File size: 6,975 Bytes
12d2e9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""
import os
import sys
import h5py
import numpy as np
import pytest
from dask.distributed import Client, LocalCluster
from pathml.core import HESlide, SlideData, VectraSlide
from pathml.ml import TileDataset
from pathml.preprocessing import (
BoxBlur,
CollapseRunsVectra,
Pipeline,
QuantifyMIF,
TissueDetectionHE,
)
from pathml.preprocessing.transforms import Transform
from pathml.utils import pil_to_rgb
# test HE pipelines with both DICOM and OpenSlide backends
@pytest.mark.parametrize(
"im_path", ["tests/testdata/small_HE.svs", "tests/testdata/small_dicom.dcm"]
)
@pytest.mark.parametrize("dist", [False, True])
def test_pipeline_HE(tmp_path, im_path, dist):
if dist:
if sys.platform.startswith("win"):
pytest.skip(
"dask distributed not available on windows", allow_module_level=False
)
labs = {
"test_string_label": "testlabel",
"test_array_label": np.array([2, 3, 4]),
"test_int_label": 3,
"test_float_label": 3.0,
"test_bool_label": True,
}
slide = HESlide(im_path, labels=labs)
pipeline = Pipeline(
[BoxBlur(kernel_size=15), TissueDetectionHE(mask_name="tissue")]
)
if dist:
cluster = LocalCluster(n_workers=2)
cli = Client(cluster)
else:
cli = None
slide.run(pipeline, distributed=dist, client=cli, tile_size=500)
save_path = str(tmp_path) + str(np.round(np.random.rand(), 8)) + "HE_slide.h5"
slide.write(path=save_path)
if dist:
cli.shutdown()
# test out the dataset
dataset = TileDataset(save_path)
assert len(dataset) == len(slide.tiles)
im, mask, lab_tile, lab_slide = dataset[0]
for k, v in lab_slide.items():
if isinstance(v, np.ndarray):
assert np.array_equal(v, labs[k])
else:
assert v == labs[k]
assert np.array_equal(im, slide.tiles[0].image.transpose(2, 0, 1))
# test pipelines with bioformats backends, both tiff and qptiff files
# need to test tif and qptiff because they can have different behaviors due to different shapes (HWC vs HWZCT)
@pytest.mark.parametrize("dist", [False, True])
@pytest.mark.parametrize("tile_size", [256, (256, 256)])
def test_pipeline_bioformats_tiff(tmp_path, dist, tile_size):
if dist:
if sys.platform.startswith("win"):
pytest.skip(
"dask distributed not available on windows", allow_module_level=False
)
slide = VectraSlide("tests/testdata/smalltif.tif")
# use a passthru dummy pipeline
pipeline = Pipeline([])
if dist:
cluster = LocalCluster(n_workers=2)
cli = Client(cluster)
else:
cli = None
slide.run(pipeline, distributed=dist, client=cli, tile_size=tile_size)
slide.write(path=str(tmp_path) + "tifslide.h5")
readslidedata = SlideData(str(tmp_path) + "tifslide.h5")
assert readslidedata.name == slide.name
np.testing.assert_equal(readslidedata.labels, slide.labels)
if slide.masks is None:
assert readslidedata.masks is None
if slide.tiles is None:
assert readslidedata.tiles is None
assert scan_hdf5(readslidedata.h5manager.h5) == scan_hdf5(slide.h5manager.h5)
if readslidedata.counts.obs.empty:
assert slide.counts.obs.empty
else:
np.testing.assert_equal(readslidedata.counts.obs, slide.counts.obs)
if readslidedata.counts.var.empty:
assert slide.counts.var.empty
else:
np.testing.assert_equal(readslidedata.counts.var, slide.counts.var)
os.remove(str(tmp_path) + "tifslide.h5")
if dist:
cli.shutdown()
@pytest.mark.parametrize("dist", [False, True])
@pytest.mark.parametrize("tile_size", [256, (256, 256)])
def test_pipeline_bioformats_vectra(tmp_path, dist, tile_size):
if dist:
if sys.platform.startswith("win"):
pytest.skip(
"dask distributed not available on windows", allow_module_level=False
)
from pathml.preprocessing.transforms import SegmentMIFRemote
slide = VectraSlide("tests/testdata/small_vectra.qptiff")
pipeline = Pipeline(
[
CollapseRunsVectra(),
SegmentMIFRemote(
nuclear_channel=0,
cytoplasm_channel=2,
image_resolution=0.5,
),
QuantifyMIF(segmentation_mask="cell_segmentation"),
]
)
if dist:
cluster = LocalCluster(n_workers=2)
cli = Client(cluster)
else:
cli = None
slide.run(pipeline, distributed=dist, client=cli, tile_size=tile_size)
slide.write(path=str(tmp_path) + "vectraslide.h5")
os.remove(str(tmp_path) + "vectraslide.h5")
if dist:
cli.shutdown()
def scan_hdf5(f, recursive=True, tab_step=2):
def scan_node(g, tabs=0):
elems = []
for k, v in g.items():
if isinstance(v, h5py.Dataset):
elems.append(v.name)
elif isinstance(v, h5py.Group) and recursive:
elems.append((v.name, scan_node(v, tabs=tabs + tab_step)))
return elems
return scan_node(f)
class AddMean(Transform):
"""Transform using global statistic for tile (average)"""
def F(self, arr):
return arr + np.mean(arr)
def apply(self, tile):
tile.image = self.F(tile.image)
@pytest.mark.parametrize("tile_size", [500])
@pytest.mark.parametrize("stride", [250, 500, 1000])
@pytest.mark.parametrize("pad", [True, False])
def test_pipeline_overlapping_tiles(tmp_path, stride, pad, tile_size):
"""test that we can run pipeline with overlapping tiles"""
pipe = Pipeline([AddMean()])
wsi = SlideData("tests/testdata/small_HE.svs")
wsi.run(
pipe, distributed=False, tile_size=tile_size, tile_stride=stride, tile_pad=pad
)
if pad:
tile_count = [dim // stride + 1 for dim in wsi.shape]
else:
tile_count = [(dim - tile_size) // stride + 1 for dim in wsi.shape]
# make sure that we have the correct number of tiles
assert len(wsi.tiles) == np.prod(tile_count)
path = tmp_path / "testhe.h5"
wsi.write(path)
readslidedata = SlideData(path)
assert len(readslidedata.tiles) == np.prod(tile_count)
# make sure that getting tiles works as expected
# if overlapping tiles are not implemented correctly, this will fail because parts of the tile will
# get overwritten by subsequent overlapping tiles, and because we are using a transform which is different
# for each tile, we will be able to identify if this has happened
im = pil_to_rgb(
wsi.slide.slide.read_region(
location=(1000, 1000), level=0, size=(tile_size, tile_size)
)
)
expected = AddMean().F(im).astype(np.float16)
np.testing.assert_equal(readslidedata.tiles[(1000, 1000)].image, expected)
|