introvoyz041's picture
Migrated from GitHub
12d2e9e verified
Models
======
``PathML`` comes with model architectures ready to use out of the box.
.. table::
:widths: 20, 20, 60
============================================ ============ =============
Model Reference Description
============================================ ============ =============
:class:`~pathml.ml.models.hovernet.HoVerNet` [HoVerNet]_ A model for nucleus segmentation and classification in H&E images
:class:`~pathml.ml.models.hactnet.HACTNet` [HACTNet]_ A graph neural network (GNN) for cancer subtyping
============================================ ============ =============
You can also use models from fantastic resources such as
`torchvision.models <https://pytorch.org/docs/stable/torchvision/models.html>`_ and
`pytorch-image-models (timm) <https://rwightman.github.io/pytorch-image-models/>`_.
References
----------
.. [HoVerNet] Graham, S., Vu, Q.D., Raza, S.E.A., Azam, A., Tsang, Y.W., Kwak, J.T. and Rajpoot, N., 2019.
Hover-Net: Simultaneous segmentation and classification of nuclei in multi-tissue histology images.
Medical Image Analysis, 58, p.101563.
.. [HACTNet] Pati, P., Jaume, G., Foncubierta-Rodriguez, A., Feroce, F., Anniciello, A.M., Scognamiglio, G., Brancati, N., Fiche, M., Dubruc, E., Riccio, D. and Di Bonito, M., 2022.
Hierarchical graph representations in digital pathology.
Medical image analysis, 75, p.102264.