File size: 9,684 Bytes
12d2e9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""
import os
import shutil
import tempfile
from pathlib import Path
from unittest.mock import mock_open, patch
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pytest
from matplotlib.testing.decorators import check_figures_equal
from pathml.utils import (
RGB_to_GREY,
RGB_to_HSI,
RGB_to_HSV,
RGB_to_LAB,
RGB_to_OD,
_pad_or_crop_1d,
contour_centroid,
download_from_url,
find_qupath_home,
normalize_matrix_cols,
normalize_matrix_rows,
pad_or_crop,
parse_file_size,
plot_mask,
plot_segmentation,
segmentation_lines,
setup_qupath,
sort_points_clockwise,
upsample_array,
)
@pytest.mark.parametrize(
"test_input,expected", [("10 gb", 10**10), ("1.17 mB", 1.17e6), ("0.89 KB", 890)]
)
def test_parse_file_sizes(test_input, expected):
assert parse_file_size(test_input) == expected
def test_download_from_url(tmp_path):
url = "http://openslide.cs.cmu.edu/download/openslide-testdata/Aperio/index.yaml"
d = tmp_path / "test"
download_from_url(url=url, download_dir=d, name="testfile")
file1 = open(d / "testfile", "r")
assert file1.readline() == "format: Aperio SVS\n"
# Test successful download
def test_successful_download(tmp_path):
url = "http://example.com/testfile.txt"
download_dir = tmp_path / "downloads"
file_content = b"Sample file content"
with patch(
"urllib.request.urlopen", mock_open(read_data=file_content)
) as mocked_url_open, patch("builtins.open", mock_open()) as mocked_file:
download_from_url(url, download_dir, "downloaded_file.txt")
mocked_url_open.assert_called_with(url)
mocked_file.assert_called_with(
os.path.join(download_dir, "downloaded_file.txt"), "wb"
)
# Test skipping download for existing file
def test_skip_existing_download(tmp_path):
url = "http://example.com/testfile.txt"
download_dir = tmp_path / "downloads"
download_dir.mkdir(parents=True, exist_ok=True) # Ensure directory exists
existing_file = download_dir / "existing_file.txt"
existing_file.touch() # Create an empty file
with patch("urllib.request.urlopen", mock_open()) as mocked_url_open:
download_from_url(url, download_dir, "existing_file.txt")
mocked_url_open.assert_not_called()
# Test download with default filename
def test_download_default_filename(tmp_path):
url = "http://example.com/testfile.txt"
download_dir = tmp_path / "downloads"
file_content = b"Sample file content for default"
with patch(
"urllib.request.urlopen", mock_open(read_data=file_content)
) as mocked_url_open, patch("builtins.open", mock_open()) as mocked_file:
download_from_url(url, download_dir)
mocked_url_open.assert_called_with(url)
mocked_file.assert_called_with(os.path.join(download_dir, "testfile.txt"), "wb")
@pytest.fixture(scope="module")
def random_rgb():
im = np.random.randint(low=0, high=255, size=(50, 50, 3), dtype=np.uint8)
return im
@pytest.fixture(scope="module")
def simple_mask():
im = np.zeros((7, 7), dtype=np.uint8)
im[2:5, 2:5] = 1
return im
@pytest.fixture(scope="module")
def example_contour(simple_mask):
# contour will be at points (2, 2), (2, 4), (4, 4), (4, 2)
cnt, _ = cv2.findContours(simple_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
return cnt[0].astype(np.uint8)
@pytest.fixture(scope="module")
def random_5_5_5_5():
m = np.random.rand(5, 5, 5, 5)
return m
@pytest.fixture(scope="module")
def random_50_50():
m = np.random.rand(50, 50)
return m
# Tests
@pytest.mark.parametrize("conv", [RGB_to_HSV, RGB_to_OD, RGB_to_HSI, RGB_to_LAB])
def test_color_conversion_shape(conv, random_rgb):
im_converted = conv(random_rgb)
assert im_converted.shape == random_rgb.shape
def test_RGB_to_GREY(random_rgb):
im_converted = RGB_to_GREY(random_rgb)
assert im_converted.shape[0:2] == random_rgb.shape[0:2]
def test_segmentation_lines(simple_mask):
x, y = segmentation_lines(simple_mask)
for x, y in zip(x, y):
assert (x, y) in [
(1, 1),
(1, 2),
(1, 3),
(1, 4),
(1, 5),
(2, 1),
(2, 5),
(3, 1),
(3, 5),
(4, 1),
(4, 5),
(5, 1),
(5, 2),
(5, 3),
(5, 4),
(5, 5),
]
@check_figures_equal(extensions=[".png"])
def test_plot_mask(fig_test, fig_ref):
# dummy image
im = np.random.randint(low=1, high=254, size=(6, 6, 3), dtype=np.uint8)
# mask
mask = np.zeros((6, 6), dtype=np.uint8)
mask[2:4, 2:4] = 1
# manual generation of points around mask
x = [1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4]
y = [1, 2, 3, 4, 1, 4, 1, 4, 1, 2, 3, 4]
# manually plot fig_ref
fig_ref.gca().imshow(im)
fig_ref.gca().scatter(x, y, color="red", marker=".", s=1)
fig_ref.gca().axis("off")
# plot_mask on fig_test
plot_mask(im=im, mask_in=mask, ax=fig_test.gca())
@check_figures_equal(extensions=[".png"])
def test_plot_mask_downsample(fig_test, fig_ref):
# to test downsample by factor of two, we can use same code as above but upscale everything first
# dummy image
im = np.random.randint(low=1, high=254, size=(12, 12, 3), dtype=np.uint8)
# mask
mask = np.zeros((12, 12), dtype=np.uint8)
mask[4:8, 4:8] = 1
# manual generation of points around mask
x = [1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4]
y = [1, 2, 3, 4, 1, 4, 1, 4, 1, 2, 3, 4]
# manually plot fig_ref
fig_ref.gca().imshow(im[::2, ::2, :])
fig_ref.gca().scatter(x, y, color="red", marker=".", s=1)
fig_ref.gca().axis("off")
# plot_mask on fig_test
plot_mask(im=im, mask_in=mask, ax=fig_test.gca(), downsample_factor=2)
def test_upsample_array(simple_mask):
factor = 11
upsampled = upsample_array(simple_mask, factor=factor)
upsampled_kron = np.kron(simple_mask, np.ones((factor, factor), simple_mask.dtype))
assert np.array_equal(upsampled, upsampled_kron)
def test_sort_points_clockwise():
points = np.array([[1, 1], [-1, 1], [1, -1], [-1, -1]])
points_sorted_correct = np.array([[-1, -1], [-1, 1], [1, 1], [1, -1]])
points_sorted = sort_points_clockwise(points)
assert points.shape == points_sorted.shape
assert np.array_equal(points_sorted, points_sorted_correct)
def test_contour_centroid(example_contour):
i, j = contour_centroid(example_contour.astype(np.float32))
assert np.allclose([i, j], [3, 3])
def test_pad_or_crop_1d(random_5_5_5_5):
padded = _pad_or_crop_1d(random_5_5_5_5, axis=2, target_dim=10)
assert padded.shape == (5, 5, 10, 5)
cropped = _pad_or_crop_1d(random_5_5_5_5, axis=1, target_dim=2)
assert cropped.shape == (5, 2, 5, 5)
no_change = _pad_or_crop_1d(random_5_5_5_5, axis=0, target_dim=5)
assert no_change.shape == (5, 5, 5, 5)
@pytest.mark.parametrize(
"target_shape",
[(5, 5, 5, 5), (5, 6, 6, 5), (5, 4, 4, 5), (6, 4, 5, 5), (10, 11, 12, 13)],
)
def test_pad_or_crop(random_5_5_5_5, target_shape):
assert (
pad_or_crop(random_5_5_5_5, target_shape).shape == target_shape
), f"target shape: {target_shape}"
def test_normalize_matrix_rows(random_50_50):
a = normalize_matrix_rows(random_50_50)
assert np.all(np.isclose(np.linalg.norm(a, axis=1), 1.0))
def test_normalize_matrix_cols(random_50_50):
a = normalize_matrix_cols(random_50_50)
assert np.all(np.isclose(np.linalg.norm(a, axis=0), 1.0))
def test_plot_segmentation():
ax = plt.gca()
masks = np.zeros((3, 12, 12), dtype=np.uint8)
masks[0, 4:8, 4:8] = 1
masks[1, 1:3, 1:3] = 2
masks[2, 8:11, 8:11] = 3
palette = None
markersize = 5
plot_segmentation(ax, masks, palette, markersize)
def test_find_existing_qupath_home(tmp_path):
# Create a mock QuPath directory structure
qupath_dir = tmp_path / "qupath"
qupath_dir.mkdir(parents=True)
qupath_jar = qupath_dir / "qupath.jar"
qupath_jar.touch()
# Test if the function finds the QuPath home correctly
qupath_home = find_qupath_home(str(tmp_path))
assert qupath_home == str(qupath_dir.parent.parent)
def test_no_qupath_home_found(tmp_path):
# Test with a directory without QuPath JAR
qupath_home = find_qupath_home(str(tmp_path))
assert qupath_home is None
def test_find_qupath_home():
# Create a temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
# Case 1: QuPath jar is present
os.makedirs(Path(temp_dir) / "qupath")
open(Path(temp_dir) / "qupath/qupath.jar", "a").close()
assert find_qupath_home(temp_dir) is not None
# Cleanup
shutil.rmtree(Path(temp_dir) / "qupath")
# Case 2: QuPath jar is not present
assert find_qupath_home(temp_dir) is None
@patch("builtins.print") # To suppress print statements in the test
def test_setup_qupath(mock_print):
with tempfile.TemporaryDirectory() as temp_dir:
qupath_home = Path(temp_dir) / "qupath"
# Simulate the environment before QuPath installation
expected_path = (
qupath_home / "QuPath"
) # Update according to the actual behavior of setup_qupath
assert setup_qupath(str(qupath_home)) == str(expected_path)
print(setup_qupath(str(qupath_home)))
print(str(expected_path))
# Test when QuPath is already installed
assert setup_qupath(str(qupath_home)) == str(expected_path)
|