|
import glob |
|
import re |
|
from os import listdir, path |
|
|
|
import anndata as ad |
|
from dask.distributed import Client, LocalCluster |
|
|
|
from pathml.core import SlideDataset |
|
from pathml.core.slide_data import CODEXSlide |
|
from pathml.preprocessing.pipeline import Pipeline |
|
from pathml.preprocessing.transforms import CollapseRunsCODEX, QuantifyMIF, SegmentMIF |
|
|
|
|
|
def run_vectra_workflow( |
|
slide_dir, |
|
slide_ext="tif", |
|
nuclear_channel=0, |
|
cytoplasmic_channel=29, |
|
image_resolution=0.377442, |
|
use_parallel=True, |
|
n_cpus=10, |
|
tile_size=(1920, 1440), |
|
save_slidedata_file="./data/dataset_processed.h5", |
|
save_anndata_file="./data/adata_combined.h5ad", |
|
): |
|
|
|
|
|
for A, B in [listdir(slide_dir)]: |
|
vectra_list_A = [ |
|
CODEXSlide(p, stain="IF") |
|
for p in glob.glob(path.join(slide_dir, A, f"*.{slide_ext}")) |
|
] |
|
vectra_list_B = [ |
|
CODEXSlide(p, stain="IF") |
|
for p in glob.glob(path.join(slide_dir, B, f"*.{slide_ext}")) |
|
] |
|
|
|
for slide_A, slide_B in zip(vectra_list_A, vectra_list_B): |
|
slide_A.name = re.sub("X.*", "A", slide_A.name) |
|
slide_B.name = re.sub("X.*", "B", slide_B.name) |
|
|
|
dataset = SlideDataset(vectra_list_A + vectra_list_B) |
|
|
|
|
|
pipe = Pipeline( |
|
[ |
|
CollapseRunsCODEX(z=0), |
|
SegmentMIF( |
|
model="mesmer", |
|
nuclear_channel=nuclear_channel, |
|
cytoplasm_channel=cytoplasmic_channel, |
|
image_resolution=image_resolution, |
|
), |
|
QuantifyMIF(segmentation_mask="cell_segmentation"), |
|
] |
|
) |
|
|
|
|
|
if use_parallel: |
|
|
|
|
|
cluster = LocalCluster(n_workers=n_cpus, threads_per_worker=1, processes=True) |
|
client = Client(cluster) |
|
|
|
|
|
dataset.run( |
|
pipe, distributed=True, client=client, tile_size=tile_size, tile_pad=False |
|
) |
|
else: |
|
dataset.run(pipe, distributed=False, tile_size=tile_size, tile_pad=False) |
|
|
|
|
|
dataset.write(save_slidedata_file) |
|
|
|
|
|
adata = ad.concat( |
|
[x.counts for x in dataset.slides], |
|
join="outer", |
|
label="Region", |
|
index_unique="_", |
|
) |
|
|
|
origin = adata.obs["Region"] |
|
origin = origin.astype(str).str.replace(r"[^a-zA-Z0-9 \n\.]", "") |
|
origin = origin.astype(str).str.replace("[\n]", "") |
|
origin = origin.str.replace("SlideDataname", "") |
|
adata.obs["Region"] = origin |
|
|
|
|
|
adata.write(filename=save_anndata_file) |
|
|