|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import os |
|
import reprlib |
|
from pathlib import Path |
|
|
|
import anndata |
|
import dask.distributed |
|
import h5py |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from loguru import logger |
|
|
|
import pathml.core |
|
import pathml.preprocessing.pipeline |
|
from pathml.core.h5managers import h5pathManager |
|
from pathml.core.slide_types import SlideType |
|
|
|
|
|
def infer_backend(path): |
|
""" |
|
Checks file extensions to try to infer correct backend to use. |
|
Uses the file extensions from the sets contained in this file (pathml/core/slide_data.py) |
|
For file formats which are supported by both openslide and bioformats, will return "bioformats". |
|
|
|
Args: |
|
path: path to file |
|
|
|
Returns: |
|
str: one of "bioformats", "openslide", "dicom", "h5path" |
|
""" |
|
path = str(path) |
|
for extension_set, name in zip( |
|
[pathmlext, bioformatsext, openslideext, dicomext], |
|
["h5path", "bioformats", "openslide", "dicom"], |
|
): |
|
for ext in extension_set: |
|
if path[-len(ext) :] == ext: |
|
return name |
|
raise ValueError( |
|
f"input path {path} doesn't match any supported file extensions" |
|
) |
|
|
|
|
|
class SlideData: |
|
""" |
|
Main class representing a slide and its annotations. |
|
|
|
Args: |
|
filepath (str): Path to file on disk. |
|
name (str, optional): name of slide. If ``None``, and a ``filepath`` is provided, name defaults to filepath. |
|
masks (pathml.core.Masks, optional): object containing {key, mask} pairs |
|
tiles (pathml.core.Tiles, optional): object containing {coordinates, tile} pairs |
|
labels (collections.OrderedDict, optional): dictionary containing {key, label} pairs |
|
backend (str, optional): backend to use for interfacing with slide on disk. |
|
Must be one of {"OpenSlide", "BioFormats", "DICOM", "h5path"} (case-insensitive). |
|
Note that for supported image formats, OpenSlide performance can be significantly better than BioFormats. |
|
Consider specifying ``backend = "openslide"`` when possible. |
|
If ``None``, and a ``filepath`` is provided, tries to infer the correct backend from the file extension. |
|
Defaults to ``None``. |
|
slide_type (pathml.core.SlideType, optional): slide type specification. Must be a |
|
:class:`~pathml.core.SlideType` object. Alternatively, slide type can be specified by using the |
|
parameters ``stain``, ``tma``, ``rgb``, ``volumetric``, and ``time_series``. |
|
stain (str, optional): Flag indicating type of slide stain. Must be one of [‘HE’, ‘IHC’, ‘Fluor’]. |
|
Defaults to ``None``. Ignored if ``slide_type`` is specified. |
|
platform (str, optional): Flag indicating the imaging platform (e.g. CODEX, Vectra, etc.). |
|
Defaults to ``None``. Ignored if ``slide_type`` is specified. |
|
tma (bool, optional): Flag indicating whether the image is a tissue microarray (TMA). |
|
Defaults to ``False``. Ignored if ``slide_type`` is specified. |
|
rgb (bool, optional): Flag indicating whether the image is in RGB color. |
|
Defaults to ``None``. Ignored if ``slide_type`` is specified. |
|
volumetric (bool, optional): Flag indicating whether the image is volumetric. |
|
Defaults to ``None``. Ignored if ``slide_type`` is specified. |
|
time_series (bool, optional): Flag indicating whether the image is a time series. |
|
Defaults to ``None``. Ignored if ``slide_type`` is specified. |
|
counts (anndata.AnnData): object containing counts matrix associated with image quantification |
|
""" |
|
|
|
def __init__( |
|
self, |
|
filepath, |
|
name=None, |
|
masks=None, |
|
tiles=None, |
|
labels=None, |
|
backend=None, |
|
slide_type=None, |
|
stain=None, |
|
platform=None, |
|
tma=None, |
|
rgb=None, |
|
volumetric=None, |
|
time_series=None, |
|
counts=None, |
|
dtype=None, |
|
): |
|
|
|
assert masks is None or isinstance( |
|
masks, dict |
|
), f"mask are of type {type(masks)} but must be type dict" |
|
if labels: |
|
assert all( |
|
[isinstance(key, str) for key in labels.keys()] |
|
), f"Input label keys are of types {[type(k) for k in labels.keys()]}. All label keys must be of type str." |
|
assert all( |
|
[ |
|
isinstance(val, (str, np.ndarray)) |
|
or np.issubdtype(type(val), np.number) |
|
or np.issubdtype(type(val), np.bool_) |
|
for val in labels.values() |
|
] |
|
), ( |
|
f"Input label vals are of types {[type(v) for v in labels.values()]}. " |
|
f"All label values must be of type str or np.ndarray or a number (i.e. a subdtype of np.number) " |
|
) |
|
assert tiles is None or ( |
|
isinstance(tiles, list) |
|
and all([isinstance(tile, pathml.core.Tile) for tile in tiles]) |
|
), f"tiles are of type {type(tiles)} but must be a list of objects of type pathml.core.tiles.Tile" |
|
assert slide_type is None or isinstance( |
|
slide_type, pathml.core.SlideType |
|
), f"slide_type is of type {type(slide_type)} but must be of type pathml.core.types.SlideType" |
|
assert backend is None or ( |
|
isinstance(backend, str) |
|
and backend.lower() in {"openslide", "bioformats", "dicom", "h5path"} |
|
), f"backend {backend} must be one of ['OpenSlide', 'BioFormats', 'DICOM', 'h5path'] (case-insensitive)." |
|
assert counts is None or isinstance( |
|
counts, anndata.AnnData |
|
), f"counts is if type {type(counts)} but must be of type anndata.AnnData" |
|
|
|
|
|
if not slide_type and any([stain, platform, tma, rgb, volumetric, time_series]): |
|
stain_type_dict = { |
|
"stain": stain, |
|
"platform": platform, |
|
"tma": tma, |
|
"rgb": rgb, |
|
"volumetric": volumetric, |
|
"time_series": time_series, |
|
} |
|
|
|
stain_type_dict = { |
|
key: val for key, val in stain_type_dict.items() if val is not None |
|
} |
|
if stain_type_dict: |
|
slide_type = pathml.core.slide_types.SlideType(**stain_type_dict) |
|
|
|
|
|
if name is None and filepath is not None: |
|
name = Path(filepath).name |
|
|
|
_load_from_h5path = False |
|
|
|
if backend: |
|
|
|
backend = backend.lower() |
|
else: |
|
|
|
backend = infer_backend(filepath) |
|
if backend == "h5path": |
|
_load_from_h5path = True |
|
|
|
if backend.lower() == "openslide": |
|
backend_obj = pathml.core.OpenSlideBackend(filepath) |
|
elif backend.lower() == "bioformats": |
|
backend_obj = pathml.core.BioFormatsBackend(filepath, dtype) |
|
elif backend.lower() == "dicom": |
|
backend_obj = pathml.core.DICOMBackend(filepath) |
|
elif backend.lower() == "h5path": |
|
backend_obj = None |
|
else: |
|
raise ValueError(f"invalid backend: {repr(backend)}.") |
|
|
|
self._filepath = filepath if filepath else None |
|
self.backend = backend |
|
self.slide = backend_obj if backend_obj else None |
|
self.name = name |
|
self.labels = labels |
|
self.slide_type = slide_type |
|
|
|
if _load_from_h5path: |
|
|
|
with h5py.File(filepath, "r") as f: |
|
self.h5manager = h5pathManager(h5path=f) |
|
self.name = self.h5manager.h5["fields"].attrs["name"] |
|
self.labels = { |
|
key: val |
|
for key, val in self.h5manager.h5["fields"]["labels"].attrs.items() |
|
} |
|
|
|
if not self.labels: |
|
self.labels = None |
|
slide_type = { |
|
key: val |
|
for key, val in self.h5manager.h5["fields"]["slide_type"].attrs.items() |
|
if val is not None |
|
} |
|
if slide_type: |
|
self.slide_type = SlideType(**slide_type) |
|
else: |
|
self.h5manager = h5pathManager(slidedata=self) |
|
|
|
self.masks = pathml.core.Masks(h5manager=self.h5manager, masks=masks) |
|
self.tiles = pathml.core.Tiles(h5manager=self.h5manager, tiles=tiles) |
|
|
|
def __repr__(self): |
|
out = [] |
|
out.append(f"SlideData(name={repr(self.name)}") |
|
out.append(f"slide_type={repr(self.slide_type)}") |
|
if self._filepath: |
|
out.append(f"filepath='{self._filepath}'") |
|
if self.backend: |
|
out.append(f"backend={repr(self.backend)}") |
|
out.append(f"image shape: {self.shape}") |
|
try: |
|
nlevels = self.slide.level_count |
|
|
|
except Exception: |
|
nlevels = 1 |
|
out.append(f"number of levels: {nlevels}") |
|
out.append(repr(self.tiles)) |
|
out.append(repr(self.masks)) |
|
if self.tiles: |
|
out.append(f"tile_shape={eval(self.tiles.tile_shape)}") |
|
if self.labels: |
|
out.append( |
|
f"{len(self.labels)} labels: {reprlib.repr(list(self.labels.keys()))}" |
|
) |
|
else: |
|
out.append("labels=None") |
|
if self.counts: |
|
out.append(f"counts matrix of shape {self.counts.shape}") |
|
else: |
|
out.append("counts=None") |
|
|
|
out = ",\n\t".join(out) |
|
out += ")" |
|
return out |
|
|
|
def run( |
|
self, |
|
pipeline, |
|
distributed=True, |
|
client=None, |
|
tile_size=256, |
|
tile_stride=None, |
|
level=0, |
|
tile_pad=False, |
|
overwrite_existing_tiles=False, |
|
write_dir=None, |
|
**kwargs, |
|
): |
|
""" |
|
Run a preprocessing pipeline on SlideData. |
|
Tiles are generated by calling self.generate_tiles() and pipeline is applied to each tile. |
|
|
|
Args: |
|
pipeline (pathml.preprocessing.pipeline.Pipeline): Preprocessing pipeline. |
|
distributed (bool): Whether to distribute model using client. Defaults to True. |
|
client: dask.distributed client |
|
tile_size (int, optional): Size of each tile. Defaults to 256px |
|
tile_stride (int, optional): Stride between tiles. If ``None``, uses ``tile_stride = tile_size`` |
|
for non-overlapping tiles. Defaults to ``None``. |
|
level (int, optional): Level to extract tiles from. Defaults to ``None``. |
|
tile_pad (bool): How to handle chunks on the edges. If ``True``, these edge chunks will be zero-padded |
|
symmetrically and yielded with the other chunks. If ``False``, incomplete edge chunks will be ignored. |
|
Defaults to ``False``. |
|
overwrite_existing_tiles (bool): Whether to overwrite existing tiles. If ``False``, running a pipeline will |
|
fail if ``tiles is not None``. Defaults to ``False``. |
|
write_dir (str): Path to directory to write the processed slide to. The processed SlideData object |
|
will be written to the directory immediately after the pipeline has completed running. |
|
The filepath will default to "<write_dir>/<slide.name>.h5path. Defaults to ``None``. |
|
**kwargs: Other arguments passed through to ``generate_tiles()`` method of the backend. |
|
""" |
|
assert isinstance( |
|
pipeline, pathml.preprocessing.pipeline.Pipeline |
|
), f"pipeline is of type {type(pipeline)} but must be of type pathml.preprocessing.pipeline.Pipeline" |
|
assert self.slide is not None, "cannot run pipeline because self.slide is None" |
|
|
|
if len(self.tiles) != 0: |
|
|
|
if not overwrite_existing_tiles: |
|
raise Exception( |
|
"Slide already has tiles. Running the pipeline will overwrite the existing tiles. Use overwrite_existing_tiles=True to force overwriting existing tiles." |
|
) |
|
else: |
|
|
|
for tile_key in self.tiles.keys: |
|
self.tiles.remove(tile_key) |
|
|
|
|
|
|
|
|
|
if tile_stride is None: |
|
tile_stride = tile_size |
|
elif isinstance(tile_stride, int): |
|
tile_stride = (tile_stride, tile_stride) |
|
|
|
self.h5manager.h5["tiles"].attrs["tile_stride"] = tile_stride |
|
|
|
shutdown_after = False |
|
|
|
if distributed: |
|
if client is None: |
|
client = dask.distributed.Client() |
|
shutdown_after = True |
|
logger.info( |
|
f"creating a default distributed.Client(): {client.scheduler_info()}" |
|
) |
|
|
|
|
|
processed_tile_futures = [] |
|
|
|
for tile in self.generate_tiles( |
|
level=level, |
|
shape=tile_size, |
|
stride=tile_stride, |
|
pad=tile_pad, |
|
**kwargs, |
|
): |
|
if not tile.slide_type: |
|
tile.slide_type = self.slide_type |
|
|
|
|
|
big_future = client.scatter(tile) |
|
f = client.submit(pipeline.apply, big_future) |
|
processed_tile_futures.append(f) |
|
|
|
|
|
for future, tile in dask.distributed.as_completed( |
|
processed_tile_futures, with_results=True |
|
): |
|
self.tiles.add(tile) |
|
|
|
if shutdown_after: |
|
client.shutdown() |
|
|
|
else: |
|
for tile in self.generate_tiles( |
|
level=level, |
|
shape=tile_size, |
|
stride=tile_stride, |
|
pad=tile_pad, |
|
**kwargs, |
|
): |
|
if not tile.slide_type: |
|
tile.slide_type = self.slide_type |
|
pipeline.apply(tile) |
|
self.tiles.add(tile) |
|
|
|
if write_dir: |
|
self.write(Path(write_dir) / f"{self.name}.h5path") |
|
|
|
@property |
|
def shape(self): |
|
""" |
|
Convenience method for getting the image shape. |
|
Calling ``wsi.shape`` is equivalent to calling ``wsi.slide.get_image_shape()`` with default arguments. |
|
|
|
Returns: |
|
Tuple[int, int]: Shape of image (H, W) |
|
""" |
|
if self.backend == "h5path": |
|
return tuple(self.h5manager.h5["fields"].attrs["shape"]) |
|
else: |
|
return self.slide.get_image_shape() |
|
|
|
def extract_region(self, location, size, *args, **kwargs): |
|
""" |
|
Extract a region of the image. |
|
This is a convenience method which passes arguments through to the ``extract_region()`` method of whichever |
|
backend is in use. Refer to documentation for each backend. |
|
|
|
Args: |
|
location (Tuple[int, int]): Location of top-left corner of tile (i, j) |
|
size (Union[int, Tuple[int, int]]): Size of each tile. May be a tuple of (height, width) or a |
|
single integer, in which case square tiles of that size are generated. |
|
*args: positional arguments passed through to ``extract_region()`` method of the backend. |
|
**kwargs: keyword arguments passed through to ``extract_region()`` method of the backend. |
|
|
|
Returns: |
|
np.ndarray: image at the specified region |
|
""" |
|
if self.slide is None: |
|
raise ValueError( |
|
"Cannot call `.extract_region()` because no slide is specified. " |
|
"If already tiled, access `.tiles` directly instead" |
|
) |
|
|
|
return np.squeeze(self.slide.extract_region(location, size, *args, **kwargs)) |
|
|
|
def generate_tiles(self, shape=3000, stride=None, pad=False, **kwargs): |
|
""" |
|
Generator over Tile objects containing regions of the image. |
|
Calls ``generate_tiles()`` method of the backend. |
|
Tries to add the corresponding slide-level masks to each tile, if possible. |
|
Adds slide-level labels to each tile, if possible. |
|
|
|
Args: |
|
shape (int or tuple(int)): Size of each tile. May be a tuple of (height, width) or a single integer, |
|
in which case square tiles of that size are generated. Defaults to 256px. |
|
stride (int): stride between chunks. If ``None``, uses ``stride = size`` for non-overlapping chunks. |
|
Defaults to ``None``. |
|
pad (bool): How to handle tiles on the edges. If ``True``, these edge tiles will be zero-padded |
|
and yielded with the other chunks. If ``False``, incomplete edge chunks will be ignored. |
|
Defaults to ``False``. |
|
**kwargs: Other arguments passed through to ``generate_tiles()`` method of the backend. |
|
|
|
Yields: |
|
pathml.core.tile.Tile: Extracted Tile object |
|
""" |
|
for tile in self.slide.generate_tiles(shape, stride, pad, **kwargs): |
|
|
|
|
|
if self.masks is not None and tile.coords is not None: |
|
|
|
|
|
if not pad: |
|
i, j = tile.coords |
|
di, dj = tile.image.shape[0:2] |
|
|
|
|
|
|
|
|
|
|
|
assert ( |
|
len(tile.masks) == 0 |
|
), "tile yielded from backend already has mask. slide_data.generate_tiles is trying to overwrite it" |
|
|
|
tile_slices = [slice(i, i + di), slice(j, j + dj)] |
|
tile.masks = self.masks.slice(tile_slices) |
|
|
|
|
|
if self.labels is not None: |
|
tile.labels = self.labels |
|
|
|
|
|
if tile.slide_type is None: |
|
tile.slide_type = self.slide_type |
|
|
|
yield tile |
|
|
|
def plot(self, ax=None): |
|
""" |
|
View a thumbnail of the image, using matplotlib. |
|
Not supported by all backends. |
|
|
|
Args: |
|
ax: matplotlib axis object on which to plot the thumbnail. Optional. |
|
""" |
|
try: |
|
thumbnail = self.slide.get_thumbnail(size=(500, 500)) |
|
|
|
except Exception: |
|
if not self.slide: |
|
raise NotImplementedError( |
|
"Plotting only supported via backend, but SlideData has no backend." |
|
) |
|
else: |
|
raise NotImplementedError( |
|
f"plotting not supported for slide_backend={self.slide.__class__.__name__}" |
|
) |
|
if ax is None: |
|
ax = plt.gca() |
|
ax.imshow(thumbnail) |
|
if self.name: |
|
ax.set_title(self.name) |
|
ax.axis("off") |
|
|
|
@property |
|
def counts(self): |
|
return self.tiles.h5manager.counts if self.tiles.h5manager else None |
|
|
|
@counts.setter |
|
def counts(self, value): |
|
if self.tiles.h5manager: |
|
assert value is None or isinstance( |
|
value, anndata.AnnData |
|
), f"cannot set counts with obj of type {type(value)}. Must be Anndata" |
|
self.tiles.h5manager.counts = value |
|
else: |
|
raise AttributeError( |
|
"cannot assign counts slidedata contains no tiles, first generate tiles" |
|
) |
|
|
|
def write(self, path): |
|
""" |
|
Write contents to disk in h5path format. |
|
|
|
Args: |
|
path (Union[str, bytes, os.PathLike]): path to file to be written |
|
""" |
|
path = Path(path) |
|
pathdir = Path(os.path.dirname(path)) |
|
pathdir.mkdir(parents=True, exist_ok=True) |
|
with h5py.File(path, "w") as f: |
|
for ds in self.h5manager.h5.keys(): |
|
self.h5manager.h5.copy(ds, f) |
|
if self.counts: |
|
pathml.core.utils.writecounts(f["counts"], self.counts) |
|
|
|
|
|
class HESlide(SlideData): |
|
""" |
|
Convenience class to load a SlideData object for H&E slides. |
|
Passes through all arguments to ``SlideData()``, along with ``slide_type = types.HE`` flag. |
|
Refer to :class:`~pathml.core.slide_data.SlideData` for full documentation. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
kwargs["slide_type"] = pathml.core.types.HE |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
class MultiparametricSlide(SlideData): |
|
""" |
|
Convenience class to load a SlideData object for multiparametric immunofluorescence slides. |
|
Passes through all arguments to ``SlideData()``, along with ``slide_type = types.IF`` flag and default ``backend = "bioformats"``. |
|
Refer to :class:`~pathml.core.slide_data.SlideData` for full documentation. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
kwargs["slide_type"] = pathml.core.types.IF |
|
if "backend" not in kwargs: |
|
kwargs["backend"] = "bioformats" |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
class IHCSlide(SlideData): |
|
""" |
|
Convenience class to load a SlideData object for IHC slides. |
|
Passes through all arguments to ``SlideData()``, along with ``slide_type = types.IHC`` flag. |
|
Refer to :class:`~pathml.core.slide_data.SlideData` for full documentation. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
kwargs["slide_type"] = pathml.core.types.IHC |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
class VectraSlide(SlideData): |
|
""" |
|
Convenience class to load a SlideData object for Vectra (Polaris) slides. |
|
Passes through all arguments to ``SlideData()``, along with ``slide_type = types.Vectra`` flag and default ``backend = "bioformats"``. |
|
Refer to :class:`~pathml.core.slide_data.SlideData` for full documentation. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
kwargs["slide_type"] = pathml.core.types.Vectra |
|
if "backend" not in kwargs: |
|
kwargs["backend"] = "bioformats" |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
class CODEXSlide(SlideData): |
|
""" |
|
Convenience class to load a SlideData object from Akoya Biosciences CODEX format. |
|
Passes through all arguments to ``SlideData()``, along with ``slide_type = types.CODEX`` flag and default ``backend = "bioformats"``. |
|
Refer to :class:`~pathml.core.slide_data.SlideData` for full documentation. |
|
|
|
# TODO: |
|
hierarchical biaxial gating (flow-style analysis) |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
kwargs["slide_type"] = pathml.core.types.CODEX |
|
if "backend" not in kwargs: |
|
kwargs["backend"] = "bioformats" |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
pathmlext = {".h5", ".h5path"} |
|
|
|
openslideext = { |
|
".svs", |
|
".tif", |
|
".tiff", |
|
".ndpi", |
|
".vms", |
|
".vmu", |
|
".scn", |
|
".mrxs", |
|
".svslide", |
|
".bif", |
|
} |
|
|
|
bioformatsext = { |
|
".tiff", |
|
".tif", |
|
".sld", |
|
".aim", |
|
".al3d", |
|
".gel", |
|
".am", |
|
".amiramesh", |
|
".grey", |
|
".hx", |
|
".labels", |
|
".cif", |
|
".img", |
|
".hdr", |
|
".sif", |
|
".png", |
|
".afi", |
|
".htd", |
|
".pnl", |
|
".avi", |
|
".arf", |
|
".exp", |
|
".spc", |
|
".sdt", |
|
".xml", |
|
".1sc", |
|
".pic", |
|
".raw", |
|
".scn", |
|
".ims", |
|
".img", |
|
".cr2", |
|
".crw", |
|
".ch5", |
|
".c01", |
|
".dib", |
|
".vsi", |
|
".wpi", |
|
".dv", |
|
".r3d", |
|
".rcpnl", |
|
".eps", |
|
".epsi", |
|
".ps", |
|
".fits", |
|
".dm3", |
|
".dm4", |
|
".dm2", |
|
".vff", |
|
".naf", |
|
".his", |
|
".i2i", |
|
".ics", |
|
".ids", |
|
".fff", |
|
".seq", |
|
".ipw", |
|
".hed", |
|
".mod", |
|
".liff", |
|
".obf", |
|
".msr", |
|
".xdce", |
|
".frm", |
|
".inr", |
|
".hdr", |
|
".ipl", |
|
".ipm", |
|
".dat", |
|
".par", |
|
".jp2", |
|
".j2k", |
|
".jpf", |
|
".jpk", |
|
".jpx", |
|
".klb", |
|
".xv", |
|
".bip", |
|
".fli", |
|
".msr", |
|
".lei", |
|
".lif", |
|
".scn", |
|
".sxm", |
|
".l2d", |
|
".lim", |
|
".stk", |
|
".nd", |
|
".htd", |
|
".mnc", |
|
".mrw", |
|
".mng", |
|
".stp", |
|
".mrc", |
|
".st", |
|
".ali", |
|
".map", |
|
".rec", |
|
".mrcs", |
|
".nef", |
|
".hdr", |
|
".nii", |
|
".nii.gz", |
|
".nrrd", |
|
".nhdr", |
|
".apl", |
|
".mtb", |
|
".tnb", |
|
".obsep", |
|
".oib", |
|
".oif", |
|
".oir", |
|
".ome.tiff", |
|
".ome.tif", |
|
".ome.tf2", |
|
".ome.tf8", |
|
".ome.btf", |
|
".ome.xml", |
|
".ome", |
|
".top", |
|
".pcoraw", |
|
".rec", |
|
".pcx", |
|
".pds", |
|
".im3", |
|
".qptiff", |
|
".pbm", |
|
".pgm", |
|
".ppm", |
|
".psd", |
|
".bin", |
|
".pict", |
|
".cfg", |
|
".spe", |
|
".afm", |
|
".mov", |
|
".sm2", |
|
".sm3", |
|
".xqd", |
|
".xqf", |
|
".cxd", |
|
".spi", |
|
".stk", |
|
".tga", |
|
".db", |
|
".vws", |
|
".tfr", |
|
".ffr", |
|
".zfr", |
|
".zfp", |
|
".2fl", |
|
".sld", |
|
".pr3", |
|
".dat", |
|
".hdr", |
|
".fdf", |
|
".bif", |
|
".dti", |
|
".xys", |
|
".mvd2", |
|
".acff", |
|
".wat", |
|
".bmp", |
|
".wlz", |
|
".lms", |
|
".zvi", |
|
".czi", |
|
".lsm", |
|
".mdb", |
|
} |
|
|
|
dicomext = {".dicom", ".dcm"} |
|
|