|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
import os |
|
import shutil |
|
import tarfile |
|
import urllib |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from loguru import logger |
|
from matplotlib.colors import TABLEAU_COLORS |
|
|
|
|
|
def download_from_url(url, download_dir, name=None): |
|
""" |
|
Download a file from a url to destination directory. |
|
If the file already exists, does not download. |
|
|
|
Args: |
|
url (str): Url of file to download |
|
download_dir (str): Directory where file will be downloaded |
|
name (str, optional): Name of saved file. If ``None``, uses base name of url argument. Defaults to ``None``. |
|
|
|
See: https://stackoverflow.com/questions/7243750/download-file-from-web-in-python-3 |
|
""" |
|
if name is None: |
|
name = os.path.basename(url) |
|
|
|
path = os.path.join(download_dir, name) |
|
|
|
if os.path.exists(path): |
|
print(f"File {name} already exists, skipping download.") |
|
return |
|
else: |
|
os.makedirs(download_dir, exist_ok=True) |
|
|
|
|
|
with urllib.request.urlopen(url) as response, open(path, "wb") as out_file: |
|
shutil.copyfileobj(response, out_file) |
|
return path |
|
|
|
|
|
def parse_file_size(fs): |
|
""" |
|
Parse a file size string into bytes. |
|
""" |
|
units = {"B": 1, "KB": 10**3, "MB": 10**6, "GB": 10**9, "TB": 10**12} |
|
number, unit = [s.strip() for s in fs.split()] |
|
return int(float(number) * units[unit.upper()]) |
|
|
|
|
|
def upsample_array(arr, factor): |
|
""" |
|
Upsample array by a factor. Each element in input array will become a CxC block in the upsampled array, where |
|
C is the constant upsampling factor. From https://stackoverflow.com/a/32848377 |
|
|
|
:param arr: input array to be upsampled |
|
:type arr: np.ndarray |
|
:param factor: Upsampling factor |
|
:type factor: int |
|
:return: np.ndarray |
|
""" |
|
r, c = arr.shape |
|
rs, cs = arr.strides |
|
x = np.lib.stride_tricks.as_strided( |
|
arr, (r, factor, c, factor), (rs, 0, cs, 0) |
|
) |
|
return x.reshape(r * factor, c * factor) |
|
|
|
|
|
def pil_to_rgb(image_array_pil): |
|
""" |
|
Convert PIL RGBA Image to numpy RGB array |
|
""" |
|
image_array_rgba = np.asarray(image_array_pil) |
|
image_array = cv2.cvtColor(image_array_rgba, cv2.COLOR_RGBA2RGB).astype(np.uint8) |
|
return image_array |
|
|
|
|
|
def segmentation_lines(mask_in): |
|
""" |
|
Generate coords of points bordering segmentations from a given mask. |
|
Useful for plotting results of tissue detection or other segmentation. |
|
""" |
|
assert ( |
|
mask_in.dtype == np.uint8 |
|
), f"Input mask dtype {mask_in.dtype} must be np.uint8" |
|
kernel = np.ones((3, 3), np.uint8) |
|
dilated = cv2.dilate(mask_in, kernel) |
|
diff = np.logical_xor(dilated.astype(bool), mask_in.astype(bool)) |
|
y, x = np.nonzero(diff) |
|
return x, y |
|
|
|
|
|
def plot_mask(im, mask_in, ax=None, color="red", downsample_factor=None): |
|
""" |
|
plot results of segmentation, overlaying on original image_ref |
|
|
|
:param im: Original RGB image_ref |
|
:type im: np.ndarray |
|
:param mask_in: Boolean array of segmentation mask, with True values for masked pixels. Must be same shape as im. |
|
:type mask_in: np.ndarray |
|
:param ax: Matplotlib axes object to plot on. If None, creates a new plot. Defaults to None. |
|
:param color: Color to plot outlines of mask. Defaults to "red". Must be recognized by matplotlib. |
|
:param downsample_factor: Downsample factor for image_ref and mask to speed up plotting for big images |
|
""" |
|
if downsample_factor: |
|
mask_in = mask_in[::downsample_factor, ::downsample_factor] |
|
im = im[::downsample_factor, ::downsample_factor] |
|
|
|
x, y = segmentation_lines(mask_in) |
|
if ax is None: |
|
fig, ax = plt.subplots() |
|
ax.imshow(im) |
|
ax.scatter(x, y, color=color, marker=".", s=1) |
|
ax.axis("off") |
|
return ax |
|
|
|
|
|
def contour_centroid(contour): |
|
""" |
|
Return the centroid of a contour, calculated using moments. |
|
From `OpenCV implementation <https://docs.opencv.org/3.4/d0/d49/tutorial_moments.html>`_ |
|
|
|
:param contour: Contour array as returned by cv2.findContours |
|
:type contour: np.array |
|
:return: (x, y) coordinates of centroid. |
|
:rtype: tuple |
|
""" |
|
|
|
assert contour.dtype == np.float32 |
|
|
|
mu = cv2.moments(contour) |
|
|
|
|
|
i, j = (mu["m10"] / (mu["m00"] + 1e-5), mu["m01"] / (mu["m00"] + 1e-5)) |
|
return i, j |
|
|
|
|
|
def sort_points_clockwise(points): |
|
""" |
|
Sort a list of points into clockwise order around centroid, ordering by angle with centroid and x-axis. |
|
After sorting, we can pass the points to cv2 as a contour. |
|
Centroid is defined as center of bounding box around points. |
|
|
|
:param points: Array of points (N x 2) |
|
:type points: np.ndarray |
|
:return: Array of points, sorted in order by angle with centroid (N x 2) |
|
:rtype: np.ndarray |
|
|
|
Return sorted points |
|
""" |
|
|
|
x, y, w, h = cv2.boundingRect(points) |
|
centroid = (x + w // 2, y + h // 2) |
|
|
|
diffs = [point - centroid for point in points] |
|
angles = [np.arctan2(d[0], d[1]) for d in diffs] |
|
|
|
return points[np.argsort(angles)] |
|
|
|
|
|
def _pad_or_crop_1d(array, axis, target_dim): |
|
""" |
|
Modify shape of input array at target axis by zero-padding or cropping. |
|
|
|
:param array: Input array |
|
:type array: np.ndarray |
|
:param axis: Index of target axis |
|
:type axis: int |
|
:param target_dim: target size of specified axis |
|
:return: np.ndarray |
|
""" |
|
in_dim = array.shape[axis] |
|
if in_dim == target_dim: |
|
|
|
return array |
|
diff = target_dim - in_dim |
|
offset = (int(np.floor(abs(diff) / 2)), int(np.ceil(abs(diff) / 2))) |
|
if diff > 0: |
|
|
|
n_pad = [(0, 0)] * array.ndim |
|
n_pad[axis] = offset |
|
return np.pad(array, pad_width=n_pad, mode="constant", constant_values=0) |
|
else: |
|
|
|
|
|
slc = [slice(None)] * array.ndim |
|
slc[axis] = slice(offset[0], -offset[1]) |
|
array = array[tuple(slc)] |
|
return array |
|
|
|
|
|
def pad_or_crop(array, target_shape): |
|
""" |
|
Make dimensions of input array match target shape by either zero-padding or cropping each axis. |
|
|
|
:param array: Input array |
|
:type array: np.ndarray |
|
:param target_shape: Target shape of output |
|
:type target_shape: tuple |
|
:return: Input array cropped/padded to match target_shape |
|
:rtype: np.ndarray |
|
""" |
|
if array.shape == target_shape: |
|
|
|
return array |
|
|
|
for axis, target in enumerate(target_shape): |
|
array = _pad_or_crop_1d(array, axis=axis, target_dim=target) |
|
return array |
|
|
|
|
|
def RGB_to_HSI(imarr): |
|
""" |
|
Convert imarr from RGB to HSI colorspace. |
|
|
|
:param imarr: numpy array of RGB image_ref (m, n, 3) |
|
:type imarr: np.ndarray |
|
:return: numpy array of HSI image_ref (m, n, 3) |
|
:rtype: np.ndarray |
|
|
|
References: |
|
http://eng.usf.edu/~hady/courses/cap5400/rgb-to-hsi.pdf |
|
""" |
|
assert imarr.dtype == np.uint8, f"Input image dtype {imarr.dtype} must be np.uint8" |
|
R = imarr[:, :, 0] |
|
G = imarr[:, :, 1] |
|
B = imarr[:, :, 2] |
|
|
|
eps = 1e-6 |
|
patch_sum = np.sum(imarr, axis=2) + eps |
|
r = R / patch_sum |
|
g = G / patch_sum |
|
b = B / patch_sum |
|
h = np.zeros_like(r, dtype=np.float32) |
|
|
|
h_0 = np.logical_and(R == G, G == B) |
|
num_h = 0.5 * ((r[~h_0] - g[~h_0]) + (r[~h_0] - b[~h_0])) |
|
denom_h = np.sqrt( |
|
(r[~h_0] - g[~h_0]) ** 2 + (r[~h_0] - b[~h_0]) * (g[~h_0] - b[~h_0]) |
|
) |
|
h[~h_0] = np.arccos(num_h / denom_h) |
|
h[B > G] = 2 * np.pi - h[B > G] |
|
h = h / (2.0 * np.pi) |
|
patch_norm = np.stack([r, g, b], axis=2) |
|
s = 1 - 3 * np.amin(patch_norm, axis=2) |
|
patchsum = np.sum(imarr, axis=2) |
|
i = patchsum / (3 * 255) |
|
out = np.stack([h, s, i], axis=2) |
|
return out |
|
|
|
|
|
def RGB_to_OD(imarr): |
|
""" |
|
Convert input image from RGB space to optical density (OD) space. |
|
`OD = -log(I)`, where I is the input image in RGB space. |
|
|
|
:param imarr: Image array, RGB format |
|
:type imarr: numpy.ndarray |
|
:return: Image array, OD format |
|
:rtype: numpy.ndarray |
|
""" |
|
assert imarr.dtype == np.uint8, f"Input image dtype {imarr.dtype} must be np.uint8" |
|
|
|
OD = -np.log((imarr.astype(np.float32) + 1) / 255.0) |
|
return OD |
|
|
|
|
|
def RGB_to_HSV(imarr): |
|
"""convert image from RGB to HSV""" |
|
assert imarr.dtype == np.uint8, f"Input image dtype {imarr.dtype} must be np.uint8" |
|
hsv = cv2.cvtColor(imarr, cv2.COLOR_RGB2HSV) |
|
return hsv |
|
|
|
|
|
def RGB_to_LAB(imarr): |
|
"""convert image from RGB to LAB color space""" |
|
assert imarr.dtype == np.uint8, f"Input image dtype {imarr.dtype} must be np.uint8" |
|
imarr_float32 = imarr.astype(np.float32) / 255 |
|
lab = cv2.cvtColor(imarr_float32, cv2.COLOR_RGB2Lab) |
|
return lab |
|
|
|
|
|
def RGB_to_GREY(imarr): |
|
"""convert image_ref from RGB to HSV""" |
|
assert imarr.dtype == np.uint8, f"Input image dtype {imarr.dtype} must be np.uint8" |
|
grey = cv2.cvtColor(imarr, cv2.COLOR_RGB2GRAY) |
|
return grey |
|
|
|
|
|
def normalize_matrix_rows(A): |
|
""" |
|
Normalize the rows of an array. |
|
|
|
:param A: Input array. |
|
:type A: np.ndarray |
|
:return: Array with rows normalized. |
|
:rtype: np.ndarray |
|
""" |
|
return A / np.linalg.norm(A, axis=1)[:, None] |
|
|
|
|
|
def normalize_matrix_cols(A): |
|
""" |
|
Normalize the columns of an array. |
|
|
|
:param A: An array |
|
:type A: np.ndarray |
|
:return: Array with columns normalized |
|
:rtype: np.ndarray |
|
""" |
|
return A / np.linalg.norm(A, axis=0)[None, :] |
|
|
|
|
|
def plot_segmentation(ax, masks, palette=None, markersize=5): |
|
""" |
|
Plot segmentation contours. Supports multi-class masks. |
|
|
|
Args: |
|
ax: matplotlib axis |
|
masks (np.ndarray): Mask array of shape (n_masks, H, W). Zeroes are background pixels. |
|
palette: color palette to use. if None, defaults to matplotlib.colors.TABLEAU_COLORS |
|
markersize (int): Size of markers used on plot. Defaults to 5 |
|
""" |
|
assert masks.ndim == 3 |
|
n_channels = masks.shape[0] |
|
|
|
if palette is None: |
|
palette = list(TABLEAU_COLORS.values()) |
|
|
|
nucleus_labels = list(np.unique(masks)) |
|
if 0 in nucleus_labels: |
|
nucleus_labels.remove(0) |
|
|
|
for label in nucleus_labels: |
|
for i in range(n_channels): |
|
nuclei_mask = masks[i, ...] == label |
|
x, y = segmentation_lines(nuclei_mask.astype(np.uint8)) |
|
ax.scatter(x, y, color=palette[i], marker=".", s=markersize) |
|
|
|
|
|
def _test_log(msg): |
|
|
|
|
|
logger.info(msg) |
|
|
|
|
|
def find_qupath_home(start_path): |
|
""" |
|
Search for the QuPath home directory by looking for .jar files within the given start path. |
|
|
|
Args: |
|
start_path (str): The starting directory path from which to begin the search. |
|
|
|
Returns: |
|
str or None: The absolute path of the QuPath home directory if found; otherwise, None. |
|
""" |
|
|
|
for root, dirs, files in os.walk(start_path): |
|
if any("qupath" in file.lower() and file.endswith(".jar") for file in files): |
|
return str(Path(root).parent.parent) |
|
return None |
|
|
|
|
|
def setup_qupath(qupath_home=None): |
|
""" |
|
Set up the QuPath environment by downloading and extracting it if not already installed. |
|
|
|
This function checks for an existing QuPath installation in the specified directory. |
|
If not found, it downloads QuPath from its official release page and extracts it. |
|
|
|
Args: |
|
qupath_home (str, optional): The directory path where QuPath is or will be installed. |
|
Defaults to '~/tools/qupath' if None. |
|
|
|
Returns: |
|
str: The path to the QuPath home directory after setting it up. |
|
""" |
|
|
|
default_path = str(Path.home() / "tools/qupath") |
|
qupath_home = qupath_home if qupath_home is not None else default_path |
|
Path(qupath_home).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
existing_qupath_home = find_qupath_home(qupath_home) |
|
if existing_qupath_home: |
|
return existing_qupath_home |
|
|
|
print("Downloading") |
|
|
|
|
|
qupath_url = "https://github.com/qupath/qupath/releases/download/v0.4.3/QuPath-0.4.3-Linux.tar.xz" |
|
qupath_tar_name = "QuPath-0.4.3-Linux.tar.xz" |
|
tar_path = download_from_url(qupath_url, qupath_home, qupath_tar_name) |
|
|
|
|
|
if tar_path: |
|
print("Extracting QuPath...") |
|
with tarfile.open(tar_path) as tar: |
|
tar.extractall(path=qupath_home) |
|
os.remove(tar_path) |
|
|
|
|
|
return find_qupath_home(qupath_home) |
|
|