introvoyz041's picture
Migrated from GitHub
12d2e9e verified
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""
import math
from abc import abstractmethod
import cv2
import networkx as nx
import numpy as np
import pandas as pd
import skimage
import torch
if skimage.__version__ < "0.20.0": # pragma: no cover
from skimage.future import graph
else:
from skimage import graph
from skimage.color.colorconv import rgb2hed
from skimage.measure import regionprops
from skimage.segmentation import slic
from sklearn.neighbors import kneighbors_graph
from torch_geometric.utils.convert import from_networkx, to_networkx
from pathml.graph.utils import Graph, two_hop
class GraphFeatureExtractor:
"""
Extracts features from a networkx graph object.
Args:
use_weight (bool, optional): Whether to use edge weights for feature computation. Defaults to False.
alpha (float, optional): Alpha value for personalized page-rank. Defaults to 0.85.
Returns:
Dictionary of keys as feature type and values as features
"""
def __init__(self, use_weight=False, alpha=0.85):
self.use_weight = use_weight
self.feature_dict = {}
self.alpha = alpha
def get_stats(self, dct, prefix="add_pre"):
local_dict = {}
lst = list(dct.values())
local_dict[f"{prefix}_mean"] = np.mean(lst)
local_dict[f"{prefix}_median"] = np.median(lst)
local_dict[f"{prefix}_max"] = np.max(lst)
local_dict[f"{prefix}_min"] = np.min(lst)
local_dict[f"{prefix}_sum"] = np.sum(lst)
local_dict[f"{prefix}_std"] = np.std(lst)
return local_dict
def process(self, G):
if self.use_weight:
if "weight" in list(list(G.edges(data=True))[0][-1].keys()):
weight = "weight"
else: # pragma: no cover
raise ValueError(
"No edge attribute called 'weight' when use_weight is True"
)
else:
weight = None
self.feature_dict["diameter"] = nx.diameter(G)
self.feature_dict["radius"] = nx.radius(G)
self.feature_dict["assortativity_degree"] = nx.degree_assortativity_coefficient(
G
)
self.feature_dict["density"] = nx.density(G)
self.feature_dict["transitivity_undir"] = nx.transitivity(G)
self.feature_dict.update(self.get_stats(nx.hits(G)[0], prefix="hubs"))
self.feature_dict.update(self.get_stats(nx.hits(G)[1], prefix="authorities"))
self.feature_dict.update(
self.get_stats(nx.constraint(G, weight=weight), prefix="constraint")
)
self.feature_dict.update(self.get_stats(nx.core_number(G), prefix="coreness"))
self.feature_dict.update(
self.get_stats(
nx.eigenvector_centrality(G, weight=weight, max_iter=500),
prefix="egvec_centr",
)
)
self.feature_dict.update(
self.get_stats(
{node: val for (node, val) in G.degree(weight=weight)}, prefix="degree"
)
)
self.feature_dict.update(
self.get_stats(
nx.pagerank(G, alpha=self.alpha), prefix="personalized_pgrank"
)
)
return self.feature_dict
class BaseGraphBuilder:
"""Base interface class for graph building.
Args:
nr_annotation_classes (int): Number of classes in annotation. Used only if setting node labels.
annotation_background_class (int): Background class label in annotation. Used only if setting node labels.
add_loc_feats (bool): Flag to include location-based features (ie normalized centroids) in node feature
representation. Defaults to False.
return_networkx (bool): Whether to return as a networkx graph object. Deafults to returning a Pytorvh Geometric
Data object.
References:
[1] https://github.com/BiomedSciAI/histocartography/tree/main with an AGPL-3.0 license (https://www.gnu.org/licenses/)
[2] Jaume, G., Pati, P., Anklin, V., Foncubierta, A. and Gabrani, M., 2021, September.
Histocartography: A toolkit for graph analytics in digital pathology.
In MICCAI Workshop on Computational Pathology (pp. 117-128). PMLR.
"""
def __init__(
self,
nr_annotation_classes: int = 5,
annotation_background_class=None,
add_loc_feats=False,
return_networkx=False,
**kwargs,
):
"""Base Graph Builder constructor."""
self.nr_annotation_classes = nr_annotation_classes
self.annotation_background_class = annotation_background_class
self.add_loc_feats = add_loc_feats
self.return_networkx = return_networkx
super().__init__(**kwargs)
def process( # type: ignore[override]
self, instance_map, features=None, annotation=None, target=None
):
"""Generates a graph from a given instance_map and features"""
# add nodes
self.num_nodes = features.shape[0]
# add image size as graph data
image_size = (instance_map.shape[1], instance_map.shape[0]) # (x, y)
# get instance centroids
self.centroids = self._get_node_centroids(instance_map)
# add node content
if features is not None:
node_features = self._compute_node_features(features, image_size)
else:
node_features = None
if annotation is not None:
node_labels = self._set_node_labels(annotation, self.centroids.shape[0])
else:
node_labels = None
# build edges
edges = self._build_topology(instance_map)
# compute edge features
edge_features = self._compute_edge_features(edges)
# make torch geometric data object
graph = Graph(
node_centroids=self.centroids,
node_features=node_features,
edge_index=edges,
edge_features=edge_features,
node_labels=node_labels,
target=torch.tensor(target) if target is not None else None,
)
if self.return_networkx:
node_attrs = [
"node_centroids",
"node_features" if node_features is not None else None,
"node_labels" if node_labels is not None else None,
]
node_attrs = list(filter(lambda item: item is not None, node_attrs))
edge_attrs = ["edge_features" if edge_features is not None else None]
edge_attrs = list(filter(lambda item: item is not None, edge_attrs))
graph_attrs = ["target" if target is not None else None]
graph_attrs = list(filter(lambda item: item is not None, graph_attrs))
return to_networkx(
graph,
node_attrs=node_attrs,
edge_attrs=edge_attrs,
graph_attrs=graph_attrs,
)
else:
return graph
def process_with_centroids(
self, centroids, features=None, image_size=None, annotation=None, target=None
):
"""Generates a graph from a given node centroids and features"""
self.centroids = centroids
# add nodes
self.num_nodes = self.centroids.shape[0]
# add node content
if features is not None:
node_features = self._compute_node_features(features, image_size)
else:
node_features = None
if annotation is not None:
node_labels = self._set_node_labels(annotation, self.num_nodes)
else:
node_labels = None
# build edges
edges = self._build_topology(None)
# compute edge features
edge_features = self._compute_edge_features(edges)
# make torch geometric data object
graph = Graph(
node_centroids=self.centroids,
node_features=node_features,
edge_index=edges,
node_labels=node_labels,
target=torch.tensor(target) if target is not None else None,
)
if self.return_networkx:
node_attrs = [
"node_centroids",
"node_features" if node_features is not None else None,
"node_labels" if node_labels is not None else None,
]
node_attrs = list(filter(lambda item: item is not None, node_attrs))
edge_attrs = ["edge_features" if edge_features is not None else None]
edge_attrs = list(filter(lambda item: item is not None, edge_attrs))
graph_attrs = ["target" if target is not None else None]
graph_attrs = list(filter(lambda item: item is not None, graph_attrs))
return to_networkx(
graph,
node_attrs=node_attrs,
edge_attrs=edge_attrs,
graph_attrs=graph_attrs,
)
else:
return graph
def _get_node_centroids(self, instance_map):
"""Get the centroids of the graphs"""
regions = regionprops(instance_map)
centroids = np.empty((len(regions), 2))
for i, region in enumerate(regions):
center_y, center_x = region.centroid # (y, x)
center_x = int(round(center_x))
center_y = int(round(center_y))
centroids[i, 0] = center_x
centroids[i, 1] = center_y
return torch.tensor(centroids)
def _compute_node_features(self, features, image_size):
"""Set the provided node features"""
if not torch.is_tensor(features):
features = torch.FloatTensor(features)
if not self.add_loc_feats:
return features
elif self.add_loc_feats and image_size is not None:
# compute normalized centroid features
normalized_centroids = torch.empty_like(self.centroids) # (x, y)
normalized_centroids[:, 0] = self.centroids[:, 0] / image_size[0]
normalized_centroids[:, 1] = self.centroids[:, 1] / image_size[1]
if features.ndim == 3:
normalized_centroids = normalized_centroids.unsqueeze(dim=1).repeat(
1, features.shape[1], 1
)
concat_dim = 2
elif features.ndim == 2:
concat_dim = 1
concat_features = torch.cat(
(features, normalized_centroids),
dim=concat_dim,
)
return concat_features
else: # pragma: no cover
raise ValueError(
"Please provide image size to add the normalized centroid to the node features."
)
@abstractmethod
def _set_node_labels(self, instance_map, annotation):
"""Set the node labels of the graphs"""
@abstractmethod
def _compute_edge_features(self, edges):
"""Set the provided edge features"""
@abstractmethod
def _build_topology(self, instance_map):
"""Generate the graph topology from the provided instance_map"""
class KNNGraphBuilder(BaseGraphBuilder):
"""
k-Nearest Neighbors Graph class for graph building.
Args:
k (int, optional): Number of neighbors. Defaults to 5.
thresh (int, optional): Maximum allowed distance between 2 nodes. Defaults to None (no thresholding).
Returns:
A pathml.graph.utils.Graph object containing node and edge information.
References:
[1] https://github.com/BiomedSciAI/histocartography/tree/main with an AGPL-3.0 license (https://www.gnu.org/licenses/)
[2] Jaume, G., Pati, P., Anklin, V., Foncubierta, A. and Gabrani, M., 2021, September.
Histocartography: A toolkit for graph analytics in digital pathology.
In MICCAI Workshop on Computational Pathology (pp. 117-128). PMLR.
"""
def __init__(self, k=5, thresh=None, **kwargs):
"""Create a graph builder that uses the (thresholded) kNN algorithm to define the graph topology."""
self.k = k
self.thresh = thresh
super().__init__(**kwargs)
def _set_node_labels(self, annotation, num_nodes):
"""Set the node labels of the graphs using annotation"""
assert (
annotation.shape[0] == num_nodes
), "Number of annotations do not match number of nodes"
return annotation
def _build_topology(self, instance_map):
"""Build topology using (thresholded) kNN"""
# build kNN adjacency
adjacency = kneighbors_graph(
self.centroids,
self.k,
mode="distance",
include_self=False,
metric="euclidean",
).toarray()
# filter edges that are too far (ie larger than thresh)
if self.thresh is not None:
adjacency[adjacency > self.thresh] = 0
edge_list = torch.tensor(np.array(np.nonzero(adjacency)))
return edge_list
class RAGGraphBuilder(BaseGraphBuilder):
"""
Region Adjacency Graph builder class.
Args:
kernel_size (int, optional): Size of the kernel to detect connectivity. Defaults to 5.
hops (int, optional): Number of hops in a multi-hop neighbourhood. Defaults to 1.
Returns:
A pathml.graph.utils.Graph object containing node and edge information.
References:
[1] https://github.com/BiomedSciAI/histocartography/tree/main with an AGPL-3.0 license (https://www.gnu.org/licenses/)
[2] Jaume, G., Pati, P., Anklin, V., Foncubierta, A. and Gabrani, M., 2021, September.
Histocartography: A toolkit for graph analytics in digital pathology.
In MICCAI Workshop on Computational Pathology (pp. 117-128). PMLR.
"""
def __init__(self, kernel_size=3, hops=1, **kwargs):
"""Create a graph builder that uses a provided kernel size to detect connectivity"""
assert hops > 0 and isinstance(
hops, int
), f"Invalid hops {hops} ({type(hops)}). Must be integer >= 0"
self.kernel_size = kernel_size
self.hops = hops
super().__init__(**kwargs)
def _set_node_labels(self, annotation, num_nodes):
"""Set the node labels of the graphs using annotation"""
assert (
annotation.shape[0] == num_nodes
), "Number of annotations do not match number of nodes"
return annotation
def _build_topology(self, instance_map):
"""Create the graph topology from the instance connectivty in the instance_map"""
if instance_map is None: # pragma: no cover
raise ValueError("Instance map cannot be None for RAG Graph Building")
regions = regionprops(instance_map)
instance_ids = torch.empty(len(regions), dtype=torch.uint8)
kernel = np.ones((self.kernel_size, self.kernel_size), np.uint8)
adjacency = np.zeros(shape=(len(instance_ids), len(instance_ids)))
for instance_id in np.arange(1, len(instance_ids) + 1):
mask = (instance_map == instance_id).astype(np.uint8)
dilation = cv2.dilate(mask, kernel, iterations=1)
boundary = dilation - mask
idx = pd.unique(instance_map[boundary.astype(bool)])
instance_id -= 1 # because instance_map id starts from 1
idx -= 1 # because instance_map id starts from 1
adjacency[instance_id, idx] = 1
edge_list = torch.tensor(np.array(np.nonzero(adjacency)))
for _ in range(self.hops - 1):
edge_list = two_hop(edge_list, self.num_nodes)
return edge_list
class MSTGraphBuilder(BaseGraphBuilder):
"""
Minimum Spanning Tree Graph class for graph building.
Args:
k (int, optional): Number of neighbors. Defaults to 5.
thresh (int, optional): Maximum allowed distance between 2 nodes. Defaults to None (no thresholding).
Returns:
A pathml.graph.utils.Graph object containing node and edge information.
"""
def __init__(self, k=5, thresh=None, **kwargs):
"""Create a graph builder that uses the (thresholded) kNN algorithm to define the graph topology."""
self.k = k
self.thresh = thresh
super().__init__(**kwargs)
def _set_node_labels(self, annotation, num_nodes):
"""Set the node labels of the graphs using annotation"""
assert (
annotation.shape[0] == num_nodes
), "Number of annotations do not match number of nodes"
return annotation
def _build_topology(self, annotation):
"""Build topology using (thresholded) kNN"""
# build kNN adjacency
adjacency = kneighbors_graph(
self.centroids,
self.k,
mode="distance",
include_self=False,
metric="euclidean",
).toarray()
# filter edges that are too far (ie larger than thresh)
if self.thresh is not None:
adjacency[adjacency > self.thresh] = 0
adjacency_nz = adjacency.nonzero()
num_edges = np.array(adjacency_nz).T.shape[0]
edges_and_weights = np.hstack(
[
np.transpose(adjacency_nz),
np.reshape(adjacency[adjacency_nz], (num_edges, 1)),
]
)
knn_graph = nx.Graph()
for i, j, weight in edges_and_weights:
knn_graph.add_edge(i, j, weight=weight)
mst_graph = nx.minimum_spanning_tree(knn_graph, weight="weight")
graph = from_networkx(mst_graph)
edge_list = graph.edge_index
return edge_list
class SuperpixelExtractor:
"""Helper class to extract superpixels from images
Args:
nr_superpixels (None, int): The number of super pixels before any merging.
superpixel_size (None, int): The size of super pixels before any merging.
max_nr_superpixels (int, optional): Upper bound for the number of super pixels.
Useful when providing a superpixel size.
blur_kernel_size (float, optional): Size of the blur kernel. Defaults to 0.
compactness (int, optional): Compactness of the superpixels. Defaults to 30.
max_iterations (int, optional): Number of iterations of the slic algorithm. Defaults to 10.
threshold (float, optional): Connectivity threshold. Defaults to 0.03.
connectivity (int, optional): Connectivity for merging graph. Defaults to 2.
downsampling_factor (int, optional): Downsampling factor from the input image
resolution. Defaults to 1.
References:
[1] https://github.com/BiomedSciAI/histocartography/tree/main with an AGPL-3.0 license (https://www.gnu.org/licenses/)
[2] Jaume, G., Pati, P., Anklin, V., Foncubierta, A. and Gabrani, M., 2021, September.
Histocartography: A toolkit for graph analytics in digital pathology.
In MICCAI Workshop on Computational Pathology (pp. 117-128). PMLR.
"""
def __init__(
self,
nr_superpixels: int = None,
superpixel_size: int = None,
max_nr_superpixels=None,
blur_kernel_size=1,
compactness=20,
max_iterations=10,
threshold=0.03,
connectivity=2,
color_space="rgb",
downsampling_factor=1,
**kwargs,
):
"""Abstract class that extracts superpixels from RGB Images"""
assert (nr_superpixels is None and superpixel_size is not None) or (
nr_superpixels is not None and superpixel_size is None
), "Provide value for either nr_superpixels or superpixel_size"
self.nr_superpixels = nr_superpixels
self.superpixel_size = superpixel_size
self.max_nr_superpixels = max_nr_superpixels
self.blur_kernel_size = blur_kernel_size
self.compactness = compactness
self.max_iterations = max_iterations
self.threshold = threshold
self.connectivity = connectivity
self.color_space = color_space
self.downsampling_factor = downsampling_factor
super().__init__(**kwargs)
def process(self, input_image, tissue_mask=None): # type: ignore[override]
"""Return the superpixels of a given input image"""
original_height, original_width, _ = input_image.shape
if self.downsampling_factor != 1:
input_image = self._downsample(input_image, self.downsampling_factor)
if tissue_mask is not None:
tissue_mask = self._downsample(tissue_mask, self.downsampling_factor)
superpixels = self._extract_superpixels(
image=input_image, tissue_mask=tissue_mask
)
if self.downsampling_factor != 1:
superpixels = self._upsample(superpixels, original_height, original_width)
return superpixels
@abstractmethod
def _extract_superpixels(self, image, tissue_mask=None):
"""Perform the superpixel extraction"""
@staticmethod
def _downsample(image, downsampling_factor):
"""Downsample an input image with a given downsampling factor"""
height, width = image.shape[0], image.shape[1]
new_height = math.floor(height / downsampling_factor)
new_width = math.floor(width / downsampling_factor)
downsampled_image = cv2.resize(
image, (new_width, new_height), interpolation=cv2.INTER_NEAREST
)
return downsampled_image
@staticmethod
def _upsample(image, new_height, new_width):
"""Upsample an input image to a speficied new height and width"""
upsampled_image = cv2.resize(
image, (new_width, new_height), interpolation=cv2.INTER_NEAREST
)
return upsampled_image
class SLICSuperpixelExtractor(SuperpixelExtractor):
"""Use the SLIC algorithm to extract superpixels.
References:
[1] https://github.com/BiomedSciAI/histocartography/tree/main with an AGPL-3.0 license (https://www.gnu.org/licenses/)
[2] Jaume, G., Pati, P., Anklin, V., Foncubierta, A. and Gabrani, M., 2021, September.
Histocartography: A toolkit for graph analytics in digital pathology.
In MICCAI Workshop on Computational Pathology (pp. 117-128). PMLR.
"""
def __init__(self, **kwargs):
"""Extract superpixels with the SLIC algorithm"""
super().__init__(**kwargs)
def _get_nr_superpixels(self, image):
"""Compute the number of superpixels for initial segmentation"""
if self.superpixel_size is not None:
nr_superpixels = int(
(image.shape[0] * image.shape[1] / self.superpixel_size)
)
elif self.nr_superpixels is not None:
nr_superpixels = self.nr_superpixels
if self.max_nr_superpixels is not None:
nr_superpixels = min(nr_superpixels, self.max_nr_superpixels)
return nr_superpixels
def _extract_superpixels(self, image, *args, **kwargs):
"""Perform the superpixel extraction"""
if self.color_space == "hed":
image = rgb2hed(image)
nr_superpixels = self._get_nr_superpixels(image)
slic_args = {
"image": image,
"sigma": self.blur_kernel_size,
"n_segments": nr_superpixels,
"compactness": self.compactness,
"start_label": 1,
}
if skimage.__version__ < "0.20.0": # pragma: no cover
slic_args["max_iter"] = self.max_iterations
else:
slic_args["max_num_iter"] = self.max_iterations
superpixels = slic(**slic_args)
return superpixels
class MergedSuperpixelExtractor(SuperpixelExtractor):
"""Use the SLIC algorithm to extract superpixels and a merging function to merge superpixels
References:
[1] https://github.com/BiomedSciAI/histocartography/tree/main with an AGPL-3.0 license (https://www.gnu.org/licenses/)
[2] Jaume, G., Pati, P., Anklin, V., Foncubierta, A. and Gabrani, M., 2021, September.
Histocartography: A toolkit for graph analytics in digital pathology.
In MICCAI Workshop on Computational Pathology (pp. 117-128). PMLR.
"""
def __init__(self, **kwargs):
"""Extract superpixels with the SLIC algorithm and then merge"""
super().__init__(**kwargs)
def _get_nr_superpixels(self, image):
"""Compute the number of superpixels for initial segmentation"""
if self.superpixel_size is not None:
nr_superpixels = int(
(image.shape[0] * image.shape[1] / self.superpixel_size)
)
elif self.nr_superpixels is not None:
nr_superpixels = self.nr_superpixels
if self.max_nr_superpixels is not None:
nr_superpixels = min(nr_superpixels, self.max_nr_superpixels)
return nr_superpixels
def _extract_initial_superpixels(self, image):
"""Extract initial superpixels using SLIC"""
nr_superpixels = self._get_nr_superpixels(image)
slic_args = {
"image": image,
"sigma": self.blur_kernel_size,
"n_segments": nr_superpixels,
"compactness": self.compactness,
"start_label": 1,
}
if skimage.__version__ < "0.20.0":
slic_args["max_iter"] = self.max_iterations
else:
slic_args["max_num_iter"] = self.max_iterations
superpixels = slic(**slic_args)
return superpixels
def _merge_superpixels(self, input_image, initial_superpixels, tissue_mask=None):
"""Merge the initial superpixels to return merged superpixels"""
if tissue_mask is not None: # pragma: no cover
# Remove superpixels belonging to background or having < 10% tissue
# content
ids_initial = np.unique(initial_superpixels, return_counts=True)
ids_masked = np.unique(
tissue_mask * initial_superpixels, return_counts=True
)
ctr = 1
superpixels = np.zeros_like(initial_superpixels)
for i in range(len(ids_initial[0])):
id = ids_initial[0][i]
if id in ids_masked[0]:
idx = np.where(id == ids_masked[0])[0]
ratio = ids_masked[1][idx] / ids_initial[1][i]
if ratio >= 0.1:
superpixels[initial_superpixels == id] = ctr
ctr += 1
initial_superpixels = superpixels
# Merge superpixels within tissue region
g = self._generate_graph(input_image, initial_superpixels)
merged_superpixels = graph.merge_hierarchical(
initial_superpixels,
g,
thresh=self.threshold,
rag_copy=False,
in_place_merge=True,
merge_func=self._merging_function,
weight_func=self._weighting_function,
)
merged_superpixels += 1 # Handle regionprops that ignores all values of 0
mask = np.zeros_like(initial_superpixels)
mask[initial_superpixels != 0] = 1
merged_superpixels = merged_superpixels * mask
return merged_superpixels
@abstractmethod
def _generate_graph(self, input_image, superpixels):
"""Generate a graph based on the input image and initial superpixel segmentation."""
@abstractmethod
def _weighting_function(self, graph, src, dst, n):
"""Handle merging of nodes of a region boundary region adjacency graph."""
@abstractmethod
def _merging_function(self, graph, src, dst):
"""Call back called before merging 2 nodes."""
def _extract_superpixels(self, image, tissue_mask=None):
"""Perform superpixel extraction"""
initial_superpixels = self._extract_initial_superpixels(image)
merged_superpixels = self._merge_superpixels(
image, initial_superpixels, tissue_mask
)
return merged_superpixels, initial_superpixels
def process(self, input_image, tissue_mask=None): # type: ignore[override]
"""Return the superpixels of a given input image"""
original_height, original_width, _ = input_image.shape
if self.downsampling_factor is not None and self.downsampling_factor != 1:
input_image = self._downsample(input_image, self.downsampling_factor)
if tissue_mask is not None:
tissue_mask = self._downsample(tissue_mask, self.downsampling_factor)
merged_superpixels, initial_superpixels = self._extract_superpixels(
input_image, tissue_mask
)
if self.downsampling_factor != 1:
merged_superpixels = self._upsample(
merged_superpixels, original_height, original_width
)
initial_superpixels = self._upsample(
initial_superpixels, original_height, original_width
)
return merged_superpixels, initial_superpixels
class ColorMergedSuperpixelExtractor(MergedSuperpixelExtractor):
"""Superpixel merger based on color attibutes taken from the HACT-Net Implementation
Args:
w_hist (float, optional): Weight of the histogram features for merging. Defaults to 0.5.
w_mean (float, optional): Weight of the mean features for merging. Defaults to 0.5.
References:
[1] https://github.com/BiomedSciAI/histocartography/tree/main with an AGPL-3.0 license (https://www.gnu.org/licenses/)
[2] Jaume, G., Pati, P., Anklin, V., Foncubierta, A. and Gabrani, M., 2021, September.
Histocartography: A toolkit for graph analytics in digital pathology.
In MICCAI Workshop on Computational Pathology (pp. 117-128). PMLR.
"""
def __init__(self, w_hist: float = 0.5, w_mean: float = 0.5, **kwargs):
self.w_hist = w_hist
self.w_mean = w_mean
super().__init__(**kwargs)
def _color_features_per_channel(self, img_ch: np.ndarray) -> np.ndarray:
"""Extract color histograms from image channel"""
hist, _ = np.histogram(img_ch, bins=np.arange(0, 257, 64)) # 8 bins
return hist
def _generate_graph(self, input_image, superpixels):
"""Construct RAG graph using initial superpixel instance map"""
g = graph.RAG(superpixels, connectivity=self.connectivity)
if 0 in g.nodes:
g.remove_node(n=0) # remove background node
for n in g:
g.nodes[n].update(
{
"labels": [n],
"N": 0,
"x": np.array([0, 0, 0]),
"y": np.array([0, 0, 0]),
"r": np.array([]),
"g": np.array([]),
"b": np.array([]),
}
)
for index in np.ndindex(superpixels.shape):
current = superpixels[index]
if current == 0:
continue
g.nodes[current]["N"] += 1
g.nodes[current]["x"] += input_image[index]
g.nodes[current]["y"] = np.vstack(
(g.nodes[current]["y"], input_image[index])
)
for n in g:
g.nodes[n]["mean"] = g.nodes[n]["x"] / g.nodes[n]["N"]
g.nodes[n]["mean"] = g.nodes[n]["mean"] / np.linalg.norm(g.nodes[n]["mean"])
g.nodes[n]["y"] = np.delete(g.nodes[n]["y"], 0, axis=0)
g.nodes[n]["r"] = self._color_features_per_channel(g.nodes[n]["y"][:, 0])
g.nodes[n]["g"] = self._color_features_per_channel(g.nodes[n]["y"][:, 1])
g.nodes[n]["b"] = self._color_features_per_channel(g.nodes[n]["y"][:, 2])
g.nodes[n]["r"] = g.nodes[n]["r"] / np.linalg.norm(g.nodes[n]["r"])
g.nodes[n]["g"] = g.nodes[n]["r"] / np.linalg.norm(g.nodes[n]["g"])
g.nodes[n]["b"] = g.nodes[n]["r"] / np.linalg.norm(g.nodes[n]["b"])
for x, y, d in g.edges(data=True):
diff_mean = np.linalg.norm(g.nodes[x]["mean"] - g.nodes[y]["mean"]) / 2
diff_r = np.linalg.norm(g.nodes[x]["r"] - g.nodes[y]["r"]) / 2
diff_g = np.linalg.norm(g.nodes[x]["g"] - g.nodes[y]["g"]) / 2
diff_b = np.linalg.norm(g.nodes[x]["b"] - g.nodes[y]["b"]) / 2
diff_hist = (diff_r + diff_g + diff_b) / 3
diff = self.w_hist * diff_hist + self.w_mean * diff_mean
d["weight"] = diff
return g
def _weighting_function(self, graph, src, dst, n):
diff_mean = np.linalg.norm(graph.nodes[dst]["mean"] - graph.nodes[n]["mean"])
diff_r = np.linalg.norm(graph.nodes[dst]["r"] - graph.nodes[n]["r"]) / 2
diff_g = np.linalg.norm(graph.nodes[dst]["g"] - graph.nodes[n]["g"]) / 2
diff_b = np.linalg.norm(graph.nodes[dst]["b"] - graph.nodes[n]["b"]) / 2
diff_hist = (diff_r + diff_g + diff_b) / 3
diff = self.w_hist * diff_hist + self.w_mean * diff_mean
return {"weight": diff}
def _merging_function(self, graph, src, dst):
graph.nodes[dst]["x"] += graph.nodes[src]["x"]
graph.nodes[dst]["N"] += graph.nodes[src]["N"]
graph.nodes[dst]["mean"] = graph.nodes[dst]["x"] / graph.nodes[dst]["N"]
graph.nodes[dst]["mean"] = graph.nodes[dst]["mean"] / np.linalg.norm(
graph.nodes[dst]["mean"]
)
graph.nodes[dst]["y"] = np.vstack(
(graph.nodes[dst]["y"], graph.nodes[src]["y"])
)
graph.nodes[dst]["r"] = self._color_features_per_channel(
graph.nodes[dst]["y"][:, 0]
)
graph.nodes[dst]["g"] = self._color_features_per_channel(
graph.nodes[dst]["y"][:, 1]
)
graph.nodes[dst]["b"] = self._color_features_per_channel(
graph.nodes[dst]["y"][:, 2]
)
graph.nodes[dst]["r"] = graph.nodes[dst]["r"] / np.linalg.norm(
graph.nodes[dst]["r"]
)
graph.nodes[dst]["g"] = graph.nodes[dst]["r"] / np.linalg.norm(
graph.nodes[dst]["g"]
)
graph.nodes[dst]["b"] = graph.nodes[dst]["r"] / np.linalg.norm(
graph.nodes[dst]["b"]
)