File size: 15,267 Bytes
12d2e9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
"""
The following functions were taken from the Deepcell package to enable PathML to support their Mesmer segmentation model.
Deepcell website:
https://deepcell.readthedocs.io/en/master/#
Citation:
"Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65."
"""
import warnings
import numpy as np
import scipy.ndimage as nd
from skimage.exposure import equalize_adapthist, rescale_intensity
from skimage.feature import peak_local_max
from skimage.measure import label, regionprops
from skimage.morphology import (
ball,
cube,
dilation,
disk,
h_maxima,
remove_small_holes,
remove_small_objects,
square,
)
from skimage.segmentation import find_boundaries, relabel_sequential, watershed
def erode_edges(mask, erosion_width):
"""Erode edge of objects to prevent them from touching
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65."
https://github.com/vanvalenlab/deepcell-toolbox/blob/master/deepcell_toolbox/utils.py
Args:
mask (numpy.array): uniquely labeled instance mask
erosion_width (int): integer value for pixel width to erode edges
Returns:
numpy.array: mask where each instance has had the edges eroded
Raises:
ValueError: mask.ndim is not 2 or 3
"""
if mask.ndim not in {2, 3}: # pragma: no cover
raise ValueError(
"erode_edges expects arrays of ndim 2 or 3."
"Got ndim: {}".format(mask.ndim)
)
if erosion_width:
new_mask = np.copy(mask)
for _ in range(erosion_width):
boundaries = find_boundaries(new_mask, mode="inner")
new_mask[boundaries > 0] = 0
return new_mask
return mask
def fill_holes(label_img, size=10, connectivity=1):
"""Fills holes located completely within a given label with pixels of the same value
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65."
https://github.com/vanvalenlab/deepcell-toolbox/blob/master/deepcell_toolbox/utils.py
Args:
label_img (numpy.array): a 2D labeled image
size (int): maximum size for a hole to be filled in
connectivity (int): the connectivity used to define the hole
Returns:
numpy.array: a labeled image with no holes smaller than ``size``
contained within any label.
"""
output_image = np.copy(label_img)
props = regionprops(np.squeeze(label_img.astype("int")), cache=False)
for prop in props:
if prop.euler_number < 1:
patch = output_image[prop.slice]
filled = remove_small_holes(
ar=(patch == prop.label), area_threshold=size, connectivity=connectivity
)
output_image[prop.slice] = np.where(filled, prop.label, patch)
return output_image
def percentile_threshold(image, percentile=99.9):
"""Threshold an image to reduce bright spots
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65."
https://github.com/vanvalenlab/deepcell-toolbox/blob/master/deepcell_toolbox/processing.py
Args:
image: numpy array of image data
percentile: cutoff used to threshold image
Returns:
np.array: thresholded version of input image
"""
processed_image = np.zeros_like(image)
for img in range(image.shape[0]):
for chan in range(image.shape[-1]):
current_img = np.copy(image[img, ..., chan])
non_zero_vals = current_img[np.nonzero(current_img)]
# only threshold if channel isn't blank
if len(non_zero_vals) > 0:
img_max = np.percentile(non_zero_vals, percentile)
# threshold values down to max
threshold_mask = current_img > img_max
current_img[threshold_mask] = img_max
# update image
processed_image[img, ..., chan] = current_img
return processed_image
def histogram_normalization(image, kernel_size=None):
"""Pre-process images using Contrast Limited Adaptive
Histogram Equalization (CLAHE).
If one of the inputs is a constant-value array, it will
be normalized as an array of all zeros of the same shape.
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65."
https://github.com/vanvalenlab/deepcell-toolbox/blob/master/deepcell_toolbox/processing.py
Args:
image (numpy.array): numpy array of phase image data.
kernel_size (integer): Size of kernel for CLAHE,
defaults to 1/8 of image size.
Returns:
numpy.array: Pre-processed image data with dtype float32.
"""
# if not np.issubdtype(image.dtype, np.floating):
# logging.info('Converting image dtype to float')
image = image.astype("float32")
for batch in range(image.shape[0]):
for channel in range(image.shape[-1]):
X = image[batch, ..., channel]
sample_value = X[(0,) * X.ndim]
if (X == sample_value).all():
# TODO: Deal with constant value arrays
# https://github.com/scikit-image/scikit-image/issues/4596
# logging.warning('Found constant value array in batch %s and '
# 'channel %s. Normalizing as zeros.',
# batch, channel)
image[batch, ..., channel] = np.zeros_like(X)
continue
# X = rescale_intensity(X, out_range='float')
X = rescale_intensity(X, out_range=(0.0, 1.0))
X = equalize_adapthist(X, kernel_size=kernel_size)
image[batch, ..., channel] = X
return image
# pre- and post-processing functions
def mesmer_preprocess(image, **kwargs):
"""Preprocess input data for Mesmer model.
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65."
https://github.com/vanvalenlab/deepcell-tf/blob/master/deepcell/applications/mesmer.py
Args:
image: array to be processed
Returns:
np.array: processed image array
"""
if len(image.shape) != 4: # pragma: no cover
raise ValueError(f"Image data must be 4D, got image of shape {image.shape}")
output = np.copy(image)
threshold = kwargs.get("threshold", True)
if threshold:
percentile = kwargs.get("percentile", 99.9)
output = percentile_threshold(image=output, percentile=percentile)
normalize = kwargs.get("normalize", True)
if normalize:
kernel_size = kwargs.get("kernel_size", 128)
output = histogram_normalization(image=output, kernel_size=kernel_size)
return output
def format_output_mesmer(output_list):
"""Takes list of model outputs and formats into a dictionary for better readability
https://github.com/vanvalenlab/deepcell-tf/blob/master/deepcell/applications/mesmer.py
Args:
output_list (list): predictions from semantic heads
Returns:
dict: Dict of predictions for whole cell and nuclear.
Raises:
ValueError: if model output list is not len(4)
"""
expected_length = 4
if len(output_list) != expected_length: # pragma: no cover
raise ValueError(
"output_list was length {}, expecting length {}".format(
len(output_list), expected_length
)
)
formatted_dict = {
"whole-cell": [output_list[0], output_list[1][..., 1:2]],
"nuclear": [output_list[2], output_list[3][..., 1:2]],
}
return formatted_dict
def deep_watershed(
outputs,
radius=10,
maxima_threshold=0.1,
interior_threshold=0.01,
maxima_smooth=0,
interior_smooth=1,
maxima_index=0,
interior_index=-1,
label_erosion=0,
small_objects_threshold=0,
fill_holes_threshold=0,
pixel_expansion=None,
maxima_algorithm="h_maxima",
**kwargs,
):
"""Uses ``maximas`` and ``interiors`` to perform watershed segmentation.
``maximas`` are used as the watershed seeds for each object and
``interiors`` are used as the watershed mask.
This function is from "Greenwald NF, Miller G, Moen E, Kong A, Kagel A, Dougherty T, Fullaway CC, McIntosh BJ, Leow KX, Schwartz MS, Pavelchek C. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nature biotechnology. 2022 Apr;40(4):555-65."
https://github.com/vanvalenlab/deepcell-toolbox/blob/master/deepcell_toolbox/deep_watershed.py
Args:
outputs (list): List of [maximas, interiors] model outputs.
Use `maxima_index` and `interior_index` if list is longer than 2,
or if the outputs are in a different order.
radius (int): Radius of disk used to search for maxima
maxima_threshold (float): Threshold for the maxima prediction.
interior_threshold (float): Threshold for the interior prediction.
maxima_smooth (int): smoothing factor to apply to ``maximas``.
Use ``0`` for no smoothing.
interior_smooth (int): smoothing factor to apply to ``interiors``.
Use ``0`` for no smoothing.
maxima_index (int): The index of the maxima prediction in ``outputs``.
interior_index (int): The index of the interior prediction in
``outputs``.
label_erosion (int): Number of pixels to erode segmentation labels.
small_objects_threshold (int): Removes objects smaller than this size.
fill_holes_threshold (int): Maximum size for holes within segmented
objects to be filled.
pixel_expansion (int): Number of pixels to expand ``interiors``.
maxima_algorithm (str): Algorithm used to locate peaks in ``maximas``.
One of ``h_maxima`` (default) or ``peak_local_max``.
``peak_local_max`` is much faster but seems to underperform when
given regious of ambiguous maxima.
Returns:
numpy.array: Integer label mask for instance segmentation.
Raises:
ValueError: ``outputs`` is not properly formatted.
"""
try:
maximas = outputs[maxima_index]
interiors = outputs[interior_index]
except (TypeError, KeyError, IndexError): # pragma: no cover
raise ValueError(
"`outputs` should be a list of at least two " "NumPy arryas of equal shape."
)
valid_algos = {"h_maxima", "peak_local_max"}
if maxima_algorithm not in valid_algos: # pragma: no cover
raise ValueError(
"Invalid value for maxima_algorithm: {}. "
"Must be one of {}".format(maxima_algorithm, valid_algos)
)
total_pixels = maximas.shape[1] * maximas.shape[2]
if maxima_algorithm == "h_maxima" and total_pixels > 5000**2:
warnings.warn(
"h_maxima peak finding algorithm was selected, "
"but the provided image is larger than 5k x 5k pixels."
"This will lead to slow prediction performance."
)
if maximas.shape[:-1] != interiors.shape[:-1]: # pragma: no cover
raise ValueError(
"All input arrays must have the same shape. "
"Got {} and {}".format(maximas.shape, interiors.shape)
)
if maximas.ndim not in {4, 5}: # pragma: no cover
raise ValueError(
"maxima and interior tensors must be rank 4 or 5. "
"Rank 4 is 2D data of shape (batch, x, y, c). "
"Rank 5 is 3D data of shape (batch, frames, x, y, c)."
)
input_is_3d = maximas.ndim > 4
# fill_holes is not supported in 3D
if fill_holes_threshold and input_is_3d:
warnings.warn("`fill_holes` is not supported for 3D data.")
fill_holes_threshold = 0
label_images = []
for maxima, interior in zip(maximas, interiors):
# squeeze out the channel dimension if passed
maxima = nd.gaussian_filter(maxima[..., 0], maxima_smooth)
interior = nd.gaussian_filter(interior[..., 0], interior_smooth)
if pixel_expansion:
fn = cube if input_is_3d else square
interior = dilation(interior, footprint=fn(pixel_expansion * 2 + 1))
# peak_local_max is much faster but has poorer performance
# when dealing with more ambiguous local maxima
if maxima_algorithm == "peak_local_max":
coords = peak_local_max(
maxima,
min_distance=radius,
threshold_abs=maxima_threshold,
exclude_border=kwargs.get("exclude_border", False),
)
markers = np.zeros_like(maxima)
slc = tuple(coords[:, i] for i in range(coords.shape[1]))
markers[slc] = 1
else:
# Find peaks and merge equal regions
fn = ball if input_is_3d else disk
markers = h_maxima(image=maxima, h=maxima_threshold, footprint=fn(radius))
markers = label(markers)
label_image = watershed(
-1 * interior, markers, mask=interior > interior_threshold, watershed_line=0
)
if label_erosion:
label_image = erode_edges(label_image, label_erosion)
# Remove small objects
if small_objects_threshold:
label_image = remove_small_objects(
label_image, min_size=small_objects_threshold
)
# fill in holes that lie completely within a segmentation label
if fill_holes_threshold > 0:
label_image = fill_holes(label_image, size=fill_holes_threshold)
# Relabel the label image
label_image, _, _ = relabel_sequential(label_image)
label_images.append(label_image)
label_images = np.stack(label_images, axis=0)
label_images = np.expand_dims(label_images, axis=-1)
return label_images
|