|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import h5py |
|
import numpy as np |
|
import torch |
|
|
|
|
|
class TileDataset(torch.utils.data.Dataset): |
|
""" |
|
PyTorch Dataset class for h5path files |
|
|
|
Each item is a tuple of (``tile_image``, ``tile_masks``, ``tile_labels``, ``slide_labels``) where: |
|
|
|
- ``tile_image`` is a torch.Tensor of shape (C, H, W) or (T, Z, C, H, W) |
|
- ``tile_masks`` is a torch.Tensor of shape (n_masks, tile_height, tile_width) |
|
- ``tile_labels`` is a dict |
|
- ``slide_labels`` is a dict |
|
|
|
This is designed to be wrapped in a PyTorch DataLoader for feeding tiles into ML models. |
|
|
|
Note that label dictionaries are not standardized, as users are free to store whatever labels they want. |
|
For that reason, PyTorch cannot automatically stack labels into batches. |
|
When creating a DataLoader from a TileDataset, it may therefore be necessary to create a custom ``collate_fn`` to |
|
specify how to create batches of labels. See: https://discuss.pytorch.org/t/how-to-use-collate-fn/27181 |
|
|
|
Args: |
|
file_path (str): Path to .h5path file on disk |
|
""" |
|
|
|
def __init__(self, file_path): |
|
self.file_path = file_path |
|
self.h5 = None |
|
with h5py.File(self.file_path, "r") as file: |
|
self.tile_shape = eval(file["tiles"].attrs["tile_shape"]) |
|
self.tile_keys = list(file["tiles"].keys()) |
|
self.dataset_len = len(self.tile_keys) |
|
self.slide_level_labels = { |
|
key: val |
|
for key, val in file["fields"]["labels"].attrs.items() |
|
if val is not None |
|
} |
|
|
|
def __len__(self): |
|
return self.dataset_len |
|
|
|
def __getitem__(self, ix): |
|
if self.h5 is None: |
|
self.h5 = h5py.File(self.file_path, "r") |
|
|
|
k = self.tile_keys[ix] |
|
|
|
tile_image = self.h5["tiles"][str(k)]["array"][:] |
|
|
|
|
|
if "masks" in self.h5["tiles"][str(k)].keys(): |
|
masks = { |
|
mask: self.h5["tiles"][str(k)]["masks"][mask][:] |
|
for mask in self.h5["tiles"][str(k)]["masks"] |
|
} |
|
else: |
|
masks = None |
|
|
|
labels = { |
|
key: val for key, val in self.h5["tiles"][str(k)]["labels"].attrs.items() |
|
} |
|
|
|
if tile_image.ndim == 3: |
|
|
|
im = tile_image.transpose(2, 0, 1) |
|
elif tile_image.ndim == 5: |
|
|
|
|
|
im = tile_image.transpose(4, 3, 2, 1, 0) |
|
else: |
|
raise NotImplementedError( |
|
f"tile image has shape {tile_image.shape}. Expecting an image with 3 dims (HWC) or 5 dims (XYZCT)" |
|
) |
|
|
|
masks = np.stack(list(masks.values()), axis=0) if masks else None |
|
|
|
return im, masks, labels, self.slide_level_labels |
|
|