File size: 4,718 Bytes
12d2e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""

import numpy as np
import pytest
import torch
from skimage.draw import ellipse
from skimage.measure import label
from torch_geometric.loader import DataLoader

import pathml
from pathml.core import SlideData
from pathml.graph import Graph, HACTPairData, build_assignment_matrix
from pathml.graph.utils import get_full_instance_map
from pathml.preprocessing import Pipeline
from pathml.preprocessing.transforms import Transform


@pytest.mark.parametrize("batch_size", [1, 8, 32])
@pytest.mark.parametrize("include_target", [True, False])
def test_pathml_graph(batch_size, include_target):

    edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]], dtype=torch.long)
    node_centroids = torch.randn(3, 2)
    node_features = torch.randn(3, 2)

    if include_target:
        target = torch.tensor([1])

    graph_obj = Graph(
        edge_index=edge_index,
        node_centroids=node_centroids,
        node_features=node_features,
        target=target if include_target else None,
    )
    loader = DataLoader([graph_obj] * batch_size, batch_size=batch_size)
    batch = next(iter(loader))

    assert batch.node_centroids.shape == (batch_size * 3, 2)
    assert batch.node_features.shape == (batch_size * 3, 2)
    assert batch.edge_index.shape == (2, batch_size * 4)
    assert batch.batch.shape == (batch_size * 3,)


@pytest.mark.parametrize("batch_size", [1, 8, 32])
def test_pathml_hactnet_graph(batch_size):

    edge_index = torch.tensor([[0, 1, 1, 2], [1, 0, 2, 1]], dtype=torch.long)
    node_features = torch.randn(3, 2)

    x_cell = node_features
    edge_index_cell = edge_index
    x_tissue = node_features
    edge_index_tissue = edge_index
    assignment = edge_index
    target = torch.tensor([2])

    graph_obj = HACTPairData(
        x_cell=x_cell,
        edge_index_cell=edge_index_cell,
        x_tissue=x_tissue,
        edge_index_tissue=edge_index_tissue,
        assignment=assignment,
        target=target,
    )
    loader = DataLoader([graph_obj] * batch_size, batch_size=batch_size)
    batch = next(iter(loader))

    assert batch.x_cell.shape == (batch_size * 3, 2)
    assert batch.x_tissue.shape == (batch_size * 3, 2)

    assert batch.edge_index_cell.shape == (2, batch_size * 4)
    assert batch.edge_index_tissue.shape == (2, batch_size * 4)


def make_fake_instance_maps(num, image_size, ellipse_height, ellipse_width):
    img = np.zeros(image_size)

    # Draw n ellipses
    for i in range(num):
        # Random center for each ellipse
        center_x = np.random.randint(ellipse_width, image_size[1] - ellipse_width)
        center_y = np.random.randint(ellipse_height, image_size[0] - ellipse_height)

        # Coordinates for the ellipse
        rr, cc = ellipse(
            center_y, center_x, ellipse_height, ellipse_width, shape=image_size
        )

        # Draw the ellipse
        img[rr, cc] = 1

    label_img = label(img.astype(int))

    return label_img


@pytest.mark.parametrize("matrix", [True, False])
def test_build_assignment_matrix(matrix):
    image_size = (1024, 2048)

    tissue_instance_map = make_fake_instance_maps(
        num=20, image_size=image_size, ellipse_height=20, ellipse_width=8
    )
    cell_centroids = np.random.rand(200, 2)

    assignment = build_assignment_matrix(
        cell_centroids, tissue_instance_map, matrix=matrix
    )

    if matrix:
        assert assignment.shape[0] == 200
    else:
        assert assignment.shape[1] == 200


class DummyTransform(Transform):
    def __init__(
        self,
        mask_name,
    ):
        self.mask_name = mask_name

    def F(self, image):
        return image[:, :, 0]

    def apply(self, tile):
        assert isinstance(
            tile, pathml.core.tile.Tile
        ), f"tile is type {type(tile)} but must be pathml.core.tile.Tile"

        nucleus_mask = self.F(tile.image)
        tile.masks[self.mask_name] = nucleus_mask


@pytest.mark.parametrize("mask_name", ["test"])
def test_instance_map(mask_name):
    image_path = "tests/testdata/small_HE.svs"
    wsi = SlideData(image_path, name=image_path, backend="openslide", stain="HE")

    pipeline = Pipeline([DummyTransform(mask_name)])

    wsi.run(
        pipeline,
        overwrite_existing_tiles=True,
        distributed=False,
        tile_pad=True,
        tile_size=1024,
    )

    image_norm, label_instance_map, instance_centroids = get_full_instance_map(
        wsi, patch_size=1024, mask_name="test"
    )

    assert image_norm.shape == (wsi.shape[0], wsi.shape[1], 3)
    assert label_instance_map.shape == (wsi.shape[0], wsi.shape[1])
    assert instance_centroids.shape[1] == 2