|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import math |
|
|
|
import numpy as np |
|
import torch |
|
from skimage.measure import label, regionprops |
|
from torch_geometric.data import Data |
|
from torch_geometric.utils import remove_self_loops, to_edge_index, to_torch_csr_tensor |
|
|
|
MIN_NR_PIXELS = 50000 |
|
MAX_NR_PIXELS = 50000000 |
|
|
|
|
|
class Graph(Data): |
|
"""Constructs pytorch-geometric data object for saving and loading |
|
|
|
Args: |
|
node_centroids (torch.tensor): Coordinates of the centers of each entity (cell or tissue) in the graph |
|
node_features (torch.tensor): Computed features of each entity (cell or tissue) in the graph |
|
edge_index (torch.tensor): Edge index in sparse format between nodes in the graph |
|
node_labels (torch.tensor): Node labels of each entity (cell or tissue) in the graph. Defaults to None. |
|
target (torch.tensor): Target label if used in a supervised setting. Defaults to None. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
node_centroids, |
|
edge_index, |
|
node_features=None, |
|
node_labels=None, |
|
edge_features=None, |
|
target=None, |
|
): |
|
super().__init__() |
|
self.node_centroids = node_centroids |
|
self.node_features = node_features |
|
self.edge_index = edge_index |
|
self.node_labels = node_labels |
|
self.target = target |
|
self.edge_features = edge_features |
|
|
|
def __inc__(self, key, value, *args, **kwargs): |
|
if key == "edge_index": |
|
return self.node_centroids.size(0) |
|
elif key == "target": |
|
return 0 |
|
else: |
|
return super().__inc__(key, value, *args, **kwargs) |
|
|
|
|
|
class HACTPairData(Data): |
|
"""Constructs pytorch-geometric data object for handling both cell and tissue data. |
|
|
|
Args: |
|
x_cell (torch.tensor): Computed features of each cell in the graph |
|
edge_index_cell (torch.tensor): Edge index in sparse format between nodes in the cell graph |
|
x_tissue (torch.tensor): Computed features of each tissue in the graph |
|
edge_index_tissue (torch.tensor): Edge index in sparse format between nodes in the tissue graph |
|
assignment (torch.tensor): Assigment matrix that contains mapping between cells and tissues. |
|
target (torch.tensor): Target label if used in a supervised setting. |
|
|
|
References: |
|
Jaume, G., Pati, P., Anklin, V., Foncubierta, A. and Gabrani, M., 2021, September. |
|
Histocartography: A toolkit for graph analytics in digital pathology. |
|
In MICCAI Workshop on Computational Pathology (pp. 117-128). PMLR. |
|
""" |
|
|
|
def __init__( |
|
self, x_cell, edge_index_cell, x_tissue, edge_index_tissue, assignment, target |
|
): |
|
super().__init__() |
|
self.x_cell = x_cell |
|
self.edge_index_cell = edge_index_cell |
|
|
|
self.x_tissue = x_tissue |
|
self.edge_index_tissue = edge_index_tissue |
|
|
|
self.assignment = assignment |
|
self.target = target |
|
|
|
def __inc__(self, key, value, *args, **kwargs): |
|
if key == "edge_index_cell": |
|
return self.x_cell.size(0) |
|
if key == "edge_index_tissue": |
|
return self.x_tissue.size(0) |
|
elif key == "assignment": |
|
return self.x_tissue.size(0) |
|
elif key == "target": |
|
return 0 |
|
else: |
|
return super().__inc__(key, value, *args, **kwargs) |
|
|
|
|
|
def get_full_instance_map(wsi, patch_size, mask_name="cell"): |
|
""" |
|
Generates and returns the normalized image, cell instance map and cell centroids from pathml SlideData object |
|
|
|
Args: |
|
wsi (pathml.core.SlideData): Normalized WSI object with detected cells in the 'masks' slot |
|
patch_size (int): Patch size used for cell detection |
|
mask_name (str): Name of the mask slot storing the detected cells. Defaults to 'cell'. |
|
|
|
Returns: |
|
The image in np.unint8 format, the instance map for the entity and the instance centroids for each entity in |
|
the instance map as numpy arrays. |
|
""" |
|
|
|
x = math.ceil(wsi.shape[0] / patch_size) * patch_size |
|
y = math.ceil(wsi.shape[1] / patch_size) * patch_size |
|
image_norm = np.zeros((x, y, 3)) |
|
instance_map = np.zeros((x, y)) |
|
for tile in wsi.tiles: |
|
tx, ty = tile.coords |
|
image_norm[tx : tx + patch_size, ty : ty + patch_size] = tile.image |
|
instance_map[tx : tx + patch_size, ty : ty + patch_size] = np.squeeze( |
|
tile.masks[mask_name] |
|
)[:, :] |
|
image_norm = image_norm[: wsi.shape[0], : wsi.shape[1], :] |
|
instance_map = instance_map[: wsi.shape[0], : wsi.shape[1]] |
|
label_instance_map = label(instance_map) |
|
regions = regionprops(label_instance_map) |
|
instance_centroids = np.empty((len(regions), 2)) |
|
for i, region in enumerate(regions): |
|
center_y, center_x = region.centroid |
|
center_x = int(round(center_x)) |
|
center_y = int(round(center_y)) |
|
instance_centroids[i, 0] = center_x |
|
instance_centroids[i, 1] = center_y |
|
return image_norm.astype("uint8"), label_instance_map, instance_centroids |
|
|
|
|
|
def build_assignment_matrix(low_level_centroids, high_level_map, matrix=False): |
|
""" |
|
Builds an assignment matrix/mapping between low-level centroid locations and a high-level segmentation map |
|
|
|
Args: |
|
low_level_centroids (numpy.array): The low-level centroid coordinates in x-y plane |
|
high-level map (numpy.array): The high-level map returned from regionprops |
|
matrix (bool): Whether to return in a matrix format. If True, returns a N*L matrix where N is the number of low-level |
|
instances and L is the number of high-level instances. If False, returns this mapping in sparse format. |
|
Defaults to False. |
|
|
|
Returns: |
|
The assignment matrix as a numpy array. |
|
|
|
References: |
|
[1] https://github.com/BiomedSciAI/histocartography/tree/main |
|
[2] Jaume, G., Pati, P., Anklin, V., Foncubierta, A. and Gabrani, M., 2021, September. |
|
Histocartography: A toolkit for graph analytics in digital pathology. |
|
In MICCAI Workshop on Computational Pathology (pp. 117-128). PMLR. |
|
""" |
|
|
|
low_level_centroids = low_level_centroids.astype(int) |
|
low_to_high = high_level_map[ |
|
low_level_centroids[:, 1], low_level_centroids[:, 0] |
|
].astype(int) |
|
high_instance_ids = np.sort(np.unique(np.ravel(high_level_map))).astype(int) |
|
if 0 in high_instance_ids: |
|
high_instance_ids = np.delete(high_instance_ids, 0) |
|
assignment_matrix = np.zeros((low_level_centroids.shape[0], len(high_instance_ids))) |
|
assignment_matrix[np.arange(low_to_high.size), low_to_high - 1] = 1 |
|
if not matrix: |
|
sparse_matrix = np.nonzero(assignment_matrix) |
|
return np.array(sparse_matrix) |
|
return assignment_matrix |
|
|
|
|
|
def two_hop(edge_index, num_nodes): |
|
"""Calculates the two-hop graph. |
|
Args: |
|
edge_index (torch.tensor): The edge index in sparse form of the graph. |
|
num_nodes (int): maximum number of nodes. |
|
|
|
Returns: |
|
torch.tensor: Output edge index tensor. |
|
|
|
References: |
|
[1] https://github.com/BiomedSciAI/histocartography/tree/main |
|
[2] Jaume, G., Pati, P., Anklin, V., Foncubierta, A. and Gabrani, M., 2021, September. |
|
Histocartography: A toolkit for graph analytics in digital pathology. |
|
In MICCAI Workshop on Computational Pathology (pp. 117-128). PMLR. |
|
""" |
|
adj = to_torch_csr_tensor(edge_index, size=(num_nodes, num_nodes)) |
|
try: |
|
edge_index2, _ = to_edge_index(adj @ adj) |
|
edge_index2, _ = remove_self_loops(edge_index2) |
|
edge_index = torch.cat([edge_index, edge_index2], dim=1) |
|
except RuntimeError as e: |
|
print(e, "Computing two-hop graph manually") |
|
edge_index = two_hop_no_sparse(edge_index, num_nodes) |
|
return edge_index |
|
|
|
|
|
def two_hop_no_sparse(edge_index, num_nodes): |
|
"""Calculates the two-hop graph without using sparse tensors, in case of M1/M2 chips. |
|
Args: |
|
edge_index (torch.tensor): The edge index in sparse form of the graph (2, E) |
|
num_nodes (int): maximum number of nodes. |
|
Returns: |
|
torch.tensor: Output edge index tensor. |
|
""" |
|
|
|
two_hop_edges = [] |
|
|
|
|
|
edges = edge_index.t().tolist() |
|
|
|
|
|
for src, dest in edges: |
|
|
|
two_hop_edges.append([src, dest]) |
|
|
|
|
|
for neighbor in range(num_nodes): |
|
|
|
if [dest, neighbor] in edges: |
|
|
|
if neighbor != src: |
|
two_hop_edges.append([src, neighbor]) |
|
|
|
|
|
edge_index_two_hop = torch.tensor(two_hop_edges).t().contiguous() |
|
|
|
return edge_index_two_hop |
|
|