|
Models |
|
====== |
|
|
|
``PathML`` comes with model architectures ready to use out of the box. |
|
|
|
.. table:: |
|
:widths: 20, 20, 60 |
|
|
|
============================================ ============ ============= |
|
Model Reference Description |
|
============================================ ============ ============= |
|
:class:`~pathml.ml.models.hovernet.HoVerNet` [HoVerNet]_ A model for nucleus segmentation and classification in H&E images |
|
:class:`~pathml.ml.models.hactnet.HACTNet` [HACTNet]_ A graph neural network (GNN) for cancer subtyping |
|
============================================ ============ ============= |
|
|
|
You can also use models from fantastic resources such as |
|
`torchvision.models <https://pytorch.org/docs/stable/torchvision/models.html>`_ and |
|
`pytorch-image-models (timm) <https://rwightman.github.io/pytorch-image-models/>`_. |
|
|
|
References |
|
---------- |
|
|
|
.. [HoVerNet] Graham, S., Vu, Q.D., Raza, S.E.A., Azam, A., Tsang, Y.W., Kwak, J.T. and Rajpoot, N., 2019. |
|
Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images. |
|
Medical Image Analysis, 58, p.101563. |
|
.. [HACTNet] Pati, P., Jaume, G., Foncubierta-Rodriguez, A., Feroce, F., Anniciello, A.M., Scognamiglio, G., Brancati, N., Fiche, M., Dubruc, E., Riccio, D. and Di Bonito, M., 2022. |
|
Hierarchical graph representations in digital pathology. |
|
Medical image analysis, 75, p.102264. |