File size: 3,838 Bytes
12d2e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "1ae9717c-793f-4c67-a867-df48c4210487",
   "metadata": {},
   "source": [
    "# Talk to PathML\n",
    "\n",
    "### A digital pathology assistant for democratizing access to advanced computational image analysis "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c4f09515-97fb-4a7a-8fcb-1eba0d631d21",
   "metadata": {},
   "source": [
    "We leveraged the recent progress in medical Large Language Models (LLMs) to create a new chat interface for those who would like to get started with PathML for advanced image analysis. This was implemented by injecting all PathML examples and documentation into a Retrieval Augmented Generation (RAG) system based on GPT-4 capabilities. Our “Digital Pathology Assistant” prototype, available [here](https://chat.openai.com/g/g-L1IbnIIVt-digital-pathology-assistant-v3-0), can be leveraged to build advanced end-to-end computational pipelines for specific use-cases. \n",
    "\n",
    "In this notebook, we report specific examples of how it can be used to generate specific computational pipelines for preprocessing and analyzing different types of multiplexed images. "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "56ad469f-55ef-4fe5-919e-edc2668e6f2b",
   "metadata": {},
   "source": [
    "## Example 1: Installing PathML on MacOS"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ec516a56-0cd1-4a9d-9c07-56c31c4a7921",
   "metadata": {},
   "source": [
    "![INSTALL_MACOS](static/pathml_install.png) "
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8db55b66-7c4c-4462-80f3-4b6e8a729be5",
   "metadata": {},
   "source": [
    "## Example 2: Information about supported file types"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "da0a5d92-06e9-40cb-ae36-db5d5d57ff8b",
   "metadata": {},
   "source": [
    "![PATHML_FILE_TYPE](static/pathml_file_type.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "908c8357-35f7-410e-9b54-d44fae049c6b",
   "metadata": {},
   "source": [
    "## Example 3: MIF pipelines"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a5dadf45-8b9b-4e5e-ac2a-cac9a61b6835",
   "metadata": {},
   "source": [
    "![PATHML_MIF](static/pathml_mif.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bc394e3c-3867-489b-9c86-6cfcef30520f",
   "metadata": {},
   "source": [
    "## Example 4: Nucleus Detection"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ac8ad6d1-98d0-44e5-9048-6d7adfe66d5a",
   "metadata": {},
   "source": [
    "![PATHML_NUCLEUS](static/pathml_nucleus_detection.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6242d6b7-6c9f-4857-a12d-56909225e369",
   "metadata": {},
   "source": [
    "## Example 5: Graph API"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "75a03e24-50fb-48a1-8db6-b8e6f831d243",
   "metadata": {},
   "source": [
    "![PATHML_GRAPH](static/pathml_graph.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d73742dc-c9f0-4507-a8b7-d955868ef32f",
   "metadata": {},
   "source": [
    "## Example 6: Inference API"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "92ac0857-fba4-45fc-b3a9-26cb97176bb7",
   "metadata": {},
   "source": [
    "![PATHML_INFERENCE](static/pathml_inference.png)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "198f61ef-6dd8-4d04-8168-e313e0bebcc5",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "pathml_env",
   "language": "python",
   "name": "pathml_env"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.0"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}