File size: 38,866 Bytes
12d2e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""

from io import BytesIO

import numpy as np
import openslide
from javabridge.jutil import JavaException
from loguru import logger
from PIL import Image
from pydicom.dataset import Dataset
from pydicom.encaps import get_frame_offsets
from pydicom.filebase import DicomFile
from pydicom.filereader import data_element_offset_to_value, dcmread
from pydicom.tag import SequenceDelimiterTag, TupleTag
from pydicom.uid import UID
from scipy.ndimage import zoom

import pathml.core
import pathml.core.tile
from pathml.utils import pil_to_rgb

try:
    import bioformats
    import javabridge
    from bioformats.metadatatools import createOMEXMLMetadata
except ImportError:  # pragma: no cover
    logger.exception("Unable to import bioformats, javabridge")
    raise Exception(
        "Installation of PathML not complete. Please install openjdk8, bioformats, and javabridge:\nconda install openjdk==8.0.152\npip install javabridge==1.0.19 python-bioformats==4.0.0\nFor detailed installation instructions, please see https://github.com/Dana-Farber-AIOS/pathml/"
    )


class SlideBackend:
    """base class for backends that interface with slides on disk"""

    def extract_region(self, location, size, level, **kwargs):
        raise NotImplementedError

    def get_thumbnail(self, size, **kwargs):
        raise NotImplementedError

    def get_image_shape(self, **kwargs):
        raise NotImplementedError

    def generate_tiles(self, shape, stride, pad, **kwargs):
        raise NotImplementedError


class OpenSlideBackend(SlideBackend):
    """
    Use OpenSlide to interface with image files.

    Depends on `openslide-python <https://openslide.org/api/python/>`_ which wraps the `openslide <https://openslide.org/>`_ C library.

    Args:
        filename (str): path to image file on disk
    """

    def __init__(self, filename):
        logger.info(f"OpenSlideBackend loading file at: {filename}")
        self.filename = filename
        self.slide = openslide.open_slide(filename=filename)
        self.level_count = self.slide.level_count

    def __repr__(self):
        return f"OpenSlideBackend('{self.filename}')"

    def extract_region(self, location, size, level=None):
        """
        Extract a region of the image

        Args:
            location (Tuple[int, int]): Location of top-left corner of tile (i, j)
            size (Union[int, Tuple[int, int]]): Size of each tile. May be a tuple of (height, width) or a
                single integer, in which case square tiles of that size are generated.
            level (int): level from which to extract chunks. Level 0 is highest resolution.

        Returns:
            np.ndarray: image at the specified region
        """
        # verify args
        if isinstance(size, int):
            size = (size, size)
        else:
            assert (
                isinstance(size, tuple)
                and all([isinstance(a, int) for a in size])
                and len(size) == 2
            ), f"Input size {size} not valid. Must be an integer or a tuple of two integers."
        if level is None:
            level = 0
        else:
            assert isinstance(level, int), f"level {level} must be an integer"
            assert (
                level < self.slide.level_count
            ), f"input level {level} invalid for a slide with {self.slide.level_count} levels"

        # openslide read_region expects (x, y) coords, so need to switch order for compatibility with pathml (i, j)
        i, j = location

        # openslide read_region() uses coords in the level 0 reference frame
        # if we are reading tiles from a higher level, need to convert to level 0 frame by multiplying by scale factor
        # see: https://github.com/Dana-Farber-AIOS/pathml/issues/240
        coord_scale_factor = int(self.slide.level_downsamples[level])
        i *= coord_scale_factor
        j *= coord_scale_factor

        h, w = size
        region = self.slide.read_region(location=(j, i), level=level, size=(w, h))
        region_rgb = pil_to_rgb(region)
        return region_rgb

    def get_image_shape(self, level=0):
        """
        Get the shape of the image at specified level.

        Args:
            level (int): Which level to get shape from. Level 0 is highest resolution. Defaults to 0.

        Returns:
            Tuple[int, int]: Shape of image at target level, in (i, j) coordinates.
        """
        assert isinstance(level, int), f"level {level} invalid. Must be an int."
        assert (
            level < self.slide.level_count
        ), f"input level {level} invalid for slide with {self.slide.level_count} levels total"
        j, i = self.slide.level_dimensions[level]
        return i, j

    def get_thumbnail(self, size):
        """
        Get a thumbnail of the slide.

        Args:
            size (Tuple[int, int]): the maximum size of the thumbnail

        Returns:
            np.ndarray: RGB thumbnail image
        """
        thumbnail = self.slide.get_thumbnail(size)
        thumbnail = pil_to_rgb(thumbnail)
        return thumbnail

    def generate_tiles(self, shape=3000, stride=None, pad=False, level=0):
        """
        Generator over tiles.

        Padding works as follows:
        If ``pad is False``, then the first tile will start flush with the edge of the image, and the tile locations
        will increment according to specified stride, stopping with the last tile that is fully contained in the image.
        If ``pad is True``, then the first tile will start flush with the edge of the image, and the tile locations
        will increment according to specified stride, stopping with the last tile which starts in the image. Regions
        outside the image will be padded with 0.
        For example, for a 5x5 image with a tile size of 3 and a stride of 2, tile generation with ``pad=False`` will
        create 4 tiles total, compared to 6 tiles if ``pad=True``.

        Args:
            shape (int or tuple(int)): Size of each tile. May be a tuple of (height, width) or a single integer,
                in which case square tiles of that size are generated.
            stride (int): stride between chunks. If ``None``, uses ``stride = size`` for non-overlapping chunks.
                Defaults to ``None``.
            pad (bool): How to handle tiles on the edges. If ``True``, these edge tiles will be zero-padded
                and yielded with the other chunks. If ``False``, incomplete edge chunks will be ignored.
                Defaults to ``False``.
            level (int, optional): For slides with multiple levels, which level to extract tiles from.
                Defaults to 0 (highest resolution).

        Yields:
            pathml.core.tile.Tile: Extracted Tile object
        """
        assert isinstance(shape, int) or (
            isinstance(shape, tuple) and len(shape) == 2
        ), f"input shape {shape} invalid. Must be a tuple of (H, W), or a single integer for square tiles"
        if isinstance(shape, int):
            shape = (shape, shape)
        assert (
            stride is None
            or isinstance(stride, int)
            or (isinstance(stride, tuple) and len(stride) == 2)
        ), f"input stride {stride} invalid. Must be a tuple of (stride_H, stride_W), or a single int"
        if level is None:
            level = 0
        assert isinstance(level, int), f"level {level} invalid. Must be an int."
        assert (
            level < self.slide.level_count
        ), f"input level {level} invalid for slide with {self.slide.level_count} levels total"

        if stride is None:
            stride = shape
        elif isinstance(stride, int):
            stride = (stride, stride)

        i, j = self.get_image_shape(level=level)

        stride_i, stride_j = stride

        # calculate number of expected tiles
        # check for tile shape evenly dividing slide shape to fix https://github.com/Dana-Farber-AIOS/pathml/issues/305
        if pad and i % stride_i != 0:
            n_tiles_i = i // stride_i + 1
        else:
            n_tiles_i = (i - shape[0]) // stride_i + 1
        if pad and j % stride_j != 0:
            n_tiles_j = j // stride_j + 1
        else:
            n_tiles_j = (j - shape[1]) // stride_j + 1

        for ix_i in range(n_tiles_i):
            for ix_j in range(n_tiles_j):
                coords = (int(ix_i * stride_i), int(ix_j * stride_j))
                # get image for tile
                tile_im = self.extract_region(location=coords, size=shape, level=level)
                yield pathml.core.tile.Tile(image=tile_im, coords=coords)


def _init_logger():
    """
    This is so that Javabridge doesn't spill out a lot of DEBUG messages
    during runtime.
    From CellProfiler/python-bioformats.

    Credits to: https://github.com/pskeshu/microscoper/blob/master/microscoper/io.py#L141-L162
    """
    rootLoggerName = javabridge.get_static_field(
        "org/slf4j/Logger", "ROOT_LOGGER_NAME", "Ljava/lang/String;"
    )
    rootLogger = javabridge.static_call(
        "org/slf4j/LoggerFactory",
        "getLogger",
        "(Ljava/lang/String;)Lorg/slf4j/Logger;",
        rootLoggerName,
    )
    logLevel = javabridge.get_static_field(
        "ch/qos/logback/classic/Level", "WARN", "Lch/qos/logback/classic/Level;"
    )
    javabridge.call(
        rootLogger, "setLevel", "(Lch/qos/logback/classic/Level;)V", logLevel
    )
    logger.info("silenced javabridge logging")


class BioFormatsBackend(SlideBackend):
    """
    Use BioFormats to interface with image files.

    Now support multi-level images.
    Depends on `python-bioformats <https://github.com/CellProfiler/python-bioformats>`_ which wraps ome bioformats
    java library, parses pixel and metadata of proprietary formats, and
    converts all formats to OME-TIFF. Please cite: https://pubmed.ncbi.nlm.nih.gov/20513764/

    Args:
        filename (str): path to image file on disk
        dtype (numpy.dtype): data type of image. If ``None``, will use BioFormats to infer the data type from the
            image's OME metadata. Defaults to ``None``.

    Note:
        While the Bio-Formats convention uses XYZCT channel order, we use YXZCT for compatibility with the rest of
        PathML which is based on (i, j) coordinate system.
    """

    def __init__(self, filename, dtype=None):
        self.filename = filename
        logger.info(f"BioFormatsBackend loading file at: {filename}")
        # init java virtual machine
        javabridge.start_vm(class_path=bioformats.JARS, max_heap_size="50G")
        # disable verbose JVM logging if possible
        try:
            _init_logger()
        except JavaException:  # pragma: no cover
            pass
        # java maximum array size of 2GB constrains image size
        ImageReader = bioformats.formatreader.make_image_reader_class()
        reader = ImageReader()
        omeMeta = createOMEXMLMetadata()
        reader.setMetadataStore(omeMeta)
        reader.setId(str(self.filename))
        seriesCount = reader.getSeriesCount()
        logger.info(f"Found n={seriesCount} series in image")

        sizeSeries = []
        for s in range(seriesCount):
            reader.setSeries(s)
            sizex, sizey, sizez, sizec, sizet = (
                reader.getSizeX(),
                reader.getSizeY(),
                reader.getSizeZ(),
                reader.getSizeC(),
                reader.getSizeT(),
            )
            # use yxzct for compatibility with the rest of PathML which uses i,j coords (not x, y)
            sizeSeries.append((sizey, sizex, sizez, sizec, sizet))
        s = [s[0] * s[1] for s in sizeSeries]

        self.level_count = seriesCount  # count of levels
        self.shape = sizeSeries[s.index(max(s))]  # largest shape
        self.shape_list = sizeSeries  # shape on all levels
        self.metadata = bioformats.get_omexml_metadata(self.filename)

        logger.info(f"Bioformats OMEXML metadata: {self.metadata}")

        if dtype:
            assert isinstance(
                dtype, np.dtype
            ), f"dtype is of type {type(dtype)}. Must be a np.dtype"
            self.pixel_dtype = dtype
            logger.info(f"Using specified dtype: {dtype}")
        else:
            # infer pixel data type from metadata
            # map from ome pixel datatypes to numpy types. Based on:
            # https://github.com/CellProfiler/python-bioformats/blob/c03fb0988caf686251707adc4332d0aff9f02941/bioformats/omexml.py#L77-L87
            # but specifying that float = float32 (np.float defaults to float64)
            pixel_dtype_map = {
                bioformats.omexml.PT_INT8: np.dtype("int8"),
                bioformats.omexml.PT_INT16: np.dtype("int16"),
                bioformats.omexml.PT_INT32: np.dtype("int32"),
                bioformats.omexml.PT_UINT8: np.dtype("uint8"),
                bioformats.omexml.PT_UINT16: np.dtype("uint16"),
                bioformats.omexml.PT_UINT32: np.dtype("uint32"),
                bioformats.omexml.PT_FLOAT: np.dtype("float32"),
                bioformats.omexml.PT_BIT: np.dtype("bool"),
                bioformats.omexml.PT_DOUBLE: np.dtype("float64"),
            }
            ome_pixeltype = (
                bioformats.OMEXML(self.metadata).image().Pixels.get_PixelType()
            )
            logger.info(f"Using pixel dtype found in OME metadata: {ome_pixeltype}")
            try:
                self.pixel_dtype = pixel_dtype_map[ome_pixeltype]
                logger.info(f"Found corresponding dtype: {self.pixel_dtype}")
            # TODO: change to specific exception
            except Exception:
                logger.exception("datatype from metadata not found in pixel_dtype_map")
                raise Exception(
                    f"pixel type '{ome_pixeltype}' detected from OME metadata not recognized."
                )

    def __repr__(self):
        return f"BioFormatsBackend('{self.filename}')"

    def get_image_shape(self, level=None):
        """
        Get the shape of the image on specific level.

        Args:
            level (int): Which level to get shape from. If ``level is None``, returns the shape of the biggest level.
                Defaults to ``None``.

        Returns:
            Tuple[int, int]: Shape of image (i, j) at target level
        """
        if level is None:
            return self.shape[:2]
        else:
            assert isinstance(level, int), f"level {level} invalid. Must be an int."
            assert (
                level < self.level_count
            ), f"input level {level} invalid for slide with {self.level_count} levels total"
            return self.shape_list[level][:2]

    def extract_region(
        self, location, size, level=0, series_as_channels=False, normalize=True
    ):
        """
        Extract a region of the image. All bioformats images have 5 dimensions representing
        (i, j, z, channel, time). Even if an image does not have multiple z-series or time-series,
        those dimensions will still be kept. For example, a standard RGB image will be of shape (i, j, 1, 3, 1).
        If a tuple with len < 5 is passed, missing dimensions will be
        retrieved in full.

        Args:
            location (Tuple[int, int]): (i, j) location of corner of extracted region closest to the origin.
            size (Tuple[int, int, ...]): (i, j) size of each region. If an integer is passed, will convert to a
            tuple of (i, j) and extract a square region. If a tuple with len < 5 is passed, missing
                dimensions will be retrieved in full.
            level (int): level from which to extract chunks. Level 0 is highest resolution. Defaults to 0.
            series_as_channels (bool): Whether to treat image series as channels. If ``True``, multi-level images
                are not supported. Defaults to ``False``.
            normalize (bool, optional): Whether to normalize the image to int8 before returning. Defaults to True.
                If False, image will be returned as-is immediately after reading, typically in float64.

        Returns:
            np.ndarray: image at the specified region. 5-D array of (i, j, z, c, t)
        """
        if level is None:
            level = 0
        else:
            assert isinstance(level, int), f"level {level} invalid. Must be an int."
            assert (
                level < self.level_count
            ), f"input level {level} invalid for slide with {self.level_count} levels total"

        # if a single int is passed for size, convert to a tuple to get a square region
        if type(size) is int:
            size = (size, size)
        if not (
            isinstance(location, tuple)
            and len(location) < 3
            and all([isinstance(x, int) for x in location])
        ):
            raise ValueError(
                f"input location {location} invalid. Must be a tuple of integer coordinates of len<2"
            )
        if not (
            isinstance(size, tuple)
            and len(size) < 3
            and all([isinstance(x, int) for x in size])
        ):
            raise ValueError(
                f"input size {size} invalid. Must be a tuple of integer coordinates of len<2"
            )
        if series_as_channels:
            logger.info("using series_as_channels=True")
            if level != 0:
                logger.exception(
                    f"When series_as_channels=True, must use level=0. Input 'level={level}' invalid."
                )
                raise ValueError(
                    f"Multi-level images not supported with series_as_channels=True. Input 'level={level}' invalid. Use 'level=0'."
                )

        javabridge.start_vm(class_path=bioformats.JARS, max_heap_size="100G")
        with bioformats.ImageReader(str(self.filename), perform_init=True) as reader:
            # expand size
            logger.info(f"extracting region with input size = {size}")
            size = list(size)
            arrayshape = list(size)
            for i in range(len(self.shape_list[level])):
                if i > len(size) - 1:
                    arrayshape.append(self.shape_list[level][i])
            arrayshape = tuple(arrayshape)
            logger.info(f"input size converted to {arrayshape}")
            array = np.empty(arrayshape)

            # read a very small region to check whether the image has channels incorrectly stored as series
            sample = reader.read(
                z=0,
                t=0,
                series=level,
                rescale=False,
                XYWH=(location[1], location[0], 2, 2),
            )

            # need this part because some facilities output images where the channels are incorrectly stored as series
            # in this case we pull the image for each series, then stack them together as channels
            if series_as_channels:
                logger.info("reading series as channels")
                for z in range(self.shape_list[level][2]):
                    for c in range(self.shape_list[level][3]):
                        for t in range(self.shape_list[level][4]):
                            slicearray = reader.read(
                                z=z,
                                t=t,
                                series=c,
                                rescale=False,
                                XYWH=(location[1], location[0], size[1], size[0]),
                            )
                            slicearray = np.asarray(slicearray)
                            # some file formats read x, y out of order, transpose
                            array[:, :, z, c, t] = slicearray

            # in this case, channels are correctly stored as channels, and we can support multi-level images as series
            else:
                logger.info("reading image")
                for z in range(self.shape_list[level][2]):
                    for t in range(self.shape_list[level][4]):
                        slicearray = reader.read(
                            z=z,
                            t=t,
                            series=level,
                            rescale=False,
                            XYWH=(location[1], location[0], size[1], size[0]),
                        )
                        slicearray = np.asarray(slicearray)
                        if len(sample.shape) == 3:
                            array[:, :, z, :, t] = slicearray
                        else:
                            array[:, :, z, level, t] = slicearray

        if not normalize:
            logger.info("returning extracted region without normalizing dtype")
            return array
        else:
            logger.info("normalizing extracted region to uint8")
            # scale array before converting: https://github.com/Dana-Farber-AIOS/pathml/issues/271
            # first scale to [0-1]
            array_scaled = array / (2 ** (8 * self.pixel_dtype.itemsize))
            logger.info(
                f"Scaling image to [0, 1] by dividing by {(2 ** (8 * self.pixel_dtype.itemsize))}"
            )
            # then scale to [0-255] and convert to 8 bit
            array_scaled = array_scaled * 2**8
            return array_scaled.astype(np.uint8)

    def get_thumbnail(self, size=None):
        """
        Get a thumbnail of the image. Since there is no default thumbnail for multiparametric, volumetric
        images, this function supports downsampling of all image dimensions.

        Args:
            size (Tuple[int, int]): thumbnail size
        Returns:
            np.ndarray: RGB thumbnail image
        Example:
            Get 1000x1000 thumbnail of 7 channel fluorescent image.
            shape = data.slide.get_image_shape()
            thumb = data.slide.get_thumbnail(size=(1000,1000, shape[2], shape[3], shape[4]))
        """
        assert isinstance(size, (tuple, type(None))), "Size must be a tuple of ints."
        if size is not None:
            if len(size) != len(self.shape):
                size = size + self.shape[len(size) :]
        if self.shape[0] * self.shape[1] * self.shape[2] * self.shape[3] > 2147483647:
            raise Exception(
                f"Java arrays allocate maximum 32 bits (~2GB). Image size is {self.imsize}"
            )
        array = self.extract_region(location=(0, 0), size=self.shape[:2])
        if size is not None:
            ratio = tuple([x / y for x, y in zip(size, self.shape)])
            assert (
                ratio[3] == 1
            ), "cannot interpolate between fluor channels, resampling doesn't apply, fix size[3]"
            image_array = zoom(array, ratio)
        return image_array

    def generate_tiles(self, shape=3000, stride=None, pad=False, level=0, **kwargs):
        """
        Generator over tiles.

        Padding works as follows:
        If ``pad is False``, then the first tile will start flush with the edge of the image, and the tile locations
        will increment according to specified stride, stopping with the last tile that is fully contained in the image.
        If ``pad is True``, then the first tile will start flush with the edge of the image, and the tile locations
        will increment according to specified stride, stopping with the last tile which starts in the image. Regions
        outside the image will be padded with 0.
        For example, for a 5x5 image with a tile size of 3 and a stride of 2, tile generation with ``pad=False`` will
        create 4 tiles total, compared to 6 tiles if ``pad=True``.

        Args:
            shape (int or tuple(int)): Size of each tile. May be a tuple of (height, width) or a single integer,
                in which case square tiles of that size are generated.
            stride (int): stride between chunks. If ``None``, uses ``stride = size`` for non-overlapping chunks.
                Defaults to ``None``.
            pad (bool): How to handle tiles on the edges. If ``True``, these edge tiles will be zero-padded
                and yielded with the other chunks. If ``False``, incomplete edge chunks will be ignored.
                Defaults to ``False``.
            **kwargs: Other arguments passed through to ``extract_region()`` method.

        Yields:
            pathml.core.tile.Tile: Extracted Tile object
        """
        assert isinstance(level, int), f"level {level} invalid. Must be an int."
        assert (
            level < self.level_count
        ), f"input level {level} invalid for slide with {self.level_count} levels total"
        assert isinstance(shape, int) or (
            isinstance(shape, tuple) and len(shape) == 2
        ), f"input shape {shape} invalid. Must be a tuple of (H, W), or a single integer for square tiles"
        if isinstance(shape, int):
            shape = (shape, shape)
        assert (
            stride is None
            or isinstance(stride, int)
            or (isinstance(stride, tuple) and len(stride) == 2)
        ), f"input stride {stride} invalid. Must be a tuple of (stride_H, stride_W), or a single int"

        if stride is None:
            logger.info(f"stride not specified, using stride=shape ({shape})")
            stride = shape
        elif isinstance(stride, int):
            stride = (stride, stride)

        i, j = self.get_image_shape(level=level)

        stride_i, stride_j = stride

        # calculate number of expected tiles
        # check for tile shape evenly dividing slide shape to fix https://github.com/Dana-Farber-AIOS/pathml/issues/305
        if pad and i % stride_i != 0:
            n_tiles_i = i // stride_i + 1
        else:
            n_tiles_i = (i - shape[0]) // stride_i + 1
        if pad and j % stride_j != 0:
            n_tiles_j = j // stride_j + 1
        else:
            n_tiles_j = (j - shape[1]) // stride_j + 1

        logger.info(f"expected number of tiles: {n_tiles_i} x {n_tiles_j}")

        for ix_i in range(n_tiles_i):
            for ix_j in range(n_tiles_j):
                coords = (int(ix_i * stride_i), int(ix_j * stride_j))
                if coords[0] + shape[0] < i and coords[1] + shape[1] < j:
                    # get image for tile
                    tile_im = self.extract_region(
                        location=coords, size=shape, level=level, **kwargs
                    )
                    yield pathml.core.tile.Tile(image=tile_im, coords=coords)
                else:
                    unpaddedshape = (
                        i - coords[0] if coords[0] + shape[0] > i else shape[0],
                        j - coords[1] if coords[1] + shape[1] > j else shape[1],
                    )
                    tile_im = self.extract_region(
                        location=coords, size=unpaddedshape, level=level, **kwargs
                    )
                    zeroarrayshape = list(tile_im.shape)
                    zeroarrayshape[0], zeroarrayshape[1] = (
                        list(shape)[0],
                        list(shape)[1],
                    )
                    padded_im = np.zeros(zeroarrayshape)
                    padded_im[: tile_im.shape[0], : tile_im.shape[1], ...] = tile_im
                    yield pathml.core.tile.Tile(image=padded_im, coords=coords)


class DICOMBackend(SlideBackend):
    """
    Interface with DICOM files on disk.
    Provides efficient access to individual Frame items contained in the
    Pixel Data element without loading the entire element into memory.
    Assumes that frames are non-overlapping. DICOM does not support multi-level images.

    Args:
        filename (str): Path to the DICOM Part10 file on disk
    """

    def __init__(self, filename):
        self.filename = str(filename)
        logger.info(f"DICOMBackend loading file at: {filename}")
        # read metadata fields of interest from DICOM, without reading the entire PixelArray
        tags = [
            "NumberOfFrames",
            "Rows",
            "Columns",
            "TotalPixelMatrixRows",
            "TotalPixelMatrixColumns",
        ]
        metadata = dcmread(filename, specific_tags=tags)

        # can use frame shape, total shape to map between frame index and coords
        self.frame_shape = (metadata.Rows, metadata.Columns)
        self.shape = (metadata.TotalPixelMatrixRows, metadata.TotalPixelMatrixColumns)
        self.n_frames = int(metadata.NumberOfFrames)
        # use ceiling division to account for padding (i.e. still count incomplete frames on edge)
        # ceiling division from: https://stackoverflow.com/a/17511341
        self.n_rows = -(-self.shape[0] // self.frame_shape[0])
        self.n_cols = -(-self.shape[1] // self.frame_shape[1])
        self.transfer_syntax_uid = UID(metadata.file_meta.TransferSyntaxUID)
        logger.info(
            f"DICOM metadata: frame_shape={self.frame_shape}, nrows = {self.n_rows}, ncols = {self.n_cols}"
        )

        # actual file
        self.fp = DicomFile(self.filename, mode="rb")
        self.fp.is_little_endian = self.transfer_syntax_uid.is_little_endian
        self.fp.is_implicit_VR = self.transfer_syntax_uid.is_implicit_VR
        # need to do this to advance the file to the correct point, at the beginning of the pixels
        self.metadata = dcmread(self.fp, stop_before_pixels=True)
        self.pixel_data_offset = self.fp.tell()
        self.fp.seek(self.pixel_data_offset, 0)
        # note that reading this tag is necessary to advance the file to correct position
        _ = TupleTag(self.fp.read_tag())
        # get basic offset table, to enable reading individual frames without loading entire image
        self.bot = self.get_bot(self.fp)
        self.first_frame = self.fp.tell()

    def __repr__(self):
        out = f"DICOMBackend('{self.filename}')\n"
        out += f"image shape: {self.shape}; frame shape: {self.frame_shape}; frame grid: {(self.n_rows, self.n_cols)}"
        return out

    @staticmethod
    def get_bot(fp):
        """
        Reads the value of the Basic Offset Table. This table is used to access individual frames
        without loading the entire file into memory

        Args:
            fp (pydicom.filebase.DicomFile): pydicom DicomFile object

        Returns:
            list: Offset of each Frame of the Pixel Data element following the Basic Offset Table
        """
        # Skip Pixel Data element header
        pixel_data_offset = data_element_offset_to_value(fp.is_implicit_VR, "OB")
        fp.seek(pixel_data_offset - 4, 1)
        _, basic_offset_table = get_frame_offsets(fp)
        first_frame_offset = fp.tell()
        fp.seek(first_frame_offset, 0)
        return basic_offset_table

    def get_image_shape(self):
        """
        Get the shape of the image.

        Returns:
            Tuple[int, int]: Shape of image (H, W)
        """
        return self.shape

    def get_thumbnail(self, size, **kwargs):
        raise NotImplementedError("DICOMBackend does not support thumbnail")

    def _index_to_coords(self, index):
        """
        convert from frame index to frame coordinates using image shape, frame_shape.
        Frames start at 0, go across the rows sequentially, use padding at edges.
        Coordinates are for top-left corner of each Frame.

        e.g. if the image is 100x100, and each frame is 10x10, then the top row will contain frames 0 through 9,
        second row will contain frames 10 through 19, etc.

        Args:
            index (int): index of frame

        Returns:
            tuple: corresponding coordinates
        """
        frame_i, frame_j = self.frame_shape
        # get which row and column we are in
        row_ix = index // self.n_cols
        col_ix = index % self.n_cols
        return row_ix * frame_i, col_ix * frame_j

    def _coords_to_index(self, coords):
        """
        convert from frame coordinates to frame index using image shape, frame_shape.
        Frames start at 0, go across the rows sequentially, use zero padding at edges.
        Coordinates are for top-left corner of each Frame.

        e.g. if the image is 100x100, and each frame is 10x10, then coordinate (10, 10) corresponds to frame index 11
        (second row, second column).

        Args:
            tuple (tuple): coordinates

        Returns:
            int: frame index
        """
        i, j = coords
        frame_i, frame_j = self.frame_shape
        # frame size must evenly divide coords, otherwise we aren't on a frame corner
        if i % frame_i or j % frame_j:
            logger.exception(f"i={i}, j={j}, frame shape = {self.frame_shape}")
            raise ValueError(
                f"coords {coords} are not evenly divided by frame size {(frame_i, frame_j)}. Must provide coords at upper left corner of Frame."
            )

        row_ix = i / frame_i
        col_ix = j / frame_j

        index = (row_ix * self.n_cols) + col_ix
        return int(index)

    def extract_region(self, location, size=None, level=None):
        """
        Extract a single frame from the DICOM image.

        Args:
            location (Union[int, Tuple[int, int]]): coordinate location of top-left corner of frame, or integer index
                of frame.
            size (Union[int, Tuple[int, int]]): Size of each tile. May be a tuple of (height, width) or a
                single integer, in which case square tiles of that size are generated.
                Must be the same as the frame size.

        Returns:
            np.ndarray: image at the specified region
        """
        assert level == 0 or level is None, "dicom does not support levels"
        # check inputs first
        # check location
        if isinstance(location, tuple):
            frame_ix = self._coords_to_index(location)
        elif isinstance(location, int):
            frame_ix = location
        else:
            raise ValueError(
                f"Invalid location: {location}. Must be an int frame index or tuple of (i, j) coordinates"
            )
        if frame_ix > self.n_frames:
            raise ValueError(
                f"location {location} invalid. Exceeds total number of frames ({self.n_frames})"
            )
        # check size
        if size:
            if type(size) is int:
                size = (size, size)
            if size != self.frame_shape:
                raise ValueError(
                    f"Input size {size} must equal frame shape in DICOM image {self.frame_shape}"
                )

        return self._read_frame(frame_ix)

    def _read_frame(self, frame_ix):
        """
        Reads and decodes the pixel data of one frame.
        Based on implementation from highDICOM: https://github.com/MGHComputationalPathology/highdicom

        Args:
            frame_ix (int): zero-based index of the frame

        Returns:
            np.ndarray: pixel data of that frame
        """
        frame_offset = self.bot[int(frame_ix)]
        self.fp.seek(self.first_frame + frame_offset, 0)
        try:
            stop_at = self.bot[frame_ix + 1] - frame_offset
        except IndexError:
            stop_at = None
        n = 0
        # A frame may comprised of multiple chunks
        chunks = []
        while True:
            tag = TupleTag(self.fp.read_tag())
            if n == stop_at or int(tag) == SequenceDelimiterTag:
                break
            length = self.fp.read_UL()
            chunks.append(self.fp.read(length))
            n += 8 + length

        frame_bytes = b"".join(chunks)

        decoded_frame_array = self._decode_frame(
            value=frame_bytes,
            rows=self.metadata.Rows,
            columns=self.metadata.Columns,
            samples_per_pixel=self.metadata.SamplesPerPixel,
            transfer_syntax_uid=self.metadata.file_meta.TransferSyntaxUID,
        )

        return decoded_frame_array

    @staticmethod
    def _decode_frame(
        value,
        transfer_syntax_uid,
        rows,
        columns,
        samples_per_pixel,
        photometric_interpretation="RGB",
    ):
        """
        Decodes the data of an individual frame.
        The pydicom library does currently not support reading individual frames.
        This solution inspired from HighDICOM creates a small dataset for the individual frame which
        can then be decoded using pydicom API.

        Args:
            value (bytes): Pixel data of a frame
            transfer_syntax_uid (str): Transfer Syntax UID
            rows (int): Number of pixel rows in the frame
            columns (int): Number of pixel columns in the frame
            samples_per_pixel (int): Number of samples per pixel
            photometric_interpretation (str): Photometric interpretation --currently only supporting RGB

        Returns:
            np.ndarray: decoded pixel data
        """
        filemetadata = Dataset()
        filemetadata.TransferSyntaxUID = transfer_syntax_uid
        dataset = Dataset()
        dataset.file_meta = filemetadata
        dataset.Rows = rows
        dataset.Columns = columns
        dataset.SamplesPerPixel = samples_per_pixel
        dataset.PhotometricInterpretation = photometric_interpretation
        image = Image.open(BytesIO(value))
        return np.asarray(image)

    def generate_tiles(self, shape, stride, pad, level=0, **kwargs):
        """
        Generator over tiles.
        For DICOMBackend, each tile corresponds to a frame.

        Args:
            shape (int or tuple(int)): Size of each tile. May be a tuple of (height, width) or a single integer,
                in which case square tiles of that size are generated. Must match frame size.
            stride (int): Ignored for DICOMBackend. Frames are yielded individually.
            pad (bool): How to handle tiles on the edges. If ``True``, these edge tiles will be zero-padded
                and yielded with the other chunks. If ``False``, incomplete edge chunks will be ignored.
                Defaults to ``False``.

        Yields:
            pathml.core.tile.Tile: Extracted Tile object
        """
        assert level == 0 or level is None, "dicom does not support levels"
        for i in range(self.n_frames):
            if not pad:
                # skip frame if it's in the last column
                if i % self.n_cols == (self.n_cols - 1):
                    continue
                # skip frame if it's in the last row
                if i >= (self.n_frames - self.n_cols):
                    continue

            frame_im = self.extract_region(location=i)
            coords = self._index_to_coords(i)
            frame_tile = pathml.core.tile.Tile(image=frame_im, coords=coords)
            yield frame_tile