|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import numpy as np |
|
|
|
|
|
import torch |
|
from sklearn.utils.class_weight import compute_class_weight |
|
from torch.nn import functional as F |
|
from torch_geometric.utils import degree |
|
from tqdm import tqdm |
|
|
|
|
|
def scatter_sum(src, index, dim, out=None, dim_size=None): |
|
""" |
|
Reduces all values from the :attr:`src` tensor into :attr:`out` at the |
|
indices specified in the :attr:`index` tensor along a given axis |
|
:attr:`dim`. |
|
|
|
For each value in :attr:`src`, its output index is specified by its index |
|
in :attr:`src` for dimensions outside of :attr:`dim` and by the |
|
corresponding value in :attr:`index` for dimension :attr:`dim`. |
|
The applied reduction is defined via the :attr:`reduce` argument. |
|
|
|
Args: |
|
src: The source tensor. |
|
index: The indices of elements to scatter. |
|
dim: The axis along which to index. Default is -1. |
|
out: The destination tensor. |
|
dim_size: If `out` is not given, automatically create output with size `dim_size` at dimension `dim`. |
|
|
|
Reference: |
|
https://pytorch-scatter.readthedocs.io/en/latest/_modules/torch_scatter/scatter.html#scatter |
|
""" |
|
|
|
index = broadcast(index, src, dim) |
|
if out is None: |
|
size = list(src.size()) |
|
if dim_size is not None: |
|
size[dim] = dim_size |
|
elif index.numel() == 0: |
|
size[dim] = 0 |
|
else: |
|
size[dim] = int(index.max()) + 1 |
|
out = torch.zeros(size, dtype=src.dtype, device=src.device) |
|
return out.scatter_add_(dim, index, src) |
|
else: |
|
return out.scatter_add_(dim, index, src) |
|
|
|
|
|
def broadcast(src, other, dim): |
|
""" |
|
Broadcast tensors to match output tensor dimension. |
|
""" |
|
if dim < 0: |
|
dim = other.dim() + dim |
|
if src.dim() == 1: |
|
for _ in range(0, dim): |
|
src = src.unsqueeze(0) |
|
for _ in range(src.dim(), other.dim()): |
|
src = src.unsqueeze(-1) |
|
src = src.expand(other.size()) |
|
return src |
|
|
|
|
|
def get_degree_histogram(loader, edge_index_str, x_str): |
|
""" |
|
Returns the degree histogram to be used as input for the `deg` argument in `PNAConv`. |
|
""" |
|
|
|
deg_histogram = torch.zeros(1, dtype=torch.long) |
|
for data in tqdm(loader): |
|
d = degree( |
|
data[edge_index_str][1], num_nodes=data[x_str].shape[0], dtype=torch.long |
|
) |
|
d_bincount = torch.bincount(d, minlength=deg_histogram.numel()) |
|
if d_bincount.size(0) > deg_histogram.size(0): |
|
d_bincount[: deg_histogram.size(0)] += deg_histogram |
|
deg_histogram = d_bincount |
|
else: |
|
assert d_bincount.size(0) == deg_histogram.size(0) |
|
deg_histogram += d_bincount |
|
return deg_histogram |
|
|
|
|
|
def get_class_weights(loader): |
|
""" |
|
Returns the per-class weights to be used in weighted loss functions. |
|
""" |
|
|
|
ys = [] |
|
for data in tqdm(loader): |
|
ys.append(data.target.numpy()) |
|
ys = np.array(ys).ravel() |
|
weights = compute_class_weight("balanced", classes=np.unique(ys), y=np.array(ys)) |
|
return weights |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def center_crop_im_batch(batch, dims, batch_order="BCHW"): |
|
""" |
|
Center crop images in a batch. |
|
|
|
Args: |
|
batch: The batch of images to be cropped |
|
dims: Amount to be cropped (tuple for H, W) |
|
""" |
|
assert ( |
|
batch.ndim == 4 |
|
), f"ERROR input shape is {batch.shape} - expecting a batch with 4 dimensions total" |
|
assert ( |
|
len(dims) == 2 |
|
), f"ERROR input cropping dims is {dims} - expecting a tuple with 2 elements total" |
|
assert batch_order in { |
|
"BHWC", |
|
"BCHW", |
|
}, f"ERROR input batch order {batch_order} not recognized. Must be one of 'BHWC' or 'BCHW'" |
|
|
|
if dims == (0, 0): |
|
|
|
batch_cropped = batch |
|
else: |
|
crop_t = dims[0] // 2 |
|
crop_b = dims[0] - crop_t |
|
crop_l = dims[1] // 2 |
|
crop_r = dims[1] - crop_l |
|
|
|
if batch_order == "BHWC": |
|
batch_cropped = batch[:, crop_t:-crop_b, crop_l:-crop_r, :] |
|
elif batch_order == "BCHW": |
|
batch_cropped = batch[:, :, crop_t:-crop_b, crop_l:-crop_r] |
|
else: |
|
raise Exception("Input batch order not valid") |
|
|
|
return batch_cropped |
|
|
|
|
|
def dice_loss(true, logits, eps=1e-3): |
|
""" |
|
Computes the Sørensen–Dice loss. |
|
Note that PyTorch optimizers minimize a loss. In this |
|
case, we would like to maximize the dice loss so we |
|
return 1 - dice loss. |
|
From: https://github.com/kevinzakka/pytorch-goodies/blob/c039691f349be9f21527bb38b907a940bfc5e8f3/losses.py#L54 |
|
|
|
Args: |
|
true: a tensor of shape [B, 1, H, W]. |
|
logits: a tensor of shape [B, C, H, W]. Corresponds to |
|
the raw output or logits of the model. |
|
eps: added to the denominator for numerical stability. |
|
|
|
Returns: |
|
dice_loss: the Sørensen–Dice loss. |
|
""" |
|
assert ( |
|
true.dtype == torch.long |
|
), f"Input 'true' is of type {true.type}. It should be a long." |
|
num_classes = logits.shape[1] |
|
if num_classes == 1: |
|
true_1_hot = torch.eye(num_classes + 1)[true.squeeze(1)] |
|
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float() |
|
true_1_hot_f = true_1_hot[:, 0:1, :, :] |
|
true_1_hot_s = true_1_hot[:, 1:2, :, :] |
|
true_1_hot = torch.cat([true_1_hot_s, true_1_hot_f], dim=1) |
|
pos_prob = torch.sigmoid(logits) |
|
neg_prob = 1 - pos_prob |
|
probas = torch.cat([pos_prob, neg_prob], dim=1) |
|
else: |
|
true_1_hot = torch.eye(num_classes)[true.squeeze(1)] |
|
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float() |
|
probas = F.softmax(logits, dim=1) |
|
true_1_hot = true_1_hot.type(logits.type()) |
|
dims = (0,) + tuple(range(2, true.ndimension())) |
|
intersection = torch.sum(probas * true_1_hot, dims) |
|
cardinality = torch.sum(probas + true_1_hot, dims) |
|
loss = (2.0 * intersection / (cardinality + eps)).mean() |
|
loss = 1 - loss |
|
return loss |
|
|
|
|
|
def dice_score(pred, truth, eps=1e-3): |
|
""" |
|
Calculate dice score for two tensors of the same shape. |
|
If tensors are not already binary, they are converted to bool by zero/non-zero. |
|
|
|
Args: |
|
pred (np.ndarray): Predictions |
|
truth (np.ndarray): ground truth |
|
eps (float, optional): Constant used for numerical stability to avoid divide-by-zero errors. Defaults to 1e-3. |
|
|
|
Returns: |
|
float: Dice score |
|
""" |
|
assert isinstance(truth, np.ndarray) and isinstance( |
|
pred, np.ndarray |
|
), f"pred is of type {type(pred)} and truth is type {type(truth)}. Both must be np.ndarray" |
|
assert ( |
|
pred.shape == truth.shape |
|
), f"pred shape {pred.shape} does not match truth shape {truth.shape}" |
|
|
|
pred = pred != 0 |
|
truth = truth != 0 |
|
|
|
num = 2 * np.sum(pred.flatten() * truth.flatten()) |
|
denom = np.sum(pred) + np.sum(truth) + eps |
|
return float(num / denom) |
|
|
|
|
|
def get_sobel_kernels(size, dt=torch.float32): |
|
""" |
|
Create horizontal and vertical Sobel kernels for approximating gradients |
|
Returned kernels will be of shape (size, size) |
|
""" |
|
assert size % 2 == 1, "Size must be odd" |
|
|
|
h_range = torch.arange(-size // 2 + 1, size // 2 + 1, dtype=dt) |
|
v_range = torch.arange(-size // 2 + 1, size // 2 + 1, dtype=dt) |
|
h, v = torch.meshgrid([h_range, v_range]) |
|
h, v = h.transpose(0, 1), v.transpose(0, 1) |
|
|
|
kernel_h = h / (h * h + v * v + 1e-5) |
|
kernel_v = v / (h * h + v * v + 1e-5) |
|
|
|
kernel_h = kernel_h.type(dt) |
|
kernel_v = kernel_v.type(dt) |
|
|
|
return kernel_h, kernel_v |
|
|
|
|
|
def wrap_transform_multichannel(transform): |
|
""" |
|
Wrapper to make albumentations transform compatible with a multichannel mask. |
|
Channel should be in first dimension, i.e. (n_mask_channels, H, W) |
|
|
|
Args: |
|
transform: Albumentations transform. Must have 'additional_targets' parameter specified with |
|
a total of `n_channels` key,value pairs. All values must be 'mask' but the keys don't matter. |
|
e.g. for a mask with 3 channels, you could use: |
|
`additional targets = {'mask1' : 'mask', 'mask2' : 'mask', 'pathml' : 'mask'}` |
|
|
|
Returns: |
|
function that can be called with a multichannel mask argument |
|
""" |
|
targets = transform.additional_targets |
|
n_targets = len(targets) |
|
|
|
|
|
assert all( |
|
[v == "mask" for v in targets.values()] |
|
), "error all values in transform.additional_targets must be 'mask'." |
|
|
|
def transform_out(*args, **kwargs): |
|
mask = kwargs.pop("mask") |
|
assert mask.ndim == 3, f"input mask shape {mask.shape} must be 3-dimensions ()" |
|
assert ( |
|
mask.shape[0] == n_targets |
|
), f"input mask shape {mask.shape} doesn't match additional_targets {transform.additional_targets}" |
|
|
|
mask_to_dict = {key: mask[i, :, :] for i, key in enumerate(targets.keys())} |
|
kwargs.update(mask_to_dict) |
|
out = transform(*args, **kwargs) |
|
mask_out = np.stack([out.pop(key) for key in targets.keys()], axis=0) |
|
assert mask_out.shape == mask.shape |
|
out["mask"] = mask_out |
|
return out |
|
|
|
return transform_out |
|
|