|
Datasets |
|
======== |
|
|
|
The ``pathml.datasets`` module provides easy access to common datasets for standardized model evaluation and comparison. |
|
|
|
DataModules |
|
-------------- |
|
|
|
``PathML`` uses ``DataModules`` to encapsulate datasets. |
|
DataModule objects are responsible for downloading the data (if necessary) and formatting the data into ``DataSet`` and |
|
``DataLoader`` objects for use in downstream tasks. |
|
Keeping everything in a single object is easier for users and also facilitates reproducibility. |
|
|
|
Inspired by `PyTorch Lightning <https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html>`_. |
|
|
|
|
|
Using public datasets |
|
--------------------- |
|
|
|
PathML has built-in support for several public datasets: |
|
|
|
.. list-table:: Datasets |
|
:widths: 20 50 10 20 |
|
:header-rows: 1 |
|
|
|
* - Dataset |
|
- Description |
|
- Image type |
|
- Size |
|
* - :class:`~pathml.datasets.pannuke.PanNukeDataModule` |
|
- Pixel-level nucleus classification, with 6 nucleus types and 19 tissue types. |
|
Images are 256px RGB. [PanNuke1]_ [PanNuke2]_ |
|
- H&E |
|
- n=7901 (37.33 GB) |
|
* - :class:`~pathml.datasets.deepblur.DeepFocusDataModule` |
|
- Patch-level focus classification with 3 IHC and 1 H&E histologies. [DeepFocus]_ |
|
- H&E, IHC |
|
- n=204k (10.0 GB) |
|
|
|
|
|
References |
|
---------- |
|
|
|
.. [PanNuke1] Gamper, J., Koohbanani, N.A., Benet, K., Khuram, A. and Rajpoot, N., 2019, April. PanNuke: an open pan-cancer |
|
histology dataset for nuclei instance segmentation and classification. In European Congress on Digital |
|
Pathology (pp. 11-19). Springer, Cham. |
|
.. [PanNuke2] Gamper, J., Koohbanani, N.A., Graham, S., Jahanifar, M., Khurram, S.A., Azam, A., Hewitt, K. and Rajpoot, N., |
|
2020. PanNuke Dataset Extension, Insights and Baselines. arXiv preprint arXiv:2003.10778. |
|
.. [DeepFocus] Senaras, C., Niazi, M., Lozanski, G., Gurcan, M., 2018, October. Deepfocus: Detection of out-of-focus regions |
|
in whole slide digital images using deep learning. PLOS One 13(10): e0205387. |
|
|