|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import pickle |
|
|
|
import pathml.core.tile |
|
from pathml.preprocessing.transforms import Transform |
|
|
|
|
|
class Pipeline(Transform): |
|
""" |
|
Compose a sequence of Transforms |
|
|
|
Args: |
|
transform_sequence (list): sequence of transforms to be consecutively applied. |
|
List of `pathml.core.Transform` objects |
|
""" |
|
|
|
def __init__(self, transform_sequence=None): |
|
assert transform_sequence is None or all( |
|
[isinstance(t, Transform) for t in transform_sequence] |
|
), "All elements in input list must be of type pathml.core.Transform" |
|
self.transforms = transform_sequence |
|
|
|
def __len__(self): |
|
return len(self.transforms) |
|
|
|
def __repr__(self): |
|
if self.transforms is None: |
|
return "Pipeline()" |
|
else: |
|
out = "Pipeline([\n" |
|
for t in self.transforms: |
|
out += f"\t{repr(t)},\n" |
|
out += "])" |
|
return out |
|
|
|
def apply(self, tile): |
|
|
|
|
|
|
|
assert isinstance( |
|
tile, pathml.core.tile.Tile |
|
), f"argument of type {type(tile)} must be a pathml.core.Tile object." |
|
if self.transforms: |
|
for t in self.transforms: |
|
t.apply(tile) |
|
return tile |
|
|
|
def save(self, filename): |
|
""" |
|
save pipeline to disk |
|
|
|
Args: |
|
filename (str): save path on disk |
|
""" |
|
pickle.dump(self, open(filename, "wb")) |
|
|