File size: 9,684 Bytes
12d2e9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""

import os
import shutil
import tempfile
from pathlib import Path
from unittest.mock import mock_open, patch

import cv2
import matplotlib.pyplot as plt
import numpy as np
import pytest
from matplotlib.testing.decorators import check_figures_equal

from pathml.utils import (
    RGB_to_GREY,
    RGB_to_HSI,
    RGB_to_HSV,
    RGB_to_LAB,
    RGB_to_OD,
    _pad_or_crop_1d,
    contour_centroid,
    download_from_url,
    find_qupath_home,
    normalize_matrix_cols,
    normalize_matrix_rows,
    pad_or_crop,
    parse_file_size,
    plot_mask,
    plot_segmentation,
    segmentation_lines,
    setup_qupath,
    sort_points_clockwise,
    upsample_array,
)


@pytest.mark.parametrize(
    "test_input,expected", [("10 gb", 10**10), ("1.17 mB", 1.17e6), ("0.89 KB", 890)]
)
def test_parse_file_sizes(test_input, expected):
    assert parse_file_size(test_input) == expected


def test_download_from_url(tmp_path):
    url = "http://openslide.cs.cmu.edu/download/openslide-testdata/Aperio/index.yaml"
    d = tmp_path / "test"
    download_from_url(url=url, download_dir=d, name="testfile")
    file1 = open(d / "testfile", "r")
    assert file1.readline() == "format: Aperio SVS\n"


# Test successful download
def test_successful_download(tmp_path):
    url = "http://example.com/testfile.txt"
    download_dir = tmp_path / "downloads"
    file_content = b"Sample file content"
    with patch(
        "urllib.request.urlopen", mock_open(read_data=file_content)
    ) as mocked_url_open, patch("builtins.open", mock_open()) as mocked_file:
        download_from_url(url, download_dir, "downloaded_file.txt")

        mocked_url_open.assert_called_with(url)
        mocked_file.assert_called_with(
            os.path.join(download_dir, "downloaded_file.txt"), "wb"
        )


# Test skipping download for existing file
def test_skip_existing_download(tmp_path):
    url = "http://example.com/testfile.txt"
    download_dir = tmp_path / "downloads"
    download_dir.mkdir(parents=True, exist_ok=True)  # Ensure directory exists
    existing_file = download_dir / "existing_file.txt"
    existing_file.touch()  # Create an empty file

    with patch("urllib.request.urlopen", mock_open()) as mocked_url_open:
        download_from_url(url, download_dir, "existing_file.txt")

        mocked_url_open.assert_not_called()


# Test download with default filename
def test_download_default_filename(tmp_path):
    url = "http://example.com/testfile.txt"
    download_dir = tmp_path / "downloads"
    file_content = b"Sample file content for default"

    with patch(
        "urllib.request.urlopen", mock_open(read_data=file_content)
    ) as mocked_url_open, patch("builtins.open", mock_open()) as mocked_file:
        download_from_url(url, download_dir)

        mocked_url_open.assert_called_with(url)
        mocked_file.assert_called_with(os.path.join(download_dir, "testfile.txt"), "wb")


@pytest.fixture(scope="module")
def random_rgb():
    im = np.random.randint(low=0, high=255, size=(50, 50, 3), dtype=np.uint8)
    return im


@pytest.fixture(scope="module")
def simple_mask():
    im = np.zeros((7, 7), dtype=np.uint8)
    im[2:5, 2:5] = 1
    return im


@pytest.fixture(scope="module")
def example_contour(simple_mask):
    # contour will be at points (2, 2), (2, 4), (4, 4), (4, 2)
    cnt, _ = cv2.findContours(simple_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    return cnt[0].astype(np.uint8)


@pytest.fixture(scope="module")
def random_5_5_5_5():
    m = np.random.rand(5, 5, 5, 5)
    return m


@pytest.fixture(scope="module")
def random_50_50():
    m = np.random.rand(50, 50)
    return m


# Tests


@pytest.mark.parametrize("conv", [RGB_to_HSV, RGB_to_OD, RGB_to_HSI, RGB_to_LAB])
def test_color_conversion_shape(conv, random_rgb):
    im_converted = conv(random_rgb)
    assert im_converted.shape == random_rgb.shape


def test_RGB_to_GREY(random_rgb):
    im_converted = RGB_to_GREY(random_rgb)
    assert im_converted.shape[0:2] == random_rgb.shape[0:2]


def test_segmentation_lines(simple_mask):
    x, y = segmentation_lines(simple_mask)
    for x, y in zip(x, y):
        assert (x, y) in [
            (1, 1),
            (1, 2),
            (1, 3),
            (1, 4),
            (1, 5),
            (2, 1),
            (2, 5),
            (3, 1),
            (3, 5),
            (4, 1),
            (4, 5),
            (5, 1),
            (5, 2),
            (5, 3),
            (5, 4),
            (5, 5),
        ]


@check_figures_equal(extensions=[".png"])
def test_plot_mask(fig_test, fig_ref):
    # dummy image
    im = np.random.randint(low=1, high=254, size=(6, 6, 3), dtype=np.uint8)
    # mask
    mask = np.zeros((6, 6), dtype=np.uint8)
    mask[2:4, 2:4] = 1
    # manual generation of points around mask
    x = [1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4]
    y = [1, 2, 3, 4, 1, 4, 1, 4, 1, 2, 3, 4]
    # manually plot fig_ref
    fig_ref.gca().imshow(im)
    fig_ref.gca().scatter(x, y, color="red", marker=".", s=1)
    fig_ref.gca().axis("off")
    # plot_mask on fig_test
    plot_mask(im=im, mask_in=mask, ax=fig_test.gca())


@check_figures_equal(extensions=[".png"])
def test_plot_mask_downsample(fig_test, fig_ref):
    # to test downsample by factor of two, we can use same code as above but upscale everything first
    # dummy image
    im = np.random.randint(low=1, high=254, size=(12, 12, 3), dtype=np.uint8)
    # mask
    mask = np.zeros((12, 12), dtype=np.uint8)
    mask[4:8, 4:8] = 1
    # manual generation of points around mask
    x = [1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 4, 4]
    y = [1, 2, 3, 4, 1, 4, 1, 4, 1, 2, 3, 4]
    # manually plot fig_ref
    fig_ref.gca().imshow(im[::2, ::2, :])
    fig_ref.gca().scatter(x, y, color="red", marker=".", s=1)
    fig_ref.gca().axis("off")
    # plot_mask on fig_test
    plot_mask(im=im, mask_in=mask, ax=fig_test.gca(), downsample_factor=2)


def test_upsample_array(simple_mask):
    factor = 11
    upsampled = upsample_array(simple_mask, factor=factor)
    upsampled_kron = np.kron(simple_mask, np.ones((factor, factor), simple_mask.dtype))
    assert np.array_equal(upsampled, upsampled_kron)


def test_sort_points_clockwise():
    points = np.array([[1, 1], [-1, 1], [1, -1], [-1, -1]])
    points_sorted_correct = np.array([[-1, -1], [-1, 1], [1, 1], [1, -1]])
    points_sorted = sort_points_clockwise(points)
    assert points.shape == points_sorted.shape
    assert np.array_equal(points_sorted, points_sorted_correct)


def test_contour_centroid(example_contour):
    i, j = contour_centroid(example_contour.astype(np.float32))
    assert np.allclose([i, j], [3, 3])


def test_pad_or_crop_1d(random_5_5_5_5):
    padded = _pad_or_crop_1d(random_5_5_5_5, axis=2, target_dim=10)
    assert padded.shape == (5, 5, 10, 5)
    cropped = _pad_or_crop_1d(random_5_5_5_5, axis=1, target_dim=2)
    assert cropped.shape == (5, 2, 5, 5)
    no_change = _pad_or_crop_1d(random_5_5_5_5, axis=0, target_dim=5)
    assert no_change.shape == (5, 5, 5, 5)


@pytest.mark.parametrize(
    "target_shape",
    [(5, 5, 5, 5), (5, 6, 6, 5), (5, 4, 4, 5), (6, 4, 5, 5), (10, 11, 12, 13)],
)
def test_pad_or_crop(random_5_5_5_5, target_shape):
    assert (
        pad_or_crop(random_5_5_5_5, target_shape).shape == target_shape
    ), f"target shape: {target_shape}"


def test_normalize_matrix_rows(random_50_50):
    a = normalize_matrix_rows(random_50_50)
    assert np.all(np.isclose(np.linalg.norm(a, axis=1), 1.0))


def test_normalize_matrix_cols(random_50_50):
    a = normalize_matrix_cols(random_50_50)
    assert np.all(np.isclose(np.linalg.norm(a, axis=0), 1.0))


def test_plot_segmentation():
    ax = plt.gca()

    masks = np.zeros((3, 12, 12), dtype=np.uint8)
    masks[0, 4:8, 4:8] = 1
    masks[1, 1:3, 1:3] = 2
    masks[2, 8:11, 8:11] = 3

    palette = None
    markersize = 5

    plot_segmentation(ax, masks, palette, markersize)


def test_find_existing_qupath_home(tmp_path):
    # Create a mock QuPath directory structure
    qupath_dir = tmp_path / "qupath"
    qupath_dir.mkdir(parents=True)
    qupath_jar = qupath_dir / "qupath.jar"
    qupath_jar.touch()

    # Test if the function finds the QuPath home correctly
    qupath_home = find_qupath_home(str(tmp_path))
    assert qupath_home == str(qupath_dir.parent.parent)


def test_no_qupath_home_found(tmp_path):
    # Test with a directory without QuPath JAR
    qupath_home = find_qupath_home(str(tmp_path))
    assert qupath_home is None


def test_find_qupath_home():
    # Create a temporary directory
    with tempfile.TemporaryDirectory() as temp_dir:
        # Case 1: QuPath jar is present
        os.makedirs(Path(temp_dir) / "qupath")
        open(Path(temp_dir) / "qupath/qupath.jar", "a").close()
        assert find_qupath_home(temp_dir) is not None

        # Cleanup
        shutil.rmtree(Path(temp_dir) / "qupath")

        # Case 2: QuPath jar is not present
        assert find_qupath_home(temp_dir) is None


@patch("builtins.print")  # To suppress print statements in the test
def test_setup_qupath(mock_print):
    with tempfile.TemporaryDirectory() as temp_dir:
        qupath_home = Path(temp_dir) / "qupath"

        # Simulate the environment before QuPath installation
        expected_path = (
            qupath_home / "QuPath"
        )  # Update according to the actual behavior of setup_qupath
        assert setup_qupath(str(qupath_home)) == str(expected_path)
        print(setup_qupath(str(qupath_home)))
        print(str(expected_path))
        # Test when QuPath is already installed
        assert setup_qupath(str(qupath_home)) == str(expected_path)