|
""" |
|
Copyright 2021, Dana-Farber Cancer Institute and Weill Cornell Medicine |
|
License: GNU GPL 2.0 |
|
""" |
|
|
|
|
|
|
|
|
|
import argparse |
|
import cProfile |
|
import logging |
|
import pstats |
|
from pstats import SortKey |
|
|
|
from dask.distributed import Client, LocalCluster |
|
from torch.utils.data import DataLoader |
|
|
|
from pathml.core import HESlide |
|
from pathml.ml import TileDataset |
|
from pathml.preprocessing import BoxBlur, Pipeline, TissueDetectionHE |
|
from pathml.utils import download_from_url |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"-n", "--nworkers", help="number of workers", type=int, default=10, dest="n_workers" |
|
) |
|
args = parser.parse_args() |
|
|
|
logging.basicConfig( |
|
level=logging.INFO, |
|
format="%(asctime)s %(levelname)-8s %(message)s", |
|
datefmt="%Y-%m-%d %H:%M:%S", |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
logging.info("beginning file download") |
|
download_from_url( |
|
"https://data.cytomine.coop/open/openslide/aperio-svs/CMU-1.svs", |
|
download_dir="testdata/", |
|
) |
|
|
|
wsi = HESlide("testdata/CMU-1.svs", name="example") |
|
pipeline = Pipeline( |
|
[ |
|
BoxBlur(kernel_size=15), |
|
TissueDetectionHE( |
|
mask_name="tissue", |
|
min_region_size=500, |
|
threshold=30, |
|
outer_contours_only=True, |
|
), |
|
] |
|
) |
|
|
|
logging.info(f"spinning up LocalCluster with {args.n_workers} workers") |
|
cluster = LocalCluster(n_workers=args.n_workers) |
|
client = Client(cluster) |
|
|
|
logging.info("beginning pipeline run") |
|
|
|
cProfile.run( |
|
"wsi.run(pipeline, distributed=True, tile_size=256, client=client)", |
|
"benchmark_pipeline_running", |
|
) |
|
logging.info("shutting down dask client") |
|
|
|
client.shutdown() |
|
|
|
logging.info("writing to h5path") |
|
|
|
cProfile.run( |
|
"wsi.write('benchmark_he.h5path')", |
|
"benchmark_writing_to_h5", |
|
) |
|
|
|
logging.info("creating dataloader") |
|
dset = TileDataset("benchmark_he.h5path") |
|
dloader = DataLoader(dset, batch_size=16, shuffle=True, num_workers=4) |
|
cProfile.run( |
|
"for batch in dloader: pass", |
|
"benchmark_dataloader", |
|
) |
|
|
|
logging.info("printing benchmarking results") |
|
|
|
|
|
pipeline_stats = pstats.Stats("benchmark_pipeline_running") |
|
pipeline_stats.strip_dirs().sort_stats(SortKey.CUMULATIVE).print_stats(10) |
|
|
|
writing_h5_stats = pstats.Stats("benchmark_writing_to_h5") |
|
writing_h5_stats.strip_dirs().sort_stats(SortKey.CUMULATIVE).print_stats(10) |
|
|
|
dataloader_stats = pstats.Stats("benchmark_dataloader") |
|
dataloader_stats.strip_dirs().sort_stats(SortKey.CUMULATIVE).print_stats(10) |
|
|