File size: 7,820 Bytes
12d2e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""

import os

import numpy as np
import onnx
import torch

from pathml.core import SlideData
from pathml.inference import (
    HaloAIInference,
    Inference,
    InferenceBase,
    RemoteMesmer,
    RemoteTestHoverNet,
    check_onnx_clean,
    convert_pytorch_onnx,
    remove_initializer_from_input,
)
from pathml.preprocessing import CollapseRunsVectra


def test_remove_initializer_from_input():
    # Create a temporary ONNX model file
    model_path = "test_model.onnx"
    # temp_file = tempfile.NamedTemporaryFile(delete=False)
    # temp_file.close()

    # Create a sample ONNX model with initializer and graph input
    model = onnx.ModelProto()
    model.ir_version = 4

    # Add inputs to the graph
    input_1 = model.graph.input.add()
    input_1.name = "input_1"

    input_2 = model.graph.input.add()
    input_2.name = "input_2"

    # Add an initializer that matches one of the inputs
    initializer = model.graph.initializer.add()
    initializer.name = "input_2"

    # Save the model to a file
    onnx.save(model, model_path)

    # Call the function to remove initializers
    new_model_path = "new_model.onnx"
    remove_initializer_from_input(model_path, new_model_path)

    # Assert that the initializer has been removed from the new model
    new_model = onnx.load(new_model_path)
    input_names = [input.name for input in new_model.graph.input]
    assert initializer.name not in input_names

    # Clean up the temporary files
    os.remove(model_path)
    os.remove(new_model_path)


def test_check_onnx_clean():
    # Create a temporary ONNX model file
    model_path = "test_model.onnx"
    # temp_file = tempfile.NamedTemporaryFile(delete=False)
    # temp_file.close()

    # Create a sample ONNX model with initializer and graph input
    model = onnx.ModelProto()
    model.ir_version = 4

    # Add inputs to the graph
    input_1 = model.graph.input.add()
    input_1.name = "input_1"

    input_2 = model.graph.input.add()
    input_2.name = "input_2"

    # Add an initializer that matches one of the inputs
    initializer = model.graph.initializer.add()
    initializer.name = "input_2"

    # Save the model to a file
    onnx.save(model, model_path)

    if check_onnx_clean(model_path):
        pass
    else:
        raise ValueError("check_onnx_clean function is not working")

    # Clean up the temporary files
    os.remove(model_path)


def test_InferenceBase():
    # initialize InferenceBase
    test = InferenceBase()

    # test setter functions
    test.set_name("name")

    test.set_num_classes("num_classes")

    test.set_model_type("model_type")

    test.set_notes("notes")

    test.set_model_input_notes("model_input_notes")

    test.set_model_output_notes("model_output_notes")

    test.set_citation("citation")

    # test model card
    for key in test.model_card:
        assert key == test.model_card[key], f"function for {key} is not working"

    # test repr function
    assert "Base class for all ONNX models" == repr(test)

    # test get model card fxn
    assert test.model_card == test.get_model_card()

    # test reshape function
    random = np.random.rand(1, 2, 3)
    assert test.reshape(random).shape == (
        1,
        3,
        1,
        2,
    ), "reshape function is not working on 3d arrays"

    random = np.random.rand(1, 2, 3, 4, 5)
    assert test.reshape(random).shape == (
        5,
        4,
        3,
        2,
        1,
    ), "reshape function is not working on 5d arrays"


def test_Inference(tileHE):
    new_path = "tests/testdata/random_model.onnx"

    inference = Inference(
        model_path=new_path, input_name="data", num_classes=1, model_type="segmentation"
    )

    orig_im = tileHE.image
    inference.apply(tileHE)
    assert np.array_equal(tileHE.image, inference.F(orig_im))

    assert repr(inference) == f"Class to handle ONNX model locally stored at {new_path}"

    # test initializer catching
    bad_model = "tests/testdata/model_with_initalizers.onnx"
    try:
        inference = Inference(
            model_path=bad_model,
            input_name="data",
            num_classes=1,
            model_type="segmentation",
        )
    except Exception as e:
        assert (
            str(e)
            == "The ONNX model still has graph initializers in the input graph. Use `remove_initializer_from_input` to remove them."
        )

    # test repr function with local set to False
    inference = Inference(
        model_path=new_path,
        input_name="data",
        num_classes=1,
        model_type="segmentation",
        local=False,
    )

    fake_model_name = "test model"
    inference.set_name(fake_model_name)

    assert (
        repr(inference)
        == f"Class to handle a {fake_model_name} from the PathML model zoo."
    )


def test_HaloAIInference(tileHE):
    new_path = "tests/testdata/random_model.onnx"

    inference = HaloAIInference(
        model_path=new_path, input_name="data", num_classes=1, model_type="segmentation"
    )
    orig_im = tileHE.image
    inference.apply(tileHE)
    assert np.array_equal(tileHE.image, inference.F(orig_im))

    assert (
        repr(inference)
        == f"Class to handle HALO AI ONNX model locally stored at {new_path}"
    )


def test_RemoteTestHoverNet():
    inference = RemoteTestHoverNet()

    wsi = SlideData("tests/testdata/small_HE.svs")

    tiles = wsi.generate_tiles(shape=(256, 256), pad=False)
    a = 0
    test_tile = None

    while a == 0:
        for tile in tiles:
            test_tile = tile
            a += 1

    orig_im = test_tile.image
    inference.apply(test_tile)
    assert np.array_equal(test_tile.image, inference.F(orig_im))

    assert (
        repr(inference)
        == "Class to handle remote TIAToolBox HoverNet test ONNX. See model card for citation."
    )

    inference.remove()


def test_RemoteMesmer(tileVectra):
    vectra_collapse = CollapseRunsVectra()
    vectra_collapse.apply(tileVectra)
    inference = RemoteMesmer(
        nuclear_channel=0,
        cytoplasm_channel=1,
        postprocess_kwargs_nuclear={
            "label_erosion": 10,
            "small_objects_threshold": 0.2,
            "fill_holes_threshold": 0.2,
            "pixel_expansion": 10,
            "maxima_algorithm": "peak_local_max",
        },
    )
    orig_im = tileVectra.image
    cell, nuclear = inference.F(orig_im)
    inference.apply(tileVectra)
    assert np.array_equal(tileVectra.masks["cell_segmentation"], cell)
    assert np.array_equal(tileVectra.masks["nuclear_segmentation"], nuclear)

    assert (
        repr(inference)
        == "Class to handle remote Mesmer Model from Deepcell. See model card for citation."
    )
    inference.remove()


def test_convert_pytorch_onnx():
    test_tensor = torch.randn(1, 10)
    model_test = torch.jit.load("tests/testdata/test.pt")

    model_test.eval()

    convert_pytorch_onnx(
        model=model_test, dummy_tensor=test_tensor, model_name="test_export.onnx"
    )

    os.remove("test_export.onnx")

    # test Value Error Statements

    # test lines to check model input
    try:
        convert_pytorch_onnx(
            model=None, dummy_tensor=test_tensor, model_name="test_export.onnx"
        )

    except Exception as e:
        assert (
            str(e)
            == f"The model is not of type torch.nn.Module. Received {type(None)}."
        )

    # test lines to check model dummy input
    try:
        convert_pytorch_onnx(
            model=model_test, dummy_tensor=None, model_name="test_export.onnx"
        )

    except Exception as e:
        assert (
            str(e)
            == f"The dummy tensor needs to be a torch tensor. Received {type(None)}."
        )