File size: 21,054 Bytes
12d2e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
"""
Copyright 2023, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""

import os

import numpy as np
import onnx
import onnxruntime
import requests
import torch

import pathml
import pathml.preprocessing.transforms as Transforms
from pathml.inference.mesmer_utils import (
    deep_watershed,
    format_output_mesmer,
    mesmer_preprocess,
)


def remove_initializer_from_input(model_path, new_path):
    """Removes initializers from HaloAI ONNX models
    Taken from https://github.com/microsoft/onnxruntime/blob/main/tools/python/remove_initializer_from_input.py

    Args:
        model_path (str): path to ONNX model,
        new_path (str): path to save adjusted model w/o initializers,

    Returns:
        ONNX model w/o initializers to run inference using PathML
    """

    model = onnx.load(model_path)

    inputs = model.graph.input
    name_to_input = {}
    for onnx_input in inputs:
        name_to_input[onnx_input.name] = onnx_input

    for initializer in model.graph.initializer:
        if initializer.name in name_to_input:
            inputs.remove(name_to_input[initializer.name])

    onnx.save(model, new_path)


def check_onnx_clean(model_path):
    """Checks if the model has had it's initalizers removed from input graph.
    Adapted from from https://github.com/microsoft/onnxruntime/blob/main/tools/python/remove_initializer_from_input.py

    Args:
        model_path (str): path to ONNX model,

    Returns:
        Boolean if there are initializers in input graph.
    """

    model = onnx.load(model_path)

    inputs = model.graph.input
    name_to_input = {}
    for onnx_input in inputs:
        name_to_input[onnx_input.name] = onnx_input

    for initializer in model.graph.initializer:
        if initializer.name in name_to_input:
            return True


def convert_pytorch_onnx(
    model, dummy_tensor, model_name, opset_version=10, input_name="data"
):
    """Converts a Pytorch Model to ONNX
    Adjusted from https://pytorch.org/tutorials/advanced/super_resolution_with_onnxruntime.html

    You need to define the model class and load the weights before exporting. See URL above for full steps.

    Args:
        model_path (torch.nn.Module Model): Pytorch model to be converted,
        dummy_tensor (torch.tensor): dummy input tensor that is an example of what will be passed into the model,
        model_name (str): name of ONNX model created with .onnx at the end,
        opset_version (int): which opset version you want to use to export
        input_name (str): name assigned to dummy_tensor

    Returns:
        Exports ONNX model converted from Pytorch
    """

    if not isinstance(model, torch.nn.Module):
        raise ValueError(
            f"The model is not of type torch.nn.Module. Received {type(model)}."
        )

    if not torch.is_tensor(dummy_tensor):
        raise ValueError(
            f"The dummy tensor needs to be a torch tensor. Received {type(dummy_tensor)}."
        )

    torch.onnx.export(
        model,
        dummy_tensor,
        model_name,
        export_params=True,
        opset_version=opset_version,
        do_constant_folding=True,
        input_names=[input_name],
    )


# Base class
class InferenceBase(Transforms.Transform):
    """
    Base class for all ONNX Models.
    Each transform must operate on a Tile.
    """

    def __init__(self):
        self.model_card = {
            "name": None,
            "num_classes": None,
            "model_type": None,
            "notes": None,
            "model_input_notes": None,
            "model_output_notes": None,
            "citation": None,
        }

    def __repr__(self):
        return "Base class for all ONNX models"

    def get_model_card(self):
        """Returns model card."""
        return self.model_card

    def set_name(self, name):
        """
        Sets the "name" parameter in the model card.

        Args:
            name (str): Name for the model
        """
        self.model_card["name"] = name

    def set_num_classes(self, num):
        """
        Sets the "num_classes" parameter in the model card.

        Args:
            num (int): Number of classes your model predicts
        """
        self.model_card["num_classes"] = num

    def set_model_type(self, model_type):
        """
        Sets the "model_type" parameter in the model card.

        Args:
            model_type (str): Type of model, e.g. "segmentation"
        """
        self.model_card["model_type"] = model_type

    def set_notes(self, note):
        """
        Sets the "notes" parameter in the model card.

        Args:
            note (str): Any extra information you want to put in the model card
        """
        self.model_card["notes"] = note

    def set_model_input_notes(self, note):
        """
        Sets the "model_input_notes" parameter in the model card.

        Args:
            note (str): Comments on the model input
        """
        self.model_card["model_input_notes"] = note

    def set_model_output_notes(self, note):
        """
        Sets the "model_output_notes" parameter in the model card.

        Args:
            note (str): Comments on the model output
        """
        self.model_card["model_output_notes"] = note

    def set_citation(self, citation):
        """
        Sets the "citation" parameter in the model card.

        Args:
            citation (str): Citation for the model
        """
        self.model_card["citation"] = citation

    def reshape(self, image):
        """standard reshaping of tile image"""
        # flip dimensions
        # follows convention used here https://github.com/Dana-Farber-AIOS/pathml/blob/master/pathml/ml/dataset.py

        if image.ndim == 3:
            # swap axes from HWC to CHW
            image = image.transpose(2, 0, 1)
            # add a dimesion bc onnx models usually have batch size as first dim: e.g. (1, channel, height, width)
            image = np.expand_dims(image, axis=0)

            return image
        else:
            # in this case, we assume that we have XYZCT channel order
            # so we swap axes to TCZYX for batching
            # note we are not adding a dim here for batch bc we assume that subsetting will create a batch "placeholder" dim
            image = image.T

            return image

    def F(self, target):
        """functional implementation"""
        raise NotImplementedError

    def apply(self, tile):
        """modify Tile object in-place"""
        raise NotImplementedError


# class to handle local onnx models
class Inference(InferenceBase):
    """Transformation to run inferrence on ONNX model.

    Assumptions:
        - The ONNX model has been cleaned by `remove_initializer_from_input` first

    Args:
        model_path (str): path to ONNX model w/o initializers,
        input_name (str): name of the input the ONNX model accepts, default = "data"
        num_classes (int): number of classes you are predicting
        model_type (str): type of model, e.g. "segmentation"
        local (bool): True if the model is stored locally, default = "True"
    """

    def __init__(
        self,
        model_path=None,
        input_name="data",
        num_classes=None,
        model_type=None,
        local=True,
    ):
        super().__init__()

        self.input_name = input_name
        self.num_classes = num_classes
        self.model_type = model_type
        self.local = local

        if self.local:
            # using a local onnx model
            self.model_path = model_path
        else:
            # if using a model from the model zoo, set the local path to a temp file
            self.model_path = "temp.onnx"

        # fill in parts of the model_card with the following info
        self.model_card["num_classes"] = self.num_classes
        self.model_card["model_type"] = self.model_type

        # check if there are initializers in input graph if using a local model
        if local:
            if check_onnx_clean(model_path):
                raise ValueError(
                    "The ONNX model still has graph initializers in the input graph. Use `remove_initializer_from_input` to remove them."
                )
        else:
            pass

    def __repr__(self):
        if self.local:
            return f"Class to handle ONNX model locally stored at {self.model_path}"
        else:
            return f"Class to handle a {self.model_card['name']} from the PathML model zoo."

    def inference(self, image):
        # reshape the image
        image = self.reshape(image)

        # load fixed model
        onnx_model = onnx.load(self.model_path)

        # check tile dimensions match ONNX input dimensions
        input_node = onnx_model.graph.input

        dimensions = []
        for input in input_node:
            if input.name == self.input_name:
                input_shape = input.type.tensor_type.shape.dim
                for dim in input_shape:
                    dimensions.append(dim.dim_value)

        assert (
            image.shape[-1] == dimensions[-1] and image.shape[-2] == dimensions[-2]
        ), f"expecting tile shape of {dimensions[-2]} by {dimensions[-1]}, got {image.shape[-2]} by {image.shape[-1]}"

        # check onnx model
        onnx.checker.check_model(onnx_model)

        # start an inference session
        ort_sess = onnxruntime.InferenceSession(self.model_path)

        # create model output, returns a list
        model_output = ort_sess.run(None, {self.input_name: image.astype("f")})

        return model_output

    def F(self, image):
        # run inference function
        prediction_map = self.inference(image)

        # single task model
        if len(prediction_map) == 1:
            # return first and only prediction array in the list
            return prediction_map[0]

        # multi task model
        else:
            # concatenate prediction results
            # assumes that the tasks all output prediction arrays of same dimension on H and W
            result_array = np.concatenate(prediction_map, axis=1)
            return result_array

    def apply(self, tile):
        tile.image = self.F(tile.image)


class HaloAIInference(Inference):
    """Transformation to run inferrence on HALO AI ONNX model.

    Assumptions:
        - Assumes that the ONNX model returns a tensor in which there is one prediction map for each class
        - For example, if there are 5 classes, the ONNX model will output a (1, 5, Height, Weight) tensor
        - If you select to argmax the classes, the class assumes a softmax or sigmoid has already been applied
        - HaloAI ONNX models always have 20 class maps so you need to index into the first x maps if you have x classes


    Args:
        model_path (str): path to HaloAI ONNX model w/o initializers,
        input_name (str): name of the input the ONNX model accepts, default = "data"
        num_classes (int): number of classes you are predicting
        model_type (str): type of model, e.g. "segmentation"
        local (bool): True if the model is stored locally, default = "True"
    """

    def __init__(
        self,
        model_path=None,
        input_name="data",
        num_classes=None,
        model_type=None,
        local=True,
    ):
        super().__init__(model_path, input_name, num_classes, model_type, local)

        self.model_card["num_classes"] = self.num_classes
        self.model_card["model_type"] = self.model_type

    def __repr__(self):
        return f"Class to handle HALO AI ONNX model locally stored at {self.model_path}"

    def F(self, image):
        prediction_map = self.inference(image)

        prediction_map = prediction_map[0][:, 0 : self.num_classes, :, :]

        return prediction_map

    def apply(self, tile):
        tile.image = self.F(tile.image)


# class to handle remote onnx models
class RemoteTestHoverNet(Inference):
    """Transformation to run inference on ONNX model.

    Citation for model:
    Pocock J, Graham S, Vu QD, Jahanifar M, Deshpande S, Hadjigeorghiou G, Shephard A, Bashir RM, Bilal M, Lu W, Epstein D.
    TIAToolbox as an end-to-end library for advanced tissue image analytics. Communications medicine. 2022 Sep 24;2(1):120.

    Args:
        model_path (str): temp file name to download onnx from huggingface, do not change
        input_name (str): name of the input the ONNX model accepts, default = "data", do not change
        num_classes (int): number of classes you are predicting, do not change
        model_type (str): type of model, e.g. "segmentation", do not change
        local (bool): True if the model is stored locally, default = "True", do not change
    """

    def __init__(
        self,
        model_path="temp.onnx",
        input_name="data",
        num_classes=5,
        model_type="Segmentation",
        local=False,
    ):
        super().__init__(model_path, input_name, num_classes, model_type, local)

        # specify URL of the model in PathML public repository
        url = "https://huggingface.co/pathml/test/resolve/main/hovernet_fast_tiatoolbox_fixed.onnx"

        # download model, save as temp.onnx
        with open(self.model_path, "wb") as out_file:
            content = requests.get(url, stream=True).content
            out_file.write(content)

        self.model_card["num_classes"] = self.num_classes
        self.model_card["model_type"] = self.model_type
        self.model_card["name"] = "Tiabox HoverNet Test"
        self.model_card["model_input_notes"] = "Accepts tiles of 256 x 256"
        self.model_card["citation"] = (
            "Pocock J, Graham S, Vu QD, Jahanifar M, Deshpande S, Hadjigeorghiou G, Shephard A, Bashir RM, Bilal M, Lu W, Epstein D. TIAToolbox as an end-to-end library for advanced tissue image analytics. Communications medicine. 2022 Sep 24;2(1):120."
        )

    def __repr__(self):
        return "Class to handle remote TIAToolBox HoverNet test ONNX. See model card for citation."

    def apply(self, tile):
        tile.image = self.F(tile.image)

    def remove(self):
        # remove the temp.onnx model
        os.remove(self.model_path)


class RemoteMesmer(Inference):
    """
    Transformation to run inference on ONNX Mesmer model.

    Citation for model:
    Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C.
    Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning.
    Nature biotechnology. 2022 Apr;40(4):555-65.

    Args:
        model_path (str): temp file name to download onnx from huggingface, do not change
        input_name (str): name of the input the ONNX model accepts, default = "data", do not change
        num_classes (int): number of classes you are predicting, do not change
        model_type (str): type of model, e.g. "segmentation", do not change
        local (bool): True if the model is stored locally, default = "True", do not change
        nuclear_channel(int): channel that defines cell nucleus
        cytoplasm_channel(int): channel that defines cell membrane or cytoplasm
        image_resolution(float): pixel resolution of image in microns. Currently only supports 0.5
        preprocess_kwargs(dict): keyword arguemnts to pass to pre-processing function
        postprocess_kwargs_nuclear(dict): keyword arguments to pass to post-processing function
        postprocess_kwargs_whole_cell(dict): keyword arguments to pass to post-processing function
    """

    def __init__(
        self,
        model_path="temp.onnx",
        input_name="data",
        num_classes=3,
        model_type="Segmentation",
        local=False,
        nuclear_channel=None,
        cytoplasm_channel=None,
        image_resolution=0.5,
        preprocess_kwargs=None,
        postprocess_kwargs_nuclear=None,
        postprocess_kwargs_whole_cell=None,
    ):
        super().__init__(model_path, input_name, num_classes, model_type, local)
        assert isinstance(
            nuclear_channel, int
        ), "nuclear_channel must be an int indicating index"
        assert isinstance(
            cytoplasm_channel, int
        ), "cytoplasm_channel must be an int indicating index"
        self.nuclear_channel = nuclear_channel
        self.cytoplasm_channel = cytoplasm_channel
        self.image_resolution = image_resolution
        self.preprocess_kwargs = preprocess_kwargs if preprocess_kwargs else {}
        self.postprocess_kwargs_nuclear = (
            postprocess_kwargs_nuclear if postprocess_kwargs_nuclear else {}
        )
        self.postprocess_kwargs_whole_cell = (
            postprocess_kwargs_whole_cell if postprocess_kwargs_whole_cell else {}
        )

        # specify URL of the model in PathML public repository
        url = "https://huggingface.co/pathml/test/resolve/main/mesmer.onnx"

        # download model, save as temp.onnx
        with open(self.model_path, "wb") as out_file:
            content = requests.get(url, stream=True).content
            out_file.write(content)

        self.model_card["num_classes"] = self.num_classes
        self.model_card["model_type"] = self.model_type
        self.model_card["name"] = "Deepcell's Mesmer"
        self.model_card["model_input_notes"] = (
            "Accepts tiles of 256 x 256, resolution must be 0.5. Unlike other inference classes, segmentation maps are saved to tile.masks."
        )
        self.model_card["citation"] = (
            "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65."
        )

        print(self.model_card["model_input_notes"])

        if not (self.image_resolution == 0.5):  # pragma: no cover
            print("The model only works with images of resolution 0.5.")

    def __repr__(self):
        return "Class to handle remote Mesmer Model from Deepcell. See model card for citation."

    def remove(self):
        # remove the temp.onnx model
        os.remove(self.model_path)

    def inference(self, image):
        # load fixed model
        onnx_model = onnx.load(self.model_path)

        # check tile dimensions match ONNX input dimensions
        input_node = onnx_model.graph.input

        dimensions = []
        for input in input_node:
            if input.name == self.input_name:
                input_shape = input.type.tensor_type.shape.dim
                for dim in input_shape:
                    dimensions.append(dim.dim_value)

        # check onnx model
        onnx.checker.check_model(onnx_model)

        # start an inference session
        ort_sess = onnxruntime.InferenceSession(self.model_path)

        # create model output, returns a list
        model_output = ort_sess.run(None, {self.input_name: image.astype("f")})

        return model_output

    def F(self, image):
        img = image.copy()
        if len(img.shape) not in [3, 4]:
            raise ValueError(
                f"input image has shape {img.shape}. supported image shapes are x,y,c or batch,x,y,c."
            )  # pragma: no cover
        if len(img.shape) == 3:
            img = np.expand_dims(img, axis=0)
        if img.shape[1] != 256 and img.shape[2] != 256:
            raise ValueError(
                f"input image has shape {img.shape}. currently, we only support image shapes that are (256,256,c) or (batch,256,256,c)."
            )  # pragma: no cover
        nuc_cytoplasm = np.stack(
            (img[:, :, :, self.nuclear_channel], img[:, :, :, self.cytoplasm_channel]),
            axis=-1,
        )

        # get pre-processing output
        pre_processed_output = mesmer_preprocess(
            nuc_cytoplasm, **self.preprocess_kwargs
        )

        # run infernece
        output = self.inference(pre_processed_output)

        # reformat output
        output = format_output_mesmer(output)

        # post-processing
        label_images_cell = deep_watershed(
            output["whole-cell"], **self.postprocess_kwargs_whole_cell
        )

        label_images_nucleus = deep_watershed(
            output["nuclear"], **self.postprocess_kwargs_nuclear
        )

        return np.squeeze(label_images_cell, axis=0), np.squeeze(
            label_images_nucleus, axis=0
        )

    def apply(self, tile):
        assert isinstance(
            tile, pathml.core.tile.Tile
        ), f"tile is type {type(tile)} but must be pathml.core.tile.Tile"
        assert (
            tile.slide_type.stain == "Fluor"
        ), f"Tile has slide_type.stain='{tile.slide_type.stain}', but must be 'Fluor'"

        cell_segmentation, nuclear_segmentation = self.F(tile.image)
        tile.masks["cell_segmentation"] = cell_segmentation
        tile.masks["nuclear_segmentation"] = nuclear_segmentation