introvoyz041's picture
Migrated from GitHub
12d2e9e verified
"""
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine
License: GNU GPL 2.0
"""
import numpy as np
# Utilities for ML module
import torch
from sklearn.utils.class_weight import compute_class_weight
from torch.nn import functional as F
from torch_geometric.utils import degree
from tqdm import tqdm
def scatter_sum(src, index, dim, out=None, dim_size=None):
"""
Reduces all values from the :attr:`src` tensor into :attr:`out` at the
indices specified in the :attr:`index` tensor along a given axis
:attr:`dim`.
For each value in :attr:`src`, its output index is specified by its index
in :attr:`src` for dimensions outside of :attr:`dim` and by the
corresponding value in :attr:`index` for dimension :attr:`dim`.
The applied reduction is defined via the :attr:`reduce` argument.
Args:
src: The source tensor.
index: The indices of elements to scatter.
dim: The axis along which to index. Default is -1.
out: The destination tensor.
dim_size: If `out` is not given, automatically create output with size `dim_size` at dimension `dim`.
Reference:
https://pytorch-scatter.readthedocs.io/en/latest/_modules/torch_scatter/scatter.html#scatter
"""
index = broadcast(index, src, dim)
if out is None:
size = list(src.size())
if dim_size is not None:
size[dim] = dim_size
elif index.numel() == 0:
size[dim] = 0
else:
size[dim] = int(index.max()) + 1
out = torch.zeros(size, dtype=src.dtype, device=src.device)
return out.scatter_add_(dim, index, src)
else:
return out.scatter_add_(dim, index, src)
def broadcast(src, other, dim):
"""
Broadcast tensors to match output tensor dimension.
"""
if dim < 0:
dim = other.dim() + dim
if src.dim() == 1:
for _ in range(0, dim):
src = src.unsqueeze(0)
for _ in range(src.dim(), other.dim()):
src = src.unsqueeze(-1)
src = src.expand(other.size())
return src
def get_degree_histogram(loader, edge_index_str, x_str):
"""
Returns the degree histogram to be used as input for the `deg` argument in `PNAConv`.
"""
deg_histogram = torch.zeros(1, dtype=torch.long)
for data in tqdm(loader):
d = degree(
data[edge_index_str][1], num_nodes=data[x_str].shape[0], dtype=torch.long
)
d_bincount = torch.bincount(d, minlength=deg_histogram.numel())
if d_bincount.size(0) > deg_histogram.size(0):
d_bincount[: deg_histogram.size(0)] += deg_histogram
deg_histogram = d_bincount
else:
assert d_bincount.size(0) == deg_histogram.size(0)
deg_histogram += d_bincount
return deg_histogram
def get_class_weights(loader):
"""
Returns the per-class weights to be used in weighted loss functions.
"""
ys = []
for data in tqdm(loader):
ys.append(data.target.numpy())
ys = np.array(ys).ravel()
weights = compute_class_weight("balanced", classes=np.unique(ys), y=np.array(ys))
return weights
# Potential Typop
# def center_crop_im_batch(batch, dims, batch_order="BCHW"):
# """
# Center crop images in a batch.
# Args:
# batch: The batch of images to be cropped
# dims: Amount to be cropped (tuple for H, W)
# """
# assert (
# batch.ndim == 4
# ), f"ERROR input shape is {batch.shape} - expecting a batch with 4 dimensions total"
# assert (
# len(dims) == 2
# ), f"ERROR input cropping dims is {dims} - expecting a tuple with 2 elements total"
# assert batch_order in {
# "BHCW",
# "BCHW",
# }, f"ERROR input batch order {batch_order} not recognized. Must be one of 'BHCW' or 'BCHW'"
# if dims == (0, 0):
# # no cropping necessary in this case
# batch_cropped = batch
# else:
# crop_t = dims[0] // 2
# crop_b = dims[0] - crop_t
# crop_l = dims[1] // 2
# crop_r = dims[1] - crop_l
# if batch_order == "BHWC":
# batch_cropped = batch[:, crop_t:-crop_b, crop_l:-crop_r, :]
# elif batch_order == "BCHW":
# batch_cropped = batch[:, :, crop_t:-crop_b, crop_l:-crop_r]
# else:
# raise Exception("Input batch order not valid")
# return batch_cropped
def center_crop_im_batch(batch, dims, batch_order="BCHW"):
"""
Center crop images in a batch.
Args:
batch: The batch of images to be cropped
dims: Amount to be cropped (tuple for H, W)
"""
assert (
batch.ndim == 4
), f"ERROR input shape is {batch.shape} - expecting a batch with 4 dimensions total"
assert (
len(dims) == 2
), f"ERROR input cropping dims is {dims} - expecting a tuple with 2 elements total"
assert batch_order in {
"BHWC",
"BCHW",
}, f"ERROR input batch order {batch_order} not recognized. Must be one of 'BHWC' or 'BCHW'"
if dims == (0, 0):
# no cropping necessary in this case
batch_cropped = batch
else:
crop_t = dims[0] // 2
crop_b = dims[0] - crop_t
crop_l = dims[1] // 2
crop_r = dims[1] - crop_l
if batch_order == "BHWC":
batch_cropped = batch[:, crop_t:-crop_b, crop_l:-crop_r, :]
elif batch_order == "BCHW":
batch_cropped = batch[:, :, crop_t:-crop_b, crop_l:-crop_r]
else: # pragma: no cover
raise Exception("Input batch order not valid")
return batch_cropped
def dice_loss(true, logits, eps=1e-3):
"""
Computes the Sørensen–Dice loss.
Note that PyTorch optimizers minimize a loss. In this
case, we would like to maximize the dice loss so we
return 1 - dice loss.
From: https://github.com/kevinzakka/pytorch-goodies/blob/c039691f349be9f21527bb38b907a940bfc5e8f3/losses.py#L54
Args:
true: a tensor of shape [B, 1, H, W].
logits: a tensor of shape [B, C, H, W]. Corresponds to
the raw output or logits of the model.
eps: added to the denominator for numerical stability.
Returns:
dice_loss: the Sørensen–Dice loss.
"""
assert (
true.dtype == torch.long
), f"Input 'true' is of type {true.type}. It should be a long."
num_classes = logits.shape[1]
if num_classes == 1:
true_1_hot = torch.eye(num_classes + 1)[true.squeeze(1)]
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
true_1_hot_f = true_1_hot[:, 0:1, :, :]
true_1_hot_s = true_1_hot[:, 1:2, :, :]
true_1_hot = torch.cat([true_1_hot_s, true_1_hot_f], dim=1)
pos_prob = torch.sigmoid(logits)
neg_prob = 1 - pos_prob
probas = torch.cat([pos_prob, neg_prob], dim=1)
else:
true_1_hot = torch.eye(num_classes)[true.squeeze(1)]
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
probas = F.softmax(logits, dim=1)
true_1_hot = true_1_hot.type(logits.type())
dims = (0,) + tuple(range(2, true.ndimension()))
intersection = torch.sum(probas * true_1_hot, dims)
cardinality = torch.sum(probas + true_1_hot, dims)
loss = (2.0 * intersection / (cardinality + eps)).mean()
loss = 1 - loss
return loss
def dice_score(pred, truth, eps=1e-3):
"""
Calculate dice score for two tensors of the same shape.
If tensors are not already binary, they are converted to bool by zero/non-zero.
Args:
pred (np.ndarray): Predictions
truth (np.ndarray): ground truth
eps (float, optional): Constant used for numerical stability to avoid divide-by-zero errors. Defaults to 1e-3.
Returns:
float: Dice score
"""
assert isinstance(truth, np.ndarray) and isinstance(
pred, np.ndarray
), f"pred is of type {type(pred)} and truth is type {type(truth)}. Both must be np.ndarray"
assert (
pred.shape == truth.shape
), f"pred shape {pred.shape} does not match truth shape {truth.shape}"
# turn into binary if not already
pred = pred != 0
truth = truth != 0
num = 2 * np.sum(pred.flatten() * truth.flatten())
denom = np.sum(pred) + np.sum(truth) + eps
return float(num / denom)
def get_sobel_kernels(size, dt=torch.float32):
"""
Create horizontal and vertical Sobel kernels for approximating gradients
Returned kernels will be of shape (size, size)
"""
assert size % 2 == 1, "Size must be odd"
h_range = torch.arange(-size // 2 + 1, size // 2 + 1, dtype=dt)
v_range = torch.arange(-size // 2 + 1, size // 2 + 1, dtype=dt)
h, v = torch.meshgrid([h_range, v_range])
h, v = h.transpose(0, 1), v.transpose(0, 1)
kernel_h = h / (h * h + v * v + 1e-5)
kernel_v = v / (h * h + v * v + 1e-5)
kernel_h = kernel_h.type(dt)
kernel_v = kernel_v.type(dt)
return kernel_h, kernel_v
def wrap_transform_multichannel(transform):
"""
Wrapper to make albumentations transform compatible with a multichannel mask.
Channel should be in first dimension, i.e. (n_mask_channels, H, W)
Args:
transform: Albumentations transform. Must have 'additional_targets' parameter specified with
a total of `n_channels` key,value pairs. All values must be 'mask' but the keys don't matter.
e.g. for a mask with 3 channels, you could use:
`additional targets = {'mask1' : 'mask', 'mask2' : 'mask', 'pathml' : 'mask'}`
Returns:
function that can be called with a multichannel mask argument
"""
targets = transform.additional_targets
n_targets = len(targets)
# make sure that everything is correct so that transform is correctly applied
assert all(
[v == "mask" for v in targets.values()]
), "error all values in transform.additional_targets must be 'mask'."
def transform_out(*args, **kwargs):
mask = kwargs.pop("mask")
assert mask.ndim == 3, f"input mask shape {mask.shape} must be 3-dimensions ()"
assert (
mask.shape[0] == n_targets
), f"input mask shape {mask.shape} doesn't match additional_targets {transform.additional_targets}"
mask_to_dict = {key: mask[i, :, :] for i, key in enumerate(targets.keys())}
kwargs.update(mask_to_dict)
out = transform(*args, **kwargs)
mask_out = np.stack([out.pop(key) for key in targets.keys()], axis=0)
assert mask_out.shape == mask.shape
out["mask"] = mask_out
return out
return transform_out