LPIY+eRZYKWhMoL2958EjizYQQzjPfD5pvnIyaiSiQSvN+m0y4nNYf2mdwf1k92aDsF69Rj4nQY8zYdnYdWmPc/RnbK6I5HIZzBIkQzhbl9s9tkTzC5AUzG/HM8ekc9e5FVh7OA9p1+Eybz+eL9lDYK2jXop2G9ilzlhHaBtgP7JRhCBxi92z0c9N/V0+X4Dzift1zglaGBvMJx1rD78u0i+0Vbfhcx+IgIYbPPQTWhGkQ82I3LgGn5zWDrYGWMVyj3o0B7RFWXc7fgbG4Lj2tGu54WGnCxI8TK8heIYQQ4tSIfltPhSVLvLjBI6WDEEIIIYQQQgghVoJeOgghhBBCCCGEEGIl7DK9ItlS0kAke6bMffDbNJEdwUn/IQ+dQ2QLyWqX6tpZJ7VtaZUoJNtsu33Vq59HJGioaTlofXl87L5Ir2AVcUrxR0p9mQSAsQmkTJSjR+kY5aaUFg+9807krSnZxnn3WL+bThft2cAkCqZP5PZk4q/LtKv3111XWAhaJDQwaYOF2BNMCqOTdef2fBt7Ba0hA1M4nCa92vTzoO66cDL1tvAMuH1hzNuR4wHLk7P1BCkwbj4FqSBteb/UZfK0LzBRxlmC3HSiJYsS78CjUBybkjuOf/IbgHpaQwosAG7EClvDiHnAZwvtLX7ceA/TyoO5hfHvIZPvnVutuBa0teF+a2FRazreF5yztKvVEx2SBc/NMibBbcTECvSV9hbamZi6ATvShHMzSLgoTQC03TE1ZeISL6y6nNd+wD01d7YEWrgy82I85i6VBDYW3Bfcl7NOuDaerVzO35qmbtMw88+uOZ/l7ncI1/h4u5xnQgghbricTrvDtU3Ud9kubrjoLwwhhBBCCCGEEEKsBL10EEIIIYQQQgghxErYnb0ipeNy2roM2le7R1XuuRfDUrrPdj/P7fkMVdxns0W7g2yUclkvv65Lg7tSLu4qt9ftBFzJC334KZCFN8vyVbPCTmGFxJzyXKMEmwkBrFoeHM8du6uus2SvYHoF2uG+KAGGlH4CuffRjSM4HmT8xraXSk2g3eexKaniMWi1YECGtxCgrzhvVpsv7RUufYEJD0zUiEIVeA4c5zFoU+pfSLY77Jij3znpeId23ZJCqRqtLhw0lyxhfp66OcwucpyxLycvx+ouQcIlLMSpFC5FxtkrLGjX0yucpcJZqur7HItq/rQpNLC0MCWEl8+lo2Db2Ui7Du9nHIupFP5SOEtFQ0sFlyNpxjCXU8qpGClIVhmb+jOjdJsl3DPOXZHqz004AqzFs5WnN6ElhWEQQcKFmVmP6zfFb49PvMB44jnWtXw2oM30oKbenhUP0Rn7SBsLn9+BZYS2ixRYMHpnr8jn5kfDbMbfVVx7zolJi2fo8RuuLy+wEEKIGxQ3ZEvFTpDt4oaLlA5CCCGEEEIIIYRYCXrpIIQQQgghhBBCiJWwK3tFSqOlNLoK99ToTyZZrjlFokDX+sPMaJ3Yyu2jR47mdbaypcKchBeyXSppOkryI8tHST0+ILJqOFgJHbJdyqw7Vx2ciRp+PCilpZq7T7QHoO1k4fWq+ZR+M9mAEnZKfo9tFKSBMJUB7ShswKUhBMPfhLacOH2E4zlx6RV53nHMGowl7SKsSu+qvBdJBfOxbm8ZIGbmEKYuGJB6eIKXiLl2MWi0lWAM1nCPrUFW33FsOCdcugbGP9VtOeV1cYo294H2BVbKx7VoSgH4ifUDijHwlqn6pBqDZIpxBwkLUT+a5PvN1I6Oz5yOUvd6Ao27GdyNFHTE3Y7FtcD7YtozmBTE5B0GCNGSNbppyucel2M/hd1koG2DdhpaWnhfYbmzV+AcGGbDBI9sCjGbFxdsir6v03bQ5fuC49lNMZ+Y6IPz5pUf0O855tMW/VxmtomUCq7HlCFuMWIMXEKG60fdauH75weEiRX87aAVbZLy2Jx4ns4TfneFEELcILixWyp2Asfgq8lqcUM6bykdhBBCCCGEEEIIsRL00kEIIYQQQgghhBArQS8dhBBCCCGEEEIIsRJ2WdMhHfOOMNYRbXrJm8gca2ZHD28s2psbW4v2xuFc02GcZffqGmP8At8SYwnpu2Z7KSOS8XlYSkuML+kAzzN23E1zXQVXy6Kre+VT4blhUuPofNj1Og4u3JN9ZS0L5+XnSWzj+9pBHQe3qyBOlLGJHCdXO4AxkEXdDHctWd8B9StcjKfrOHzRLnovj9oM/aMne1b4sxlx6Mc/iCxN9TanHetosM6Et/XH16hD/RDWceC8Y10R1hpwdRFYY4TXAv0unWEuYtYVs6j79FtcyJbPjIY1IFATALtvl+p8MBIU0YduqOqRr43PckTz5B7IprgWrOPg7m+Mp5srPJ6bpvX4UVdWxe3H92twUZeooRLNu8TnShCTGRS54H76vrhHesRvBjVKXK0H1hfAPOhw4hMeD/th3YdpMSDrfH/OmiaYR1NXdwM/fU3w/MBi1nSZ4bmw2bPShNnGPH/eQt9Z34GRmzwG6zX4KM283NfXqNdtOPa5PgfbAb9PY25Pj9e+UE0HIYS4YaA6DjE3pDoH27Hba3xN58Sqx0pKByGEEEIIIYQQQqwEvXQQQgghhBBCCCHEStiVvaJpG2vaximrnQ4fqo6NI9lCsf/qA24/V1x+Vf5uX/5umGeBaYd9TXCMCeTNUxzQycWbukS8abzspHH2inpW3ejkypRsQ2aNY4/Ie2sTpbqMk/PyFUr03VeRT4TSWe6IEnacQxeoZUoVjbNU0OIQ2Cso9eXYpMC2wvjGSRADaeZtFM3I8Ue8JcegyZLmDUTFbcKiw+Ubc9gr5llOPCuk0v1AG1F9zN2t4KZQfd74C1yXQZXyqGg8OxfDSrl+c9I275EJ3j3yvis1/WNi9GH9fmkiewVGqoyhzMvdJ/edi1ek3Nx1o26j8JaK+hHc0Tg2xc0zwObB+2fE+dGCsAW5fR/YJQZGWDpLBNvFXOGXXG+S+zFl1HAky3fPDDebq82+tCDRSmX1ucYOun7g2D3mFq1QLkrT2QlcN6xDNGZq8LPG52Zgo3CRxdgnbSiMz3WWrNGPx4zRmlg+p42C42k8BsYDx0u0saHNuNKh6McY3EstAju7Po/TiWfrPPlnoBBCiOsPslTsnhua1eK6vMa7PfZux1NKByGEEEIIIYQQQqwEvXQQQgghhBBCCCHEStilvaI9loQACWmD9xb9LEszD1y1f9G+4itXuP1ccVn+fGT/wfwFtK2ds1TkdhbRmk0hNZ06ewWl5nVp+rHvKAfOyxMrw29TIXxxPEjbu4H+A9oxsLxIaxijVAykEAxOjl23NVCu3AayaS8j9zKatt51Q2CCW8dJvkcew5Xgz/uhvaLtqsvNvPSfHRkGysKzTHiO5UfR3kB7E/aKLbYhfy/TK4bEZIV6Ugfhcm+1qK/v5Oi0KBTypmg9jhNdAKGiPEqsoO1i4Hmynr75RIPgeuNWdQ8XV7E/SF7w6RV+TnS0gGA++8r+J7dXOJq6JcWcPav0IFl1PaaSzGmvmGX7jku1wLHHU7BXjC7ypp4OkVzKEJ8TsDK4hBakYASTiJL+sh/uOYj7OwWWLNfvVO8HbTkukaSYHyPnNtNbYHdrODkDSaBzFznrQ91esTX68ZgzMYfjhnYf2CtmLiEjHyPBmscHCy0VfB6W8F6iXXB0fT92jF72CiGEuF4hS4W4sSClgxBCCCGEEEIIIVaCXjoIIYQQQgghhBBiJezKXnECpjJQ1bl1eGvRvvzSKxftL//nl932h5BmMWxm+fEZbe7OhOkQ3BgS1G6av9mzvoZ1skSU0tKm0Ln7Ny71CuHOIuHWxhhA/Tr02E8LCTrVykVF/IayZEiA15DiYA1k6LAEzPt6BfMBGl6fPkFJuYW4pAOMlLc+YAyC/SSLpOqU2HvbCpXj3IbBD2NgK6EkOm4H1fvLfgSJFSmQ2JMxSPNwSQ+0SmCNaedn5hqu2Rq8Lkz9cBakYB1nwYjsBy4BorATufQK3Ifo7pSy+mhXaLdMJ3HyeT+uTOqgHcTZWLicSvooFaMJ5PZYnsKZXaYeQEqP8WQCikuvYKd4vCBJoewHrSTJzWdaJ/L6Ll0jsFQ4O1HdSeYsDuWxOz6pg8QQc/3GfHLpPvXUjW6b+67FnG+n+XeknWRDXtMx1YL2llrvfKoI03K2YDGZFZY7mhOcjQLzl5aKnokVvHYYG/985HMvP+/HwgrlnrSBxZDPuxOWLtkrhBBC3FgprSrXlzSLG6qF5kS/Dx48aOeee+5J15fSQQghhBBCCCGEECtBLx2EEEIIIYQQQgixEnZnr0iNWWqsoSR6liWah/cdWbQv/2K2V1xxqU+v2Dq8sWhPUS1/up6lsFNKsF0fIOdtcvfXp9leMd9CFXZXib6U1VgVJz2nDNrFO9RtBmNdge5SNNptbB6u8vo0kF3TWuDSNSC3dZYPHKBjaoQzrhRvoIKkA1eKnvYDpodgFbdPrO/U/V6izOvSeW8ItqHtgm1eO0rm2QtaH+oV/s1ie4aT5eNknYnCeQvqNgpC6TjtEWZmeyZ5njt7Bbdpaa9gu6mu7+b4GEi5l+wVmEiQgtP6sEYJ+4izRXxF09DygfFvmeDhD93BauQsU0FSBw/trS71ecNrOnI+FXOCn5kEQHG7S5px92pgr8D4NcF8Gss7KZhItHT5bALYKKwu4+dyl+DjrFD141Z6EizmfRSkjdTDa9z937T+p6ud1C0VHZfzecfrzVuBSSJowzVnM1hmZsWAMLGCj90hsHTRUjEGlhku5z3JZ92SNNNNbVpXsCtbnitDmVgjhBDiWueGKrcXYjukdBBCCCGEEEIIIcRK0EsHIYQQQgghhBBCrITd2SvGdFyLijSDPrf3X34A7YOL9uxITqg4dlBU43eV77MmdAqZqkuyQGVyV+UfUqQJJN60VKQxliu5CqZNXQ7fRlpukqpN94EJF2ZmI+TtLVXGtFpg/ckE44dL2ASvkJrGC7Vzn4pzwPgwocT1ydkuKJM/eWpElFhRSsedBhhzwtk2KKV3tg22aT2BjBx+kyGo5H+sG3XJt+sTJN+UTfu5hnFlKgjnOPa/NvH2Cn7mlG9YfZ6pLqz4z26j3TCpALaJxsnqvb0iYZvGpVfkOUg5O/fl0lBSXofV+8cxGj8/7xongcc6tClwCmEdn0JSty+5e3vwYzC6tBOsFrRHZ+dgQk49aSOyAZXJKu7aNNG9FKRa4HpT3k9pvT/POFWk5ZgzJQF2mCawq4VhFKl+rZny0xYWpAafm/bkbR49BTYxzo/IXjEv7hGXUkGLG9cJ7RVM8wiem0Hbyp8j97zCnoLUmhPHLlMwhBBCXDvIUvHVw/XlWpfpHbvt127TP6R0EEIIIYQQQgghxErQSwchhBBCCCGEEEKshFOzV0A2Om7lD1dftn/RPnx1TrKwud/NnklOmliDpJoS847Sc2hF1yDlnkBuS4vCFPYKLi/l4oQV9UOpb1DtnjLVUJpC+0EhHXeycix3b4Qg2504jT2rs0N27qTq9S6VpeibsF2XrYfruOWUA+PQzvZSSsdp86hLu7mFr9Jf34+3WjDloy4pX9oXrjfH2Xk+mFyCrV36B9an2Jt2orVCOu4SK3BOtFS0icdD9ziW3CnnrBsDJkiUthc/unm/tJswIYDbY35g/rv0Ct4jRXyFS1NwcyKwLAQJKpxDQ1OX0rt5WvSDt26PNSm/d8ksYVpG0GZ6hXsuFPcIkx9oowjOu3eJFbAXWd1eRKsQnyW0Ex3rer7eLkXGrcSO04KBeyq4YA1tXrRsNGU/+PyuP7Ob4BicT4ERrbBHoF1Yw3rsaz6m6nImWYy0OXFfPL3Ap+dljV7i6L5yvjTn/Vk6dirORwghxOq4vsjshbg2kNJBCCGEEEIIIYQQK0EvHYQQQgghhBBCCLESdmWvSGOyNCZrYJc4cNWhRfuqy69etI8c3szbFQWxOwjLmYxACTXVs11Xl6dTkltWVa8tb8tVnMTZsB7321bXL8SsaLfVxc4aUMipKGl1Ffid5Lu+fRNUek+BfLjFPrvWy/g7SKc7nAfl8D3THlwbWl1crwZWECYepFQfp+PfLlqsJu8SQMZ6O7lB5/n1XAn9qB72+PZ1CXx59XKrLpNzVf0jWwLWb4v5QYuEsx05eTragTw9nh91+XV5NrQgNMG5JkQ3ONmgi3SgP6ueZjAp3ofSbuGST3hdApmiS7gIUjB8ggG77ffJz2xTPu/ub5c20tSXt/XnkLNkbZMkkoLUlJHOnxTZKAJLBY7npkdxrzr7iEX3SMar/uu2HJc8wkQd7qe81ngWGdJpGljtIquRS/zgWAbWMI5rGYg0GOfHWF9u0TEiax66l4J7uPzvB+FvI9t8HjdL+xdCCCHE6eGGbKXZbUpFhJQOQgghhBBCCCGEWAl66SCEEEIIIYQQQoiVsCt7xTge+18Le8W+Kw4s2ldfldtbm7NFuynebVBW7iT3kGDTXtHWHQ6haDSSbC/7K1gJnMerWzJclfP/v713W3IcR7c0cSAluXt4HPK4q7p72qznbp5lnmpeal5m5naPWc+uyqo4eLhLJNAXHiF8Pxy/hxQR2plVtT6ztIIoEgRBgIqir4VVx/tHc2webu8lNtZuMb5ASrkZImDk1Gb72JZg7BWTvf1M/aCMfzm0G74srXyAjJnXQKk0LQDmplKX3Ml27GL37ZgFCurFKPTH9pZkxhAk185K90/aYdINxtJxm7xBG8uoRbYMF0qYUH/u/CYJ1zehb+c87mcj4+eY4GZud9IWnvhevHQIjLX1wCQMnmPsjakmGQG2q9zdC7Po/tjmZAwIXqKMk+5Aif2CNi1dsgrtCItjr6B83j6wPPn8eC4Y6X3122HSR+L4mUa7hC3XYdmmT/Aa7LPcHy9M9ynDfTgPOa4ZzGHmEe5FXG1/xLX1QSwst3nP5I1kPCOo1+lX81uBevr7Uoy9Ymy1KNEe0yr2Poz/NmDHhx1bsRozCkq07I3a8Y8r/xRCiH8E/pFl9v/ofC+bwD8Lz43FS/SVlA5CCCGEEEIIIYS4CHrpIIQQQgghhBBCiItwlr0ixhxizAGK1fDx/UMr37XyCm31PG1MPQly/UgLgllFHEVKWI1cf9xOykWMbaKXihhZM4+hlBYSVkcWXnENmfYFhCdQ2tuveB5RV6FdAnaTYvbBquhsB66byRRphgwfloqcbXpFwmcjzT60eg+4+Wsdy8h5eZQYm1XUoy8fNrYGJ7GCVgujtKblAMkZM+TX89SuYcL2qbsxxkaBNpU6tlQEZ9wxFWTGfdmivIO1ZZtsf5j9phll3EvsX+A92S9jO0Bdx+kHJh0m+/eFc3VdaUdYeUCrC9c0Yb4YyTvuXT82l9DqPXCOOOMr1vGzxD4zcA20VKzss97WMLZe2PQKphOU4XbK8JnQEJ2Ujj7ZwCR4MB6ojp9pPJ4WDNMmx+YVPYtU97ma/TyrBRMk8KyMGMu0RaHdE5qXO0kgP0/hy+VkrAnov7KOtxuHCfqm2N8Um4IytleYtCInZcJz5USnL5+6Imi3oh2E84WpOE41QgghRPDl9rKL/GPxe1pMpHQQQgghhBBCCCHERdBLByGEEEIIIYQQQlyEs+wVKcWQUgwHKI4f7ptU/cAvsDp4b68IsclWKatNxuLgSNjNittj2WgNYxn4EzuGjbzA9vHxlNuuXCHdvLqhRSEP90ndouFGmER5LmTelLCvZSyP5nXnCSkH6H9K5mOX5kELweqs5n/gav5O4oe5c1xxHp2QnPKnHdvxXAHeJHWwDBn/RHtLG1vsg3lu/bpB+/b9femk9e2E4/5nb060VMAqsEWbrmCVYHnb9ccGn3cz7BW0IMBGURamjbT5SUuFTdrAeJ85H63FwcaKtCLl/SvakY1dAveFCnFUyf1jZ69gSgvcXTY7wQuHcGxbdNMUzOfFWIhspV4iAZ8HxZXYYx/apTgXYKVhv5bAe9fVdYK9wqjyw3iuFiP753NinITQ12UZDxZjumBiC5Ms+ByLdVieurk5o67JpMK0csbV0n4TTf+Ny7S9ZCSrpO76zc+WiW/5cmKFsVe4ZVpEcKq+WlgqYnAsjINngP4KIYQQ4jP/DGkP/wzX8K38UfpA/8YQQgghhBBCCCHERdBLByGEEEIIIYQQQlwEvXQQQgghhBBCCCHERThrTYdS2n/HbbDALou37oD1kswJXnv4Yzd4BTLF5qtOWAOC1tgVPmfajmPqvOifj+2cr5XxaPT7cq0CU9U4bsyLr1sLvdOM27TtWhGNadducCLzGEVI7zXL9G179XT3pcL/z/Uk9gdsN81gp7eOMrFxuJ4J99rEznVWIxO/U7/si+bx1bkvbOqMCNFNwRoJXb0J/cZIvnXlWiLs88aE67PrOKCM9Rmuuf5E1yEzy8ajPvZnm7jTMC6bNTUy1xTw/fu8F9WJ64tOTGZOYz8Zq+G6IP0CDSZC0PjgcTzKfSxtO984InJlTCbXUukjM3kOrstQx2U+V1he8UyLXBtibXNtMetMtHU6HtvB9R68CNdWjJjr1cTbjsvExG0+WT0A+9XxeOS8NfGPXO8F+5goTYyJGXOtnyNmzRB3TR5nTQc++wPbgTUk0HDOwakbp/w8YYGHYvqQi4ngYD4Tw/hZzrJZi6XrDxNF26+Zc2S0poN/f4UQQnwd/6ixkiZm+Q+yLgCJzhpw/0ht/VdCSgchhBBCCCGEEEJcBL10EEIIIYQQQgghxEU4y15RS/vvuM0ROFeUSydRTpCYT5B+zpTIUrZe9mgDo+IgXTY2A9Nqtx2MyaP0lrLVmsbvZTzFqqnTfIE6OwUr4x+tLaXtY2JAaUOh/wNtZbTfgghF60Ox8iMjMWcEIywStBPkQO8J7zftMJA3p9HewWrs+89GLkU5MLYn9hljCcfxgYwT3cC8UDoLQMJ1Mza0sM+9yEz07Rbxj1c49w6WCsZf9pNywkiaIX/OPHcc9/OaKZ8fRzOyP6Iz3kOwVgPOQw6jCXOYdhrK5KtRlztxuLWXxnF+jtuHKWbdGXX8DKB9aWVMZvHtFTYRkfOCkb2evWIdlm2/MqoWVotqIzOrsXCQOCxHx59i7RV8NrSiidIM/VylhWD8/E/GyoBTMJKy0CrH+EvYKzBH5q4dfA4m47fCfTHP+7H9g/YCRmwaewWtWt2za6FlhzGlvK+OxScWxpS2Y5N5WtL7x960lkLO4+j4kUyi6qftqervEEIIIZ7yR7EEeNaJP6Kl4o/CH8V6on9hCCGEEEIIIYQQ4iLopYMQQgghhBBCCCEuwln2ivjpP6ZXMLVgs23r/+92rZwO+0CSWVp+bDsoKzXYkL8aGXNA2VthHVLWYiXKlFFXJhVAtlrqWHIczcrhYUg10mwmWVjM2vNUBruq2nHyAFM7qmuVGKdgPH6ENB4WmEOA9PyAPizjCy/2xowuoVvFtU8VWfCdUxetFubcY/l8oH0B6RXbNO6/EEKYFiYaQM6ex/YPuDwCnAVmpf0NyhPlTrhfuevWPFhl/un5MB5xrSvHHVfWx/3NsHlQSs8UhxA6W1WhVKttN0kYeSzrDsaWQGuBs/+nlh2/MtLzsZTe2Cto8aG03bFUcHvp5IRmrjqD07NU8LlUOKdM4g3GXGX7uqeGaVYalqNjtbAPMuMBGFfvWWBC1wemLlh2OH7xgDP2CpRNegV+X2YmWfQJL7AIJcciVJ1xZxMr8DtgEitaeYPyoRunK20p3rOcaUVOIg/7ib9t1iXjP7tCdOwVJgmD52tnE0II8X1RcoHPv6Itor/m/8wx8XtaLaR0EEIIIYQQQgghxEXQSwchhBBCCCGEEEJchPPsFfXxP0qrKfXfbLbH8hZWi/WDlWnHDJnrwpW8sR3S7ghpO2X10ejQx/YKL+0ihBBK4X6UXVOOjXabixivBm/U3mFcTy+iMZaKMK6XkmFTzuPkgbVb7b61g/3dS5QhuZ9aqsPK5I1A+wLrHUvNo3dtTptC6O6L2XF4uFXum9XqsQ/tFShTh9/LjDi2p0hbyfjcxu6A7UyZ4Ir4meOaF9e9CjSWCloZ8IEy9Izry7iGggby/nIM0YoTgp+YwHuUJrQje7Lu8Tw3aS9mrFiMIctRgxnLk3E2OfaKk8qd0cCRwJm5biwVTjlyHiGlwiRW0ObRy/DHNgrbN56lYpwkEpz7xWvro3e8ZxzvBYeznRe0XZThPhMtFXi+bbr4IKZX0B4XTVTK2HZnE2gwR1DGEDfpFdvuGVqMLQI7IpmCg9M+u7CLd1+c34QnqTPRsdmY+8J++tyI8e+GEEII8b34V7RUPMel7Td/lP6W0kEIIYQQQgghhBAXQS8dhBBCCCGEEEIIcRHOsleE5fE/Spcp/Y5G2m7WeTfVJKPy4IriWMEfr0Om1JrJ1cUTZdM4h1npvY7lv4+fnXgICnyxj7FIWC0x2uFZLcJ4nyffjeFK5UY+n8bSaq6inp1+6tU2Bf1flnF/Gjk1LSlcoR7dmvGBqRaHtZeLNyotAehnBm+wTdxOtTPtEWZlfUrTmWiy2DZFWA1MGfeP9gUmSFAiThkzLRjjFtmElhA6SxHvH+XRTHSge8RGe+CLVqQdwCYpHEw7+F2N4/HPMsdExU0q3r0z48liesSEL8BqxP431pPx9mSeY8NLsPL8Jy1x0ivYh7RIRPbfeO6YPjO190kzp0jlUBcf2s5zzNqcTnkqdbYXk4xAa1Irz3iwz3iumzITK+K4nqm7ftofsplj47lDq4VJsqDlA2Oc85kpGkuwqRE2LQb3G/tVJHskPnNRj7m/iRY6HOvYrj6fcVSOTA+JT+dIfuZeCyGE+Hb+iEkWfxT5vbjM+Pg9EyuIlA5CCCGEEEIIIYS4CHrpIIQQQgghhBBCiItwlr2iLmuohzUESO/jSkl+kxKvB0izS78iNqUdy7DMgAGuWh4dObCRYxejH8axvUR5/M4lRnYLyzz3WF4+ztOweCkOzx1j7BVpXOa1epJys5h7d47Duj+WF2OvwDE83pVjjyXACw6mlSM90QZn7MdV/lt5gS5/pUafCRyZ9w51Io2D+v566NIaMJ7ZCUbWjHFqrRZtu5Fss4xzeUafp5/HVpng2HrMMviU9FP2j/44YK4u3bw1d5v2DErB2LW8R7CneEkudEU9SV9xLBXGxmLk5lzln5YKzgvUg4ZntqO7GcbewmeLSeegRQX9DD+HeRSZ8tjmFZ88GcYpIV611bF/WHuFI8nnaTtZnk3OYGoK0mJgndjgmrbcnmaUHasFztX/cHmWimzukXOtT5JBPteD+iPPjRSNZO0VZl6sYwtHwNzLxto0fp5G53nP7b1a0o5Tbm/Q9vX5eWWvRgghxCX5Pa0WslT88fmW8fFHvL9SOgghhBBCCCGEEOIi6KWDEEIIIYQQQgghLsJZ9opyfwhlPoSH902G//HDh2N53bftdYW9YqWFwkr0U+V37ZiCnVauuO1IgGlZ4B7JFRxbaXDiKviQ+ua8Ge5fzUWMT0FJc/FWUQ9dqkYtw+20V0xczdxUVLBP+2YzY+X0pfXx4WDvCz/vD5RgU9LLldS/vJ2XduCK8SinTqKcscI9Ff6U6y+HcbrGnCmfb/eR46PQjoHEitglalCyPRm7yjixInmSZiOtdiTUjjvicTeObSartGIpbfsCT4BJ/yheGbYVx1bz2AymZXB1/TTcZ8W5DybNhpL8NNyf7esOsfJ5JnU4q/m7qRbo18Qy7Ri2FSbxojhWCw7aAnuFdXeNZW9MfXhud+vIoL2CfTu2mVlrgVM+oX0h2OdmDrRXMJmizcNtpKWila3VYmyvmNDfT+wVLDsWJl6RSQlxUl3MuMF22itKb6+otIbh+Y/YmghLRY6wJOK3sDr2s5x5r/3fFGs1Gt+XPLDD7KsMFkII8Xtwihz+n0FiL76Of4Z7KaWDEEIIIYQQQgghLoJeOgghhBBCCCGEEOIinGWvWO4fwjI/hA9v3x+3fXj79lg+PNwfy2WhvQLlYFMMUoUlA+kVlHwHo351JN5eFoCRyPYaZa7+zRXCW7dME+0VPMdYkmssFUZWP14x/vHwsVyqGvn9WJIejZQb/Yq+maBBf1iYUNHKIYTwAHsM7RWBktypSaXZN7REBCOxb5sX6PVXpJ7kTtGbaWPBMQXSf9Zl5NGUyaOf2Df0DdBSkTpJP9vB6zPye+tvaUVaSZjEgPtlhmP0hOAheCLxSpl3YZ+jjHYcTOIH+tWkirQz1e6dZDSRHEysgJ0DfUC7xEI7TRynm/B8tctWOUVU5u3D+ZUiy20fXhotGKlLvDG2DZ7DSUmIXnqOseXgPrJ9jmXs8RzDqtztftLMOKXCSvcx9rtnaA60GsEKwdQJJ6XCWCqwPxMhNrSVYUzkrkeMpYLOtzh+tvJwT65q7Dom6QHP1tinV7RrWjFYrL2CNri2/1JgL6x8PsJWwoGKffrfkMncCzyzY3tmT7gX6dM+D+UhCCGE+GPyzyCxF/+6SOkghBBCCCGEEEKIi6CXDkIIIYQQQgghhLgIZ9kr7t5/DFOYwsf3zV5xj/QKY69Ym1R/PXw09Wyw4vlaIPcPlKHjAKZX8D0J9qE6HdUb0enTBfHHUutKpwDkrFZaPJY4FSOxp4aX7bbSccp7q6OcKpTJG+sK7BUoUy++ot17pDU8LNi/+7xndAFWWKfMeDLlRorjd1lmNXfu/6Qvx7Jy127CQAdIjpd9G4/V+CAoYafU2bbCyO8dS4WplddHObuxWozTScxwT73fBPJ2eFEy9qsm+aHVtuc9XZbh/mOxvU38CKFP5GhlWjWCk4pBCwYnKK/HyNlLNyYcW4RJJKDVCIk5K+bLWmhzgjwd98WOiS5pxnzgOMVcwH2ZK+T2tJLweWDuBaw/OFX/7ApOH5xitUjuHef+Y5tSbyeYca1bU27HbFHXDpe9RZs2XtlJrMi9Rc1cEq1o4w454VHu1m+SIbp2ZGMBgSWD/Wx+wmhPYdoOLG1fkV4xOekhTK/gPp8thU/mnRBCCCHEd0BKByGEEEIIIYQQQlwEvXQQQgghhBBCCCHERTjLXvHw8WO4T1P4CEsF7RX7+7tjuSAZ4dDZK8rc5J4rVuxOgXJnyK7RzOrYLihljZD2lme0s8ZSYfSz43JMYykybQOVknJIXo30vrNXGBk6v2AKBCXzB6Ntb/WiXAssLLhOWigeFtuOAz4ulP6bRlE+3CTsM/ah7J9lkzVCiX3qUhJ4Y0yICST2UHlz9X9K5g9I4KBNhuPDjLlo+yOb5JOxtYN3jCkQ0SSX1NHuVuRexvLr/nzGjoByMWkUrczUiIX2G9pTaNNgm2wz7HccH6ufzDI6R5og686tbLu1q8f05zgZpJQ2HhdYKpZDW5F/5bHG1MJ0DY7xDoxNK+nHMycZs1FrB65vteYJ1IOEl0qrhR2bFkruaS0wDWdj21Yn3SEZ2X+raO7sFUyX2JkyLBU4xxZ9y/IG+28Cz4d2MKGiG50xjOek6RvH4hNhKTBTlR84X0xSSZeywjbiq2ysYfTvMbFlGu7D56N5nsbxfQ/BJoYwISOzXtpmPp2jPvHxCCGEEEJ8O1I6CCGEEEIIIYQQ4iLopYMQQgghhBBCCCEuwln2ihxiyCGG5b5ZJ4zV4q6lWixLkzTXirSFEMKyMA0BFgRKl03aAOTfkMIWrrTNdAEcaeTGyUpQE1IB8kT5N6MwIHcOlHJjO6TtCywLaxlL75dOwsqkAyNDz5TejuuiRDaj3QfU+YD+3q9oR/fOycjCaT2h5JhSf8ry01j2z32SIwfu7RWEaQ8FUnojFjeqafZf+2JBasFh38ZmMJJti1nIfR2311yTsVdQTt2qobXDJgSM7R8h2GQEjp0SaKlAaoS5Xzgf7i/vEcccx2JvAyqQyVN67rVpwjk2U7NUTbBXzShPxvZioW2JaRQHWCeWw3gfY7WgHcMkGGAcwEY19c+MQFm+45XhPrgQ2pfME5EpGoHPxobNmencJ67Mfmy1oKXCGhHGdjVaHOYumWZLSwX6ypbPs1fwHJOT0PAk78Y+pFrRe/7DflbNNRk/1xAzn2tne8E4ZZtoSklIjUjmucntbV5EpFokY2/hs9Xelwl1zXwem3agpk9jgukuQgghhBDfCykdhBBCCCGEEEIIcRH00kEIIYQQQgghhBAXQS8dhBBCCCGEEEIIcRHOWtNhijlMMYfDvq3pcG/WdGBkZnMt977XlTGPxr8Oz7nxd2PtgNi7eY9f4ANNt05kWgghc02HPPZhr14k3wG+csRQck2HYqLYEH/Z9QftyLnZd82aBPQm02qczPoJreF7tg8m/5WW5S7+LnJdC5yP6wUYDzg9yIhBZJuys6aDXXfDYmJHvXhEc/w4UnLCGhcLxiwjFOkTD7FfS6FB+z7HisnudPImzXVzTQe22y78YNrhRbLSM24iLHFsyuPoPC96045luxYLIyZXrieBtnN+xhm+8t32WN5sNsfyFms6bBil2c3VleuS3OO+rq2NnFeMB13WZbgPbP1MvAypOusAhC6a12TAjqMMEyo2vn6zLksc7rOw3CeImmaZhoy3c40W51COx8lEWLY6N9194ZoOVyYms+2zYRlnnzGGZpxjxj6TE+nZR6pG5/kYvHmVxmU8YkIJ43UizDpB3bOcnxPjhc2aLW3/jGd8NlGybb4ErOkQzU82n632WT6hrg2f6+Z+41kSHy+cv81CCCGEEN8LKR2EEEIIIYQQQghxEfTSQQghhBBCCCGEEBfhLHvF4WEJh2kJd++ajeLjx4/HMqWZXnRbCKHLqgPQfhrVahxLkbm/ka9S2u63wki2K6wT69qk+AnnWCnT5rGOvJmWikJ7RSdhXRlNiOtg5CDjM832yPOFYZly78wotWQluRXeCyPjZ7QarsPIwinHZlQizsdGlXUcP9p/x3bwWhmJuNluh/sf9iv259hsJBMpaUeIVXbbcMHR1mpsEGPbRkxjqwqPTb2UnlGyJooTFqQ0Hh/RxL/S5tHuS6XUPNKKYNtR6hJGTBuMxxlye1gqWN5uxpaK3abtMyf7aNo/IIIXPfdxD6uFsX+g3egnEzNq5PNjr0Ws9r0s+5yzp5o4R84RWrg4X2AzQDMYq0lLxWL9FF3cp2ngsHyKpYKHTo6lYtO9p6a9YouveMxkIm3ZB7Bhod7MfczF0ePk/IYEa19gt/F+F85hMz4YTcxjUba+GnNuPhO3yVx4a1+kjRCWJ85n1GktYBhneFCk7qEBZ1PYzJz3bCvb9Kkse4UQQgghLoCUDkIIIYQQQgghhLgIeukghBBCCCGEEEKIi3CeveL+EA5pH+4+NHvFPWXPxtYAiXfoUhJYppS58BhKU1vFVNVOmdLgcTJCohy9l4vDLnGAvcLKWbE/9qElIE9NLj5NbWV+k5yB89YnaR6tXsrkS4EM16xsjn5iakEZS2O5svkEm0Z5Rj7PxIpe7n+sC9snXOEM2e7M88GSYuwVi5Xt035ibAfozwPbB5sI0wwWng99HgNlxWMp/Kezj8txrG1nW0sdHxuLU6eZPLbDzVxyFuOnJJ0r12euXM9xA1m3tR+08qFLCLDJJ5DcX7fxv71pFonr61beMb1ibu2Y0b7r7XXbhzEuIYS79+2Zs4f9KdzBXoG+WSltp8WHSSxMRuFTo6KfSmevYKoO+mfCveQRxoKBNm0S+5njuu2/wEOxdDYP2gCs82L87OI+8YnR7FO7jSWCaRJ+esUmjr+bHOsbz0GrCudk8vbniZ9L8zCThHOybaY9peD5yCezSS5i/3spGKGz0NDyRCsbkyaM9YpJRNyFlgrYzUzyhW3HZgP7Dvw72ViscO5Pz4a0jC1UQgghhBDfgpQOQgghhBBCCCGEuAh66SCEEEIIIYQQQoiLcH56RV7C/qFJ2A8HyNkPTY6aofSfqrVXZK7obsqQhUOCOkMGylXOjUzekQwbq0Rna4iO9YJSfEqw10LZP+phIoFjB2AyQs6dVJoWE8qByzos87Z5CQZczTxF6uJRTe1l/JADo/9rHdtKaGuYeK1sNxIkFoyVw76V1y69opqEhrEcmxaT1SRh8H6Hcdmcq5VL1x9MwmCbzIr6HNppPB6NjJnS7DK+L7GzeTCNIqPP2QcTbArWUsExwXazrbTfwDIwd/3BhAFM8Bn2ipc/vTqWr66a1ejFLawTnr1id9O2R2uvCJCP3z20xJz6FuMA11doqeBYhnq8ljYGK59RlYkrnb2CAQrGUuGkkhg7zDjNgDaKA3Y5YBw8tVfQGsJzcy55liBuZlIEn8VftlqEEMKM/WirmkyyzXhe2OSMcSKEl67Rvy7nd+z/1ZQryhgrtBeZtAvWOZ4vobdk8bcKc3WOtDaNPVL8XeC85XzOiKWYNkgi2tj5stm27zYbWvNwatgz0qd6twfZK4QQQgjx/ZHSQQghhBBCCCGEEBdBLx2EEEIIIYQQQghxEc6yV6wPS1jyEtYFcvYVklWUI5eS76TBRiJOOWp0tqex1JeyXWpqSxnbHUon46dal3LiCk20kevzcF5eqcP9jcWB15Ot3YQaf0qDTcKDY7VIZjVyR4pM2AddfAVVvzPayHQJWg4oL5+NvQKWFBx7OLTUAdoreudDdOwIXLGfloMF49FGo4zfqVVaVcy4sfsVxDWUOr75JhGCVhfKmLndjDMmEHCs2JvHa50pr2ZKBa01jHixUTFoE7ZzbKLOuRtEkeN2177b3jYbxetffziWN1dt/9evb9v2zZfTK3K1cvFDbPfs73fvW9N/a+cuqKuuvLFmsrYi7TTGAgb7UmfbssEinpVh7OsxyQGQz6+oFA61cED/04LxeGbaK1g2OTlhjJf6M06coFVi6vrD2ii4n2MpMmXMBSd9wthTTCpF94AzSR18HrftKypbAy0VtFqgnmQ+4NS0Svj2CtrP+NtmLE+YqxMsRBPm+bxtc2FzhfJug+1ITQohbHc8ntYrNJUOpPmx3g2CYYQQQgghvhdSOgghhBBCCCGEEOIi6KWDEEIIIYQQQgghLsJZ9oplLWFZSqhUs1N2ijItCrWT5Fa75D+28/i2B20RNbNeyNONpB+JCZD3L6tdmduuCg7JrCM/tqkCY9vGAguBDQuApLaTPRfKsanSxtrrFW1fF7QjcX12yLEP44SRgvuSevsBZc3YPM9jyTCl8Sapw1wObTK0BrR9VpPMYdMsKCOP0D4bW0NnRzhuN5aPtr243pM+rWH8wQaA0LLg+W9gjTGS/uKUO1sDrAXsQ6ZA2IQMtpUWDvSfGftNsr3m1o6p2MfDmto4evHTi2P59Z9eH8s//9efWjumVtfrN23/eYPEA0jNNxMk4ovtgxexnWPz9l07/u/NtjG/+9AOr3et/EArD+czxxD6Eo/Ffmil6FgWcO+tUwDyeSbYYOrBxWOfGbRXRP8ZyuuwJ8f+dWz54FaT5oPt2ZStB2nCWKWrhwkvtGFxHz4zrKVo/NtRzbO46w8nvcLY1XB9Cy6D5RLGY8LaQjjvurnqJMRUkxSBZyiSJWipYPrE1YttK9/ujuXtzRblLr0CNowZdeUJfTijTZ/SL/J9q1MIIYQQ4nshpYMQQgghhBBCCCEugl46CCGEEEIIIYQQ4iKcZa8oaw1lrcZGkWOTcabIVd8bVtobQuHK4cZegVXEIeNdIT1PhRJbtg2WCtgJ9rA79PaKOaDteVyvsSAkyP7L2F5hrAGwANTMxATbH7E6km1jMYFNZMG549iSskc6xHJA+gQkw3Gytz+59gpIxHFNOZu7PLwEk9xg7BUYA4tdMt2mRljrxfF43JaJ4y55bYqDkuXpFTir5TN1gtYfJz3EpFTQRoFje8uNaVdlH7YxC4eEO35NiAPqTOjAtOU8gL2i66iCY17/udko/vS//7lt/9OrY3mp98fy7eurVi+U4MZyQDvBvZ2rL6ZW7/Yvfz+Wd2+bpWL7tlkqHg64Lxz/kTYU2iggQY++vSJ29oIG0kewlceba+U+Tjlj3Dx5UBtrwjhNgXOPCRfmGcU0D1qZWK68Nnv9vL7E/YzVAvvgCpOZXmNrHmd/rXm4/+N3/E1pcPzzd2TBM2aP/jD9N03D7cHYZOwA4TMxcgLBUpGROrG9bnaGzYYpFW2fF29aqsstykyNma97ewW+22F+00ZI29xnm8ddm09CCCGEEN8LKR2EEEIIIYQQQghxEfTSQQghhBBCCCGEEBfhPHtFqaGUGiLeVcyQe9NqQXtE7SS5xUhhYakw8v6x1H+F3J7SdkrVqYrPmRr0fgX4Bu0IKVPOPrYvUDLPZAraDyLOsOxhIfD0/cFK46ONIThCa0dw7BW1LsNyQVJEWax1oZqTjxtFmTEtH5QoZ64Aj3t9OLTz7WGpqJ21gP0faGOpY1k4yymO71107AvOov6PH+P4g02vcBIrvH3Q/7GOx2zvtqmF7wabbJppGbxWI72vcbidrxtrwgknRx4eQnj545tj+Zf//qdj+df/8V+O5flVe6TskSAx37QxQVfPxFX9mdZybztht23Xff3L62P56m2zcGx+a9Lw6a6NzfQRfb5wTHDMwkLEdAIvrSIEd/Bk3Bc6kKbk2A8o++c9xbnNnA/BPIM5x5i8EY11rR2/4hwFfb4GzwJG20VvDeP4Nw+g4WbzHKP1wUmTqMZOR0tJZ6/gbwf6g0+4BXXt4buAEydMGQkSG8w1eJkibuqGHqcQwgaWhbjBOLpq5Re3N8fy7W2zSzBBadq28i2SX17+1NJati9hzXhhUyfmq/Z5wtxJG1otMFY+tbt+aMkwQgghhBDfCykdhBBCCCGEEEIIcRH00kEIIYQQQgghhBAX4Ux7RQmllJAgP54z7BWJ9gquPt/bGhwbBSWyRgJsGnEsrtDnUiHOFIZppv3DXs8eKReHpbWXqvKIleELJMM89wRZ7AxJ7oo6DzhX6mweiRYQR2ZPuwqXZGc/WSCJhky7Qt7fp3kYO0GilDkPy4Vq7JVSbiaatP1pYXnYPxzLeWMlyjMkwEyjiDwhpeew3CSmVJj7iHLhhToy8L4C414Y2ygcR4qxF1WTxnGC5SNYG0stvGdlWI60tzidsFZK91udK/t7ZyXbb/7047H883//9Vj+4b/9fCwfNs02kzGg0tyuG48Mu9o/zpW21vqTd7tj+cWvr4/lm9/aONr9z/fH8uYtxtoHWoqQKAPbUUb/MRnlaVoFfSm0kDGFA3Yr2iswZvm21zhgsJ2zonRDzlgNHKsF0zkK0zUiLRUNJqjYVCH6HXrvT/ts+op2JPYTtjP1h9Y6BBGFdeV8ZsrEM7YX5zfFnANtpXsp4fdivm6JK4lWCVgorjc2NeIaSRHxGikoL9r221fNLvHqVbNLbHbj9IqXP71sx/7Y9s9X+Pne2mcoEzIy7BWZlhE+Zz/Nw+V9m2dCCCGEEN8LKR2EEEIIIYQQQghxEfTSQQghhBBCCCGEEBfhLHtFXdZQlyUkyGVnrCI+wyZQ6RgoVipNybx57YHN9ojxqupGUEprhiOF72XxXOndJB3Q7sAyzk2V8UIZOa0PlPpjVfTaSaWN4H6lFJnSZbb7BJz7Qll96O0V/AA9N1fUD5BmJ7NqPmXrqAYS9lib5D0n3kcrYY+wIMxIsogzrCto+2r02Ez2qMPtTD2J6Nl+RXwjYec4MlL14JSRXILmUVJOuw/HXIzdHXZSXbj6fyqUlLft7I4Dkwqw/WGFzQgy8pc/NRl4CCG8/uXVsfzqlyb53iKxIm2Z4tDsGTU228U0cR/0KyX52crFw9Rk3y9/+eFYfvGXVu/1//f2WH7314+tTVNLuIjGjoSOKkxTQfJFl17BIWLTYrAPLEVMwsiB8wXH4r6khHGN7aWzUXGMmLEZaa/AHMaxKy0O6AL7NBgbPXpjEa1bTLahDYttqrRnRf5I0AqCtvIWwQdRuzSP4tiWzLzihNu1803wwGxvm6Xi6mVLlpiv5mH59traEV7ctM/pFraGlxi/r5FG8bKVt9dtvvAc2xskUVy3OsMG88W6PMIEe8aMcoIVkL/+n29FF8YhhBBCCPFdkNJBCCGEEEIIIYQQF0EvHYQQQgghhBBCCHERzrRXHEJdDsZeMbn2Ckg/VyvKNUkCTFbgiuJmxf9W5grr0UQKtCJXI6/P2Cso6U2UlaKBXPG8wBIAlXw4oFzWcd9kyFop7w8hhBX2kxW69wLbgJH0s6lmNfnW1hkrlk8TpMTYf790thdHLr6W8b2YYBmZMju9yfXZH5mr91MO3EnYaa/Y4MZkXMcBDXxYYJegb4BjiH2OfRLG6dTZKyZojXNy3s9VWi3GHbhCuG4k+Z4sPlmNc4QM3dgreElOdMaCa91jnO1TK3/A/YqpSbm3LyDlDiG8+rlZKq7fQFZ+hXvc1OkhYUyssOJwqNBeUQv3sXrxis+3P7eTvPyPZqN4+VOzf7z7j5Zk8eEvrbzetXtROHFrs1cEpHnELmkmw2pQjNUF6RV1wv6Q2BubAr01GB/pgO2tTbRdfNqCEsaOk9zAgUdLBafLYp6Pjn2j2nlgRqqxMrQ+MHYhziOM82rsFRwTaN+CObX09oowJM94JsJSMSPtYQMrw4vXN8fyLWwQu9s23ncv2hy5fYEBH0K4vW2WjOlV+472CtoltjtGudAugXuB5Iv5ZatzwrFp0z2fOH0yno8TflMyxvmnSZlgtRJCCCGE+F5I6SCEEEIIIYQQQoiLoJcOQgghhBBCCCGEuAh66SCEEEIIIYQQQoiLcNaaDqEsIZTFRP1tpvbeYmI0I19nTNYXXRf4qrkWA/dBmes4FBNbCc8+fMBrn0l53Mm+Y/E82cbaTM8zz4Gdsompw3oQySxe0arsIzNxHUvhuhHjaMGUWE7jfeI4+yzDR72drWd/Nes4jKMnub6DjZFkDCUiABH1lzBWkl1Ew7SD44DrhwSscZFxzCYz+21877Px0I/vnVmXItjxPJkIR47B8ToOXEOC15qM1501Ig6w64/KKEmMYZZL4Vhuxx64pgPW1/iAiMg7rB3w4ofmPb952fnVf0SE4DXjB7E2yBae8Al9wFhZc3nMbByv7xCCnVcbrCTw5t+aB//j398cy/dv/47tzeBe7ts59ljGgYOO4zp362tM+LzU8VonXDsm42GZuR5NHY8hPt+YklmdNQsedxx/MHHBjIblPlwPgm1CjWa9hGrXo7HPbIzthIhgjv/E5yP2yYzSxD5c3wFrt7DcX0eeuF5De8Zdvdih3NZVuGac5Q+3KLc1Ha6xPsMV1ne4wvoMIYSww/nCzTwsbxCNucX+eYs1cjYoY+2GCetSMP4ydr+xXEajYi2i4JTrpzte5/P+SSCEEEIIcQpSOgghhBBCCCGEEOIi6KWDEEIIIYQQQgghLsJZWsoYSoi1mMi7GR9YXijd7F5tHCDtZtTfimMYpUkhLcXOax3vsxjpckC5i1kLYxmv0RbTUlFYL2S/kAwz7pDyZleuHLrYOraXkmgnUtHGVjKCDvUb6Tikx7OVjtPakZzoSdooGBFpt6OMuLYZ9oqcaROw0mC2t0DOXQ6MdsR15CY/Nkpwjgq2lZGNuHdPIjNpXaGnqNLKQEtFHe1iLBWZ8nljD2K7bTtqZEwj5tj48kybaK84wAXxcf/Qtm9bRbubJh2//aFZF0II4eYVYjJxTJhxjzI8C5nz2YmuNXYRXEPnDqKDZsKYevVra1N5eH0s3/2tyeTf/aXJ2Q8fYLV4wEnQx7m2fXp7hbHK0ArFOFhjhRo/03jvjWWB886x3zzWhX4z9i6TnYoi9uE8d6J4V1rPaG/rrD/BGedhbn2eINln7K2xVJi4zbEdI5k4YWuvSDhmntv9o6XiBhaJ29fNKnT7po3zVz869orX48hMxnCGYC0S6xa/HYi0nGGpoP2DtgtGHifGZ8KbZBx0/Z8PPIeh+TCwV2QbVSuEEEII8T2Q0kEIIYQQQgghhBAXQS8dhBBCCCGEEEIIcRHOslekFELKj//7GUrVpxkfUkuoeJLWAHnvwfgfuAI8qsKxsY5tEBWy08WRmpfOXsEkhtVJN+Cq6L09ozWbfgBaKsYr9vfVmNQIrtbOFf8pd6a0mvLvNE5GiOwoXnOxEmV+XlAuKNNCEE+wLFBqTltJObTxETsJu/m8ju8fpe2RMn7Kj5lMgfYxqSTB5pE6e0V45p4Nd+K4YcIIZhkTRuqKOUKZ+2RTRaZNk11T3v5xD7sJ7kWN7YS0V9j0lbHc+/XPr47lH//ttWnHfE1fFb0dnEfNw2ESE8yAHNsaQh5bNkIIocZ2rTW1c2xetTa9+rXJ4X/48w/H8m//8+dj+eGu1XnYt2PXdxgHh/u2k22GsTmYZ9803s4xb+w+6Cc+yArGDe/j09fDeViupsx0E96jsS3Na52xVyQ7EWhryNdIdXjZ7sUVLDubqzaW4zy2WgSzHWXHNheCtb3MSH7Y3TClotkrXrxu5RtaLVDmPlcvx/aKvO2eXfwNxHcVZaZOsJy5nQ8s3nvzYxhOwtuNP6Wfk0v4HBFCCCGE+F5I6SCEEEIIIYQQQoiLoJcOQgghhBBCCCGEuAhn2SvylEOespGkUx09bfJwe1iCgRLxQxlLZikJZXJD9VZSp2yddgVjGbDS0QMlx0avO5bomxX4zerujbJQioz0A8qmO1sDbQNrdeT6eD+UUZ4CrQyUeLM/WD/k9itF1CHs8XkxlgqkUTjJHslJ2ki0vSyof2mDIk/23dfkWTKqE9eAMZF5biRORDO2mC5AS4S/BLwZOnF8j0zZ7D62GZjex7Wl2a4gn2GvWBBBsd/TooLzGasRzsf+2LRz3LxuK/b/8OuPx/KbX16adqQNY1Ca3cEkeBi71NgqxDSOGMfPjBjt2Kx4iMDBFCZK+t80OfzrPzV7xc9//Xgs39+1k9w/wIbCVfs/fGjn3duHV11pAcNYq3iU1nYM7SZ8MNmQCfbN2LuW+vfDjAQyCSCwVJg+x3zG+ChlxT60hnGutSLnVAghzEhruHrTLBW3P70+ll9i+83LZl9IGIN1wjjA+I9Iu3hurtEaRZvC9rpZh2iL2N228hXKTLjg9ojhUVCer+1P6BYJFGEHm9TWsUucgPOTcE4NTnnwPI2dn0gIIYQQ4jsgpYMQQgghhBBCCCEugl46CCGEEEIIIYQQ4iKcZa+YNvn432e4Uvhm13Sn2ytIjDvZ+mEPOTYk/bVgNX8j2aamdLwKu1GFGjtB2/ycvWKhdD+Mz+etxr8WrIJP6TJsKJNJtbAYRXoYS6157gPTFxzlbKrj8y3GXuGneXDFeloQ6JqZHHtFdCTiJlki0zJjNcNMXCimTQ0jp4Y0O2MVfJMiQBsPJOXU9NM29HiOPCybe4T9zXaOOzMecW6n/tCleXDcrpTAY2X/wtQC3PsF7xUPtAbAlvD6p2apeP3z62N5vrHtWONDq3ffEh7itsnIM8rm3rtL8I/vV+xl3vgczW2CBeGqPX9e/dLsFX/+2Pppv2/X/XBobb3LTRa//vb2WK4Pe9sO2IIOiMJYUS5jR4WxSMQwntvGIkXryZP3w+OUHFccb6wJzpzEw2SCjSIhkWHaWuvP7gXG0c/NjvPm19et/FPbfvtDs1psMAZptaClomJOMvWolH58tCKTH2aMie1Nu98blq+5TytP2J43GGebdrJp0/2E4rcxzGiUnUoOdVD6WlgXf2Cc8ud9yrefWQghhBCiR0oHIYQQQgghhBBCXAS9dBBCCCGEEEIIIcRFOC+9Yp7DtJnDBqtys7y7aiva72+aTPPQ2Sv2TaUdlj1WwW/FUJ1UC6v+hOQaX8RIOXvb51DsivgLpO60VxjVKW0Djp1ggXR5ZloAVpKfTkg5CMFKpaMn4+e10iKB6051vJ2WiqWTKDPZokBqzUSIiWW0L5vTcTV9yrdhg4DeuLe9rCvvBa6VfQNZeIKlIk3OezTPuoNd+vSKDJl3NlYGrv7PNJUG7xFHHfuciSamfusfCItx/oyvlaknK6w8rIs2j5vbm2P5h19/PpZf/tik8AlOice6ML8PrbwpsFvRGmJSZzDmjV2KungmsXR6dM4ZBjcwygLK/5sfm11iiu36Pu5bvXdwTryf2sU+bJvs//7te9OM/V1Ltoh5HZYr6q1LF93z+RJ4rXyu1C9bLULwn4nRUcdnjPQJOzEEI8EOkGihu2p9c3Xb0h1CCOHF6zaOXv3crBNMPvnh11fH8ssf2z7GqkG7FfqGtzck/xlqLhvXNO1g/4NdIiFNIm/btV4jXWN328ZBSLB50SLVpXlUfu4SWPCFs/0bqP3HsY3CpssMKpC9QgghhBAXQEoHIYQQQgghhBBCXAS9dBBCCCGEEEIIIcRFOMtesdluwma7Dbtdk51eXTe57cN1k6A+fGzHrXsrMaZSmCkJS6CEFRJ7SNKrEbE3+Wqq4+0LZPWHauWuTBJYjR2BjaXke1zmNdDtkPAhPSupHVsQkrEyQEofx/YASthzHstkjb2iS68wUubqWBkoC0eXm7wPz8JhbAOwANTOXuFIfOl+4DFcyT6WcbtdSTPVxv15HZsN4TilTWRBKsuytHLxrg3XkJJNCEgZK/tHrOzPPjQ2G/R5buXdru3/85+b5P2X/9qSHq5ftfmcupX506adY7Nzkj1WSrnHiTAF4zcnjmUT9WBwxfQTPFk7WBww1mhM+PX/uD2Wtz//j2P5L/9v64//+H+aZeAv//7/mzMf/oI5ed/uy3xo9R7u2sNv+di8ZEyaYfpNNJJ3PuuwuesBY/EJaVzmhGGSzjROX8iwIsywIly9aPaKF29a34QQwivYJX76U+tD2it2tzhHc72EpS4ot+vebJmI1H5raH+qnY+kOjaMbGwi7Zp2L9o4Z0qF+UU0z8Ox3e/JY8Hztxjb3Cn7XAZr2eMzI9r/FUIIIYT4jkjpIIQQQgghhBBCiIuglw5CCCGEEEIIIYS4CGfZK+bNNsybbdheNWnq9XWTD9/DXrG7a+X7D9bWkLjCNzT6K6wTlN6ulbEWWDGeMnJjnYClYkWZ8RjB2iJYpiw/xvGK+ibpgDLyMi5HT577WPOxxBSDCTJ72isW2EdMXdAYZyQKUDG7FvbxE21wO95JozDCX0rEeSvQH6uTKsJja9+O6OmXx6kRvMcmDAH3y3Y5JOj4gqkZIYSQMu8frD9MpoCN4oCkApZXts/Ug8SJFQkoxyPj3QAAHhVJREFUXQLHDE067RWU2K+0GmHV/LRp5776ocnk/+2/vTmWf/rT62N596LJ2dNsbR7TBrJ8LOxfIN03fUi/DpMskmOXwn2P/SSJw2KoCakksxPjgO7c7No13d608bFOzQ5QkWyw+aXZB0II4favPx3L939rSRYPb1v5/u+tfPhw35qBcTNxzMMCVpiwU2kXMc0IEReVUhsTEVacNMH+McEO4yRTbG9YbnVe3bbtr3+y/fEGn69etmO26Nv5prV1vmoXcoXfAT5PY+a1wRzD53LqOoTfod4M+wjtQtyncL7QAhbHg8669J6xZPH5GJ7zZJy+j8szj9DqTB5jtfhcjPo7hBBCCCG+P/oXhhBCCCGEEEIIIS6CXjoIIYQQQgghhBDiIpxlr8jTFPI0hRmy63nbpLe7qyYDv2KSxbWVre/3XPGf9of9sUxZ/t7I01uZkveK7Swva7NU8Fwh2FX0jXyWVoFi9PrYn/YAx14BiTils9V2R+C7n6m2/pwnyrEh+a6wDbAulCf4I3Lm+v1c0Z7bQ4h13Am0EzBhZEYuQGYkCdMMqCJn4gT7plsxPTu2CJOQQbsK0iEo054KJP1m1XaUeW21S1mh5BttNJYMyOFptbCWCqSYsE6ei9aWaO/LNNHmANsMjpkTZfWQs9+28qufr4/l1z81m8CLNy11gPaKvO0yIyBDL7hWJiOk7Fha2Ae0MrlWGtsHZiAZfwWfARyzsPjQqoHkhs2L1u4f/0vrg9vrVr5/Z8fEHWwU7//6rpV/ezfc5+F9s1cc7tvzrWDMpjC2cNVnLFlpQiLEjNSJTXt+TFuMG1oZ0Afbazy/aa+4zsPyzSvET4QQrm+Z/IC+yu25u7ka15UxboxdzcFaMHx7hbVa8HnHfVrRPPaC88zmqWj56O0VTvqDZ5Yw26v74QR8q5yZLs4hR3fFxXIzhBBCCPGvjJQOQgghhBBCCCGEuAh66SCEEEIIIYQQQoiLcJ69IueQpykkyHknSnthtdjumnx4d23TKx727fN+aZLjhxWyVSh11wNk3UyvMCkOXAGelgrfXmFeuUAWS2sHpdllHcttq+NxGOcuDNIrYJ3gDUFYQJhhqaCk3wRLQCe8weYZ15ZMMkcnYTeXgetmf5hmwxIAyXGaxikfC5NEIC/PT1aipy2C7YB8HvJ+bk/r2GoxiAx5cuz6ZB+ju25FpoHgmNWkEKBNpv/H9gqump86qTn7lvescAAn2HK2TQJ//aptf/lDSxq4eUVLRbNdzNeQy2+tD2hNrW8XjMEcmLhCaw3nC/rDkcJbaXr/PpT3AvYYpGVU9PmEFJgZsvo9U0Vqe/ZEXPYMy0Dc2HZMty255+bn1s8/Prw+lj+8/3gs372/O5YPeO6tC/oGySUVqTNMN+n7Y4Pn7m6HMu0SV3iaJJwPUTN5RnIO+qAEJP0kWCVuuna8aO2dtrR8wKaDehG0YZI6WOZ4N9Ywb9x86btPcAwWs52MbQkmLeTZhIfxc6Yaq5354pm6Rjg2o2cPwTU5p6uf91F6hRBCCCEugP6FIYQQQgghhBBCiIuglw5CCCGEEEIIIYS4CGfZK9JmDnkzh7xph0XIc7kqull8PncCVhN0AIk+ZPksU65v5NSwNawrLQBjO8DarSxO6T7lr0YyT3k/ji3OyuZUy0ZXOhvdT4Wr8VN+XLkPpLqQ9EdIYwsk2ytvC2wava2Bg4FpDbQpUBqfIGFP1E1PlHWncTkibaS/L0y8gGSecn1aELxV/pkmUU3/0aYxluc/fvbagSQL7L/S/mHuPfbHjcy4X2Zl/ie6aV43+x/Sdsjtw473orXpvjSpf5kxMzZoK3053dMhQz6fZoyPmd4EpmvwEnAOs/q/997ziQdpXIblI8A2UMN4XswzrAU7JOzEljLxUJs9YtpYC9KGDy9YIdalnWPbujlcfxwnU2SkjRi7CBNXjCvNjokZ/bzZ0u7W9mE30/qzICWIdrWQYA3Dc3ma26DY7JikEsL2iskZOOHE+8pnNuxPsI/Uyn6iVcL4x5yyn/XgWyfGZY/om+We7Dn6LrrHPFfXsCFDnrbC2dFJ10B8hRBCCCHEd0dKByGEEEIIIYQQQlwEvXQQQgghhBBCCCHERdBLByGEEEIIIYQQQlyE8yIzt1PI2ykkeHcjvLsVsWwlMp7MRmYWOuFhA86oa8K6EXOBj/jQzrEYPz7WMMC5uI5D7d6xrGHswTfHh7F/vwTWO17fweYswt/bxZJ5EWy1sF761XEsIzpNbGjbZ1kYJdg6nDGcnxp2LGau45BxX7juBtZxiKbMm8p1HMY+6tL1WnHW2mDcWzS+b3rD2+YFsZx23Q3GoHLdh25NB679wJhSjimuo8FjOT7QcK4nkbPjY+9HUaXXvm2fEOcYt5iTu1bXQ344lu9KW6tgnZqvv2J9h4o1IMLUOeJ3OAfWEQiMNTQxrOPIUfOukwt4mDFu70W3egZOwYhUxumOT12w1gOfS3nb2rTDNXBdlcfPuGcB0Zp4lG5u2vFXhxarWRaOJ6w5gT6IZkETfw0DuxZOGpa5xk5G/82BfRZQHscxcp95260Ds3HWbmC/cb0Sxr+aeTuOGuak99ZYCaFbF4Z9aNam8dZ0+PK791PWfXjCCUs0VHuxzsFnrs/w5GhvvzPXkxBCCCGE+EqkdBBCCCGEEEIIIcRF0EsHIYQQQgghhBBCXITzIjPnKaTNFBJiMlmDa6+InRTWiWbLiIGb1yZdXkqLbKM1Y61jyTutD4XbOxsDUjbDCjkwLRWMm7T2inGZ73Eo46fuP/d2Csq52fbaS8w/7085NmTM5nrah5l95lgXQgghI+qyUooM+XzOkJR70YdG9ot6olN+ko7IfMtxRGoyMZ6tzPvIeEonwdJIv5PVOvvBpk78prVUtH1WcxvbwUwV9Cw2IVipesZ8YVwho2srYi/3sE5sXrZ7N79AzOI1rRmoZ7bWAkYquvJvM9fHcv3g2pHG+zx+4lwaa/+NNeHJoPp0KC6pLLRKMHay9VM/Bel4SMYqAIvDivLS9lkOiK08cN4iEtXYpVjurC6cbuYZyuug7YVjc2xxMEPQkf2nLmbXvd+wDrlxk+aE42el3TyOL36slValLz+LTsmGPM1Q0e3lPmg45k+xNZxrqfg2q8Xn7V9lIxFCCCGE+AJSOgghhBBCCCGEEOIi6KWDEEIIIYQQQgghLsJZ9oo4pce0CkpszUL0TIBYh+UQQijGFoF0AsiEmZiQkZiQFqNJb3XSEsFzMV2gk1wX+CsW53hTl1O2a8x70llcZ7CpEdFIxGkJGK/oblZeN6djSgKlyOPtsZP2biqk9bzFTFnIjoyZzTBlJ8HDPSIYTXst4zJl4ZR808pgjnVk1smxfDx+N25icRI1qpPOwXY4TgtjEekFzkxyyEgkmJkgge1lhlx/08rXb66O5e2rlqowX6Me2CvCZOftGnkvkIAQOSYo6WfcSDiL2qvOMSA5x2IdS/SrI3Of4q6VZ3rDxj6q2j0zaGeiu8jaFHhjMdbm5nuZC8fQ2FJhrBadocAMVT6DsblGtnU8h2kv8u0HtAZ0z1CmSPA5dpKtYXyPivPMsGEenfnJ2K34s+akDI0dHL6l6mROSaD4cjKF6WfzXPmadgghhBBC/L5I6SCEEEIIIYQQQoiLoJcOQgghhBBCCCGEuAhn2SvWsoa1rGGBtHopbUX2dW3lsKC835t66sPDsVzu23eHw+FYfti3fe4PKK9tn31p5YOxc9RhuXTS4MUpm+Mpqw8sO8kIjvQ+mnpsO5KTcmGkxWEs0Wdbac2gujlCl5wg/V6frMwPe4WxgEDmHcdyau9ijYWD2+O43Z/PPipH0+fjlApj3cGYMNJsJoygzv4NnFGwo0OT6dx21ESpOiTeZYVNAcWMVJAIW0LK1n7DVBHP2pSRXrG5aTL+zU/NRvHz//bLsfzqp5ftYFoqIMmn3enxMz54Fivu/w0S76cWE343XvG/t8d8GSc5INO+0dkaOFY5YNJ4bCfOF6apcH9WY8q0/tgxwbbT7mMsBCzHcdnrS48n9zTZb9390KpxxY41KdCy8Vxbecz4fE8eM89Xc4IJ4vTK3PQVA+/LuSkVJybvuNTuf4UQQgghvh9SOgghhBBCCCGEEOIi6KWDEEIIIYQQQgghLsJZ9orlsD7+t9BSATm7V4ZtIoQQysN9q/O+WSceDs1qcQ9LxkfYKx4WWCpgtThAVr/ADmDsFZ1y1OzH5A3ocD2rhZXLolInocG83XkS1jA+xhPFFki+2aY4VrxTLW76oO8PY6+oeVg2NeOEVAwbGbSr1vWyQLrV/I0lA+kJvEewLHA1faY+VJN+AAuB9cbYdjB5gAkNiC3ITAVAykrMbWqtB/QrZPWsxyRAJDst8zSjTW2/1UjH0Qm1zc8Ea8a0hYVjh3uKcsltTqVO0U+7BdtRnZFaHbn9KbaLPiXBHVMnJGTYzU7ujGfN6CZJnyIxbFNwxm8aj7toLAQsm3iM7ny0bZTh9mrm+njix8S2egkq/lMpnvTE+rJRwWQ7mHY4lpT+uUJbhJNc4p7QtHScFPHtpoM4LJ5f8Zf777n9xPehOl6d8y1eQgghxL8GUjoIIYQQQgghhBDiIuilgxBCCCGEEEIIIS7CWfaKWtZQ1tVIWzOl5hNksZBir9FKkh+QOnFfmo2CaRQLJOKrSW4YWydYXowlYrz/0+Od7Y7VojopEwkyflf5XXuJtidDNweh1L4xSRZoR2aigLEWoJ5OOl4rD+LQWIb78Ohi5N4o8hymHTxvL1WF5NuRqq9ITeG5HfF7J7/myWnH8DXbJl2CK+07SQXGCgJZeDENRH8Yf4p9Fxgxx2inYYoMo0hyanaMqxdXx/Lrn14dyzMSLmormvmSUvdO0kQrjNvOYdBdxbhMObKZL88kmhhtvW+P+TInHNvp+J9PUPh8yHgORyTCmFpMcgPnF3uwl23DeoH7ZAM1vGtC2emCasb4KRaKHq+fvO2eDeLLz8Ova8eXrSCebehUTjra+krG+xgXkOT7fwR0H4QQQojzkNJBCCGEEEIIIYQQF0EvHYQQQgghhBBCCHERzrNXHEqohxKgFg+TWckfq/HDarEmK3F9gJlhD+k+EyhoqaDEuaJsrBbGRtHKi0l68O0VxdlurB04nmW+ubESfUeW3LWjWv0sjhiXaUeoxnpCaXYdl00IgDUjVLPy/TosMxnBujNwbkj9y1KG+1Ce2suYq1nZ35g4hm2i1cJGeDCNA/U7dfZS7ARLBe0qdD/YdI1xu09a39/q7e2XuCYzL2CvqEur4ArK++uXzV5x++b2WJ6u2tSvzY0ReKtDN2/dhAdi+tlJrGAHuir5/lyOccZt0pc9BNXZbm0eJ+JK4535bFwl47lgbUBdaoRjf/Bl3+P0CvsscdIhWGdf/Snnc7d7SQzj/jDWlug/M06xSESnGecadJ5LjTjX2HH6OYQQQggh/rGQ0kEIIYQQQgghhBAXQS8dhBBCCCGEEEIIcRHOslfEJYa4xBBWCD4LkhSwtD5l9X1Kgq/SpuwXEn0s+b+u4+1GJmyCJWiJsBLt4iRTFM9S4eiuzfniWF773Dr5ntifEn2bmDC2DbCb7ZWOBf5PbA28l0bFj36C5D471gLe71rG9oUaxykYIfT30jneGStWuu+Np7Z9Qr9O2U6HzdR8B9sZEQ84R0GaR6xIJyhte8YFJhybkUCQsb2fHmw7jy+wKVF9v7lubX2JxIrtq12rB/swCGE2yRndKGJ/epL+zOs4Ia3Ekbk/l15BixXb9C0Lytv5ObbGPH72LCOORt9U4DXwy9ufSPW9sIcT7AsnBDc84wl62iNfruCUk/vPpS8f65/726wMp1yP34549tnPP9v34vOYf5rgI4QQQgjx7UjpIIQQQgghhBBCiIuglw5CCCGEEEIIIYS4COelV+xrqHMN9YBtWDW/mHKTfsdOsTlRYk6ZtuMzKI5c37NX+AkBtiEFS/XTelGMlNupyyirT5BWO4ry/nNx5Lk8ByX2xrpibCWQKxs7Bhtl3znVQNsAEhNgu1iRboDNIadxH9gu95IoTDNMHxSTouEkTXi6esfyQe9InNoUeGqv2B7LtFdUWCrYH5U+BUwtY0VAokbG+SZs798EcszHDAsMJwy2b69bu2mvSC9gqUB6RYiYq0ijCWuXboKPNrjEGZsn2Cu88fH0lnJQoT84L7B3l/UwrMdt07Oy+rHvIPLsJ9jH/O2eXcGH7bX2rBPqil6fO9aRZ/l6M0N1tlue6Q/zDD6l32jReSad45sYt+NbbBf2d+S0mBWlXwghhBDi90ZKByGEEEIIIYQQQlwEvXQQQgghhBBCCCHERTjLXrH/sA/7+hCW++W4rRwgdYa2N8WMsn23YQXKzmrwpIxl8p61wDKWZT9+ZEoFrBaOW6KmcyXHXpKFv0a6SdvA9uRI9F1ZuOnzdi+MFaS3V8A2UMrYQrBAjj0zKIJ9Rhl++bKsu3Q3zyaGjJNEeqvMsdrEfkI6hDPOMsZp7N/BMc1jGR+fmECRm30hT7AymIQLlHGPElMfUjdfnJSQOMdheXPVzr27vWoVbVFv8qT36Ptk+3jl3MOYoKkkpXE/mTHPceO89nyS4BE8b4fd60vbvflixtYz7TDz0IwX7/3tuDaTvuLs7Y3x/ng3OcOT33+Tm+A5u8mXj/m2bIQTrSfObie19Oyx9TXmhXPrGo8Vu8tzY2V8w6Pd6QsnEEIIIYT4eqR0EEIIIYQQQgghxEXQSwchhBBCCCGEEEJchLPsFQ9v78LmkMLy/v64rTy0KIsEBfTsJFSEYGWdZsV5R/o5lIF25ZMsG510tDpyfSN9juOWuCu9uxJZX4ZLZWxnAMHhlKdDis8ED/d8Xo/375zGfgkmXhSTKjLc3fZl+fINq13LrfR8nFBijjCuF6ZD5OFOJXBswgbU203Wsc0j07aBczDtYrPZtXppdSnjcWD6L3f7wHqRJloqMA42bfuMZIoZVoswsd5xkgitLkuwoDtM3yRveHG+OJ6F03MRnHQITp765e2ulcEp9zYqmwrzZWtYdbT+9nxfton1m6NzjJe2Y/v/vGfU6Yr7S+cknK/9j96Q5z7PGmq+xHNt+p51nbPPM8e4Q03+CiGEEEJcDikdhBBCCCGEEEIIcRH00kEIIYQQQgghhBAXQS8dhBBCCCGEEEIIcRHOi8z862/hYbcPy8e2jkO427fKluYC38LOOnf1ZPitI8pM6EuMJWS0YBpHDloLN2MW23a7XkLoDL/0jDtrKdiDB6WubK5nvP3xMxs/9n2XyrUNnlzJYz3pFE/2cz7jcSwnYzZN5CajLbnAAzI2a0G24slW8rGvuF/7YVRBdNYRMGUMCqZT5u4d3IS1G2aUpwnlGesnYF2FacIY99aycNYHmLZ2xqQbfN62cz9ErLqAyRMn58J5ct4XDifTT91aLCZL1ixCwda2zTzFgYuBcP7zBBx/5tQhTtgwees78AAvSra1I5kL5xomp3r8T8ihfCbKsO3OcYDtz8Y9fnm9gPNXWPiWtQ2+7dzfupLA91tN4veMxjyzHm+Nm/4MZmg+/xD2vxdCCCGE+HqkdBBCCCGEEEIIIcRF0EsHIYQQQgghhBBCXITz7BW//Rb224ew7KGb3iNK8NBEnjMsAJtO/JnxmWXK0BOk1gnSdq9MpTTl0YXS5T4SEfplayEYB+iZ+Ds3fq1hLCJGjt7ZIxx7hdkF9oUCiTjlsNlcw7h+KzW3Ulrb5ygzsjGP9d+1LCjDXkGNPYhOFOmTj67u2rO3OFYLSvoZ94hjTcJmsP05oT+2M2wXsDtkuCBihvWhwHLg2A8iojs3nb1ie3t9LC+71vYVGbV1HtsreF9MXOc9ttPuxH7q7BUczwW+lIqOM66Nh9a+9WOzYfGZEVdcA083dVaXXeuTzP7p7tmxLlqNTLQlrRm0WmDMmphWW68rPvceDSeNZaf+3mNiGFfmt+9cA8NXxFOe1pITjh1zqTDH0+rl79RzfMuVfMuxzxgsqrOfax0UQgghhPi+SOkghBBCCCGEEEKIi6CXDkIIIYQQQgghhLgIZ9kr6vv3oe7XsD40aTatFqVChg/1di7WTjBD1plN2sDYZuDK5yFJ90MmyrgcrMQ/GfkxrAzBsSaYleXHkn6+0bFvd2xjq2OpiHanViy0V4zTPCZI3nlpKxJG0mZrzmcsFSeUTXpFHVsqaLVgukatTgLB44WEIU7SgbFaMOkkjG0NtLdEE29ix0dBX9EkUjewVOQJZaZJwIpQvDJHBe5vN07zjPt63c43XW1aXdvWwgmWD5N0gnnLMb4umMO0OxQ7Liv6NsJyQ7tKRIrG+v6hnfrth2M5Icki4xwP+2bBONAWEkLY3Vwdy1cvb1pdu9YHaYPHGRJGzFMO5ZjH48Y4ofqhWHmM+SIMcRMGxmPcsyicnF7h2Ciswv6UdJjnzu1wYbX+c9Vfynpx/rlOsb2cd+/Mb435CRr/HvUbomwUQgghhPidkdJBCCGEEEIIIYQQF0EvHYQQQgghhBBCCHERzrNXfLgL9VDNSvSHh8OxvIYZZaRMrFYqTXvFRIsDJKLJkZRaSwTLkHsbaSll/Hap+5QoaW/buXo9l+M39g/XasHy2GrxVVJgY6+gnH187mlqt5ZydloG8u4qEM9GkfN4O+0IhTJ+lK0EeCzf7u0URg5sutmTpI/TCdztTipAWe2dWSHxP6Ah28J0CUZQjAdCxfWwXBi9wDYl244Ee8XmplliXv7Y7t+6a+3YXLN9qAv2Cia3HO7bfK7sgy69woy1hHkxjW0by9/ujuX9b++O5XmlpaqVl49t/4/3H82595t2/P317lieYLuYWUbix3TT9o/NjRHKBJuNsV2g3EvTTRIGk3EcTkiv8C0V3yqLx3Oiem19TqL/pEmnnu7iVovTzCquk+TEWs/HbYfZ54SO8hInTt5nbINTYoUQQgghfg+kdBBCCCGEEEIIIcRF0EsHIYQQQgghhBBCXISz7BXLhyUs+4ORYz/QalFRhrxzOXDt/xAmyMcnvPaYIPnOkIsmyEMzVPzGjmH25z5xWA4hhJUhAUYG/dzy9Z/3H+umbQYGEgLYjr4qk+qA7UYxS3vA2FaS0zixYkbCwhKbFH7qbAaZqSJ0P5i9cK2O3cRsNX4TJ+WjtztA314DUzG4E/ojtTIDKJbCNqEhqfUHExlqsu2oxvLQjikc2xzasCNk1JUy60HyxRYWmA0tA/AAhBDyVdvv+tWLY/nFL69bW2/atc6vmr2CKRNsLO0w6x62i2fsFQmpGtmkwtD6g9O9bXaJw9tml8i5tS/jum/mZonYBFpEQri7a3W9+9vf2hdzs11MsF3s0E9Xr1t5c+v0c9sc6ga2hMm3mNgvnO0GL8nilGpOzG44KZliXK9V3o/TYf7z+RrDA6+Jz6tzjvzPTcT4qhPyGe39ToUgS4UQQgghfnekdBBCCCGEEEIIIcRFOEnp8Pkv2h8O9yGEEO4PD8fvPi5N3bDgry1UOtwtVunwEQtL3q+trofS6tpjAcc9/nx9qCvKWOgPf2JdTHkZlkMIYXX+tLTyr8A4n/vXwhP+hFafUTpY9UDbSrVCCuOFGs0BKB+MWqOdca1t4c89lCkhhJDRzxMlAwVKAuwfzT74aznuHctW6QBVRrELfAZ8t+L4hXWZBSPHi0cmLvTHfoICIuNP10v3F10qQcy5UaQyYFqweCraVCvLXKWwTb8Iec566P4yuYdy4b79db5+pGIDSodN23/zvi08mTHdOcbvuZBkeU7pAFUNyhOvA0Pi3YemQvh4975dTmrtOxzaeKyQHh2Wtv3x+KaUuLu/b1/MrT+ngOfBVIflTWjXOpXWl5FTwSgd7GylKol/avb/0DxWBnlLCdrFT09VGzgL3Jqtp/wZ3W+Vj9Pe7/bXda/dp8oCzlM6fM0ZyClX7S0celJLTPGERUDDYDHU9sWTTW/fvn2s7tzOcvhe9QghhBDij82XfvNPeunw7t3j/3n4P//v/+vbWyS+Duvb+D68+/IuQggh/rV49+5dePXq1XepRwghhBD//Hzp3w6xnvCniFJK+Pd///dwe3vr/9VECCGEEP+w1FrDu3fvwp///OeQ0re7L/VvByGEEOKfm1P/7XDSSwchhBBCCCGEEEKIc9FCkkIIIYQQQgghhLgIeukghBBCCCGEEEKIi6CXDkIIIYQQQgghhLgIeukghBBCCCGEEEKIi6CXDkIIIYQQQgghhLgIeukghBBCCCGEEEKIi6CXDkIIIYQQQgghhLgI/wvRjCpKv0HjaAAAAABJRU5ErkJggg==",
      "text/plain": [
       "<Figure size 1100x800 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# Set figure sice\n",
    "plt.rcParams[\"figure.figsize\"] = 11, 8\n",
    "\n",
    "# Read images\n",
    "img_A = matplotlib.image.imread(\"raw_tile.png\")\n",
    "img_B = matplotlib.image.imread(\"test_array_1.png\")\n",
    "\n",
    "# Set up plots\n",
    "fig, ax = plt.subplots(1, 2)\n",
    "plt.xticks([])\n",
    "plt.yticks([])\n",
    "ax[0].imshow(img_A)\n",
    "ax[1].imshow(img_B, cmap=\"gray\")\n",
    "ax[0].set_title(\"Original Image\")\n",
    "ax[1].set_title(\"Model Predictions\")\n",
    "plt.tight_layout()\n",
    "\n",
    "# Get rid of tick marks\n",
    "for a in ax.ravel():\n",
    "    a.set_xticks([])\n",
    "    a.set_yticks([])\n",
    "\n",
    "# Show images\n",
    "plt.show()"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "fc5c89ae-400e-4380-a717-12800fb77d97",
   "metadata": {},
   "source": [
    "## References\n",
    "\n",
    "- Pocock J, Graham S, Vu QD, Jahanifar M, Deshpande S, Hadjigeorghiou G, Shephard A, Bashir RM, Bilal M, Lu W, Epstein D. TIAToolbox as an end-to-end library for advanced tissue image analytics. Communications medicine. 2022 Sep 24;2(1):120.\n",
    "\n",
    "- R. Verma, et al. \"MoNuSAC2020: A Multi-organ Nuclei Segmentation and Classification Challenge.\" IEEE Transactions on Medical Imaging (2021).\n",
    "\n",
    "- https://github.com/microsoft/onnxruntime/blob/main/tools/python/remove_initializer_from_input.py\n",
    "\n",
    "- https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html"
   ]
  }
 ],
 "metadata": {
  "environment": {
   "kernel": "james_test2",
   "name": "pytorch-gpu.1-13.m105",
   "type": "gcloud",
   "uri": "gcr.io/deeplearning-platform-release/pytorch-gpu.1-13:m105"
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.18"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}