File size: 1,909 Bytes
12d2e9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""
import numpy as np
import pytest
from pathml.preprocessing.tiling import extract_tiles, extract_tiles_with_mask
@pytest.mark.parametrize("tile_size", [5, 20])
@pytest.mark.parametrize("stride", [None, 1, 5])
@pytest.mark.parametrize("n_channels", [1, 3, 11])
def test_extract_tiles(n_channels, stride, tile_size):
# square
arr_size = 100
arr = np.arange(arr_size * arr_size * n_channels).reshape(
(arr_size, arr_size, n_channels)
)
tiled = extract_tiles(arr, tile_size=tile_size, stride=stride)
if stride is None:
stride = tile_size
n_tiles_expected = 1 + (arr_size - tile_size) / stride
assert tiled.shape == (n_tiles_expected**2, tile_size, tile_size, n_channels)
assert np.array_equal(tiled[0, ...], arr[0:tile_size, 0:tile_size, :])
@pytest.mark.parametrize("stride", [None, 5])
@pytest.mark.parametrize("n_channels_arr", [3])
@pytest.mark.parametrize("n_channels_mask", [5])
@pytest.mark.parametrize("tile_size", [5, 10, 25])
def test_extract_tiles_with_mask(n_channels_arr, n_channels_mask, stride, tile_size):
arr_size = 100
arr = np.arange(arr_size * arr_size * n_channels_arr).reshape(
(arr_size, arr_size, n_channels_arr)
)
mask = np.zeros(shape=(arr_size, arr_size, n_channels_mask), dtype=np.uint8)
mask[0:25, 0:25, ...] = 1
tiled = extract_tiles_with_mask(
arr, mask=mask, tile_size=tile_size, stride=stride, threshold=0.99
)
if stride is None:
stride = tile_size
# since the mask only has ones from [0:25, 0:25]
# and we set a high threshold (almost 1)
# n_expected should be the same as if we only tiled a (25 x 25) array
n_tiles_expected = 1 + (25 - tile_size) // stride
assert tiled.shape == (n_tiles_expected**2, tile_size, tile_size, n_channels_arr)
|